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Abstract: Centroid-based clustering is a widely used technique within unsupervised learning
algorithms in many research fields. The success of any centroid-based clustering relies on the
choice of the similarity measure under use. In recent years, most studies focused on including several
divergence measures in the traditional hard k-means algorithm. In this article, we consider the
problem of centroid-based clustering using the family of αβ-divergences, which is governed by two
parameters, α and β. We propose a new iterative algorithm, αβ-k-means, giving closed-form solutions
for the computation of the sided centroids. The algorithm can be fine-tuned by means of this pair of
values, yielding a wide range of the most frequently used divergences. Moreover, it is guaranteed to
converge to local minima for a wide range of values of the pair (α, β). Our theoretical contribution
has been validated by several experiments performed with synthetic and real data and exploring the
(α, β) plane. The numerical results obtained confirm the quality of the algorithm and its suitability to
be used in several practical applications

Keywords: αβ-divergence; k-means algorithm; centroid-based clustering; musical genre clustering;
unsupervised classification.

1. Introduction

The clustering problem is related to the partition of an analyzed set of samples into a settled
number of pairwise disjoint classes or clusters, where samples in the same cluster are more similar to
each other than those samples of other clusters. Center-based clustering methods group the samples
based on some measure of distance from cluster centers. In this context, the center of a cluster can
be a medoid or a centroid. A medoid is the most representative point of a cluster, while a centroid
is usually calculated as a minimizer of an optimization problem, with a measure of distortion as the
objective function. The choice of a proper measure of similarity or dissimilarity (distance) is a key
factor in cluster analysis, since the performance of clustering algorithms greatly relies on this choice.

Arguably, the most popular clustering algorithm is k-means with Lloyd’s heuristic, in which
squared Euclidean distance is used to compute the distortion. However, there has been a recent burst of
interest in extending classical k-means algorithm to a larger family of distortion measures. In particular,
the use of divergence-based distance functions as a similarity measure has recently gained attention.
Research on this topic makes use mainly of two families of divergences, Csiszár f -divergences
and Bregman divergences. Both families include some well-known divergences. For example,
α-divergences, which includes the Kullback-Leibler (KL) divergence, is a type of Bregman and Csiszár
f -divergences. In fact, α-divergence is the unique class of divergence sitting at the intersection of the
Csiszár f -divergence and Bregman divergence classes [1]. Other notable Csiszár f -divergences are
the Hellinger distance and the χ-squared distance [2], whereas the squared Euclidean distance, the
Itakura-Saito (IS) divergence and the β-divergence are special cases of Bregman divergences [3].

Such distance functions do not always satisfy certain properties, such as triangular inequality
and distance symmetry, making them an improper metric. Thus, for the development of a clustering

Entropy 2019, 21, 196; doi:10.3390/e21020196 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0003-2587-1382
https://orcid.org/0000-0002-8955-7109
https://orcid.org/0000-0002-7206-1203
https://orcid.org/0000-0003-4121-7137
http://www.mdpi.com/1099-4300/21/2/196?type=check_update&version=1
http://dx.doi.org/10.3390/e21020196
http://www.mdpi.com/journal/entropy


Entropy 2019, 21, 196 2 of 19

strategy, one must consider two kinds of centroids obtained by performing the minimization process
either on the left argument or on the right argument of the distance function, yielding the left-sided
and right-sided centroids, respectively. Closed formulas for both sided centroids computation have
been proposed in the literature for different divergence families.

In [4], the classical hard k-means algorithm is generalized to the large family of Bregman
divergences. The resulting Bregman k-means algorithm works for any given Bregman divergence.
Since Bregman divergences are not necessarily symmetric, it is necessary to distinguish the two
aforementioned sided centroids. It has been shown that the left-centroid is the generalized means
of the cluster, also called cluster’s f -mean, whereas the right centroid is the center of mass of the
cluster, independently of the considered Bregman divergence [5]. For the specific case of α-divergences,
closed formulas for the computation of the sided centroids were derived in [6] for the right-type, and
in [7,8] for the left-type. Symmetrized centroids have also been derived for clustering histograms in
the Bag-of-Words modeling paradigm in [9]. Total Bregman divergences (TDB), which are invariant
to particular transformations on the natural space, have also been used for estimating the center of
a set of vectors in [10] in the context of the shape retrieval problem. Complete formulation of sided
centroids in k-means algorithm with TDB are reported in [11]. To the best of our knowledge, there is
no closed formulation for the computation of centroids for the whole of Csiszár f -divergence family.
One of the works that relates Csiszár f -divergences and clustering can be found in [12], in which a
generalized version of f -divergences, called ( f , l)-divergence is used for clustering in the particular
case of KL-divergence. Finally, other classes of distance functions which are not necessarily Bregman
or Csiszár f -divergences have been employed for clustering. For example, a notable recent study can
be found in [13], in which a k-means algorithm using the S-divergence is developed for feature coding.

We propose a new center-based clustering algorithm, namely αβ-k-means algorithm, using
αβ-divergence family as a measure of distortion. Our motivations to explore the family of
αβ-divergences for centroid-based clustering are the great flexibility to obtain a rich collection on
particular divergences by just tuning the parameters (α, β), and the possibility to yield simple closed
formulas for the centroids computation that are of interests for processing several types of data.

αβ-divergences, which were introduced in [14] as a new dissimilarity measure for positive data,
have been proven useful in several applications, such as for example the separation of convolved
speech mixtures [15], to perform the canonical correlation analysis [16] and noise-robust speech
recognition [17]. This family of divergences are governed by two parameters α and β, and cover
many of the divergences previously used for clustering, such as α-divergence, β-divergence and
KL-divergence.

