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Conrad Waddington’s epigenetic landscape, a visual metaphor for the development of 
multicellular organisms, is appropriate to depict the formation of phenotypic variants of 
bacterial cells. Examples of bacterial differentiation that result in morphological change 
have been known for decades. In addition, bacterial populations contain phenotypic cell 
variants that lack morphological change, and the advent of fluorescent protein technology 
and single-cell analysis has unveiled scores of examples. Cell-specific gene expression 
patterns can have a random origin or arise as a programmed event. When phenotypic 
cell-to-cell differences are heritable, bacterial lineages are formed. The mechanisms that 
transmit epigenetic states to daughter cells can have strikingly different levels of complexity, 
from the propagation of simple feedback loops to the formation of complex DNA 
methylation patterns. Game theory predicts that phenotypic heterogeneity can facilitate 
bacterial adaptation to hostile or unpredictable environments, serving either as a division 
of labor or as a bet hedging that anticipates future challenges. Experimental observation 
confirms the existence of both types of strategies in the bacterial world.
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INTRODUCTION

During differentiation of tissues in multicellular eukaryotes, genetically identical cells diversify 
into cell types that differ in both their morphology and their physiology. In the mid-twentieth 
century, C. H. Waddington envisioned eukaryotic developmental pathways as a series of ridges 
and valleys traversed by cells on their way to differentiation (Waddington, 1957). Cell differentiation 
involving change of form is also found in certain prokaryotic species. Well-known examples 
include the formation of heterocysts in filamentous cyanobacteria (Muro-Pastor and Hess, 
2012), sporulation in Bacillus subtilis (Khanna et  al., 2020), differentiation of nitrogen-fixing 
bacteroids in Rhizobium spp. (Kondorosi et  al., 2013), asymmetric cell division in Caulobacter 
(Collier, 2019), and formation of fruiting bodies by myxobacteria (Munoz-Dorado et  al., 2016). 
In other cases, however, cell differentiation occurs without visible morphological change. In 
the last few decades, the study of bacterial cell variants has been facilitated by growing interest 
in bacterial multicellularity (Shapiro, 1998) and by technical upturn in single-cell analysis 
technologies (Bernander et  al., 1998; Meyer and Dworkin, 2007; Kreibich and Hardt, 2015; 
Scheler et  al., 2019).

Phenotypic heterogeneity in a bacterial population can be  the consequence of chemical 
communication, leading to a heterogeneous response at the single-cell level. For instance, 
differentiation of cyanobacterial heterocysts seems to respond to gradients of activator and 
inhibitor molecules along the cyanobacterial filament (Muro-Pastor and Hess, 2012). In other 
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cases, phenotypic heterogeneity arises without the involvement 
of environmental cues, and the underlying mechanisms are 
diverse. Genetic mechanisms include site-specific recombination 
(Scott and Simon, 1982; Reyes Ruiz et al., 2020), slipped-strand 
mispairing at tracts of repetitive DNA sequences (Moxon et al., 
2006), and amplification of specific genome regions (Belikova 
et  al., 2020; Tomanek et  al., 2020). As described below, cell 
diversification into two or more phenotypic states can also 
be  driven by nongenetic mechanisms, such as propagation of 
feedback loops (Ferrell, 2002) and formation of DNA methylation 
patterns (Sanchez-Romero and Casadesus, 2020).

Differentiation of bacterial subpopulations can be interpreted 
as the manifestation of two different strategies: division of 
labor and bet hedging (Veening et  al., 2008; Lambert and 
Kussell, 2014). Division of labor is a cooperative activity that 
increases the fitness of the subpopulations if they coexist (Zhang 
et  al., 2016). Illustrative examples of division of labor have 
been described in biofilms (van Gestel et  al., 2015; Dragos 
et  al., 2018). In bet hedging, a population with more than 
one phenotype performs better in a changing environment 
than a population with a homogeneous phenotype, and the 
variance in offspring numbers across generations is minimized 
(Gillespie, 1974; de Jong et  al., 2011; Schreiber et  al., 2016). 
Bet hedging has been shown to produce subpopulations tolerant 
to antibacterial agents (Adam et  al., 2008; Hernandez et  al., 
2012; Dewachter et  al., 2019) or resistant to bacteriophages 
(Cota et  al., 2015; Turkington et  al., 2019).

Natural selection of phenotypic heterogeneity, especially if 
it involves a bet-hedging strategy, is a controversial notion 
in classical Darwinism because it involves group selection, 
which has been traditionally considered a weak evolutionary 
force (Leigh, 2010). This view is however countered by game 
theory (Kussell and Leibler, 2005; Wolf et  al., 2005; 
Kussell, 2013).

