
A hybrid quantum approach to leveraging data from HTML
tables

Patricia Jiménez1 · Juan C. Roldán1 · Rafael Corchuelo1

Abstract

The Web provides many data that are encoded using HTML tables. This facilitates 
rendering them, but obfuscates their structure and makes it difficult for automated business 
processes to leverage them. This has motivated many authors to work on proposals to 
extract them as automatically as possible. In this article, we present a new unsupervised 
proposal that uses a hybrid approach in which a standard computer is used to perform pre- 
and post-processing tasks and a quantum computer is used to perform the core task: 
guessing whether the cells have labels or values. The problem is addressed using a 
clustering approach that is known to be NP using standard computers, but our proposal can 
solve it in polynomial time, which implies a significant performance improvement. It is 
novel in that it relies on an entropy-preservation metaphor that has proven to work very 
well on two large collections of real-world tables from the Wikipedia and the Dresden Web 
Table Corpus. Our experiments prove that our proposal can beat the state-of-the-art 
proposal in terms of both effectiveness and efficiency; the key difference is that our 
proposal is totally unsupervised, whereas the state-of-the-art proposal is supervised.

Keywords HTML tables · Data extraction · Quantum computing

1 Introduction

Automated business processes commonly integrate multiple data sources to produce more 
useful information than the sources can yield individually. We are interested in developing 
tools that help feed them with data that are provided by web sites across the world. Those data 
sources are particularly problematic in cases in which the data are encoded using HTML, 
since this encoding is intended to help render user-friendly documents, not to help machines
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understand the data therein. Particularly, we focus on analysing data tables, which are HTML 
tables that are used to display data, not to position other HTML elements on the screen. Data 
tables are very popular according to many studies; for instance, Cafarella et al. [8] found 
154 million data tables in a crawl with 14.10 billion tables, Crestan and Pantel [15] found 
1.30 billion data tables in a crawl with 12 billion tables, Pimplikar and Sarawagi [53] found 
25 million data tables in a crawl with 500 million HTML documents, and the recent Web 
Table Corpora initiative found 233 million data tables in a crawl with 1.78 billion HTML 
documents.

Unfortunately, it is not easy to use the data in a typical HTML table to feed an automated 
business process. The problem is that such data are not structured: they are encoded using 
a variety of HTML tags that facilitate rendering them, but obfuscate extracting them using 
programmatic procedures. HTML5 provides a number of tags that are intended to encode 
some semantics and facilitate the extraction, but they are biased towards encoding horizontal 
tables, they do not provide a means to delimit the data tuples or the headers, and they cannot 
make it explicit the relationship between the headers and the data in the tuples; furthermore, 
it is very common to find tables in which the tags are not used properly (for instance, in our 
experimental repositories, roughly 34.96% of the label cells and 11.74% of the value cells 
are incorrectly encoded.) Meta-data tags are intended to enhance the ability of plain HTML 
to encode the semantics of the data [35]. Unfortunately, a recent analysis of the 32.04 million 
domains in the November 2019 Common Crawl has revealed that only 11.92 million domains 
provide such tags [5], which means that there are roughly 20.12 million domains that do not 
facilitate at all extracting their data. Major knowledge bases have built-in data extractors that 
can deal with many HTML documents, but they are far from universal. For instance, Oulabi 
and Bizer [52] analysed the tables in a few domains that are well supported by DBpedia and 
extracted 206,690 data records with no matches in the knowledge base. And WikiData has a 
number of data extractors that can only work with tables that are generated using templates 
like infobox, navbox, or  sistersitebox. It is then not surprising that many sites that provide 
data tables remain out of the reach of automated business processes [46].

The previous problems clearly argue for a method to extract data from HTML tables. In the 
literature, there are many general proposals to extract data from HTML documents [12,23, 
55,58,61]. Some of them are based on analysing visual features [47], text alignment [57,60], 
neural networks [59], matching trees [38], learning first-order rules [33], and also inferring 
propositio-relational rules [34], to mention a few. Unfortunately, they are not appropriate to 
extract the underlying relationships between the cells in a data table [9], which motivated 
many researchers to devise proposals that are specifically tailored to understand the intrinsic 
relational nature of HTML tables [14,20,31,48,54,70,71].

In this article, we present LuperQ, which is our proposal to feed automated business 
processes with data that are encoded using HTML tables. It deviates from the other proposals 
in the literature in that it relies on a quantum clustering approach that builds on an entropy-
preservation metaphor that helps make the label cells apart from the value cells very effectively 
and efficiently, which is the cornerstone to understand the tables automatically. Our approach 
can find the optimum solution in polynomial time, which constitutes a huge speedup for a 
problem that is known to be NP using standard computers. We performed our experiments 
on two large repositories with tables from the Wikipedia and the Dresden Web Table Corpus. 
Our conclusion was that LuperQ can outperform the state-of-the-art proposal by Nishida et al.
[51] in terms of both effectiveness and efficiency; the key here is that LuperQ can attain these 
results in a totally unsupervised manner, whereas the state-of-the-art proposal is supervised. 
The differences in performance were confirmed to be statistically significant using statistical 
hypothesis testing at the standard significance level.



The rest of the article is organised as follows: Sect. 2 describes and compares the related
work; Sect. 3 presents the details of our proposal; Sect. 4 analyses its computational com-
plexity; Sect. 5 reports on our experimental results; finally, Sect. 6 presents our conclusions
and some future work.

2 Related work

In this section, we first summarise the literature on extracting data from HTML tables; then,
we provide a short introduction to quantum computing; next, we summarise the literature on
quantum clustering; finally, we discuss on our contributions.

2.1 Data extraction fromHTML tables

Extracting data from HTML tables is a hot research topic. The two recent surveys by Roldán
et al. [54] and Zhang and Balog [71] make it clear that there are a variety of approaches
to the problem. Most of them are modelled as pipelines that are composed of the following
tasks: locating the tables in the input documents, segmenting them into cells, discriminating
the non-data tables, analysing the function of the cells, analysing the structure of the tables,
and interpreting them. The functional analysis task is a cornerstone in this pipeline since the
overall quality of the data extracted heavily depends on the ability of a proposal to make the
label cells apart from the value cells.

Some of the proposals to implement the functional analysis task are very naive, namely:
Braunschweig et al. [7] assumed that the label cells are located on the first row and Wu et
al. [66] assumed that they are encoded using th tags only. Unfortunately, many real-world
HTML tables are far more complex.

The literature provides better approaches. Chen et al. [13] devised a proposal that identifies
the label cells bymeasuring their similarity according to somepre-defined features;Yoshida et
al. [69] used the ExpectationMaximisationmethod to learn the probability that a cell provides
a label or a value using a large learning corpus; Yang and Luk [68] devised a proposal that
is specifically tailored to work with numeric tables, since it exploits the fact that the data in
such tables have well-known patterns; Kim and Lee [42] devised a proposal that first uses
some heuristics that are based on the dimensions of the input table to determine the regions in
which the label or the value cells are and then performs some pattern-based coherency checks;
Jung and Kwon [36] developed another heuristic-based proposal that attempts to identify the
regions with label or value cells by analysing some stylistic features; Gatterbauer et al. [25]
used some visual features to match the structure of a table onto a number of common table
types in which it is easy to identify the functions of the cells; Cafarella et al. [8] presented a
supervised proposal that learns a classifier from a training set that provides many cells with
structural and content-based features plus additional user-provided annotations; Embley et
al. [21] developed a method that relies on identifying some so-called critical cells that allow
to divide the input table into four regions, some of which can index the others; Milošević et
al. [49] developed a heuristic-based proposal to extract data from the tables in the PubMed
Central repository; and Nishida et al. [51] devised the current state-of-the-art proposal, which
uses a recurrent neural network with an embedding layer, a convolution layer, a filter layer,
a fully-connected layer, and a SoftMax layer.



2.2 Quantum computing in a nutshell

Quantum computing is nowadays a key topic in computing research. Unfortunately, quan-
tum computers are far from being sold at major retail stores, but the hype behind them is 
motivating many companies and researchers to become early adopters and to publish many 
introductory tutorials [37,41,43]. Basically, quantum computing is about taking advantage of 
some phenomena that occur at the (sub-)atomic levels to perform computations. In the last 
three decades, many physicists have been struggling to transform the idea into real-world 
computing devices [10,26]. It is now the time for computer scientists to leverage them to 
boost machine learning. In this field, it is common to address NP problems by searching a 
space of solutions using (meta-)heuristics that allow to find good-enough solutions that are 
not necessarily optimal. Quantum computers might be the key to find the optimal solutions 
very efficiently [18,65].