This is not the first attempt to take into account the αβ-divergences in a clustering approach. In [18],
a variation of a k-medoid clustering algorithm is presented based on the αβ-divergences. The resulting
algorithm fixes the value of the α parameter to α = 1, and varies the value of the parameter β in each
iteration through the prominence of the cluster. However, the method is completely different to our
proposal. The algorithm we propose in this article computes the centroid of the cluster by solving a
minimization problem, whereas the algorithm in [18] obtains the center of the cluster by an exhaustive
search optimization technique on the set of the current members of the cluster. Thus, we propose a
k-means-type algorithm whereas in [18] it is presented as a k-medoid-type algorithm.

Finally, some authors have pointed out that k-means clustering can be formulated as a constrained
matrix factorization problem [19,20]. For instance, in [19] the authors showed that orthogonal
symmetric Non-negative Matrix Factorization (NMF) with the sum of squared error cost function is
equivalent to Kernel k-means clustering. Other variants of NMF, such as Semi-NMF, Convex-NMF,
Cluster-NMF and Kernel-NMF are all soft versions of k-means clustering [21]. There is also a
relationship between NMF based on certain divergences and some clustering approaches. NMF with
generalized KL-divergence or I-divergence is equivalent to Probabilistic Latent Semantic Indexing
(PLSI) [22]. In addition, in [23] it is established that orthogonal NMF based on Bregman divergence
problem is equivalent to Bregman hard clustering derived in [4].
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This paper is organized as follows: we begin with the formal definition and some properties of
αβ-divergences in Section 2. In Section 3 we derive the closed-form formula for the sided centroids by
using the αβ-divergence, and generalize the k-means algorithm to the αβ-k-means algorithm. In Section
4 we demonstrate that the obtained formula for centroid computation match with previous formula
for some specific distances and divergences that belong to αβ-divergence family. Section 5 presents
some experimental clustering results for synthetic and real datasets. Finally, Section 6 summarizes our
main conclusions and provides some suggestions for future research.

2. αβ-Divergences

In this section, we recall the definition and some useful properties of the αβ-divergences [14].

Definition 1. Given two non-negative data matrices of same dimension P ∈ RI×T
+ and Q ∈ RI×T

+ , with
entries pit = [P]it and qit = [Q]it, the αβ-divergence is given by

Dα,β
AB (P‖Q) = ∑

it
dα,β

AB (pit, qit) (1)

where

dα,β
AB (pit, qit) =



− 1
αβ

(
pα

itq
β
it −

α
α+β pα+β

it − β
α+β qα+β

it

)
, for α, β, α + β 6= 0

1
α2

(
pα

it ln pα
it

qα
it
− pα

it + qα
it

)
, for α 6= 0, β = 0

1
α2

(
ln qα

it
pα

it
+
(

qα
it

pα
it

)−1
− 1
)

, for α = −β 6= 0

1
β2

(
qβ

it ln qβ
it

pβ
it

− qβ
it + pβ

it

)
, for α = 0, β 6= 0

1
2 (ln pit − ln qit)

2 , for α, β = 0

(2)

It must be pointed out that some specific choices of (α, β) parameters simplify the αβ-divergence
into some known divergences or families of divergences, allowing smooth interpolation between
many known divergences. In particular, when α = β = 0 the αβ-divergence takes the form of a
Log-Euclidean distance

D(0,0)
AB (P‖Q) = DE (log P‖ log Q) (3)

where DE represents the squared Euclidean distance. When α+ β = 0, with α, β 6= 0, the αβ-divergence
can also be expressed in terms of a generalized Itakura-Saito distance DIS with an α-zoom of
the arguments

D(α,−α)
AB (P‖Q) =

1
α2 DIS

(
P.[α]‖Q.[α]

)
=

1
α2 ∑

it

(
log

qα
it

pα
it
+

pα
it

qα
it
− 1
)

(4)

where P.[α] denotes the one-to-one transformation that raises each element of the vector P to the power
α. When α + β = 1 the αβ-divergence reduces to the α-divergence,

D(α,1−α)
AB (P‖Q) = Dα

A (P‖Q) (5)

whereas when α = 1, it reduces to the β-divergence

D(1,β)
AB (P‖Q) = Dβ

B (P‖Q) . (6)
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For α = β = 0.5, it is proportional to the Hellinger distance

D(0.5,0.5)
AB (P‖Q) = 4DH (P‖Q) . (7)

Also, the AB-divergence reduces to the standard KL-divergence for α = 1 and β = 0,

D(1,0)
AB (P‖Q) = DKL (P‖Q) . (8)

Although αβ-divergences are not true metrics, they satisfy some interesting properties (see [14]
for details and proofs), such us duality, inversion, and scaling:

1. Dα,β
AB (P‖Q) = Dβ,α

AB (Q‖P) (Duality)
2. D−α,−β

AB (P‖Q) = Dα,β
AB

(
Q.[−1]‖P.[−1]

)
(Inversion)

3. Dwα,wβ
AB (P‖Q) = 1

w2 Dα,β
AB

(
P.[−w]‖Q.[−w]

)
(Scaling)

αβ-divergence is more flexible, powerful, and robust against errors and noise than other
divergence families, such as the α-divergence and β-divergence [14]. The role of the hyperparameters
α and β in the robustness property of the αβ-divergence is described in [14]. Formally, it has been
shown that if we assume that the right argument of the divergence, Q is a function of a vector of
parameters θ, then

∂Dα,β
AB (P‖Q)

∂θ
= −∑

it

∂qit
∂θ

qα+β−1
it︸ ︷︷ ︸

weights

ln1−α

(
pit
qit

)
︸ ︷︷ ︸

α−zoom

. (9)

In this case, the parameter α can be used to control the influence of large or small ratios pit
qit

by the
deformed logarithm of order 1− α, while the parameter β provides some control on the weighting of
the ratios by scaling factors qα+β−1

it .