SOURCES OF PHENOTYPIC 
DIFFERENCES IN ISOGENIC BACTERIAL 
CELLS

Events in cellular physiology involve random encounters between 
molecules, some of which are present in small numbers. As 
a consequence, a certain degree of stochasticity exists in many 
biochemical transactions (Kaern et  al., 2005; Sanchez et  al., 
2013). A physiological event where stochasticity is well known 
is transcription initiation, which can show differences from 
one cell to another. As a consequence, cells with distinct 
transcriptional profiles can be  produced in isogenic 
subpopulations of bacteria (Silva-Rocha and de Lorenzo, 2010). 
Changes in gene copy number during the bacterial cell cycle 
and cell-to-cell differences in translation efficiency are additional 
sources of stochasticity in gene expression (Kaern et al., 2005).

Noise can be  sufficient to produce phenotypic heterogeneity 
in a bacterial population. Because of the finite number effect, 
a small difference in the number of molecules can produce or 
not a signal with physiological significance (Kaern et  al., 2005). 
Thresholds are therefore crucial in noisy systems to produce a 

“meaningful” signal (Anderson, 1972). When distinct gene 
expression patterns generated by noise are propagated by feedback 
loops, the bacterial population splits into subpopulations, a 
phenomenon known as multistability (Thomas and Kaufman, 2001).

Most examples of multistability validated by experimental 
analysis involve two phenotypic states only (bistability), 
producing cells with high and low expression of specific 
genes or gene networks (ON and OFF cells) (Laurent et  al., 
2005; Dubnau and Losick, 2006). In some cases, formation 
of cell variants is not stochastic but deterministic, and ON 
and OFF cells show nonlinear gene expression patterns that 
do not arise from noise (Casadesus and Low, 2013). Whatever 
their origin, bistable states can be  transmitted to the progeny 
either by a positive feedback loop or by a double-
negative  feedback loop (Casadesus and D’Ari, 2002; Ferrell, 
2002). When reversion of a bistable state occurs in a 
programmed manner, bistability is called phase variation 
(van  der Woude, 2011).

BISTABLE STATES PROPAGATED BY 
FEEDBACK LOOPS

Examples of bacterial bistable systems sustained by feedback 
loops are reviewed below. Some have been chosen because of 
their historic relevance; other choices may be  arbitrary. A rich 
literature on the subject exists, including comprehensive reviews 
(Laurent et  al., 2005; Dubnau and Losick, 2006; Veening et  al., 
2008; Casadesus and Low, 2013; Ackermann, 2015; Weigel and 
Dersch, 2018; Schroter and Dersch, 2019).

Bistability in the lac Operon
An example of bistability propagated by a positive feedback 
loop was described in the lac operon of Escherichia coli more 
than six decades ago (Novick and Weiner, 1957). Isopropyl-
β-D-1-thio-galactoside (IPTG) is a gratuitous (noncatabolizable) 
inducer that derepresses the lac operon if added to the bacterial 
culture at high concentrations. At low concentrations, IPTG 
is unable to induce a naïve culture. However, if an induced 
culture is transferred to a culture medium containing a low 
concentration of IPTG, a subpopulation of cells remains in 
the induced state (Novick and Weiner, 1957). Maintenance of 
LacON cells occurs because they have a high level of β-galactoside 
permease in their membrane. A high level of permease 
concentrates IPTG inside the cell, and a high concentration 
of IPTG induces a high level of permease synthesis (Novick 
and Weiner, 1957; Laurent et al., 2005). In certain cells, however, 
a decrease in the internal concentration of inducer (which 
may occur, for instance, during cell elongation or after cell 
division) reduces permease synthesis, which in turn causes a 
further reduction in the internal concentration of IPTG, driving 
the cell toward the LacOFF state (Figure  1). The overall 
consequence is that a fully induced population bifurcates into 
two bistable states: LacON and LacOFF (Novick and Weiner, 1957; 
Casadesus and D’Ari, 2002; Laurent et  al., 2005). The positive 
feedback loop in this system is that a high permease level 
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concentrates inducer inside the cell, and a high internal level 
of inducer produces a high level of permease. A potential 
benefit of this loop may be  to drain pools of metabolizable 
β-galactosides by maintaining high levels of permease when 
the inducer concentration decreases. Otherwise, a certain amount 
of β-galactoside might be  left unused.