Describing some fundamental differences amongst classical and quantum computers may 
help understand quantum computing better. They both build on encoding data using strings 
of zeroes and ones. In classical computers, the zeros and ones are referred to as bits and they 
are implemented using voltages, current pulses, or latch circuits. In quantum computers, they 
are referred to as qubits and they are implemented using ions, electrons, or other (sub-)atomic 
particles; such particles oscillate between the two states (including many intermediate states) 
almost instantaneously unless they are somewhat constrained. Commonly, researchers say 
that unconstrained particles are in superposition and constrained particles are entangled. In 
classical computers, computations are performed by moving the bits through a circuit that 
consists of Boolean gates, e.g., “not”, “and”, “or”, or “xor”. In quantum computers, there 
are two mainstream models: the circuit model and the adiabatic model. The circuit model 
is similar to the electronic counterpart since it relies on circuits in which the qubits are 
entangled using quantum gates, e.g., “Pauli-X”, “Hadamard”, “Phase”, or “Toffoli”. The 
adiabatic model arranges the qubits in a network, e.g., a Chimera or a Pegasus network, and 
then uses annealing to perform computations. Fortunately, standard programmers may use 
high-level programming languages that are compiled into machine code that is interpreted 
by a processor that ultimately relies on Boolean gates. Unfortunately, quantum programmers 
must use a standard computer to encode the data and to set up a circuit or a network, then wait 
for the qubits to stabilise, and then use a standard computer to observe their state and to decode 
the results. Simply put: classical computers may be programmed at a very high abstraction 
level in which Boolean gates constitute just a theoretical foundation; in quantum computers, 
the qubits, the gates, or the networks constitute the highest abstraction level achieved so far.

As of the time of writing this article, it remains unclear which model is superior to the 
other or if they are equivalent. The quantum circuit model is attractive in that it is the closest to 
the electronic counterpart; unfortunately, the lack of quantum memory renders most current 
proposals of theoretical interest only. The adiabatic approach seems very appropriate to deal 
with problems that can be naturally expressed as optimisation problems and the current 
technology provides many more qubits than the circuit model; furthermore, there are some 
research results that allow to decompose arbitrary-size problems into smaller problems whose 
individual solutions can be computed using an adiabatic computer and then combined using 
a standard computer [6].

The key is that quantum computers work almost instantaneously. That is obviously a strong 
point in favour of quantum computing; unfortunately, the problems are manyfold, namely: 
the number of qubits is very limited (e.g., Google’s Bristlecone computer relies on the circuit 
model and provides 72 qubits, whereas D-Wave’s Advantage computer relies on the adiabatic 
model and provides 5000 qubits); developers must work at the qubit level because there are



not any “quantum compilers” that can transform arbitrary algorithms that are expressed in
high-level languages into quantum circuits or adiabatic networks; quantum computers are
very sensitive to noise, which means that their current error rate is far above the error rate in
standard computers; finally, quantum computers require to sample the solution to a problem
many times in order to determine which the most-probable one is.

2.3 Approaches to quantum clustering

Regarding the circuitmodel, there are somewell-knownproposals byAïmeur et al. [1],Wittek
[64], and Kerenidis et al [40]. They leveraged some key ideas from algorithmic proposals
like k-means, k-medians, or hierarchical clustering and attempted to implement them using
quantum circuits. The key problem is to compute the distance between any two points in
the input dataset, which has been addressed using oracles (associative memories), Grover’s
search circuit, or the improvement by Dürr and Høyer. Unfortunately, these solutions require
quantum memory circuits, which are still on the design table. Giovannetti et al. [27] or
Kerenidis and Prakash [39] have recently presented some proposals to implement quantum
memory circuits that might be used to implement an oracle by pre-loading the distancematrix
using a standard computer. Unfortunately, as far aswe know, this kind ofmemory has not been
implemented yet, which renders the previous proposals of theoretical interest only. Neither
is it clear how floating point operations can be implemented using quantum circuits since
the number of qubits required to implement a single double precision floating point number
typically exceeds the total number of qubits that are available in many quantum computers.
Chakraborty et al. [11] presented some building blocks that might be useful to implement
a quantum version of k-means. Unfortunately, their proposal has many limitations: their
formulation works for k = 2 only and it is not clear how it can be extended; they require
a standard computer to compute the seed clusters; they can implement only an iteration of
the k-means algorithm since current quantum circuits cannot loop; and it cannot deal with
real data since their circuits work on positive integers only (neither is it clear how they react
when a subtraction results in a negative integer). Kerenidis et al. [40] have recently presented
another proposal to implement k-means using a quantum circuit. It can deal with real data,
but it also requires a quantum memory circuit to store intermediate data. The authors also
devised a proposal to implement such a circuit [39], but, as far as we know, it has not been
materialised yet. They analysed the performance of their proposal in the case of so-called
well-clusterable datasets, but how it works with other kinds of datasets is not known. (A
dataset is well-clusterable if most of the data are close to the centroids, the centroids are
sufficiently far from each other, and the clusters are approximately the same size.)

The adiabatic model seems to be more appropriate to address clustering problems. The
reason is that clustering can be naturally modelled as an optimisation problem in which the
goal is to maximise a fitness function that measures how compact and isolated the clusters are
subject to restrictions like hard vs soft clustering, partitioning vs overlapping clustering, flat
vs hierarchical clustering, or single-way vs multi-way clustering. The key difficulty is how
to map clustering onto a problem that an adiabatic computer can solve. Currently, they can
only deal with quadratic unconstrained binary optimisation problems (aka QUBO problems),
using either spin variables, whose values are +1 or −1, or Boolean variables, whose values
are 0 or 1. Several authors have devised different approaches to perform themapping. Neukart
et al. [50] first use a standard computer to generate a number of random seed clusters that are
distributed homogeneously across the input dataset; the number of data in each seed cluster
(ν) and the shift of each seed cluster with regard to the previous one (ε) are hyper-parameters



that must be fine-tuned for each particular dataset. They require a total of k d  ν qubits to 
cluster a dataset with d-dimensional data into k clusters; basically, they associate d ν qubits 
with each cluster and formulate a QUBO problem per datum in the input dataset; they assign 
the datum to the cluster that results in a larger number of qubits whose state is one. Bauckhage 
et al. [4] presented a proposal to cluster a dataset into two clusters of approximately the same 
size. They require the input dataset to be standardised so that its mean is zero. Their proposal 
builds on the fact that the k-means algorithm actually implements a number of heuristics 
whose goal is to find a good-enough minimum of the within-cluster scatter function; they 
realised that finding that minimum is equivalent to maximising the between-cluster scatter 
function, which sounds intuitive but requires a non-trivial mathematical proof. Assuming that 
k = 2 and the two clusters are similar in size, they introduced a clever trick to compute the 
QUBO problem without relying on explicit distance functions. Kumar et al. [44] presented  
two proposals. The first one uses one-hot encoding and can cluster a dataset into an arbitrary 
number of clusters; basically, it assigns an array of k Boolean variables to each datum; each 
variable determines whether the datum belongs to the corresponding cluster or not. The idea 
was to compute an energy matrix from the Euclidean distance matrix, but their encoding 
scheme requires to set n Lagrange multipliers whose exact values are not easy to compute. 
Unfortunately, the authors concluded that the quality of the clustering worsens as n � k, 
which is very common in practice. Their formulation is also very dependent on the floating 
point precision that can be implemented using the quantum computer, which is six bits in the 
current state of the art according to the authors. This is the reason why they developed an 
ad-hoc proposal for the common case in which k = 2. Wereszczyński et al. [62] presented  
another approach that targets finding two clusters only; unfortunately, it was only simulated 
on a standard computer using small datasets with 50 data only. Their proposal assigns a 
qubit to every datum and creates a QUBO problem in which data that are less than half 
the diameter of the dataset are assigned positive weights and data that are further apart are 
assigned negative weights.

There are a few more proposals that got inspiration from quantum mechanics. They rely 
on algorithms that are intended to be run on a standard computer, not a quantum com-
puter. The goal is to map the clustering problem onto some phenomena that are formalised 
using Schrödinger’s equation, which relies on a wave function that can be analysed using 
some complex, but well-known results in numerical calculus. Horn and Gottlieb [30] range 
amongst the pioneers in this field. They devised a quantum clustering algorithm that basically 
constructs a wave function from the input dataset and then searches for the clusters in its 
equi-potential regions. It relies on a hyper-parameter that determines how large the clusters 
can be. Unfortunately, the authors presented a solution for two-dimensional data only and 
simply sketched how to extend it to the multi-dimensional case; an inherent problem of 
this extension is that the evaluation of the potential function requires O(n2) time, where n 
denotes the number of data, independently from their dimensionality. Li et al. [45] followed 
up on Horn and Gottlieb’s [30] proposal and devised a new one that applies Kernel Entropy 
Component Analysis [32] to the input dataset prior to clustering; they also devised a sta-
tistical approach to compute the potential function that is more effective and efficient than 
the original one, but still requires to compute the k-nearest neighbourhood of every datum, 
which is an inherently complex operation. Decheng et al. [16] presented an improvement that 
uses a new weighted distance that does not assume that all of the attributes of the input data 
are equally important. Unfortunately, the method to compute the weight heavily depends on 
the characteristics of the datasets, which hinders its practical applicability. Eslava et al. [22] 
presented an approach that improves on Horn and Gottlieb’s [30] and Li et al’s [45] proposals



since they use a Bayesian framework that provides an objective measure of goodness-of-fit
that helps them optimise their hyper-parameters in a totally unsupervised manner.

2.4 Discussion

Extracting data from HTML tables is an important problem nowadays. The sprout of data-
hungry services that rely on machine learning is motivating the need for many datasets on
a variety of topics. Unfortunately, many such datasets are available in HTML tables only,
which argues for a solution to extract them automatically. In the literature, there are many
proposals to extract data from HTML tables, but our analysis reveals that none of them has
ever attempted to use a clustering approach to implement the functional analysis task, which
we think is one of the cornerstones in the process.