3. K-means Clustering with αβ-Divergences

One of the most popular and well-studied data analysis methods for clustering is k-means
clustering. Let X be a random variable that take values in a finite set X = {xi}n

i=1 ⊂ RT . k-means
clustering aims to split X into k disjoint partitions {ci}k

i=1, finding a set of centroidsM = {mh}k
h=1 ⊂

RT , with |M| = k and k < n. The standard k-means formulation finds the partition C = {ci}k
i=1

through the minimization of the sum of the squared Euclidean distances between each sample and
its cluster centroid. Formally speaking, for a fixed integer k, one can define the following squared
Euclidean loss function

L (M) = min
c1,··· ,ck

k

∑
h=1

∑
xi∈ch

‖xi −mh‖2
2 . (10)

The most popular optimization method for this minimization problem is Lloyd’s algorithm [24],
which converges to a stable fixed point that corresponds to a local minimum of the loss function. For a
given initial partition, Lloyd’s algorithm finds the partition in a two-step iterative process. In the
assignment step, each data is assigned with the cluster whose centroid is closest. In the update step,
the centroids are updated as the arithmetic mean of its assigned points. It is well established that the
arithmetic mean is the optimal centroid m∗h,DE

for the Euclidean distance

m∗h,DE
≡ 1
|ch| ∑

xi∈ch

xi = arg min
mh

∑
xi∈ch

‖xi −mh‖2
2 (11)

where |ch| refers to the cardinality of th h-th cluster.
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We propose in this paper to generalize the standard k-means clustering to the αβ-divergences.
As in k-means standard technique, our objective is to find the set of centroidsM that minimizes the
AB-divergence of points in the set X to their corresponding centroids. In this context, the centroid
of a cluster is defined as the optimizer of the minimum average αβ-divergence. However, since the
αβ-divergences are not symmetrical, one must consider two kinds of centroids obtained by performing
the minimization process either on the left argument or on the right argument of the divergences.
We shall consider the right-sided centroid, mR∗

h,DAB
the optimizer when the minimization process

is performed with respect to the right side of the divergence, and the left-sided centroid, mL∗
h,DAB

,
the optimizer when the minimization is performed with respect to the left

mR∗
h,DAB

(α, β) = arg min
mh

∑
xi∈ch

Dα,β
AB (xi‖mh) = arg min

mh
∑

xi∈ch

∑
t

dα,β
AB (xit, mht) (12)

mL∗
h,DAB

(α, β) = arg min
mh

∑
xi∈ch

Dα,β
AB (mh‖xi) = arg min

mh
∑

xi∈ch

∑
t

dα,β
AB (mht, xit) . (13)

In [5] it is proven that sided centroids with respect to Bregman divergences coincide with the
center of mass for the right-type, and with the center of mass for the gradient point set that is a
f -mean, for the left-type. This implies that the formula for the right-type centroid computation does
not depend on the Bregman divergence considered, whereas the formula for the computation of the
left-type centroid strongly depends on it. Moreover, the sided centroids for Bregman divergences
exhibit different characteristics, and therefore it is necessary to choose between the left and right
centroid depending on the application. Contrary to the Bregman divergences case, we can establish a
relationship between the sided centroids obtained with αβ-divergences that unifies the optimization
process for the sided centroids in a unique problem.

Lemma 1. Let mR∗
h,DAB

(α, β) denote the optimal right-sided centroid defined in Equation (12) for a given
parametrization pair (α, β). The left-sided centroid for the same parametrization is

mL∗
h,DAB

(α, β) = mR∗
h,DAB

(β, α). (14)

Proof. Using the duality property of αβ-divergences, we observe that

mL∗
h,DAB

(α, β) = arg min
mh

∑
xi∈ch

Dα,β
AB (mh‖xi)

= arg min
mh

∑
xi∈ch

Dβ,α
AB (xi‖mh) = mR∗

h,DAB
(β, α). (15)

This last result allows us to formulate the following theorem.

Theorem 1. (Sided αβ-centroids) The right-sided mR∗
h,DAB

(α, β) and left-sided mL∗
h,DAB

(α, β) αβ-centroid
coordinates of a set of point xi ∈ ch are:

mR∗
h,DAB

(α, β) =


|ch|−

1
α

(
∑

xi∈ch

xα
i

) 1
α

for α 6= 0

∏
xi∈ch

(xi)
1
|ch | for α = 0

(16)
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mL∗
h,DAB

(α, β) =


|ch|
− 1

β

(
∑

xi∈ch

xβ
i

) 1
β

for β 6= 0

∏
xi∈ch

(xi)
1
|ch | for β = 0.

(17)

The proof is reported in the Appendix A . Please note that the expression obtained for α = 0 in
Equation (16) corresponds to the limit when α→ 0 evaluated with L’Hôpital’s rule, in the same way
as with β = 0 in Equation (17). Closed-form formulas presented in Theorem 1 are essential, since it
allows us to develop efficient k-means algorithms using αβ-divergences.

Now, we can introduce the following iterative Algorithm 1, known as the αβ-k-means algorithm.
As in the traditional k-means algorithm, the algorithm begins with an initial guess of the centroids
(usually at random), and then alternates between the assignment and update steps. In the assignment
step, each data point is assigned to the closest cluster centroid, measuring the distance through the
αβ-divergence. In the updated step, the centroids are computed using the results on Theorem 1.
The algorithm is reiterated until convergence is met. In practice, we can control the stopping criterion
by taking the difference between the cost function of two successive iterations. If it is less than a
prescribed threshold ε the algorithm will stop. A precise definition of the aforementioned strategy
using the right-type centroid is presented in Algorithm 1.

Algorithm 1 αβ-divergence clustering.

Input: Set X = {xi}n
i=1 ⊂ RT

+, hyperparameters (α, β), number of clusters k.