An increased error rate during transcription, caused by 
mutations that reduce transcriptional fidelity, can trigger switching 
of the lac operon from OFF to ON in the presence of suboptimal 
concentrations of inducer (Gordon et  al., 2009). A decrease 
in the level of functional LacI repressor below a critical threshold 
permits transcriptional activation in certain cells (Gordon et al., 
2009; Satory et  al., 2011). Synthesis of permease then creates 
a positive feedback loop that maintains the ON state. As in 

other bistable systems, a small number of LacI repressor 
molecules per cell (~10) is crucial to make the system noisy 
(Gordon et  al., 2009).

Competence Development in  
Bacillus subtilis
When a B. subtilis culture approaches stationary phase, a fraction 
of cells acquire competence, a physiological state that enables 
DNA uptake (Dubnau and Losick, 2006). A crucial factor for 
the development of competence is accumulation of ComK, a 
transcription factor that activates genes required for DNA 
uptake as well as the comK gene itself (van Sinderen et  al., 
1995). During exponential growth, ComK is synthesized but 
degraded. When the culture approaches stationary phase, a 
quorum-sensing-related factor stabilizes ComK (Magnuson et al., 
1994; Turgay et  al., 1998). At that moment, a competition 
starts between several repressors and ComK for binding 
regulatory regions at the comK promoter (Hoa et  al., 2002; 
Hamoen et  al., 2003). Binding of ComK initiates a positive 
feedback loop, leading to increased synthesis of ComK and 
subsequent transcription of competence genes. Binding of the 
repressors inhibits comK expression and prevents competence. 
A crucial property for bifurcation of the population into two 
subpopulations is that the level of ComK in individual cells 
fluctuates, generating stochastic noise. When the ComK level 
reaches a threshold in a B. subtilis cell, a quantitative difference 
becomes qualitative: the ComK positive feedback loop is activated, 
and competence is acquired (Smits et  al., 2005, 2006; Dandach 
and Khammash, 2010). Development of competence thus occurs 
in cells that undergo a small but critical increase in ComK 
concentration. In turn, comK is repressed in cells in which 
the ComK level remains below the threshold, and they do 
not acquire competence (Smits et  al., 2006) (Figure  2).

FIGURE 1 | Bifurcation of lac operon expression into ON and OFF states 
after transfer of an induced culture to lower and intermediate levels of the 
inducer, IPTG. LacI permease molecules are shown inserted in the 
cytoplasmic membrane. For simplification, the cell wall and the outer 
membrane are not shown. Dots represent IPTG molecules.

FIGURE 2 | Acquisition of competence by a Bacillus subtilis subpopulation. 
The fate of individual cells is decided at a critical moment in which ComK 
levels are intermediate and noisy. Above a threshold level, ComK drives the 
bacterial cell toward competence. Below the threshold level, repressors 
prevent ComK synthesis, and the cell does not become competent. Under 
laboratory conditions, the decision is taken when the culture enters stationary 
phase.
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Lysis and Lysogeny in Bacteriophages
Infection of E. coli by the temperate bacteriophage lambda can 
follow two developmental programs: lysis of the bacterial cell 
and lysogeny. Although the decision is influenced by the 
physiological state of the cell and by environmental cues, the 
fate of individual infections is unpredictable and may be considered 
stochastic (Johnson et  al., 1981; Casadesus and D’Ari, 2002; 
Munsky and Khammash, 2010). Phage lambda has two repressors, 
CI and Cro, each of which represses the expression of the 
other. At the onset of infection, both repressors are produced, 
and the lysis-lysogeny decision may be  viewed as a race: The 
repressor that first occupies specific regulatory DNA sites in 
the lambda genome will repress the synthesis of its antagonist 
(Johnson et  al., 1981). If the winner is Cro, synthesis of CI 
will be  repressed, and lambda will lyse the host cell (Figure  2). 
If the winner is CI, synthesis of Cro will be  repressed, and 
lambda will lysogenize the cell (Johnson et  al., 1981). Note that 
the outcomes of a positive feedback loop and a double-negative 
feedback loop are analogous (Casadesus and D’Ari, 2002; Ferrell, 
2002). In the case of lambda, preventing the synthesis of Cro 
by CI is equivalent to positive autoregulation of cI gene expression, 
and vice versa (Figure  3).

In E. coli lysogens for Shiga toxin phages, only a fraction 
of cells enter the lytic cycle upon prophage induction. This 
dual strategy may prevent extinction of the bacterial population, 
at the same time permitting that the phage population generated 
by induction can introduce the capacity to produce Shiga toxin 
into new hosts (Imamovic et  al., 2016).