We guess that many authors may have thought that the clustering approach would not
result in an efficient solution to the problem. Assuming that the cells are somewhat projected
onto d-dimensional feature vectors (d ≥ 1), the size of the space that must be searched to
find which of those features are actually relevant is O(2d); furthermore, the size of the space
that must be searched to find the clusters is 1

k!
∑

i = 0k(−1)k−i
(k
i

)
in , where k denotes the

number of clusters and n denotes the number of cells (n ≥ 1) [67]. Finding the optimum in
such a space is not feasible using standard computers; even in cases like ours in which k = 2.
This has motivated many researchers to devise algorithms whose goal is to find good-enough
clusterings that are not necessarily optimal. Furthermore, it is not trivial to determine which
of the clusters correspond to which kind of cells; the clustering is a clue, but not the solution
to the problem.

Quantum computing has changed the vision of NP problems since many of them have
been proven to become polynomial or even constant-time using that technology. Clustering
is one such problem. In the literature, there are many proposals: we discard the ones that rely
on the circuit model because there are not any quantum memories available, which renders
such proposals of theoretical interest only; we also discard the quantum-inspired proposals,
because they are standard algorithms that were devised to run on standard computers, not
quantum computers; thus, our focus is on the adiabatic model, which seemsmore appropriate
to address clustering.

Our proposal differs from the existing ones, namely: it relies on an entropy preservation
metaphor in which the input dataset is interpreted as a collection of particles, which deviates
from the k-means-inspired approaches by Neukart et al. [50] or Bauckhage et al. [4]; it has
proven to work well in a context in which the size of the clusters is clearly unbalanced, but
the proposal by Bauckhage et al. [4] is biased towards finding clusters that are similar in size;
it has proven to work well with datasets in which the number of data is much larger than
the number of clusters, but the first proposal by Kumar et al. [44] worsens as the difference
increases; it requires floating point computations during its preprocessing step only, which
is carried out using a standard computer, whereas Kumar et al.’s [44] first proposal depends
on the limited precision that can be achieved using the quantum computers; it can be easily
generalised to an arbitrary number of clusters, although we only need two, whereas the
proposals by Bauckhage et al. [4], Wereszczyński et al. [62], and the second proposal by
Kumar et al. [44] can only find two clusters; furthermore, it has been tested on two large
repositories of real-world tables, whereas Wereszczyński et al.’s [62] proposal was only
simulated and tested on small datasets.



3 Our proposal

In this section, we first present some preliminaries and then describe the three steps in which 
we have grouped the tasks of the data extraction pipeline: pre-processing, identifying cell 
functions, and post-processing.

3.1 Preliminaries

Definition 1 (Mathematical concepts) A d-dimensional vector V is a tuple of the form 
(v1, v2, . . . , vd ) (d ≥ 1); its dimensionality is denoted as dim V = d . Given vector V and a 
natural number i , its component at position i is denoted as V [i] (1 ≤ i ≤ dim V ). A ( p, q)-
dimensional matrix M is a tuple of the form ((v1,1, v1,2, . . . , v1,q ), . . . , (vp,1, vp,2, . . . , vp,q ))
(p ≥ 1, q ≥ 1); its dimensionality is denoted as dim M = ( p, q). Given matrix M 
and two natural numbers i and j , its component at position (i, j) is denoted as M[i, j]
(1 ≤ i ≤ p, 1 ≤ j ≤ q).

Definition 2 (Documents, tables, data records) A document is a text file whose contents are 
encoded using the HTML mark-up language, which allows to represent it using a DOM tree. 
A table is a grid that is used to display data or to position other elements on the screen. The 
former are called data tables and the latter are called non-data tables. Every piece of HTML 
whose root is a node with a table tag is considered a table. Rows are encoded using tr tags 
and cells are encoded using th or td tags. The function of a cell can be either label, which 
means that it provides a semantic hint, or value, which means that it provides a datum. Data 
tables are commonly laid out as horizontal listings, in which the label cells are at the top 
rows (if any) and the value cells are in the rows below, vertical listings, in which the label 
cells (if any) are on the leftmost columns and the value cells are in the columns to the right, 
and matrices, which have label cells both at the topmost rows and the leftmost columns and 
the value cells occupy the bottom-right area of the table. A data record is a map of the form 
{hi : vi }ik 

1 (k ≥ 1) that represents the data that have been extracted from a table. Each hi 
is a header

= 
and each vi is a value (1 ≤ i ≤ k); the headers result from catenating one or 

more labels in the same row/column to form a descriptor that provides a semantic hint for 
the corresponding value.

Definition 3 (Features, clusterings) A feature is a property of a cell. The features of a cell are 
represented by means of feature vectors; the features of the cells of a table are represented 
by means of a collection of feature vectors. The features can be categorised as intra-cell 
features or inter-cell features. An intra-cell feature is computed from the attributes of a single 
cell. (Table 1 provides the catalogue of attributes from which we computed useful intra-cell 
features in our experimental study.) It can be a visual feature, which is computed from the 
rendering, a structural feature, which is computed from the structure of the DOM tree, a 
lexical feature, which is computed from the contents of the cells, or a miscellaneous feature, 
which is computed from several sources. An inter-cell feature is computed from the deviation 
of the intra-cell features of a cell with respect to the intra-cell features of the cells in the same 
row, column, or table. A clustering is a Boolean matrix whose components indicate whether 
the corresponding cells in a table are label cells or value cells.

Definition 4 (Quantum foundations) A quantum system is a set of (sub-)atomic particles that 
interact with each other through couplers. (Note that is not generally possible to connect every 
two particles with a coupler due to physical constraints.) Both the particles and the couplers
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may have some energy; the particles interact with each other by exchanging energy through
the couplers. The energy level of a particle induces a property that can be probabilistically
mapped onto a Boolean state, e.g., a spin or a spatial position. A particle is said to be in
superposition or entangled depending on whether its state is not constrained or constrained
by its interaction with other particles, respectively. The state of a system is determined by the
state of its particles. A Hamiltonian is a function that models the total amount of energy of a
quantum system in terms of its state. A process in a quantum system is said to be adiabatic
if it does not transfer any energy or mass to the environment, that is: if it happens in total
isolation. A quantum computer is a device that traps a number of particles, sets their initial
states, controls their interactions through the couplers, and reads their final states.

Definition 5 (Ising systems) An Ising system is a quantum system whose Hamiltonian is
modelled as follows:

n∑

i=1

H [i]S[i] +
n,n∑

i, j=1|i< j

J [i, j] S[i] S[ j],

where n denotes the number of particles, H [i] denotes the energy of the i th particle, J [i, j]
denotes the energy of the coupler between the i th and the j th particle, and S[i] and S[ j] are
variables that denote their spin (1 ≤ i ≤ n, 1 ≤ j ≤ n). The range of energy depends on the
quantum computer used, so it is commonly normalised in real interval [−1.00,+1.00]. The
spin variables range in set {−1,+1}.

For the sake of simplicity, this Hamiltonian is commonly rewritten as follows:

BT E B,

where B denotes the following vector of Boolean variables:

B[i] = 1/2 (S[i] + 1) (1 ≤ i ≤ n),

and E = diag(H) + J is the so-called energy matrix, where diag(H) denotes an n × n
diagonal matrix with the elements of vector H .

Definition 6 (QUBO problems, adiabatic optimisation) A QUBO problem is a quadratic
unconstrained binary optimisation problem of the following form:

argmin
B

BT E B

where E is an energy matrix and B is a vector of Boolean variables. Adiabatic optimisation 
is a quantum method that helps finding its optimal solutions. This is a well-known NP-hard 
problem using standard computers [50], but it can be addressed using adiabatic computers as 
follows: assume that there is a quantum computer that implements a system whose Hamilto-
nian is h; let  ht denote the exact value of the Hamiltonian at time t (t ≥ 0); assume that the 
system has a particular Hamiltonian h∗ whose state encodes the solution to the problem and 
that h0 and h∗ do not commute; then, the adiabatic theorem [28] states that there is a time s 
such that if the Hamiltonian of the system changes adiabatically according to equation

ht = (1 − t/s ) h0 + t/s h∗,

then the system will remain in a state with Hamiltonian h∗ after time s. That is, it suffices 
to wait for s units of time so that the system stabilises in a state that represents the solution 
to the problem. The value of s is known to be in the order of O(eα n β ), where  α and β are 
positive constants and n is the size of the problem. Determining whether constants α and β
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Fig. 2 Running example: sample document

are small enough to render the original problem tractable or not in a particular computer is a
matter of experimentation [3].

Example 1 Figure 1 shows some real-world sample HTML tables with different layouts
and their corresponding data records. Figure 2 shows a fictitious sample document that we
use as a running example; the details regarding the CSS style used are omitted since they
are cumbersome and provide little information to illustrate the proposal. The header of the
document consists of amenuwith options and a navigation bar; the body consists of a grid that
shows the marks attained by several students (per column) on their assignments (per row);
the footer consists of a copyright message. Note that the author of the document decided to
encode both themenu and the grid using the tableHTML tag, but themenu is a non-data table
and the grid is a data table in this context. The grid is a matrix table because it has labels both
on the first row and column. We have attached some tags to a few elements in the document
to facilitate locating them in the HTML excerpt; we have also added a small number at the
upper right corner of each cell in the grid to facilitate references. Realise that the encoding
focuses on describing how the HTML elements must be rendered, not on helping a computer
understand the data.