Output: MR∗
αβ , local minimizer of Lαβ(M) =

k
∑

h=1
∑

xi∈ch

Dα,β
AB (xi‖mh) where M = {mh}k

h=1, hard

partitioning CR∗
αβ = {ch}k

h=1 of X .
Method:
Initialize {mh}k

h=1 with mh ⊂ RT
+

repeat
(The Assignment Step)
Set ch ← 0, 1 ≤ h ≤ k
for i = 1 to n do

ch ← ch
⋃
{xi}

where h = h∗(xi) = arg min
h′

D(α,β)
AB (xi‖mh′)

end for
(The Update Step)
for h = 1 to k do

mh ←


|ch|−

1
α

(
∑

xi∈ch

xα
i

) 1
α

for α 6= 0

∏
xi∈ch

(xi)
1
|ch | for α = 0

end for
until convergence
returnMR∗

αβ ← {mh}k
h=1 , CR∗

αβ ← {ch}k
h=1

Obviously, this algorithm can be extended to the left-type centroid in a straightforward manner
by just changing the order of the arguments of the αβ-divergence in the assignment step, and using the
left-centroid formulas in the update step to obtain the set of centroidsML∗

αβ and the hard partitioning of

data CL∗
αβ . However, it is easy to check that there is a relationship between the αβ-k-means algorithm for

the right-type centroid and for the left-type centroid. For the same initialization, due to the property the
duality of the αβ-divergences and the result of Lemma 1 one can get thatML∗

αβ =MR∗
βα and CL∗

αβ = CR∗
βα .
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Therefore, the behavior of the left-type αβ-k-means algorithm in the αβ plane is equal to behavior of
the right-type reflected in the line α = β.

3.1. Conditions for the Convergence of Algorithm

Looking for the conditions ensuring the existence of an optimal set of centroids that achieves the
minimum of the clustering loss function based on the αβ-divergence, it is necessary to take into account
that αβ-divergences are not necessarily convex in the second argument. In particular, the conditions
required for convexity depends on the value of α and β as follows [14]

pit
qit
≥ exp1−α

(
1

β−1

)
for β < min {1, 1− α}

always convex for β ∈ [min {1, 1− α} , max {1, 1− α}]
pit
qit
≤ exp1−α

(
1

β−1

)
for β < max {1, 1− α}

(18)

where exp1−α(·) is a 1− α deformed exponential

exp1−α(z) =


exp(z) for α = 0

(1 + αz)
1
α for α 6= 0 and 1 + αz ≥ 0

0 for α 6= 0; and 1 + αz < 0.
(19)

Figure 1 shows an analysis of the convergence region of the αβ-k-means algorithm. The region
filled in blue represents the convex cone delimited by the lines α + β = 1 and β = 1, in which
the αβ-divergence is always convex with respect to the second argument. Therefore, the proposed
algorithm converges to a local minimum within this cone, independently of the values of the data to be
analyzed. However, Equation (18) shows that the convexity of the divergence with respect to qit holds
outside the convex cone when the ratios pit

qit
are bounded by the function exp1−α

(
1

β−1

)
. Therefore,

theoretically, the convergence region of the proposed algorithm is greater than the convex cone, and its
borders depend on the values that the arguments of the divergence could take. In particular, the
maximum and the minimum values of the ratios pit

qit
determine the upper and the lower boundaries,

respectively. Blue lines in Figure 1 represent the boundaries of the convergence region in the αβ plane
for some values of the function exp1−α

(
1

β−1

)
. In practice, for relatively small errors between xit and

mht, Algorithm 1 is guaranteed to converge to a local minimum in a wide range of (α, β) values.

Figure 1. Analysis of the convergence region of the αβ-k-means algorithm. The region in blue shows the
convex cone that guarantee the convergence of the algorithm to a local minimum for any dataset. Blue

lines represent the boundaries of the convergence region for some values of the function exp1−α

(
1

β−1

)
.
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4. Relations with Known Centroid-Based Algorithms

The obtained formulas for sided centroid computation match the previous expressions obtained
for various specific divergences and distances. In fact, the above novel algorithm unifies many existing
algorithms for k-means. For example, apart from the most popular squared Euclidean distance, the
algorithm includes those k-means algorithms based on α-divergences and β-divergences, as well as the
particular cases KL-divergence and IS-divergence.

We shall start with the squared Euclidean distance that can be obtained from the αβ-divergence
for α = β = 1. By substituting these α and β values on the sided centroids of Equations (16) and (17),
we directly obtain that both centroids are the arithmetic mean (11)

m∗h,E = mR∗
h,DAB

(1, 1) = mL∗
h,DAB

(1, 1) = |ch|−1

(
∑

xi∈ch

xi

)
. (20)

Another interesting case of study is the α-divergence that can be obtained from the αβ-divergences
for the parametrization α + β = 1. As mentioned before, there are closed formulas for the computation
of sided centroids for the k-means with α-divergences [7,9]. However, to compare the formulas, it is
necessary to take into account that there are two equivalent ways to define the α-divergence family.
In particular, some authors employ a slightly different notation that depends on the parameter αA [3],
which is related to the parameter α as follows

αA = 1− 2α. (21)

The α-divergence parametrized by αA takes the following form

DαA
A (P‖Q) =



4
1−α2

A
∑
it

(
1−αA

2 pit +
1+αA

2 qit − p
1−αA

2
it q

1+αA
2

it

)
, for αA 6= ±1

∑
it

(
pit log pit

qit
+ qit − pit

)
, for αA = −1

∑
it

(
pit log qit

pit
+ pit − qit

)
, for αA = 1.

(22)

Closed formulas for sided centroids employing this notation are:

mR∗
h,DA

(αA) =


|ch|
− 2

1−αA

(
∑

xi∈ch

x
1−αA

2
i

) 2
1−αA

, for αA 6= 1

∏
xi∈ch

(xi)
1
|ch | , for αA = 1

(23)

mL∗
h,DA

(αA) =


|ch|
− 2

1−αA

(
∑

xi∈ch

x
1+αA

2
i

) 2
1+αA

, for αA 6= −1

∏
xi∈ch

(xi)
1
|ch | , for αA = −1.

