
ar
X

iv
:2

00
3.

02
54

4v
2

 [
cs

.L
G

]
 3

 A
pr

 2
02

0

On the performance of deep learning models for

time series classification in streaming

Pedro Lara-Beńıtez1, Manuel Carranza-Garćıa1,
Francisco Mart́ınez-Álvarez2, and José C. Riquelme1

1 Division of Computer Science, University of Sevilla, ES-41012 Seville, Spain
2 Data Science & Big Data Lab, Pablo de Olavide University, ES-41013 Seville, Spain

plbenitez@us.es

Abstract. Processing data streams arriving at high speed requires the
development of models that can provide fast and accurate predictions.
Although deep neural networks are the state-of-the-art for many machine
learning tasks, their performance in real-time data streaming scenarios
is a research area that has not yet been fully addressed. Nevertheless,
there have been recent efforts to adapt complex deep learning models
for streaming tasks by reducing their processing rate. The design of the
asynchronous dual-pipeline deep learning framework allows to predict
over incoming instances and update the model simultaneously using two
separate layers. The aim of this work is to assess the performance of dif-
ferent types of deep architectures for data streaming classification using
this framework. We evaluate models such as multi-layer perceptrons, re-
current, convolutional and temporal convolutional neural networks over
several time-series datasets that are simulated as streams. The obtained
results indicate that convolutional architectures achieve a higher perfor-
mance in terms of accuracy and efficiency.

Keywords: Classification · Data Streaming · Deep Learning · Time Se-
ries.

1 Introduction

Learning from data arriving at high speed is one of the main challenges in ma-
chine learning. Over the last decades, there have been several efforts to develop
models that deal with the specific requirements of data streaming. Traditional
batch-learning models are not suitable for this purpose given the high rate of
arrival of instances. In data streaming, incoming data has to be rapidly classi-
fied and discarded after using it for updating the model. Predicting and training
have to be done as fast as possible in order to maintain a processing rate close
to real-time. Furthermore, the models have to be able to detect possible changes
in the incoming data distribution, which is known as concept drift.

Despite the incremental learning nature of neural networks, there is little
research involving deep learning (DL) models in the data streaming literature.
Neural networks can adapt to changes in data by updating their weights with

http://arxiv.org/abs/2003.02544v2

2 P. Lara-Beńıtez et al.

incoming instances. However, the high training time of deep networks presents
challenges to adapt them to a streaming scenario. Very recently, our research
group developed a deep learning framework for data streaming classification
that uses an asynchronous dual-pipeline architecture (ADLStream) [14]. In this
framework, training and classification can be done simultaneously in two different
processes. This separation allows to use DL networks for data arriving at high
speed while maintaining a high predictive performance.

The aim of this study is to evaluate how different DL architectures perform
on the data streaming classification task using the ADLStream framework. De-
spite the promising results presented in [14], the experiments only considered
convolutional neural networks, hence the suitability and efficiency of other types
of deep networks is an area that has yet to be studied. In this work, we focus the
experimental study on time-series data obtained from the UCR repository that
have been simulated as streams. For this reason, we have designed DL models
that are suitable for data having an inner temporal structure. The basic Multi-
Layer Perceptron (MLP) is set as the baseline model and compared with other
three architectures: Long-Short Term Memory network (LSTM), Convolutional
Neural Network (CNN), and Temporal Convolutional Network (TCN). These
models are evaluated in terms of accuracy and computational efficiency.

The rest of the paper is organised as follows: Section 2 presents a review on
related work; Section 3 describes the materials used and the methodology; in
Section 4 the experimental results obtained are reported; Section 5 presents the
conclusions and future work.

2 Related work

Over the last decades, there have been several efforts to develop models that
deal with the specific requirements of data streaming. Traditional batch-learning
models are not suitable for this purpose given the high rate of arrival of instances.
In data streaming, incoming data has to be rapidly classified and then discarded
after using it for updating the learning model. Predicting and training have to
be done as fast as possible in order to maintain a processing rate close to real-
time. Furthermore, the models have to be able to detect possible changes in the
incoming data distribution, which is known as concept drift[1].