3.2 Step 1: pre-processing

This step implements the location, the discrimination, and the segmentation tasks of the data
extraction pipeline. It gets a document as input and returns its collection of data tables plus
their corresponding collections of feature vectors.

The first sub-step computes the collection of tables in the input document, namely:

1. It loads the input document and transforms it into a DOM tree using an HTML parser.
Next, it uses a headless browser to render the DOM tree on a virtual canvas and makes
it explicit all of the attributes of the DOM nodes using a simple custom script. Finally, it
uses a CSS selector to locate the DOM nodes with a table tag.

2. It then discards the tables whose width or height attributes are 0px or the tables whose
display attribute is none because they are not visible to the user; it also discards the
tables that have one single row/column because they are typically used to display listings
that do not provide any data in tabular form; it further discards the tables that are nested
within other tables because they are typically used to show menus, paginators, and other
structures without any relevant data.

3. It then sets the maximum cell span to 200 cells, which helps avoid overhead when
processing tables that are incorrectly encoded. The cells whose span is greater than one
are replicated accordingly and their span is set to one. The rows that are shorter than
the largest row are padded to the right using empty cells, which prevents outputting
ragged tables. If the input table or any of its ancestors in the DOM tree has attribute
dir set to rtl, then the table is flipped horizontally so that the first column is always the
leftmost column. Duplicated rows or columns are removed, except for the topmost and
the leftmost ones. If all of the cells in a row or a column are empty, then they are removed.
(A cell is considered empty if it consists exclusively of blanks, dashes, question marks,
or language-dependent symbols like “N/A”.)

The second sub-step computes the collection of feature vectors that correspond to the cells
of the input table. It iterates over the DOM nodes that correspond to the cells and computes 
their intra-cell features as the weighted average of their attributes and the intra-cell features 
of their children, where the weight is computed as the relative area of the bounding box in 
which each DOM node is rendered. We transform the attributes of the DOM nodes as follows: 
in the case of composite attributes, e.g., the colours, we split them into their components; 
in the case of enumerated attributes, e.g., the font, we use one-hot encoding; in the case 
of numeric attributes (be them original or split ones), we normalise their values in interval 
[0.00, +1.00] using global min-max normalisation. This way, all of the attributes are numeric 
and range in the same interval, which facilitates computing the features. Then, we compute 
three inter-cell features that measure the deviations of the intra-cell features with respect to 
the intra-cell features of the cells in the same row, column, and table. The result is a collection 
of (4 κ)-dimensional vectors, where κ denotes the number of intra-cell features.

Example 2 Figure 3 illustrates the pre-processing step. The input is the document in our 
running example. The first sub-step converts it into a DOM tree and cleans it: first, the 
document is parsed and the table elements are selected; second, the table element that 
represents the main menu is discarded because it consists of a single row, which is not 
common at all for data tables; third, the table element that represents the grid needs not 
any more cleaning because it does not have any excessively-spanned cells, the document is 
written using the common “lrt” direction, and no duplicated or empty rows/columns exists. 
The second sub-step transforms it into a collection of vectors that represent the cells in the
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grid, in the order indicated by the small numbers at the upper-right corner of each cell.
Unfortunately, this collection is far too large to be shown in a figure because it has 16 feature
vectors with 316 dimensions each; thus, we decided to illustrate how it looks only. The
first group of columns refer to the intra-cell features that are computed from the attributes
of the DOM tree, cf. Table 1; basically, the attributes are decomposed and transformed into
numeric ones, if necessary, and then normalised to [0.00,+1.00]. The following three groups
of columns refer to the inter-cell features that measure the deviation of the previous features
with respect to features of the cells in the same row, column, and table, respectively.

3.3 Step 2: identifying cell functions

This step implements the functional analysis task in the pipeline. It works on the tables and
the collections of feature vectors returned by the previous step as follows: it first clusters the
cells and then uses some heuristics to determine the function of the cells in each cluster.

3.3.1 Clustering the cells

Our idea is to map the clustering problem using an entropy-preservation metaphor. It is well-
known that the entropy of the Universe increases monotonically. The net effect is that the
Universe expands because its particles tend to go further apart as time goes by (thus increasing
the entropy) unless some energy is used to keep them together (thus preserving the entropy).
Our idea is to interpret a dataset as a collection of particles in a multi-dimensional Universe.
For these particles to be stable in that space, some energy must be injected in the system so
that its total amount of entropy remains constant; otherwise, the particles would tend to move
apart and the entropy would increase. The idea is then to assume that the cells in a table are
particles that are represented using their feature vectors; if the table “does not disintegrate”,
it is because there is some energy that keeps the entropy constant. The goal is then to find a
clustering that requires a minimum amount of energy to keep the entropy constant.

The first sub-step maps the clustering problem onto a standard QUBO problem of the
following form:

argmin
B

BT E B,

where B is a Boolean variable vector and E is the energy matrix.



First, we have to define the Boolean variables.We introduce amatrix K with n×2 Boolean
variables such that variable K [i, k] denotes whether the i th cell belongs to cluster k or not
and n denotes the number of cells (1 ≤ i ≤ n, k ∈ {1, 2}). The relationship between the
variables in K and the variables in B are the following:

B[i] = K [(i − 1) mod n + 1, �i/n	] and
K [i, k] = B[i + n (k − 1)].

Although the formulation is a bit involved, it is conceptually simple since the goal is to map
the two-dimensional structure of matrix K onto the one-dimensional structure of vector B
and vice versa. (Note that this idea can be easily extended to an arbitrary number of clusters;
we focus on two clusters because we have two kinds of cells only.)

Now, we have to define the energy matrix. We know that E[i, j] is the coefficient that
corresponds to variables B[i] and B[ j] in the QUBO problem (1 ≤ i, j ≤ 2 n). We also
know that variable B[i] corresponds to variable K [p, q] and variable B[ j] corresponds to
variable K [u, v], where

p = (i − 1) mod n + 1,

q = �i/n	,
u = ( j − 1) mod n + 1, and

v = � j/n	.
We now need to introduce two ancillary functions, namely: a distance function D, which
works on two indices that represent two cells and returns the distance between their corre-
sponding feature vectors, and an energy function E , which works on a distance value and
returns the amount of energy required to keep two particles at that distance so that the entropy
is preserved.Without any loss of generality, we assume that functionD is normalised to inter-
val [0.00,+1.00], where the lower bound indicates the distance between a cell and itself and
the upper bound indicates the maximum distance between any two cells in the same table;
we also assume that function E is normalised to interval [−1.00,+1.00], where the lower
bound represents the amount of energy required to keep the farthest particles apart and the
upper bound represents the amount of energy required to keep the closest particles together.

There are several cases regarding the energy matrix:

Case p = u and q = v: in this case, B[i] and B[ j] refer to the same cell and the same
cluster. It makes sense to set E[i, j] = −1.00 so that the system is
biased towards setting B[i] = B[ j] = 1, which helps minimise the
Hamiltonian; that is, the system is biased towards setting K [p, q] =
K [u, v] = 1 so that both cells are assigned to the same cluster.

Case p = u and q 
= v: in this case, B[i] and B[ j] refer to the same cell, but different clus-
ters. It makes sense to set E[i, j] = +1.00 so that the system is
biased towards setting B[i] = 0 or B[ j] = 0, which helps min-
imise the Hamiltonian; that is, the system is biased towards setting
K [p, q] = 0 or K [u, v] = 0, which prevents the same cell from
being assigned to two different clusters. Note that this case works
co-ordinately with the previous one, which seeks to assign each cell
to a cluster.

Case p 
= u and q = v: in this case, B[i] and B[ j] refer to different cells in the same cluster. 
It makes sense to set E[i, j] = −E(D( p, u)) so that the system is 

biased towards setting B[i] = 1, B[ j] = 1, or both depending
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on how distant the cells are. Note that the maximum energy level
returned by function E is+1.00, which happenswhen two cells have
the same feature vectors and their distance is then 0.00; such cells
should clearly be in the same cluster, which is biased by setting
E[i, j] to the minimum possible energy level. Note, too, that the
minimum energy level returned by E is −1.00, which corresponds
to the farthest apart cells; such cells should clearly not be in the same
cluster, which is biased by setting E[i, j] to the maximum possible
energy level. The energy level that corresponds to the other pairs of
cells depends completely on the model provided by function E .

Case p 
= u and q 
= v: in this case, B[i] and B[ j] refer to different cells in different clusters.
It is the complementary of the previous case, so it makes sense to
set E[i, j] = −E(D(p, u)).

Note that the exact formulation regarding how the energy matrix is computed depends
completely on the definitions of the distance function D and the energy function E . In the
literature, there are a variety of choices to implement both functions [2,17,29] and none of
them is clearly superior to the others in every case. Thus, we defer making a decision to the
experimental analysis section.

The second sub-step uses a quantum computer to find the values of the B variables that
minimise BT E B. Once the values of the B variables are computed, it is very simple to map
themonto the corresponding values of the K variables that determine the cluster towhich each
cell belongs. Hopefully, this step will result in a perfect clustering almost instantaneously,
which is the key to attain the best possible effectiveness very efficiently.