(24)

Substituting Equation (21) in Equation (4), it is easy to check that DαA
A (P‖Q) = Dα

A (P‖Q). Also,
substituting Equation (21) in Equations (23) and (24) we obtain

mR∗
h,DA

(αA) = mR∗
h,DAB

(α, 1− α) (25)

mL∗
h,DA

(αA) = mL∗
h,DAB

(α, 1− α). (26)

One widely employed distance in clustering tasks is the KL-divergence, obtained either for
(α, β) = (1, 0) from the αβ-divergence, or αA = −1 from the α-divergence. In this specific case,
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the left-sided and right-sided centroids are computed as geometric mean and arithmetic mean
respectively [5]. It must be noticed that it is enough to consider (α, β) = (1, 0) in Equations (23)
and (24) to obtain the same formulas for centroid’s computation than those reported in [5]

mR∗
h,DKL

= mR∗
h,DAB

(1, 0) =
1
|ch| ∑

xi∈ch

xi (27)

mL∗
h,DKL

= mL∗
h,DAB

(1, 0) = ∏
xi∈ch

(xi)
1
|ch | . (28)

Finally, another divergence frequently used in the spectral analysis of speech signals [25] is the
IS-divergence. This divergence was first proposed in the context of vector quantization in [26], and can
be expressed by the β-divergence, the Bregman divergence and the αβ-divergence for (α, β) = (1,−1).
As all the Bregman divergences, the right-sided centroid is computed as the arithmetic mean, but in this
case, the left-sided centroid corresponds to the harmonic mean [5]. Again, applying (α, β) = (1,−1) in
Equations (23) and (24), we get the same results than in [5]

mR∗
h,DIS

= mR∗
h,DAB

(1,−1) =
1
|ch| ∑

xi∈ch

xi (29)

mL∗
h,DIS

= mL∗
h,DAB

(1,−1) =
|ch|

∑
xi∈ch

(
1
xi

) . (30)

5. Experimental Results and Discussion

We have evaluated the proposed αβ-k-means algorithm on various data types with experiments
on both synthetic and real datasets. The first experiment studies the behavior of the algorithm on four
different synthetic datasets, whose density is known, whereas the second experiment considers the
task of audio genre classification using two different sets of descriptors. The third experiment analyzes
the performance of the algorithm in two datasets from the UCI Machine Learning Repository [27]:
Iris and Wine. It is expected that the behavior of the algorithm strongly depends on the choice of
the tuning parameters and on the type of the data. Given the huge flexibility of the αβ-divergence
framework, we must restrict the experiment to some particular cases. Therefore, in our simulations we
have varied α and β within the range −2 ≤ α ≤ 2 and −2 ≤ β ≤ 2 with steps of 0.1. In each simulation
we run 10 replicates from different randomly selected starting points and determined the partition
with the lowest total sum of distances over all replicates. The resulting clusters have been evaluated in
terms of accuracy degree (ACC) measured as the number of correctly assigned data points divided by
the total number of data. Let us denote gi the ground truth label, li the clustering assignment produced
by the algorithm and map(li) the optimal one-to-one mapping function that permutes clustering labels
to match the ground truth labels by using the Hungarian algorithm [28]. The ACC is defined as

ACC =

n
∑

i=1
δ (gi, map(li))

n
(31)

where δ(x, y) = 1 if x = y and δ(x, y) = 0 otherwise.

5.1. Clustering on Synthetic Datasets

In this experiment we have generated four 1-dimensional datasets of 3000 samples each, based
on mixture models of Gaussian, Log-Gaussian, Poisson, and Binomial distributions, respectively.
The datasets have three components of 1000 samples each with means equals to 70, 80, and 100,
respectively. The standard deviation of the Gaussian and Log-Gaussian densities was set to 5, and
the number of trials of the binomial distribution was set to 1000. According this, the variance of the
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four models are approximately the same. The density functions of the generative models are depicted
in Figure 2.
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Figure 2. Generative models for dataset used in experiment 1. Each of the four mixture models have
three components of Gaussian, Log-Gaussian, Poisson, and Binomial distribution, respectively.

The choice of these density functions is not arbitrary. Gaussian, Poisson, and Binomial
distributions are class members of the exponential family of distributions, and in [4] it is well
stablished that for every exponential family distribution, it exists a corresponding generalized distance
measure. For instance, normal distributions are associated with Euclidean distance, the exponential
distribution with IS-divergence and Binomial distribution with KL-divergence. Additionally, Tweedie
distributions, which are a particular type of exponential family, are tied to β-divergences [29,30].
Tweedie distributions include Poisson distribution which has been connected to β-divergence with
β = 0, that is the KL-divergence. Thus, we expect to obtain satisfactory clustering results for some
specific divergences in each dataset analyzed.

Furthermore, with the choice of these distributions we want to verify the relation between the
convergence region of the algorithm and the extreme values of the different datasets. For example,
Poisson and Binomial datasets have similar extreme values and therefore the theoretical convergence
region of the algorithm in both cases should be similar. On the contrary, the convergence region for the
Log-Gaussian dataset is theoretically more extensive than the convergence regions of the other three
datasets considered. In fact, for each cluster it seems probable that the ratio xit/mht approaches to unit,
so that the convergence region covers the whole αβ plane.

We have repeated the clustering experiment based on 1000 different random datasets, but
preserving the same random initialization to run the left and right-type αβ-k-means algorithm in
each trial. The contour plots of the average ACC results of αβ-k-means for the right and left cases are
shown in Figures 3 and 4, respectively. In these contour plots, the areas between isolines are filled with
constant colors. In Table 1, we show the mean and standard deviation of ACC over 1000 trials obtained
for some representative values of the (α, β) pair for the right-type algorithm. We have omitted the
values for the left-type since they can be easily inferred from the right-type solutions.
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Table 1. Average and standard deviation of ACC for the synthetic dataset by applying the right-type
αβ-k-means algorithm for some specific values of (α, β).