One of the most popular approaches has been to develop incremental or on-
line algorithms based on decision trees, for instance, the Hoeffding Adaptive
Trees (HAT) [3]. These models build trees incrementally based on the Hoeffding
principle, that splits a node only when there is statistical significance between
the current best attribute and the others. Later, ensemble techniques have been
successfully applied to data stream classification, enhancing the predictive per-
formance of single classifiers. ADWIN bagging used adaptive windows to control
the adaptation of ensemble members to the evolution of the stream [3]. More
recently, researchers have focused on building ensemble models that can deal
effectively with concept drifts. The Adaptive Random Forest (ARF) algorithm
proposes better resampling methods for updating classifiers over drifting data

Deep learning models for time series classification in streaming 3

streams [11]. In [5], the authors proposed the Kappa Updated Ensemble (KUE)
that uses weighted voting from a pool of classifiers with possible abstentions.

Despite the incremental learning nature of neural networks, there is little
research involving DL models in the data streaming literature. Neural networks
can adapt to changes in data by updating their weights with incoming instances.
However, the high training time of deep networks presents challenges to adapt
them to a streaming scenario in real-time. There have been proposals using
simple networks such as the Multi-Layer Perceptron [10,16]. A deep learning
framework for data streaming that uses a dual-pipeline architecture was devel-
oped in [14]. A more detailed description of the framework, which was the first
using complex DL networks for data streaming, is provided in the next section.

3 Materials and methods

3.1 ADLStream framework

In this study, we use the asynchronous dual-pipeline deep learning framework
(ADLStream) for data streaming presented in [14]. As can be seen in Figure 1,
the proposed system has two separated layers for training and predicting. This
improves the processing rate of incoming data since instances are classified as
soon as they arrive using a recently trained model. In the other layer, the weights
of the network are constantly being updated in order to adjust to the evolution of
the stream. This framework allows to use complex DL model, such as recurrent
or convolutional, that would not be possible to use in a data streaming scenario
if they are trained sequentially. The source code of ADLStream framework can
be found at [13].

Fig. 1. Asynchronous dual-pipeline deep learning framework

4 P. Lara-Beńıtez et al.

3.2 Datasets

For the experimental study, 29 one-dimensional time series datasets from the
UCR repository have been simulated as streams [6]. The selected datasets have
different characteristics and are categorized into six different domains. Table 1
presents a detailed description of the number of instances, length of the time
series instances, and the number of classes of each dataset.

Table 1. Datasets used for the study.

Dataset Instances Length Classes Type

1 TwoPatterns 5000 128 4 SIMULATED
2 CinCECGtorso 1420 1639 4 ECG
3 TwoLeadECG 1162 82 2 ECG
4 Wafer 7164 152 2 SENSOR
5 Pendigits 10992 16 10 MOTION
6 FacesUCR 2250 131 14 IMAGE
7 Mallat 2400 1024 8 SIMULATED
8 FaceAll 2250 131 14 IMAGE
9 Symbols 1020 398 6 IMAGE
10 ItalyPowerDemand 1096 24 2 SENSOR
11 ECG5000 5000 140 5 ECG
12 MoteStrain 1272 84 2 SENSOR
13 NonInvasiveFetalECGThorax1 3765 750 42 ECG
14 NonInvasiveFetalECGThorax2 3765 750 42 ECG
15 SwedishLeaf 1125 128 15 IMAGE
16 FordA 4921 500 2 SENSOR
17 Yoga 3300 426 2 IMAGE
18 UWaveGestureLibraryX 4478 315 8 MOTION
19 FordB 4446 500 2 SENSOR
20 ElectricDevices 16637 96 7 DEVICE
21 UWaveGestureLibraryY 4478 315 8 MOTION
22 UWaveGestureLibraryZ 4478 315 8 MOTION
23 HandOutlines 1370 2709 2 IMAGE
24 InsectWingbeatSound 2200 256 11 SENSOR
25 ShapesAll 1200 512 60 IMAGE
26 MedicalImages 1141 99 10 IMAGE
27 PhalangesOutlinesCorrect 2658 80 2 IMAGE
28 ChlorineConcentration 4307 166 3 SIMULATED
29 Phoneme 2110 1024 39 SENSOR

3.3 Experimental study

In this section, we present the design of the different types of DL models selected
for the experimental study. Furthermore, we also describe the details of the
evaluation method used for the data streaming classification task.