Contribution of Phenotypic Heterogeneity 
to Antibiotic Tolerance
Stochastic fluctuations in the expression of critical genes can 
produce bacterial cells that are able to survive in the presence 
of an antibiotic (Adam et  al., 2008). For instance, stochastic 

activation of the multiple antibiotic resistance activator MarA 
confers multidrug tolerance in E. coli (El Meouche et  al., 2016). 
In Salmonella enterica, plating of a batch culture on a lethal 
(but not extremely high) concentration of kanamycin provides 
two types of kanamycin-resistant isolates. Some are stable, 
produced by mutation. Other isolates, however, revert to kanamycin 
sensitivity upon nonselective growth, indicating a nongenetic 
origin for the kanamycin-tolerant phenotype. A factor that 
contributes to tolerance is the formation of a subpopulation of 
cells that contain reduced levels of the OmpC porin in the 
outer membrane (Sanchez-Romero and Casadesus, 2014). 
Expression of ompC is noisy, and cells with low OmpC protein 
in the outer membrane can withstand kanamycin. In the presence 
of kanamycin, activation of the RpoE-dependent stress response 
downregulates ompC expression (Woods and McBride, 2017). 
The resulting feedback loop sustains and/or amplifies the cellular 
state that initially permitted survival, and a kanamycin-tolerant 
subpopulation is produced (Sanchez-Romero and Casadesus, 2014).

Resistance to fluoroquinolones also has nongenetic components. 
For instance, the activity of the AcrAB-TolC efflux pump increases 
the minimal inhibitory concentration of nalidixic acid in S. 
enterica isolates that carry gyrase mutations. Because individual 
Salmonella cells display different levels of acrAB expression, the 
bacterial population is heterogeneous and includes cells with 
high AcrAB-mediated efflux (Sanchez-Romero and Casadesus, 
2014). These cells have reduced growth rate, which can be regarded 
as a toll for the acquisition of nongenetic resistance (Motta 
et al., 2015). An inverse correlation between growth and antibiotic 
tolerance may be  common (Claudi et  al., 2014).

Nonmutational tolerance to antibiotics is also found in 
persisters, subpopulations of cells that adopt a dormant state 
upon decrease or arrest of growth and metabolism (Balaban, 
2011; Fisher et  al., 2017). Persistence is a reversible epigenetic 
state (Balaban et  al., 2004). Persisters were first described in 
Staphylococcus aureus and more recently in other bacterial 
pathogens. Especially relevant for human health is the role of 
persisters in asymptomatic carriage of Mycobacterium tuberculosis 
and other pathogens that cause latent infection (Rhen et  al., 
2003). Various mechanisms have been proposed to produce 
persisters (e.g., toxin-antitoxin control, metabolic regulation, 
and ppGpp-dependent stringent response). The lack of an 
accepted model may merely reflect the involvement of multiple 
mechanisms. In fact, persisters of a given species often belong 
to several phenotypic classes (Dhar and McKinney, 2007; 
Hofsteenge et  al., 2013; Putrins et  al., 2015).

DNA Repair Heterogeneity
The SOS regulon, a bacterial gene network responsive to DNA 
damage, is under the control of the LexA transcriptional 
repressor (Baharoglu and Mazel, 2014). In the presence of a 
DNA damaging agent, LexA is degraded and SOS genes are 
turned on. However, SOS activation is also observed in a 
subpopulation of E. coli cells during normal growth (McCool 
et al., 2004; Pennington and Rosenberg, 2007; Kamensek et al., 
2010). SOS activation under such conditions is triggered by 
endogenous DNA-damaging compounds produced by normal 

A

B

FIGURE 3 | (A) Competence development in B. subtilis, an example of 
bistability produced by a positive feedback loop. (B) The lysis/lysogeny 
decision in bacteriophage lambda, an example of bistability produced by a 
double-negative feedback loop.
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metabolism (Xia et  al., 2019; Yang et  al., 2019). In fact, 
spontaneous DNA strand breakage is detected in a subset of 
cells during normal growth (Pennington and Rosenberg, 2007). 
Heterogeneous activation of the SOS system under apparently 
optimal growth conditions has been also described in 
M.  tuberculosis (Manina et  al., 2019).