Generative Model
(αβ) Parametrization Gaussian Log-Gaussian Poisson Binomial

(1,1) Euclidean distance 0.8784 ± 0.0056 0.9915 ± 0.0016 0.6948 ± 0.0143 0.7089 ± 0.0144
(0,0) Log-Euclidean distance 0.8754 ± 0.0059 0.9909 ± 0.0017 0.7085 ± 0.0088 0.7216 ± 0.0081

(1,0) Kullback-Leibler divergence 0.8783 ± 0.0056 0.9912 ± 0.0017 0.7057 ± 0.0102 0.7195 ± 0.0092
(1,−1) Itakura-Saito divergence 0.8755 ± 0.0059 0.9909 ± 0.0017 0.7089 ± 0.0088 0.7220 ± 0.0082

(0.5,0.5) proportional to Hellinger distance 0.8782 ± 0.0056 0.9913 ± 0.0017 0.7062 ± 0.0099 0.7199 ± 0.0092

Figure 3. Average ACC obtained with the right centroid αβ-k-means algorithm for four different
datasets.

These results can be interpreted from different points of view. First, as we predicted in Section 3,
one can check that the behavior of the left-type algorithm is equal to the behavior of the right-type
reflected in the line α = β. Second, we observe that the Euclidean distance (α = 1, β = 1) is well suited
to Gaussian dataset, and KL-divergence (α = 1, β = 0) to Poisson and Binomial datasets, as expected.
For the Log-Gaussian dataset, the αβ-k-means algorithm behaves practically in the same way in the
whole (α, β) region studied. This can be interpreted as the algorithm converges in the whole αβ plane
studied, as we had foreseen. Furthermore, for the Gaussian dataset, we observe that the performance
of the algorithm begins to decrease significantly for (α, β) values below the line α + β = −2. For the
Poisson and Binomial datasets, the region in which the algorithm achieves good results are very similar,
although the optimal values of α and β within this region are different for each type of distribution.
Finally, we would like to highlight that the regions with good performance for Poisson and Binomial
datasets are narrower than the region obtained for the Gaussian dataset.
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Figure 4. Average ACC obtained with the left-centroid αβ-k-means algorithm for four different datasets.

5.2. Musical Genre Clustering

In this experiment we have classified music audio according to the genre of the track. The goal of
this experiment is to investigate the optimal divergence for different feature vectors by performing
clustering experiments using different (α, β) pairs. Moreover, we have considered two levels of
complexity building datasets with K = 3 and K = 5 genres. The tracks were extracted from the Music
Information Retrieval Evaluation eXchange (MIREX) database for US Pop Music Genre Classification
that considers a total of 10 genres. Each genre contains 100 tracks of 30-sec duration and the tracks
are all 22,050 Hz Mono 16-bit audio files in .wav format. The first built dataset is composed of the
genres classical, metal and pop from the MIREX dataset, while the second built dataset adds to the
three previous genres country and disco. Therefore, the first dataset is composed of 300 tracks whereas
the second dataset is composed of 500 tracks.

Relevant descriptors that could sufficiently discriminate the audio genre were extracted from
the audio tracks. Two sets of positive features were analyzed: Discrete-Fourier-Transform-based
(DFT-based) descriptors and acoustic spectro-temporal features. The feature extraction process for
the computation of the DFT-based descriptors was composed of the following stages [18]. First,
the audio segment was divided into L overlapping frames of size 2048 points, with 25% overlap
between contiguous sections. For each audio track the number of segments obtained was L = 430.
Then, we performed the DFT of each segment using the Fast-Fourier Transform (FFT) algorithm
with Hamming-windowing. After that, we calculated the arithmetic average in each frequency bin
considering the absolute values of the complex DFT-vectors, and finally we normalized the average
DFT by the sum of the DFT average coefficients. The length of the DFT-based descriptors was 1025.

Figure 5 shows the performance of the proposed algorithm and Table 2 resumes the results for
some specific distances and divergences that belong to the αβ-divergences family. The best performance
for K = 3 , ACC = 0.9767, was obtained for the pair (α, β) = (1.7,−1), which is quite close to the
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α-divergence. For K = 5, the best performance, ACC = 0.6860 was obtained for (α, β) = (0.6, 0.4) that
is also close to an α-divergence, and in particular to the Hellinger distance.

Figure 5. Performance of the αβ-k-means algorithm in terms of accuracy for DFT-based descriptors
considering K = 3 classes and K = 5 classes.

Table 2. Clustering results in terms of accuracy of the αβ-k-means algorithm for DFT-based descriptors
for some specific distances and divergences.

(α, β) Distance or Divergence K = 3 K = 5

(1,1) Euclidean distance 0.5267 0.4700
(0,0) Log-Euclidean distance 0.9233 0.4880
(1,0) Kullback-Leibler divergence 0.9633 0.6200
(1,−1) Itakura-Saito divergence 0.8967 0.4820
(0.5,0.5) proportional to the Hellinger distance 0.9567 0.6560
(1.7,−1) - 0.9767 0.6240
(0.6,0.4) - 0.9567 0.6860

The acoustics descriptors were composed of temporal features and spectral features. The temporal
features extracted were Beat-Per-Minute (BPM) [31], and mean and standard deviation of:
Zero-Crossing Rate (ZCR), energy and entropy. The spectral descriptors used were mean and standard
deviation of: Spectral Centroid, Spectral Entropy, Spectral Flux, Spectral Flux Centroid, and Spectral
Roll-off. The MATLAB Audio Analysis Library [32] was employed for the calculation of all the features
except the BPM. The total feature vector consisted on 17 elements.