Deep learning models for time series classification in streaming 5

3.3.1 Deep learning models

Our aim in this study is to evaluate the performance of different DL architectures
within the ADLStream framework. Four different families of architectures are
considered in the experiments: the Multi-layer Perceptron (MLP) which will
serve as the baseline, recurrent networks using Long Short-Term Memory cells
(LSTM), Convolutional Neural Networks (CNN), and Temporal Convolutional
Networks (TCN). While the MLPs is unable to model the time relationships
within the input data, the last three architectures are particularly indicated
for dealing with data that has a temporal or spatial grid-like structure, such
as the selected datasets. LSTM networks are one of the most popular types
of recurrent neural networks. They connect each time step with the previous
ones in order to model the long temporal dependencies of the data without
forgetting the short-term patterns using special gates [9]. On the other hand,
CNNs are networks based on the convolution operation, which creates features
maps using sliding filters. They are also suitable for one-dimensional time series
data since they are able to automatically capture repeated patterns at different
scales [12]. Moreover, they have far less trainable parameters than recurrent

Table 2. Multi-Layer Percep-
tron architecture

MLP

Layer Type Neurons

0 Input f
1 Dense 32
2 Dense 64
3 Dense 128
4 Softmax c

Params f × 32 + 10240 + c× 128

Table 3. Convolutional Neural Network archi-
tecture. k indicates the kernel size

CNN

Layer Type Neurons

0 Input f
1 Conv. (k = 7) f × 64 maps
2 Max-Pool (k = 2) f/2 × 64 maps
3 Conv. (k = 5) f/2× 128 maps
4 Max-Pool (k = 2) f/4× 128 maps
5 Dense 64
6 Dense 32
7 Softmax c

Params f × 2048 + 43648 + c× 32

Table 4. Long Short-Term Mem-
ory Network architecture

LSTM

Layer Type Neurons

0 Input f
1 LSTM f × 64 units
2 LSTM f × 128 units
3 Dense 64
4 Dense 32
5 Softmax c

Params f × 8192 + 117760 + c× 32

Table 5. Temporal Convolutional Net-
work architecture. k indicates the ker-
nel size

TCN

Layer Type Neurons

0 Input f
1 TCN (k = 5) f × 64 maps
2 Dense 64
3 Dense 32
4 Softmax c

Params f × 4096 + 372096 + c× 32

6 P. Lara-Beńıtez et al.

networks due to their weight sharing scheme [4]. More recently, TCNs have
emerged as a specialised architecture that can capture long-term dependencies
more effectively by using dilated causal convolutions. With this operation, the
receptive field of neurons is increased without the need for pooling operations,
hence there is no loss of resolution [15]. Tables 2-5 provide a detailed description
of the layers composing the four DL models considered. In these tables, the values
of f and c are the number of features of the instances and the number of classes
respectively. The baseline MLP model (Table 2) is composed of three dense layers
with an increasing number of neurons. As can be seen, the other three models
have a similar architecture since the convolutional or recurrent layers have the
same number of maps or units and are followed by fully-connected layers with
the same number of neurons. In the CNN (Table 3), two convolutional blocks
with decreasing kernel size and max-pooling of stride 2 are applied before the
dense layers. In the LSTM and TCN layers, the complete sequences are returned
and connected to the next layers in order to use the information of all patterns
extracted at different scales. In the TCN (Table 5), only one stack of residual
blocks is used, and the dilated convolution is used with kernel (k = 5) and
dilations (d = {1, 2, 4, 8, 16, 32, 64}). Another important element to consider is
the use of a dropout with rate 0.2 on all dense layers in all models, with the aim
of reducing over-fitting issues. The number of trainable parameters illustrates
the computational cost of each model. The TCN has the highest number, which
can be 37 times greater than the MLP model.