Example 3 Figure 4 illustrates the previous procedure. The first sub-step consists in trans-
forming the collection of feature vectors that was computed previously into a QUBO problem
that helps compute a clustering of the input cells. That requires to introduce 32 Boolean vari-
ables of the form K [i, k] because we have 16 cells and need to group them into two clusters;
intuitively, variable K [i, k] must be one in cases in which the i th cell belongs to cluster k
and zero otherwise (1 ≤ i ≤ 16, k ∈ {1, 2}). The K variables are very intuitive, but their
two-dimensional structure makes it impossible to use them in a QUBO problem unless they
are mapped onto a one-dimensional vector. That is the role of the 32 Boolean variables of
the form B[ j], for 1 ≤ j ≤ 2 n; intuitively, variables B[1], B[2], . . . , B[16] correspond to
variables K [1, 1], K [2, 1], . . . , K [16, 1] and variables B[17], B[18], . . . , B[32] correspond
to variables K [1, 2], K [2, 2], . . . , K [16, 2]. Once the variables are mapped, it is relatively



easy to compute the corresponding energy matrix by finding the cells to which each compo-
nent of the matrix refers to, computing their distances, and the associated energy level. The
energy matrix is a 32× 32 real matrix whose components range in interval [−1.00,+1.00],
where the lower bound corresponds to the closest cells and the upper bound corresponds to
the most distant cells in terms of their feature vectors. The second sub-step finds the values
of the B variables using a quantum computer, then maps them onto the corresponding K
variables, and outputs a clustering, which is a Boolean matrix that indicates the cluster to
which each cell belongs.

3.3.2 Finding the function of each cluster

The idea is to use some heuristics that help determine which cluster has the label cells and
which one has the data cells.

The first sub-step consists in removing the noise in the clustering that was computed
before. Our experiments prove that the clusterings are not generally perfect because they are
totally independent from the actual layout of the input tables. We decided to include the row
and the column of the cells as additional intra-cell features, which definitely helped in the
process, but it is not generally expected to produce perfect clusterings because there are cases
in which a few label or data cells have features that deviate largely from the other cells of the
same kind. Thus, it is necessary to resort to a heuristic to remove the noise from the resulting
clusterings and the majority vote has proven to work very well in our context. That is, if there
is a subset of cells with a given function in a row/column in which the majority of cells have
the opposite function, we then correct the function of that minority of cells. In case of ties,
the majority vote around the cells is used. If the ties persists, then a random choice is made.
This approach proved to correct the noise very well.

The second sub-step determines which cluster corresponds to label cells and which one
corresponds to value cells. We use a heuristic that builds on the following variables:

rk = 1/2 (ak/n + bk/m),

sk = 1 − |Kk |/m n, and

ck = 1 −
∑

d∈Dk

d/(|Kk | max Dk ),

where k ∈ {1, 2}, m and n denote the number of rows and columns, ak and bk denote the 
number of cells in the first row or column that are in cluster Kk , and  Dk is a set with the 
distance of the cells in cluster Kk to the top-left position in the table. Set Dk is defined as 
follows: Dk = {√( p − 1)2 + (q − 1)2 | 〈p, q〉 ∈  Kk }, where notation 〈 p, q〉 ∈  Kk gets the 
indices of the cells from the feature vectors in cluster Kk .

Variable rk measures the ratio of cells in cluster Kk that are in the first row and column; 
thus, the higher rk , the higher the chances that cluster Kk consists of label cells since such 
cells are typically placed in the first row or column (k ∈ {1, 2}). Variable sk measures the one-
complement of the relative size of cluster Kk ; thus, the higher sk , the higher the chances that 
cluster Kk consists of label cells since these cells are typically a minority (k ∈ {1, 2}); finally, 
variable ck measures the one-complement of the average normalised distance of cluster Kk 
to the top-left corner of a table; thus, the smaller ck , the higher the chances that cluster Kk 
consists of label cells since such cells are typically near the top-left corner of the tables 
(k ∈ {1, 2}).

Our heuristic is now straightforward using the previous formulation: we assume that 
the label cells are in cluster K1 and the value cells in cluster K2 if 1/3 (r1 + s1 + c1) ≥
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1/3 (r2 + s2 + c2); otherwise, we assume that the value cells are in cluster K1 and the label
cells are in cluster K2.

Example 4 Figure 5 illustrates how the function of the clusters is found. The first sub-step
cleans the input clustering. Note that it identifies the empty cell at the upper left corner as
belonging to cluster K2. This cell deviates largely from the others both in style and contents,
but the majority of cells in its row and column were identified as belonging to cluster K1.
Thus, it makes sense to correct the clustering and flag that cell as belonging to cluster K1.
The second sub-step computes the rk, sk , and ck heuristic variables (k ∈ {1, 2}) in order to
determine the functions of the cells in each cluster. The rk variables measure the proportion
of cells in each cluster that are on the first row and/or column (k ∈ {1, 2}); realise that
r1 = 1.00 and r2 = 0.00 because all of the cells of cluster K1 are in the first row and column,
which provides a strong indication that the cells in cluster K1 are label cells. The sk variables
measure the one-complement of the relative size of the clusters (k ∈ {1, 2}); realise that
s1 = 0.56 and s2 = 0.44, which indicates that cluster K1 has the minority of cells and is thus
likely to contain the label cells. The ck variables somewhat measure the distance of cells to
the top-left corner (k ∈ {1, 2}); realise that c1 = 0.43 and c2 = 0.31, which again indicates
that cluster K1 is the closest to the upper-left corner and then more likely to have label cells.
Summing up: the three heuristic variables indicate that cluster K1 is likely to provide the
label cells and cluster K2 is then likely to provide the data cells.

3.4 Step 3: post-processing

This step implements the structural analysis and the interpretation tasks in the pipeline. It
works on an input table, the collection of feature vectors computed in the first step, and the
clustering computed in the second step; it returns a set of records that provide the data in the
input table in a structured format that is amenable for further processing.

The first sub-step classifies the input table as a horizontal listing, a vertical listing, or a
matrix. This is simple in the case in which none of the clusters in the input clustering is
empty; it is a bit more involved in the other case. Sometimes, the input table does not have
any label cells because the semantics are implicit in the context or the data themselves. These
tables result in a clustering in which one of the clusters is empty. In such cases, we guess
the orientation according to the group of inter-cell features whose average deviation is the
smallest one, namely: it is horizontally-oriented if the average of the per-column inter-cell
features is the smallest one; it is vertically-oriented, if the average of the per-row inter-cell
features is the smallest one; otherwise, it is both horizontally- and vertically-oriented if the
smallest average corresponds to the per-table inter-cell features. Our proposal is to add an
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artificial row and/or column of computer-generated label cells before the first actual row 
and/or column in the input table. Classifying the input table is now straightforward: if the 
first topmost rows consists of label cells, then it is a horizontal listing; if the leftmost columns 
consists of label cells, then it is a vertical listing; if both the topmost and the leftmost columns 
have label cells, then it is a matrix.

The second sub-step consists in creating the data records themselves. If the input table is 
a horizontal/vertical listing, then the label cells in the first few rows/columns index the data 
on a per-column/per-row basis. In this case, the records are generated per row/column by 
catenating the contents of the label cells vertically/horizontally to form a header and mapping 
them onto the contents of the corresponding value cells. In cases in which the catenation of 
the labels results in two identical headers, we disambiguate them by means of a sequential 
index; in cases in which two consecutive labels are the same, one of them is ignored since 
this is typically the result of replicating a spanned cell. If the input table is a matrix, then 
each individual value cell results in a record in which its unique component has two headers 
that correspond to catenating the label cells in the corresponding row and column as we 
mentioned before.

Example 5 Figure 6 illustrates how the records of the original table are computed. The first 
sub-step takes the input clustering and guesses that the input table is a matrix because it has 
label cells in both the first row and column. The second sub-step then creates a data record 
in which the headers provided by the label cells are mapped onto the values provided by the 
corresponding data cells. Note that we used the JSON notation to represent the data records 
and a slash to separate the headers, but this is completely customisable in our implementation.

4 Complexity analysis

In this section, we analyse the complexity of our proposal. Our goal is not to characterise 
its exact time complexity, but an upper bound that makes it clear that it can break the NP 
complexity that is inherent to finding an optimal clustering using a standard computer. For 
instance: we use the number of DOM nodes in a document as an upper bound to the number 
of cells in any of its tables, which is perfectly valid, but very likely far above the actual figure. 
We first present three supporting lemmata and then the theorem that analyses the complexity 
of LuperQ; there is a corollary that instantiates the previous complexity result in the context



of the adiabatic quantum computer used in our experimentation. Below, we use ν to denote
the number of DOM nodes in the input document and κ to denote the number of intra-cell
features; α and β denote two constants that depend on the adiabatic computer used.

Lemma 1 (Step 1: Pre-processing) This step does not require more than O(ν κ) time to
process an input document.