Heterogeneous expression may be  a common feature of 
DNA repair systems (Vincent and Uphoff, 2020). As a 
consequence, repair of DNA lesions by the adaptive response 
to DNA alkylation damage may be accompanied by an increase 
in the mutation rate in individual cells (Uphoff et  al., 2016). 
Antibiotic-induced activation of the RpoS-dependent general 
stress response can likewise increase the mutation rate in an 
E. coli subpopulation (Pribis et al., 2019). Variation of mutation 
rates in response to environmental factors is an old prediction 
of population genetics (Fitch, 1982) and has been validated 
by experimental studies (Oliver et  al., 2000; Saint-Ruf and 
Matic, 2006; Pribis et  al., 2019). Formation of small colony 
variants of pathogenic bacteria in animal cells and tissues may 
be  also a manifestation of increased mutation rates (Proctor 
et  al., 1994; Cano et  al., 2003; Nelson et  al., 2010). The notion 
of stress-induced mutation has raised concerns about mutational 
burden (Roth et  al., 2006). However, such arguments can 
be lessened if the mutation rate increases only in a subpopulation 
of cells.

Bistable States in Host-Pathogen 
Interactions
Formation of cell variants in bacterial pathogens has long been 
recognized as a strategy for evasion of the immune system 
(Finlay and McFadden, 2006). In addition, cases of phenotypic 
heterogeneity whose adaptive value does not seem related to 
immune evasion have been described.

In the opportunistic pathogen Pseudomonas aeruginosa, a 
positive feedback loop involving the transcriptional regulator 
BexR activates the expression of the so-called BexR regulon, 
which includes the virulence-related aprA gene and other 
loci of unknown function (Turner et  al., 2009). In addition, 
BexR shows positive autoregulation (Turner et  al., 2009). 
Similar to the B. subtilis ComK system, bistable BexR expression 
is the consequence of noisy, low-level BexR synthesis, followed 
by autogenous amplification of the BexR level in cells that 
produce BexR above a critical threshold (Turner et  al., 2009). 
A difference, however, is that competence is acquired by 10% 
of B. subtilis cells (Dubnau and Losick, 2006) while the 
BexR  feedback loop is activated in 0.004% cells only 
(Turner  et  al., 2009).

In Yersinia pseudotuberculosis, bistable synthesis of the virulence 
regulator RovA can be viewed as a bet-hedging strategy that 
preadapts the bacterial population to the changing conditions 
encountered during early and late stages of infection (Nuss et  al., 
2016; Weigel and Dersch, 2018). RovA bistability has at least 
two sources. Activation of rovA transcription by RovA is noisy, and 
a feedback loop of autogenous activation is triggered in cells where 
RovA reaches a critical threshold. In addition, posttranscriptional 
control contributes to bistability: a conformational change in a 

dimerization domain reduces the RovA DNA-binding capacity 
and increases proteolytic degradation, thus driving the system 
toward the OFF state. Control of the ratio of ON/OFF cells can 
be  further modulated by two-component systems and global 
regulators, adjusting the expression of virulence determinants 
during different stages of infection and in different tissues 
(Weigel  and Dersch, 2018).

Temporal bistability also modulates virulence in Vibrio 
cholerae. At a late stage of animal infection, V. cholerae populations 
bifurcate into two subpopulations, one of which turns off 
virulence genes while the other remains virulent (Nielsen et al., 
2010). The existence of a highly infectious subpopulation in 
the stools of cholera patients may contribute to V. cholerae 
dissemination. Bifurcation is reversible, and a bistable switch 
enables or disables the formation of a feedback loop that 
controls the expression of ToxT, the master regulator of virulence 
gene expression (Nielsen et  al., 2010).

The Gram positive pathogen S. aureus causes acute and 
chronic infections, and the infection outcome is controlled by 
a quorum-sensing system called Agr (Recsei et al., 1986; Benson 
et  al., 2011). This system shows bistability, with concomitant 
formation of AgrOFF and AgrON subpopulations specialized in 
planktonic and biofilm-associated lifestyles, respectively (García-
Betancur et  al., 2017). The AgrON cell lineage, specialized in 
chronic infection, is produced by a positive feedback loop that 
activates the expression of biofilm genes in cells where the 
phosphorylated form of the transcription factor AgrA is present 
above a critical concentration. Below this threshold, the cells 
remain AgrOFF and form a subpopulation with acute infection 
capacity including toxin secretion (García-Betancur et al., 2017).