3.3.2 Evaluation

For evaluating the results we use the prequential method with decaying factors,
that incrementally updates the accuracy by testing the model with unseen ex-
amples [8]. The decaying factors are used as a forgetting mechanism to give more
importance to recent instances for estimating the error, given the evolving nature
of the stream. In our study, we use a decaying factor of α = 0.99. The process
of calculating the prequential accuracy can be formulated as follows, where L is
the loss function and o and y are the real and expected output respectively.

Pα(i) =

∑
i

k=1
αi−kL(yk, ok)

∑i

k=1
αi−k

= = L(yi, oi) +
1

α
Pα(i− 1) (1)

The metric selected is the Kappa statistic, that is more suitable than standard
accuracy in data streaming due to the frequent changes in the class distribution
of incoming instances [2]. The Kappa value can be computed as shown in the fol-
lowing equation, where p0 is the prequential accuracy and pc is the hypothetical
probability of chance agreement.

k =
p0 − pc

1− pc
(2)

Deep learning models for time series classification in streaming 7

4 Experimental results

This section presents the Kappa accuracy results and the statistical analysis. The
experiments have been carried out with an Intel Core i7-770K and two NVIDIA
GeForce GTX 1080 8GB GPU. The Apache Kafka server is used to reproduce
the streaming scenario since it is the most efficient tool available [7].

4.1 Prequential Kappa

Table 6 presents the prequential kappa accuracy results obtained with the dif-
ferent models for each dataset. As can be seen, the CNN achieves the best
performance for almost all the datasets considered, obtaining the highest aver-
age kappa accuracy value. The second model on average is the TCN, but closely
followed by the LSTM that shows a similar performance. In general, the re-
sults prove that the ADLStream framework is able to achieve reliable results
regardless of the deep learning architecture chosen.

4.2 Computation time analysis

In a data streaming environment, it is fundamental to analyse the efficiency of
the architectures considered. The average processing rate of each model (aver-
age time to process each incoming instance) is provided at the end of Table 6.
Logically, the MLP is the fastest model given its simple architecture. The second
fastest model is the CNN, which has a significantly smaller number of parame-
ters than the other two DL architectures. Thanks to the properties of parameter
sharing, the CNN is able to process instances three times faster than the LSTM.
The TCN is a more complex model with more convolutions which results in a
processing rate of almost 8 times slower than the CNN.

4.3 Statistical analysis

The ranking of the accuracy of the models obtained with the Friedman test is
presented in Table 7. The CNN model leads the ranking, with a high difference
in score with respect to the rest of the models. The TCN and LSTM obtain a
similar score, while the MLP offers the worst performance. The null hypothesis
is rejected since the p-value obtained (<0.001) is below the significance level
(α = 0.05).

In Bergmann-Hommel’s post-hoc analysis, we perform pair-wise comparisons
between all models. Table 8 reports the p-values and conclusions obtained. As
can be seen, for the CNN all null hypothesis can be rejected since the p-values are
always below the significance level. Therefore, it can be concluded that there is
a statistical significance in the differences between the performance of the CNN
and the other architectures considered. Nevertheless, there are no significant
differences between the accuracy of LSTM and the TCN.