Proof The pre-processing step involves the following operations: a) locating the tables: this
involves parsing, rendering, and selecting the table nodes; these operations can be imple-
mented using industrial components that are not expected to require more than O(ν) time.
b) Discriminating the tables: this requires to check a few conditions on a subset of DOM
nodes; thus, this operation may not require more than O(ν) time. c) Segmenting the tables,
which requires to perform some simple operations on their cells; then, this operation may not
require more than O(ν) time. d) Computing the features; this operation requires to normalise
the attributes (which may not require more than O(ν κ) time), to compute the intra-cell fea-
tures (which may not require more than O(ν κ) time), and to compute the inter-cell features
(which may not require more than O(ν κ) time to compute the intra-cell feature averages
plus O(3 ν κ) time to compute the deviations). Summing up: the pre-processing step may
not require more than O(3 ν + 3 ν κ + 3 ν κ) ⊆ O(ν κ) time. ��
Lemma 2 (Step 2: Identifying cell functions) This step does not require more than O(ν2 κ +
eανβ) time to process a table.

Proof This step involves the following operations: a) clustering the cells: this operation
requires to compute the distance between every two cells in the input table and the corre-
sponding energy to preserve the entropy of the dataset; since there cannot be more than ν

cells, then this operation may not require more than O(ν2 κ) time (note that the time to com-
pute the distance amongst any two κ-dimensional vectors is not expected to require more
than O(κ) time, but computing the associated energy level involves computing a real-valued
function on a distance only, which may be safely assumed to require O(1) time); finding the
optimal clustering requires a time in the order of O(eανβ) [28], where α and β are constants
that depend on the quantum computer used. b) Correcting the clustering: this operation may
not require more than O(ν) time to compute the majority vote per row/column plus O(ν)

time to correct the function of each cell. c) Finding the function of each cluster: this time
is dominated by the computation of variables ci , which requires to iterate over every pair
of cells; that is, it may not require more than O(ν2) time. Summing up: identifying cell
functions may not require more than O(ν2 κ + eανβ + 2 ν + ν2) ⊆ O(ν2 κ + eανβ) time.

��
Lemma 3 (Step 3: Post-processing) This step does not require more than O(ν κ) time to
process a table.

Proof This step involves the following operations: a) Classifying the input table: if none
of the clusters identified is empty, then the operation must determine if the label cells are
arranged at the topmost rows, the leftmost columns or both, which may not require more
than O(ν) time; otherwise, it must check the coherency of the rows and columns, which
may not require more than O(3 ν κ) time to iterate over the cells and compute the average
deviation of their features; since O(ν) ⊆ O(3 ν κ), then classifying the input table is not
expected to take more than O(3 ν κ) time. b) Computing the records: this operation iterates
over the cells and creates the records by associating headers to the value cells, which may not
require more than O(ν) time. Summing up: the post-processing step may not require more
than O(3 ν κ + ν) ⊆ O(ν κ) time. ��
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Theorem 1 (Complexity of LuperQ)Our proposal does not require more than O(ν2 + eανβ)

time to process a table.

Proof According to the previous lemmata, LuperQ does not take more than O(ν κ + ν2 κ +
eανβ + ν κ) time to process a table. Realise that ν is generally expected to be larger than κ

since typical HTML documents have thousands of DOM nodes, whereas the total number
of features is comparatively smaller. Figure 7 shows the distribution of the number of DOM
nodes in the HTML documents in our experimental repositories; the average is 973.97 DOM
nodes, with aminimumof 6 nodes and amaximumof 39,552; note that the number of features
is a constant in our experiments, cf. Table 1. Thus, the previous upper bound is a subset of
O(ν + ν2 + eανβ + ν) ⊆ O(ν2 + eανβ). Recall that α and β are constants that depend on
the quantum computer used [28], so the actual time complexity depends completely on it.

��
Corollary 1 (Our implementation) We implemented LuperQ on a hybrid system: we used a 
standard computer to run the pre-processing step, the computation of the QUBO problem, 
and the post-processing step; we used an adiabatic quantum computer to solve the QUBO 
problem. The quantum computer was a D-Wave 2000Q system, which allows to configure the 
annealing time from 1 up to 2000μs. We used the default value of 20μs, as suggested by the 
manufacturer, which means that eανβ ≤ 20 μs. Unfortunately, this does not imply that we can 
solve every clustering problem in a maximum of 20μs because there are other factors that 
have an impact on the total time. These factors include the time required to set the computer 
up, which usually requires some milliseconds, and the time that the computer must be idle in 
between two consecutive problems, which is in the order of the annealing time. Furthermore, 
the number of qubits available is 2048 and they are organised in a Chimera network that 
allows for a maximum of 65 fully-connected qubits. This implies that every QUBO problem 
must be mapped onto the available qubits taking their physical connections into account; 
furthermore, some large problems must be partitioned into smaller problems whose solutions 
must be combined. The previous problems can be addressed using a standard computer thanks 
to D-Wave’s qsolver algorithm [6]. There is not a complexity analysis available, but the results 
of the performance studies that were carried out on complex, large synthetic problems show 
that the delay ranges in the order of seconds. Our experiments confirm the previous results 
since most of the problems were mapped, partitioned, and solved in a matter of seconds



or less. Summing up: we can safely conclude that O(ν2) is a sensible characterisation of
the upper limit to the amount of time that LuperQ requires to process a table when it is
implemented using the D-Wave 2000Q system.

Note 1 In the previous discussion, we intentionally omitted the time that a problemmust wait
for D-Wave’s computer to become available. The D-Wave 2000Q system can only work on a
problem at a time, whichmeans that the problems that are submitted to it must wait in a queue
until the previous problems are solved. In our experience, the waiting time ranged from an
instant to up to 10–15s. It was not considered because it is not inherent to our proposal, but
something that derives from the fact that the computer is shared by many scientists around
the world.

5 Experimental analysis

In this section, we first describe our experimental setup, next describe how we configured
our proposal and the competitors, then present and analyse the results of our empirical
comparison, and, finally, report on the results attained using other clustering approaches. The
experimental repositories as well as the implementation of our proposal and the competitors
are available at http://dx.doi.org/10.17632/g4tz8m5p6k.2 so that other scientists can repeat
our results and work on new proposals. The tool that we used to create the ground truth is
available at http://tomatera.tdg-seville.info.

5.1 Experimental setup

We implemented our proposal using Python 3.7.6 and many ancillary components. We used
BeautifulSoup4.9.0 to parse theHTMLdocuments;we computed their attributes by rendering
them on a virtual canvas using the Selenium 3.141.0 headless browser with Firefox 80.0.1
and Geckodriver 0.27.0. We used SciKit Learn 0.24.3 to leverage the implementation of
some common distance functions and to compute effectiveness measures, Pandas 1.0.3 to
implement the datasets, and NumPy 1.18.2 to implement some vector and matrix operations.
The Ocean 2.2.0 toolkit was used to map QUBO problems onto the quantum computer used.
The statistical tests were performed using the SCMAMP 0.2.55 library from the R project.

We confronted it with the proposals by Yoshida et al. [69], Jung and Kwon [36], and
Embley et al. [21], which are well-known unsupervised techniques, as well as Nishida et
al.’s [51] proposal, which is the most advanced supervised proposal of which we are aware.
The unsupervised proposals rely on algorithmic approaches that build on the Expectation
Maximisation method, custom heuristics, or a custom search algorithm, respectively; the
supervised one relies on a deep neural network.

The experiments were run on a hybrid system that consisted of a standard computer and a
quantum computer. The former was a commodity Windows 10 computer that was equipped
with an AMD Ryzen 7 2700X processor with eight two-threaded cores and 16 GiB of DDR4
RAM memory; the latter was a D-Wave 2000Q computer that provides 2048 qubits that are
connected using a Chimera network.

We assembled two experimental repositories with data tables from the Wikipedia [63]
and the DresdenWeb Table Corpus (DWTC) [19]. They were annotated by four independent
judges who achieved a Krippendorff Alpha coefficient as high as 96.11% on a random subset
of 400 tables. The high degree of inter-agreement makes the previous repositories a good
ground truth to perform experimentation. The Wikipedia repository provides a total of 1353

http://dx.doi.org/10.17632/g4tz8m5p6k.2
http://tomatera.tdg-seville.info


tables that are distributed as follows: 1089 horizontal listings, 75 vertical listings, and 189 
matrices; they have 90 717 value cells and 8734 label cells. The Dresden repository provides 
a total of 1191 tables that are distributed as follows: 709 horizontal listings, 424 vertical 
listings, and 58 matrices; they have 49 820 value cells and 6294 label cells.

We computed the F1 score and the Accuracy score as the effectiveness measures and the 
prediction time as the efficiency measure. The F1 score was computed as the one-harmonic 
mean of precision and recall. (Precision was computed as the ratio of the number of cells that 
are correctly predicted to be label/value cells to the total number of cells that are predicted 
as label/value cells; recall was computed as the ratio of the number of cells that are correctly 
predicted to be label/value cells to the actual number of label/value cells). We computed the 
F1 score at the class level and globally; in the former case, the score was computed regarding 
the value cells and the label cells independently and they were then averaged independently, 
too; in the latter case, it was computed by averaging all of the previous results using the 
number of cells of each kind as their relative weights. In both cases, the goal was to measure 
the extent to which the imbalance of value cells (the majority kind of cells) and label cells (the 
minority kind of cells) may have an impact on the results. We also measured the Accuracy 
score, which is defined as the ratio of true positives plus true negatives to the total number 
of cells. Note that it was computed globally since it coincides with the per-class score in the 
case of binary problems like ours in which there are only two kinds of data. Both measures 
provide a good overview of how good a proposal is at classifying cells properly: the F1 score 
provides a view in terms of precision and recall, whereas the Accuracy score provides a 
global view in terms of how good it is at not producing wrong predictions.