Another threshold-based decision controls phenotypic 
heterogeneity in Xenorhabdus nematophila, a Gram-negative 
bacterium used in biological pest control. X. nematophila lives 
a double life, as a pathogen of insects and a mutualist of 
nematodes that transmit the pathogen to insects. Formation 
of mutualistic and virulent cell variants is under the control 
of the transcriptional regulator Lrp, which controls transcription 
of hundreds of genes (Hussa et  al., 2015). The level of Lrp 
shows cell-to-cell variation, and high Lrp levels promote 
mutualism, while low Lrp levels promote virulence. As infected 
nematodes age, a decrease in the Lrp level enhances virulence, 
anticipating exposure to the insect host (Cao and Goodrich-
Blair, 2020). Interestingly, lrp mutants, which show a growth 
advantage at late stages of infection, have reduced virulence 
and impaired transmission to insects (Cambon et  al., 2019), 
a feature that illustrates how nonmutational variation can 
be  advantageous over mutation.

In S. enterica, expression of pathogenicity island 1 (SPI-1) 
is bimodal, and virulence determinants are secreted by SPI-1ON 
cells only (Sturm et  al., 2011; Arnoldini et  al., 2014). Synthesis 
and/or activity of the type III secretion system (T3SS) slows 
down the growth of SPI-1ON cells. However, inflammation 
triggered by the T3SS generates electron acceptors that provide 
a growth advantage to Salmonella over the intestinal microbiota 
(Diard  et  al., 2013), a benefit for both SPI-1ON and SPI-1OFF 
cells.  Furthermore, fast growth makes SPI-1OFF cells able to 
outcompete  Salmonella avirulent variants (Diard et  al., 2013). 
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Epithelial cell invasion by SPI-1OFF cells may extend 
outcompetition to the intracellular environment, contributing 
to prevent takeover of the population by avirulent mutants 
(Sanchez-Romero and Casadesus, 2018).

Additional bifurcations occur during Salmonella infection. 
Bistable expression of myo-inositol utilization genes may help 
to overcome nutrient limitation in the intestine and can 
be  viewed as a bet-hedging strategy (Muller et  al., 2019). 
Epithelial cells infected by Salmonella contain either large 
or small numbers of bacteria, a distribution that suggests 
bimodality (Garcia-Del Portillo, 2008). During systemic 
infection, the Salmonella population splits into two 
subpopulations inside macrophages, and one subpopulation 
multiplies while the other enters a dormant-like state 
(Helaine  et  al., 2010).

Colonization of the gall bladder by Salmonella provides 
another example of lineage formation. The bile-laden gall bladder 
is a harsh environment for bacteria because bile salts are 
bactericidal (Urdaneta and Casadesus, 2017). Salmonella survival 
in the gall bladder may be  facilitated by bifurcation of the 
population into one lineage that invades the gall bladder 
epithelium (Menendez et  al., 2009), while another lineage 
remains in the gall bladder lumen. Further diversification occurs 
if gallstones are present, because Salmonella is able to form 
biofilms on gallstones (Prouty et  al., 2002; Crawford et  al., 
2010). Survival of planktonic cells in the gall bladder lumen 
may additionally involve phenotypic heterogeneity associated 
with noisy activation of the RpoS-dependent general stress 
response in certain cells (Urdaneta et  al., 2019).

BISTABLE SWITCHES UNDER DNA 
METHYLATION CONTROL

DNA methylation has multiple roles in bacterial physiology, 
including the control of lineage formation (Casadesus and 
Torreblanca, 1996; Marinus, 1996; Lobner-Olesen et  al., 2005; 
Wion and Casadesus, 2006; Low and Casadesus, 2008; Vasu 
and Nagaraja, 2013; Adhikari and Curtis, 2016; Mouammine 
and Collier, 2018). Formation of cell variants under DNA 
methylation control may be  an especially robust mechanism for 
subpopulation formation because inheritance of DNA methylation 
patterns permits faithful transmission of transcriptional states 
across generations. Furthermore, unlike noise-based switches, the 
architecture and the DNA methylation state of the regulatory 
region determine the switching frequencies, thereby producing 
subpopulations of constant sizes (Casadesus and Low, 2006). In 
certain cases, the subpopulation sizes can be additionally modulated 
by cellular regulators responsive to environmental cues (Casadesus 
and Low, 2006; Sanchez-Romero and Casadesus, 2020).

The widespread involvement of DNA methylation in bacterial 
pathogenesis (Marinus and Casadesus, 2009; Kumar and Rao, 
2013) and the recent development of a DNA sequencing 
procedure that permits genome-wide detection of N6-methyl-
adenine (SMRT sequencing) (Flusberg et  al., 2010) has given 
a fresh impulse to the study of DNA methylation in bacterial 
genomes (Davis et al., 2013). Among other interesting outcomes, 

SMRT sequencing has broadened our knowledge of the 
distribution of DNA methylation in bacterial genomes (Blow 
et  al., 2016) and has provided novel examples of bistable loci 
under DNA methylation control (Sanchez-Romero et al., 2020).