Figure 6 shows simulation results for the acoustic descriptors for the right-type αβ-k-means
algorithm. The best performance for K = 3, with ACC = 0.9167, was obtained for the pair
(α, β) = (0.2, 0), which is quite close to the Log-Gaussian distance, while for K = 5, the highest value,
ACC = 0.7000 was obtained for (α, β) = (0.8,−0.7), which is quite close to IS-divergence. In general,
the graph reveals that the region with best performance for this feature vector is close to the generalized
IS-divergence, obtained from the αβ-divergence for the values α = −β. Table 3 summarizes the results
for some specific divergences and distances obtained with αβ-divergences.

It can be clearly seen from Figures 5 and 6 that the region where the performance is satisfactory is
enclosed between the lines α = −β and α + β = 1 for the two tested feature vectors. These two lines
correspond to the generalized IS-divergence and the α-divergence, respectively. However, a theoretical
explanation for this fact is not trivial. As reported in Section 2, the hyperparameters (α, β) can control
influence of individual ratios xit

mht
in the centroid computation (see Equation 9). In particular, for α > 1

the smaller values of the ratio are down-weighted with respect to the larger ones, whereas for α < 1,
the larger ratios are down-weighted with respect to the smaller ones. Simultaneously, those ratios are
weighted by scaling factors mα+β−1

ht .
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Figure 6. Performance of the αβ-k-means algorithm in terms of accuracy for acoustic descriptors
considering K = 3 classes and K = 5 classes.

Table 3. Clustering results of the αβ-k-means algorithm for acoustic descriptors for some specific
distances and divergences.

(α, β) Distance or Divergence K = 3 K = 5

(1,1) Euclidean distance 0.8467 0.4980
(0,0) Log-Euclidean distance 0.8833 0.5580
(1,0) Kullback-Leibler divergence 0.8800 0.6420
(1,−1) Itakura-Saito divergence 0.8800 0.5920
(0.5,0.5) proportional to the Hellinger distance 0.8800 0.6460
(0,0.2) - 0.9167 0.6820
(0.8,−0.7) - 0.9133 0.7000

In our experiments, one can observe that in the region with best performance the value of α + β

seems to be constant and close to unity for the DFT-based descriptors, and to zero for the acoustic
descriptors. This cause that the multiplicative weighting factor mα+β−1

ht does not really affect the
estimation of the centroid coordinates for the DFT-based descriptors, whereas the large values in
the centroid coordinates are slightly down-weighted compared to the smaller values for the acoustic
descriptors. Additionally, we observe that for α + β < 0, the performance of the algorithm deteriorates
drastically for the two sets of descriptors analyzed, probably due to the inversion of the arguments
of the αβ-divergence. It is easy to see that for α + β < 0, the inversion property of the αβ-divergence
causes small values of the data to be strongly enhanced.

It is worth mentioning here that the values of the hyperparameters that provide the best
classification could not be generalized to other classification problems. For other classification tasks,
it is preferable to carry out a search on the (α, β) plane to obtain the best performance.

5.3. Clustering Analysis in UCI Repository.

We have conducted experiment over two popular datasets from the UCI repository: Iris and Wine.
The Iris dataset consist of three species of iris, 50 specimens in each. The features are measurements in
centimeters of the length and the width of the sepals and petals. Wine dataset comprises results of
chemical analyses of the content of wine grown in the same region but derived from three different
cultivars. The dataset has 13 features and 178 instances. In this experiment we have varied α and β

within the range −2 ≤ α ≤ 2 and −2 ≤ β ≤ 2 with steps of 0.2. Figure 7 shows the contour plots
of the average accuracy obtained over 50 trials with random initializations. The best performance
for Iris dataset, with ACC = 0.9600, was obtained in the (α, β) region delimited by the generalized
IS-divergence and the α-divergence. For Wine dataset, the highest value, ACC = 0.9663 was obtained for
(α, β) = (−1, 1.2), which is quite close to the generalized IS-divergence. In this case, the α-divergence
did not get good results. Average ACC levels for some specific distances and divergences are presented
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in Table 4. It is important to emphasize that the Euclidean distance is not included in the distances and
divergences with better results in the two datasets analyzed.

Figure 7. Performance of the αβ-k-means algorithm in terms of average accuracy over 50 trials for two
UCI datasets: Iris and Wine.

Table 4. Clustering results of the αβ-k-means algorithm for two UCI datasets: Iris and Wine, for some
specific distances and divergences.

(α, β) Distance or Divergence Iris Dataset Wine Dataset

(1,1) Euclidean distance 0.8933 0.7022
(0,0) Log-Euclidean distance 0.9600 0.9157
(1,0) Kullback-Leibler divergence 0.9576 0.7135
(1,−1) Itakura-Saito divergence 0.9600 0.9157
(0.5,0.5) proportional to the Hellinger distance 0.9536 0.7135
(−1,1.2) - 0.9600 0.9663

6. Conclusions

In this article, we have derived a centroid-based hard clustering algorithm that involves the
family of αβ-divergences which are governed by two parameters (α, β) and have many desirable
properties useful for clustering tasks. First, αβ-divergences admit closed-form expressions for the
computation of the two sided—left or right—centroids, something relevant from the point of view of the
implementation of the clustering algorithm. Second, the proposed algorithm, called αβ-k-means, unifies
many existing implementations of k-means obtained with a rich collection of particular divergences
that belong to the large family of αβ-divergences. In fact, we have demonstrated that our formulas
for sided centroids coincide with other formulas previously developed for some specific cases of the
αβ-divergences, such us α-divergences, IS-divergence, and KL-divergence. Finally, the convergence of
the algorithm is theoretically assured for a wide region in the (α, β) plane. Although the boundaries of
the region of convergence depends on the ratio between the extreme values of the data, in practice, the
algorithm seems to work properly outside of that theoretical region.