8 P. Lara-Beńıtez et al.

Table 6. Prequential kappa accuracy results

Dataset MLP LSTM CNN TCN

1 TwoPatterns 0.818 0.999 1.000 0.999
2 CinCECGtorso 0.348 0.990 0.994 0.933
3 TwoLeadECG 0.947 0.941 0.991 0.987
4 Wafer 0.581 0.995 0.996 0.710
5 pendigits 0.728 0.987 0.992 0.953
6 FacesUCR 0.834 0.952 0.974 0.952
7 Mallat 0.963 0.920 0.986 0.978
8 FaceAll 0.841 0.953 0.962 0.948
9 Symbols 0.877 0.900 0.949 0.914
10 ItalyPowerDemand 0.942 0.921 0.935 0.934
11 ECG5000 0.881 0.891 0.888 0.890
12 MoteStrain 0.778 0.843 0.878 0.851
13 NonInvasiveFetalECGThorax1 0.851 0.862 0.881 0.873
14 NonInvasiveFetalECGThorax2 0.894 0.893 0.901 0.900
15 SwedishLeaf 0.679 0.775 0.874 0.844
16 FordA -0.021 0.691 0.644 0.632
17 Yoga 0.213 0.659 0.737 0.689
18 UWaveGestureLibraryX 0.560 0.748 0.761 0.732
19 FordB 0.009 0.654 0.626 0.219
20 ElectricDevices 0.353 0.803 0.801 0.755
21 UWaveGestureLibraryY 0.506 0.641 0.648 0.608
22 UWaveGestureLibraryZ 0.496 0.646 0.658 0.613
23 HandOutlines 0.643 0.674 0.721 0.714
24 InsectWingbeatSound 0.605 0.602 0.613 0.598
25 ShapesAll 0.542 0.598 0.606 0.596
26 MedicalImages 0.304 0.566 0.580 0.503
27 PhalangesOutlinesCorrect 0.153 0.156 0.474 0.451
28 ChlorineConcentration 0.242 0.157 0.900 0.891
29 Phoneme 0.032 0.117 0.182 0.138

Average kappa 0.572 0.743 0.798 0.752

Average time per instance (ms) 4.993 22.09 7.347 47.34

Table 7. Friedman Test Ranking

Friedman Test Ranking

CNN 1.200
TCN 2.533
LSTM 2.566
MLP 3.700

Table 8. Bergmann-Hommel’s analysis

PostHoc Analysis

Comparison p z Conclusion
MLP - CNN <0.001 7.5 !=
LSTM - CNN <0.001 4.1 !=
TCN - CNN <0.001 4 !=
MLP - TCN 0.001 3.49 !=
MLP - LSTM 0.001 3.39 !=
LSTM - TCN 0.920 0.09 ==

Deep learning models for time series classification in streaming 9

5 Conclusions

In this paper, the performance of several deep learning architectures for data
streaming classification is compared using the ADLStream framework. An ex-
tensive study over a large number of time-series dataset was conducted using
multi-layer perceptron, recurrent, and convolutional neural networks.

The research carried out for this study provided evidence that convolutional
neural networks are currently the most suitable model for time series classifi-
cation in streaming. Convolutional neural networks obtained the best results
in terms of accuracy, with a very high processing rate. These characteristics
present convolutional networks as the best alternative for processing data arriv-
ing at high speed. The other deep models, such as Long Short-Term Memory
or Temporal Convolutional networks were not able to achieve such performance
and their processing rate was slower.

Future work should study the behaviour of different deep learning models
over concept drifts and their capacity to adapt to changes in the data distribu-
tion. Furthermore, a parameter optimization process could provide more specific
architectures for the models and improve the performance. Future studies should
also consider other less known models such as Echo State Networks, Stochastic
Temporal Convolutional Networks or Gated Recurrent Units Networks.

Acknowledgements

This research has been funded by the Spanish Ministry of Economy and Com-
petitiveness under the project TIN2017-88209-C2-2-R and by the Andalusian
Regional Government under the projects: BIDASGRI: Big Data technologies for
Smart Grids (US-1263341), Adaptive hybrid models to predict solar and wind
renewable energy production (P18-RT-2778). We are grateful to NVIDIA for
their GPU Grant Program that has provided us high quality GPU devices for
carrying out the study.

References

1. Anderson, R., Koh, Y., Dobbie, G., Bifet, A.: Recurring concept meta-learning
for evolving data streams. Expert Systems with Applications 138 (2019).
https://doi.org/10.1016/j.eswa.2019.112832

2. Bifet, A., de Francisci Morales, G., Read, J., Holmes, G., Pfahringer, B.:
Efficient online evaluation of big data stream classifiers. In: Proceedings of
the 21th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. pp. 59–68. KDD ’15, ACM, New York, NY, USA (2015).
https://doi.org/10.1145/2783258.2783372