Control of Lineage Formation by DNA 
Adenine Methylation
In gammaproteobacteria, formation of DNA adenine methylation 
patterns (combinations of methylated and nonmethylated GATC 
sites) provides a mechanism for transmission of epigenetic 
states to the offspring (Wion and Casadesus, 2006). 
Nonmethylated sites are often part of clusters of GATCs located 
within binding sites for transcriptional regulators and are flanked 
by DNA sequences that reduce the processivity of the Dam 
methylase (Wion and Casadesus, 2006; Sanchez-Romero and 
Casadesus, 2020). Binding of the cognate protein hinders Dam 
methylase activity, generating nonmethylated GATCs after two 
rounds of DNA replication. Nonmethylation persists as long 
as the transcription factor remains bound to its cognate sequence, 
and the methylation pattern can be  inherited by daughter cells. 
However, every DNA replication round provides a window of 
opportunity to change the DNA methylation pattern of the 
regulatory region, switching transcription from OFF to ON 
and vice versa. A paradigm of Dam-dependent epigenetic 
control is the pap operon of uropathogenic E. coli, whose 
workings were brilliantly deciphered by David Low and 
co-workers in the 1990s and early 2000s (van der Woude 
et  al., 1996; Hernday et  al., 2004). The pap operon encodes 
fimbriae that permit adherence to the epithelium of the urinary 
tract (van der Woude et  al., 1996), and formation of PapOFF 
and PapON lineages may be  interpreted as a division of labor: 
Only the fimbriated subpopulation can colonize the urinary 
tract, but the nonfimbriated subpopulation makes it possible 
by avoiding immune system alert. An example of Dam-dependent 
locus involved in bet hedging is provided by the Salmonella 
opvAB operon, which produces a lineage of cells resistant 
to  bacteriophages at the expense of reducing virulence 
(Cota  et  al., 2015).

Additional genes and operons under Dam methylation control 
have been described in E. coli and Salmonella, each with 
particular traits and switching frequencies (Sanchez-Romero 
and Casadesus, 2020). An example that stands out because of 
its unusual pleiotropy is the Salmonella std operon, which 
encodes fimbriae for adhesion to the mucus layer of the cecum 
in the large intestine (Suwandi et  al., 2019). In addition to 
fimbrial components, the std operon encodes transcriptional 
regulators that control the expression of hundreds of genes 
(Garcia-Pastor et  al., 2018). StdOFF and StdON cells thus differ 
in multiple phenotypic traits, and their formation may 
be  considered a genuine example of bacterial differentiation 
without visible morphological change (Figure  4).

Phase-Variable DNA Methylation
Certain restriction-modification (R-M) systems of types I  and 
III undergo phase variation (De Ste Croix et  al., 2017; 
Seib  et  al.,  2020). Switching between OFF and ON states is 
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caused by alteration of nucleotide repeats in certain systems 
and by recombination in others. In some such systems, the 
gene encoding the restriction enzyme is inactivated by mutation, 
while the DNA methyltransferase gene remains active (Srikhanta 
et al., 2010). Phase variation of DNA methyltransferase synthesis 
produces two subpopulations of bacterial cells, one of which 
contains N6-methyl-adenine in the genome while the other 
subpopulation does not. As a consequence, each lineage shows 
a distinct pattern of gene expression in all DNA methylation-
sensitive loci. Systems of this kind, known as phasevarions, 
have been described in human pathogens belonging to the 
genera Haemophilus, Neisseria, Helicobacter, Moraxella, 
Mycoplasma, and Streptococcus. Phasevarions have been shown 
to control envelope structure, as well as virulence and stress 
responses, and can facilitate immunoevasion (Srikhanta et  al., 
2010; Phillips et  al., 2019; Seib et  al., 2020).