One of the important and still-open problems is how to tune the parameters (α, β) depending
on the distribution of the available dataset and noise or outliers. Our experiments with synthetic
datasets have allowed us to verify that the optimal values of the parameters α and β are related to the
distribution of the data to be clustered. With this relationship, we can restrict the search range of the α

and β values to some αβ-divergences close to other well-known divergences, such us KL-divergence or
α-divergences. The derivation of a precise formula for the choice of the parameters α and β is beyond
the scope of this work.

Finally, it would be very interesting to study the relationship between the proposed αβ-k-means
algorithm and the multiplicative NMF algorithm based on the αβ-divergence developed in [14].
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Appendix A

In this appendix, we prove the formulated theorem. Without loss of generality, we consider the
computation of the right-sided centroid as the minimizer of the following optimization task

mR∗
h,DAB

(α, β) = arg min
mh

(
∑

xi∈ch

∑
t

dα,β
AB (xit, mht)

)
. (A1)

We obtain the solution taking the gradient with respect to the second argument mht, removing all
terms independent of mht, and setting it to zero

∂

∂mht

(
∑

xi∈ch

∑
t

dα,β
AB (xit, mht)

)
= ∑

xi∈ch

∂ ∑
t

dα,β
AB (xit, mht)

∂mht

= ∑
xi∈ch

∂dα,β
AB (xit, mht)

∂mht
= 0. (A2)

For the case of α, β, α + β 6= 0, the partial derivative is given by

∑
xi∈ch

∂dα,β
AB (xit, mht)

∂mht
= ∑

xi∈ch

∂

∂mht

(
− 1

αβ

(
xα

itm
β
ht −

α

α + β
xα+β

it − β

α + β
mα+β

ht

))
= − 1

αβ ∑
xi∈ch

(
βxα

itm
(β−1)
ht − βm(α+β−1)

ht

)
= ∑

xi∈ch

m(β−1)
ht

(
mα

ht − xα
it

α

)
. (A3)

By setting the derivative in Equation (A3) to zero and considering the non-negative character of
xit and mht, we obtain

∑
xi∈ch

(mα
ht − xα

it) = 0 → mα
ht =

1
|ch| ∑

xi∈ch

xα
it

→ mht = |ch|−
1
α

(
∑

xi∈ch

xα
it

) 1
α

, ∀t. (A4)
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Analogously, for α 6= 0, β = 0, the partial derivative becomes

∑
xi∈ch

∂dα,β
AB (xit, mht)

∂mht
= ∑

xi∈ch

∂

∂mht

(
1
α2

(
xα

it ln
xα

it
mα

ht
− xα

it + mα
ht

))

=
1
α2 ∑

xi∈ch

(
−αxα

it
m(α−1)

ht
mα

ht
+ αm(α−1)

ht

)

= ∑
xi∈ch

m(α−1)
ht

(
1− xα

itm
−α
ht

α

)
= 0. (A5)

In this case, the solution is achieved as

∑
xi∈ch

(
1− xα

itm
−α
ht
)
= 0 → mα

ht =
1
|ch| ∑

xi∈ch

xα
it

→ mht = |ch|−
1
α

(
∑

xi∈ch

xα
it

) 1
α

, ∀t. (A6)

Similarly, for α = −β 6= 0, the partial derivative takes the following form

∑
xi∈ch

∂dα,β
AB (xit, mht)

∂mht
= ∑

xi∈ch

∂

∂mht

(
1
α2

(
ln

mα
ht

xα
it

+

(
mα

ht
xα

it

)−1

− 1

))

=
1
α2 ∑

xi∈ch

(
αm(α−1)

ht
mα

ht
− αx(−α)

it m(−α−1)
ht

)

= ∑
xi∈ch

m(−1)
ht

(
1− xα

itm
−α
ht

α

)
= 0 (A7)

which solution takes de same form of Equation (A6).
For α = 0, β 6= 0

∑
xi∈ch

∂dα,β
AB (xit, mht)

∂mht
= ∑

xi∈ch

∂

∂mht

(
1
β2

(
mβ

ht ln
mβ

ht

xβ
it

−mβ
mt + xβ

it

))

=
1
β2 ∑

xi∈ch

(
βm(β−1)

mt ln
mβ

ht

xβ
it

+ βm(β−1)
mt − βm(β−1)

mt

)

= ∑
xi∈ch

m(β−1)
ht

(
ln mβ

ht − ln xβ
it

β

)
= 0. (A8)

In this case, the solution is given by

∑
xi∈ch

(
ln mβ

ht − ln xβ
it

β

)
= ∑

xi∈ch

(ln mht − ln xit) = 0

→ ln m|ch |
ht = ∑

xi∈ch

ln xit = ln ∏
xi∈ch

xit

→ mht = ∏
xi∈ch

x
1
|ch |
it , ∀t. (A9)
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Finally, for α = β = 0, the partial derivative becomes

∑
xi∈ch

∂dα,β
AB (xit, mht)

∂mht
= ∑

xi∈ch

(
1
2
(ln xit − ln mht)

2
)

=
1
2 ∑

xi∈ch

(
2 ln mht

mht
− 2 ln xit

mht

)
= ∑

xi∈ch

m−1
ht (ln mht − ln xit) = 0 (A10)

and we get the same solution as in Equation (A9).
After combining the cases in a single expression, the above actualization rules for computing the

right-sided centroid become

mR∗
h,DAB

(α, β) =


|ch|−

1
α

(
∑

xi∈ch

xα
i

) 1
α

for α 6= 0

∏
xi∈ch

(xi)
1
|ch | for α = 0.

(A11)

Using Lemma 1, we can directly obtain the formula for the left-sided centroid

mL∗
h,DAB

(α, β) =


|ch|
− 1

β

(
∑

xi∈ch

xβ
i

) 1
β

for β 6= 0

∏
xi∈ch

(xi)
1
|ch | for β = 0.

(A12)
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