3. Bifet, A., Gavaldà, R.: Adaptive learning from evolving data streams. In: Adams,
N.M., Robardet, C., Siebes, A., Boulicaut, J.F. (eds.) Advances in Intelligent Data
Analysis VIII. pp. 249–260. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

4. Borovykh, A., Bohte, S., Oosterlee, C.: Dilated convolutional neural networks for
time series forecasting. Journal of Computational Finance 22(4), 73–101 (2019).
https://doi.org/10.21314/JCF.2018.358

https://doi.org/10.1016/j.eswa.2019.112832
https://doi.org/10.1145/2783258.2783372
https://doi.org/10.21314/JCF.2018.358

10 P. Lara-Beńıtez et al.

5. Cano, A., Krawczyk, B.: Kappa updated ensemble for drifting data stream mining.
Machine Learning (2019). https://doi.org/10.1007/s10994-019-05840-z

6. Dau, H.A., Bagnall, A.J., Kamgar, K., Yeh, C.M., Zhu, Y., Gharghabi, S.,
Ratanamahatana, C.A., Keogh, E.J.: The UCR time series archive. CoRR
abs/1810.07758 (2018)

7. Fernández-Rodŕıguez, J.Y., Álvarez Garćıa, J.A., Fisteus, J.A., Lu-
aces, M.R., Magaña, V.C.: Benchmarking real-time vehicle data stream-
ing models for a smart city. Information Systems 72, 62 – 76 (2017).
https://doi.org/10.1016/j.is.2017.09.002

8. Gama, J., Sebastião, R., Rodrigues, P.P.: On evaluating stream
learning algorithms. Machine Learning 90(3), 317–346 (Mar 2013).
https://doi.org/10.1007/s10994-012-5320-9

9. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: Contin-
ual prediction with LSTM. Neural Computation 12(10), 2451–2471 (2000).
https://doi.org/10.1162/089976600300015015

10. Ghazikhani, A., Monsefi, R., Sadoghi Yazdi, H.: Online neural network
model for non-stationary and imbalanced data stream classification. Inter-
national Journal of Machine Learning and Cybernetics 5(1), 51–62 (2014).
https://doi.org/10.1007/s13042-013-0180-6

11. Gomes, H.M., Bifet, A., Read, J., Barddal, J.P., Enembreck, F., Pfharinger,
B., Holmes, G., Abdessalem, T.: Adaptive random forests for evolving
data stream classification. Machine Learning 106(9), 1469–1495 (2017).
https://doi.org/10.1007/s10994-017-5642-8

12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Proceedings of the 25th International Conference
on Neural Information Processing Systems - Volume 1. pp. 1097–1105. NIPS’12,
Curran Associates Inc., USA (2012)

13. Lara-Beńıtez, P., Carranza-Garćıa, M.: ADLStream: Asynchronous dual-pipeline
deep learning framework for online data stream mining. Available online:
https://github.com/pedrolarben/ADLStream, (Accessed: 01-04-2020)

14. Lara-Beńıtez, P., Carranza-Garćıa, M., Garćıa-Gutiérrez, J., Riquelme, J.:
Asynchronous dual-pipeline deep learning framework for online data stream
classification. Integrated Computer-Aided Engineering pp. 1–19 (01 2020).
https://doi.org/10.3233/ICA-200617

15. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions.
In: 4th International Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings (2016),
http://arxiv.org/abs/1511.07122

16. Zhang, Y., Yu, J., Liu, W., Ota, K.: Ensemble classification for skewed
data streams based on neural network. International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems 26(05), 839–853 (2018).
https://doi.org/10.1142/S021848851850037X

https://doi.org/10.1007/s10994-019-05840-z
https://doi.org/10.1016/j.is.2017.09.002
https://doi.org/10.1007/s10994-012-5320-9
https://doi.org/10.1162/089976600300015015
https://doi.org/10.1007/s13042-013-0180-6
https://doi.org/10.1007/s10994-017-5642-8
https://github.com/pedrolarben/ADLStream
https://doi.org/10.3233/ICA-200617
http://arxiv.org/abs/1511.07122
https://doi.org/10.1142/S021848851850037X

	On the performance of deep learning models for time series classification in streaming