Phasevarions are an outstanding evolutionary invention. Most 
phase variation systems under DNA methylation control (e.g., 
pap and opvAB) generate heterogeneity of a single phenotypic 
trait, while the cell lineages under phasevarion control differ in 
multiple phenotypic traits. An additional tour de force in the 
capacity of phasevarions to generate cell-to-cell diversity is found 
in bacterial species that produce DNA methyltransferase variants. 
A phasevarion of this kind controls lineage formation in the 
pneumococcus, Streptococcus pneumoniae, an opportunistic 
pathogen frequently found in the nasopharynx of healthy humans. 
The pneumococcus also causes several types of acute infection, 
including pneumonia and meningitis. Pneumococcal populations 

undergo phase variation between “opaque” and “transparent” 
colony phenotypes that differ in their virulence properties 
(Weiser  et  al., 1994). Subpopulations that combine traits of the 
two phenotypes are also produced. Formation of such lineages 
is under the control of a phase-variable DNA adenine 
methyltransferase of a type I R-M system. Six DNA methyltransferase 
variants are produced by site-specific recombination, and each 
variant generates a distinct pattern of genome methylation, which 
results in the formation of cell types with distinct virulence 
properties. Formation of such lineages may facilitate adaptation 
during different stages of the infection, including the crucial 
passage from the nasopharynx into the lung (Manso et  al., 2014; 
Li  et  al.,  2016; Oliver et  al., 2017).

EVOLUTION OF PHENOTYPIC 
HETEROGENEITY

Except in obligate parasites, the biochemical machinery of 
prokaryotes has evolved to facilitate adaptation to changing 
environments. However, the adaptive capacity of a biological 
species is restrained by the fact that an organism can only 
have a limited set of traits (Maynard-Smith, 1982). Production 
of phenotypic variants can overcome this limitation. Because 
natural selection acts on phenotypes and not on genotypes, 
mutational and nonmutational mechanisms can be  similarly 
suitable as sources of cell variation. An advantage of 
nonmutational heterogeneity is that it avoids the irreversible 

FIGURE 4 | Subpopulation formation under the control of the Std pleiotropic switch in Salmonella enterica serovar Typhimurium. In addition to fimbriae, the std operon 
encodes transcriptional regulators that activate or repress hundreds of genes. As a consequence, the StdOFF and StdON lineages differ in multiple phenotypic traits.
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commitment to a new state imposed by mutation (Veening 
et  al., 2008; Ackermann, 2015; Grimbergen et  al., 2015). In 
fact, game theory analysis predicts that phenotypic heterogeneity 
can have higher adaptive value than mutation in changing 
environments (Kussell and Leibler, 2005; Wolf et  al., 2005).

Genetic and epigenetic variations are not mutually exclusive. 
Nonmutational adaptation can provide a temporary window 
for mutation, a possibility that becomes more likely if the 
surviving population is large (Baquero, 2013). Hence, bacterial 
adaptation to new environments can be  facilitated by 
phenotypic adaptation on a short timescale and by tuning 
via mutations in the long run (Kussell, 2013), and mutations 
that promote nongenetic variation (e.g., by adjusting the 
level of noise or the strength of a feedback loop) may 
be  selected in a similar manner as mutations that confer 
any other adaptive trait.

Bacterial Waddington’s landscapes differ from their eukaryotic 
counterparts in a fundamental aspect, visualized in Figure  5. 
In a multicellular eukaryote, sequential decisions progressively 
curtail the cell differentiation capacity. This constraint does 
not exist in a bacterial population: In principle, a bacterial 
cell can differentiate into any other cell type. Progression 
through the Waddington’s landscape is thus orderly in 
multicellular eukaryotes and chaotic in bacteria. Unrestrained 
differentiation may be  crucial to produce the polymorphism 
required for bacterial adaptation, and natural selection may 
tailor the level of cell-to-cell variation to the needs and challenges 
posed by the lifestyle of the species.

Bacterial evolution is speeded up by the fact that bacterial 
DNA is both somatic and germinal. As a consequence, 
beneficial mutations are immediately passed to the offspring 
without the gambles of meiosis and gamete assortment. 
Furthermore, the absence of canalization in bacteria exposes 
novel phenotypes to immediate selection (Elena and 
Lenski,  2001). If an adaptive phenotype is produced, natural 

selection will instantly act regardless of its genetic or epigenetic 
origin. Waddington’s landscapes can thus evolve rapidly in 
the bacterial world.

The capacity of a bacterial population to produce phenotypic 
cell variants can be appraised if one considers that independent 
switching of n bistable loci can produce 2n types of cell variants 
(Sanchez-Romero et  al., 2020). This theoretical number may 
be  an overestimation as natural selection can be  expected to 
eliminate lower fitness variants. Anyway, the actual number 
of phenotypic cell variants in an isogenic population of bacteria 
may easily surpass the detection capacity of current technologies 
of single-cell analysis.
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