We collected the prediction time as the efficiency measure. It was computed as the average 
number of CPU seconds required to predict the function of the cells in a table; note that CPU 
time was used instead of wall time because it is far more stable across different experimen-
tations and discards the IO time required to load the datasets or the time consumed by other 
concurrent processes. In the case of the supervised proposal, the time required to learn the 
model was apportioned across all of the tables.

We used the well-known threefold cross validation method to strengthen the validity of our 
results. The experimental repositories were partitioned into three equal-size random splits, 
all of which were used to compute the performance measures; the other two were used for 
learning purposes or ignored depending on the proposal. That is: all of the experimental data 
were used for learning purposes (when necessary) and for validation.

To confirm that the experimental ranks computed were sound, we performed hypothesis 
testing [24,56], namely: we first computed the empirical ranking for each performance mea-
sure; we then performed Hommel’s test to compare the best-ranking proposal according to 
the empirical ranking to the others. The differences in rank are assumed to be statistically 
significant if the resulting p-value is smaller than the standard significance level (α = 0.05) 
and not significant otherwise.

5.2 Configuring the proposals

Our proposal has two hyper-parameters whose values must be set before it is confronted with 
other proposals, namely: the function used to compute the distance between the cells and the 
function used to transform the distances into energy levels.

The literature provides many proposals to implement the distance function [17]. We 
selected the distances that can be applied to multi-dimensional real data for which Scikit-
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Fig. 8 Energy functions

Learn provides an implementation, namely: Euclidean, Standardized Euclidean, Squared
Euclidean, Correlation, L1, L2, Cosine, Bray-Curtis, Chebyshev, Manhattan, and Canberra.

The literature also provides many proposals to implement the energy function [2,29]. We
experimented with the following ones:

linearτ (d) = 1.00 − 2.00 d,

sinusoidτ (d) = cos(τ π d),

tangentτ (d) = 1.00 − tanh(τ
√
d), and

exponentialτ (d) = 2.00 − cosh(−τ
2 τ
√
d)

In the previous formulation, τ denotes a parameter that allows to compute the specific func-
tions in each family (The linear case is a baseline in which τ is ignored). We experimented
with both the regular formulations above and their reflections. The results of the functions
were normalised to interval [−1.00,+1.00] using the following formula:

N ( f , d) = 2.00
f (d) − f (1.00)

f (0.00) − f (1.00)
− 1.00,

where f denotes an energy function and d denotes a distance. Figure 8 illustrates the nor-
malised energy functions. The illustrationmakes it explicit which bunch of curves correspond
to the regular or reflected functions and alsowhether the inner curves correspond to increasing
values of the τ parameter or vice versa.



Table 2 Grid search (energy function)

Energy Tau F1 Time Energy Tau F1 Time

Regular linear N/A 0.33 0.70 Reflected linear N/A 0.67 0.75

Regular sinusoid 0.10 0.39 0.68 Reflected sinusoid 0.10 0.70 0.75

0.20 0.36 0.72 0.20 0.71 0.78

0.30 0.36 0.71 0.30 0.71 0.78

0.40 0.36 0.72 0.40 0.71 0.78

0.50 0.36 0.72 0.50 0.71 0.77

0.60 0.34 0.70 0.60 0.83 0.72

0.70 0.34 0.70 0.70 0.83 0.71

0.80 0.33 0.70 0.80 0.79 0.73

0.90 0.36 0.71 0.90 0.77 0.73

1.00 0.37 0.70 1.00 0.74 0.73

Regular tangent 1.00 0.33 0.69 Reflected tangent 1.00 0.70 0.73

2.00 0.32 0.73 2.00 – –

3.00 0.32 0.73 3.00 – –

4.00 0.32 0.73 4.00 – –

5.00 0.31 0.73 5.00 – –

6.00 0.27 0.72 6.00 – –

7.00 0.27 0.73 7.00 – –

8.00 0.27 0.72 8.00 – –

9.00 0.26 0.72 9.00 – –

10.00 0.26 0.71 10.00 – –

Regular exponential 1.00 0.33 0.69 Reflected exponential 1.00 0.70 0.76

2.00 0.33 0.71 2.00 0.70 0.85

3.00 0.33 0.70 3.00 0.70 0.84

4.00 0.33 0.69 4.00 0.70 0.84

5.00 0.33 0.70 5.00 0.70 0.84

6.00 0.32 0.71 6.00 – –

7.00 0.32 0.72 7.00 – –

8.00 0.32 0.73 8.00 – –

9.00 0.32 0.72 9.00 – –

10.00 0.32 0.73 10.00 – –

We randomly selected 100 tables from our repositories and performed a stratified grid 
search on the hyper-parameter space. We first set the distance function to the standard 
Euclidean distance and experimented with many different energy functions, cf. Table 2. 
The best results in terms of the F1 score were attained using the reflected sinusoid with 
parameter τ = 0.60 or τ = 0.70; we took the second choice because the time was smaller 
in that case. Then, we experimented with the distance functions, cf. Table 3. The best results 
in terms of the F1 score were attained using the correlation distance function.

We configured the competitors using the guidelines provided by the authors [21,36,51,69]. 
Unfortunately, Yoshida et al.’s [69] guideline was incomplete, so we made some decisions 
that are in accordance with the common practices in the literature, namely: we initialised the



Table 3 Grid search (distance
function)

Distance F1 Time

Euclidean 0.83 0.74

Squared Euclidean 0.80 0.75

Correlation 0.84 0.75

L1 0.76 0.73

L2 0.76 0.75

Cosine 0.74 0.74

Bray-Curtis 0.77 0.72

Chebyshev 0.79 0.75

Manhattan 0.80 0.77

Canberra 0.78 0.77

probabilities of their Expectation-Maximisation method with random values, we adjusted
them in 10 iterations, we repeated the process 100 times, and we kept the best result only.

5.3 Empirical comparison

Figure 9 shows our experimental results using boxplots that help understand their distribution;
note that the chart regarding the prediction times is in 10-logarithmic scale because this
measure ranges in very different intervals depending on the proposal. Table 4 shows the
results of our statistical analysis using tables with the following columns: the first column
provides the name of a proposal; the second column presents its empirical rank; the third
column shows the average of several performance measures plus/minus their corresponding
standard deviations; the last column shows the p-values computed by Hommel’s test when
comparing the best ranking proposal to the others (the cells in boldface indicate significant
differences in rank; the cells with “N/A” correspond to the comparison of the best-ranking
proposal to itself).

Regarding the F1 score on the value cells, LuperQ attains the highest average and median
and has the smallest and highest inter-quartile range; it is closely followed by the proposals
by Nishida et al. [51], Jung and Kwon [36], Yoshida et al. [69], and Embley et al. [21]. All
of the proposals attain relatively high F1 scores since the first quartile is above 0.65 and the
median is above 0.80 in all cases. This is not surprising at all because value cells constitute
the majority of cells in our experimental repositories. It is regarding its ability to identify
label cells that LuperQ shines when compared to the other proposals. All of them attain F1
scores in the full range, but LuperQ is the one with the highest average and median and the
smallest and highest inter-quartile range; note that 75% of the distribution of the F1 score on
the label cells is above 0.75 (the first quartile and the median coincides in this distribution)
and the average is a bit above 0.80. It is followed by the proposals by Nishida et al. [51],
Embley et al. [21], Jung and Kwon [36], and Yoshida et al. [69]. Regarding the global F1
score LuperQ seems to rank the first one since it attains the highest average and median and
has the smallest and highest inter-quartile range; it is followed by the proposals by Nishida
et al. [51], Embley et al. [21], Jung and Kwon [36], and Yoshida et al. [69]. Note that the
Accuracy score reflects the imbalance much better. According to it, LuperQ ranks the first
because it has the highest average and median and the smallest and highest inter-quartile
range again; it is closely followed by the proposal by Nishida et al. [51]; then come the



Fig. 9 Comparison of competitors

proposals by Embley et al. [21] and Jung and Kwon [36]; finally, comes the proposal by 
Yoshida et al. [69], which has the smallest average and median and the largest inter-quartile 
range.

Regarding the prediction time, Embley et al.’s [21] and Jung and Kwon’s [36] proposals 
are clearly the fastest ones since they were able to process all of the tables in our experimental 
repositories in a few hundredths of a CPU second. Unfortunately, their effectiveness is not 
very good, which means that their extra efficiency is not so appealing in a real-world context. 
LuperQ ranks at the third position and it is followed by Yoshida et al.’s [69] proposal and 
Nishida et al.’s [51] proposal, which is clearly the most inefficient one due to its deep neural 
approach.

The previous intuitive conclusions regarding performance were confirmed by our statis-
tical analysis. Note that LuperQ attains the first position in the empirical ranks regarding the 
effectiveness measures. In the case of the class-level F1 scores, the p-values returned by Hom-
mel’s test confirm that the differences in rank are statistically significant when comparing 
LuperQ to every other competitor, but Nishida et al.’s [51] proposal. In the case of the global 
F1 score or the Accuracy score, the p-value computed by Hommel’s test is nearly zero in
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all cases, which is a strong indication that the differences in rank are statistically significant. 
Therefore, the conclusion supported by the statistical analysis is that LuperQ ranks the first 
regarding effectiveness, even though its results are statistically indistinguishable from the 
proposal by Nishida et al. [51] at the class level. This result is very important since it proves 
that LuperQ can be as effective as the state-of-the-art proposal, but in a totally unsupervised 
manner. Regarding the efficiency measure, note that Hommel’s test returns a zero p-value for 
every comparison, which means that the differences in rank are then statistically significant.

Clearly, all of the proposals have difficulties to identify label cells; generally speaking, the 
greater the imbalance, the more difficulties to identify them properly. Yoshida et al.’s [69] 
proposal seems to be the one that has more difficulties to deal the imbalance. It did not attain 
very good results because it builds on the assumption that the label cells usually have the 
same common contents across different tables, which is a difficult-to-meet assumption when 
working at Web scale; furthermore, its frequency-based approach also has problems when 
processing cells with numeric contents, since many of them occur only once in the datasets. 
Neither was Jung and Kwon’s [36] proposal very good at dealing with the imbalance. It 
seems to have trouble with tables in which the user highlights some cells that provide data 
using a style that is similar to the style of the label cells. That was somewhat common in our 
experimental repositories because we have found out that many authors use the th HTML tag 
to highlight some data cells. Embley et al.’s [21] proposal is very fast, but has many problems 
when dealing with listings; we found that tables with no repeated contents are interpreted as 
matrices with one row and one column of headers, which is not usually true. The proposal was 
devised to work in the context of spreadsheets, where we assume that matrices are far more 
common than in the Web. Nishida et al.’s [51] proposal achieves very good results because 
it is supervised and learns patterns from a training set in which a person must provide as 
many tables as possible with annotations regarding the function of their cells; unfortunately, 
it tends to get in trouble when it is confronted with a table that deviates largely from the 
tables in the training set. It can deal with label cells much better than the previous proposals, 
but the imbalance of the datasets still has a negative impact on its results. We found out that 
the cases in which LuperQ cannot identify them properly correspond to tables in which the 
difference amongst the label and the data cells is very vague, many of which are matrices 
from which it is not easy to extract data unless one can really understand their semantics. In 
some cases, the problem was that the ratio of label to data cells was heavily skewed in large 
tables with less than 1% label cells. We also found out that LuperQ sometimes had trouble 
with horizontal listings in which the first columns are somewhat highlighted; in such cases, 
it tends to mistake horizontal listings for matrices. We profiled LuperQ and we found that the 
cases in which it requires more than 1.00 second correspond to cases in which the algorithm 
to map the QUBO problems onto the quantum computer had difficulties to find the optimum 
mapping [6].

5.4 Replacing the clusterer

We set up several variants of LuperQ in which we replaced the component that implements 
our quantum clustering approach by the classical k-means algorithm with the mini-batch 
extension to deal with large datasets, as well as the quantum approaches by Neukart et al.
[50], Bauckhage et al. [4], Kumar et al. [44], and Wereszczyński et al. [62]. Figure 10 and 
Table 5 summarise our results.

Regarding the F1 score on the value cells, LuperQ attains the highest average value and 
median and it has the smallest inter-quartile range, which indicates that it ranks the first. It



Fig. 10 Comparison using other clusterers

is followed by the variant that uses k-means, Bauckhage et al.’s [4] clusterer, and Kumar et
al.’s [44] clusterer; then comes the variant that uses Wereszczyński et al.s [62] clusterer; the
variant that uses Neukart et al.’s [50] seems to clearly deviate from the others since it attains
the worst average and median and has the lowest inter-quartile range. The results regarding
the F1 score on the label cells makes the variants further apart: the results regarding LuperQ
are very similar in both cases because it has proven to deal well with the imbalance of value
and label cells. The other variants are clearly worse at identifying the label cells since they
are the minority in our experimental repositories. The global F1 score makes the differences
between LuperQ and its variants very clear in the case of the variants that use quantum
approaches to cluster the cells since LuperQ attains the highest average and median score
and has the smallest and highest inter-quartile range; it is followed by the variant that uses
k-means. The Accuracy score also makes a clear difference between LuperQ and the variants
that use Neukart et al.’s [50] or Wereszczyński et al.’s [62] clusterers; it is followed by the
variants that use k-means, Kumar et al.’s [44] clusterer, and Bauckhage et al.’s [4] clusterers.

Regarding the prediction time, LuperQ and its variants seem to behave very similarly,
except for the variant that uses Neukart et al.’s [50] clusterer. That result was not surprising
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because all of the quantum proposals take approximately the same time to prepare and solve
the underlying QUBO problems; the reason why the variant that uses Neukart et al.’s [50]
clusterer deviates significantly is that it requires to prepare and solve a different QUBO
problem for each datum in the input dataset, that is: each cell is clustered independently from
the others by solving its own QUBO problem, which results in extra effort as the number of
cells in a table increases. Unfortunately, the extra effort was not worth neither in terms of
effectiveness nor efficiency.

The previous conclusions were clearly confirmed by our statistical analysis. Note that
Hommel’s test returns a zero p-value regarding the comparisons that involve effectiveness
measures, which means that the experimental data support the hypothesis that LuperQ ranks
at the first position and the differences are statistically significant. It also returns zero p-values
for the comparisons regarding the prediction time, except for the case of the comparison with
the variant that uses k-means. Summing up: the variant that used LuperQ’s original approach
to clustering seems to attain the best effectiveness results without degrading efficiency when
compared to a variant that builds solely on classical computing algorithms. It is expected that
it can clearly beat it in future, when quantum computers provide enough qubits to deal with
larger problems than they can do today.

6 Conclusions

This article presents LuperQ, which is a new proposal to extract data from HTML tables.
It differentiates from the existing ones in that it relies on an adiabatic quantum clustering
approach to identify the function of the cells. This approach has proven to be very effective and
efficient in practice and supports the idea that adiabatic quantum computing is a technology
that helps solve some classicalNPproblems in polynomial time.Whether a particular problem
can attain such a tremendous speedup or not depends completely on the problem and requires
experimentation. Our empirical analysismakes it clear that extracting data fromHTML tables
is one of the problems that may benefit from this speedup. Future work includes researching
how to use a quantum computer to select the most informative features automatically. In our
experimentation, we used all of the cells in the input tables and all of the features, but we
realised that some of them do not actually contribute to the results in some cases; detecting
them automatically might help make our proposal more effective and efficient. Generalising
our clustering approach to deal with arbitrary datasets and distributing large problems across
several quantum computers will also be paid much attention.
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62. Wereszczyński K, Michalczuk A, Josiński H, Polański A (2018) Quantum computing for clustering big

datasets. In: IEEE applications of electromagnetics in modern techniques and medicine, pp 276–280
63. Wikipedia. Wikipedia download (2020)
64. Wittek P (2014) Clustering structure and quantum computing. In: Quantum machine learning. Elsevier,

pp 99–107
65. Wittek P (2016) Quantum machine learning. Academic Press
66. Wu X, Cao C, Wang Y, Fu J, Wang S (2016) Extracting knowledge from web tables based on DOM tree

similarity. In: KSEM, vol 9983, pp 302–313
67. Xu D, Tian Y (2015) A comprehensive survey of clustering algorithms. Ann Data Sci 2(2):165–193
68. Yang Y, Luk W (2002) A framework for web table mining. In: WIDM, pp 36–42
69. Yoshida M, Torisawa K, Tsujii J (2001) A method to integrate tables of the World Wide Web. In: WDA,

pp 31–34
70. Zanibbi R, Blostein D, Cordy JR (2004) A survey of table recognition. IJDAR 7(1):1–16
71. Zhang S, Balog K (2020) Web table extraction, retrieval, and augmentation: a survey. ACM Trans Intell

Syst Technol 11:13:1-13:35



Juan C. Roldán is working as a researcher for the University of
Seville. His research focuses on large-scale web data extraction, with
an emphasis on extracting data from HTML tables as a means to feed
Data Science applications.

Patricia Jiménez is working as a lecturer for the University of Seville.
Her research focuses on large-scale web data extraction, with an
emphasis on methods to evaluate their performance regarding both effi-
ciency and effectiveness.

Rafael Corchuelo is working as a reader for the University of Seville.
His research focuses on application and information integration, with
an emphasis on web information extraction and social media analytics.


	A hybrid quantum approach to leveraging data from HTML tables
	Abstract
	1 Introduction
	2 Related work
	2.1 Data extraction from HTML tables
	2.2 Quantum computing in a nutshell
	2.3 Approaches to quantum clustering
	2.4 Discussion

	3 Our proposal
	3.1 Preliminaries
	3.2 Step 1: pre-processing
	3.3 Step 2: identifying cell functions
	3.3.1 Clustering the cells
	3.3.2 Finding the function of each cluster

	3.4 Step 3: post-processing

	4 Complexity analysis
	5 Experimental analysis
	5.1 Experimental setup
	5.2 Configuring the proposals
	5.3 Empirical comparison
	5.4 Replacing the clusterer

	6 Conclusions
	Acknowledgements
	References




