
Fast Algorithms for Consistency-Based Diagnosis of Firewall Rule Sets

S. Pozo, R. Ceballos, R. M. Gasca
Department of Computer Languages and Systems
ETS Ingeniería Informática, University of Seville
Avda. Reina Mercedes S/N, 41012 Sevilla, Spain

sergiopozo@us.es {ceballos,gasca}@lsi.us.es
Tel:+34 954559897 Fax: +34 954557139

http://www..lsi.us.es/~quivir

Abstract

Firewalls provide the first line of defence of nearly
all networked institutions today. However, Firewall
ACL management suffer some problems that need to be
addressed in order to be effective. The most studied
one is rule set consistency. There is an inconsistency if
different actions can be taken on the same traffic,
depending on the ordering of the rules. In this paper a
new algorithm to diagnose inconsistencies in firewall
rule sets is presented. Although many algorithms have
been proposed to address this problem, the presented
one is a big improvement over them, due to its low
algorithmic and memory complexity, even in worst
case. In addition, there is no need to pre-process in
any way the rule set previous to the application of the
algorithms. We also present experimental results with
real rule sets that validate our proposal.
Keywords: diagnosis, consistency, conflict, firewall,
acl, rule set

1. Introduction

A firewall is a network element that controls the
traversal of packets across different network segments
[1, 2], thus it is a mechanism to enforce an Access
Control Policy, represented as an Access Control List
(ACL). An ACL is in general a list of linearly ordered
(total order) condition/action rules. A rule is defined as
follows (Equation 1):

{ } { },1 , :i i ii i n R condition action∀ ≤ ≤ ⇒
Equation 1

where i is the position of the rule in the ACL (or its
priority) and n is the position of the last rule. ACL can
be forward or backward checked, but in firewalls the
most common method is forward checking. The

condition part of the rule is a conjunctive set

1 2 ... kS S S∧ ∧ ∧ of condition attributes or selectors,
where k is the number of selectors. The condition set is
typically composed of five elements, which correspond
to five fields of a packet header [3]: Source IP,
Destination IP, Source port, Destination port, Protocol.
In firewalls, the process of matching TCP/IP packets
against rules is called filtering. A rule matches a packet
when the values of each field of the header of a packet
are subsets or equal of the values of its corresponding
rule selector. Firewalls implement ACL using its own
low-level language, forming which is commonly
denominated a rule set.

The action part of the rule represents the action that
should be taken for a matching packet. In firewalls,
two actions are possible: accept or deny a packet. An
example of a rule set which has been taken from [4] is
presented in Table 1.

Although deployment of firewalls is an important
step in the course of securing networks, complexity of
designing and maintaining firewall rule sets might limit
the effectiveness of firewall security [7]. Firewalls
have to face many problems in modern networks. One
of the most important ones is rule set consistency. As
can be seen from the example in Table 1, selectors of
rules can overlap (for example, the protocol selector),
and can even be rules that are totally equal to others.
There is an inconsistency when two or more rules with
different actions overlap. Since a packet can be
matched with any of the overlapping rules, firewalls
use a positional conflict resolution technique, taking
the action of the first matching rule. Rule sets are
usually composed of a number of rules ranging from
tens to five thousand [3]. Algorithms and tools to
isolate, identify and characterize inconsistencies must
be provided in order to analyze firewall rule sets.

Although deployment of firewalls is an important
step in the course of securing networks, complexity of
designing and maintaining firewall rule sets might limit
the effectiveness of firewall security [7]. Firewalls
have to face many problems in modern networks. One
of the most important ones is rule set consistency. As
can be seen from the example in Table 1, selectors of
rules can overlap (for example, the protocol selector),
and can even be rules that are totally equal to others.
There is an inconsistency when two or more rules with
different actions overlap. Since a packet can be
matched with any of the overlapping rules, firewalls
use a positional conflict resolution technique, taking
the action of the first matching rule. Rule sets are
usually composed of a number of rules ranging from
tens to five thousand [3]. Algorithms and tools to
isolate, identify and characterize inconsistencies must
be provided in order to analyze firewall rule sets.

In this paper we define what is an inconsistency

between an arbitrary number of rules in a firewall rule
set. We propose to divide consistency management in
two sequential phases: isolation and identification
(diagnosis) of inconsistent rules, and characterization
of the diagnosis. Finally, we propose a worst case
O(kn2) time complexity process with the number of
selectors (k) and rules (n), to automatically diagnose
the inconsistent rules in a rule set, without doing rule
decorrelation or any other pre-process, and give two
algorithms that implement the diagnosis process. The
characterization part has been left out as a topic for
future research. A Java tool is available upon request.

We consider this work a significant advance in
consistency diagnosis in firewall rule sets, because to
the best of our knowledge, this is the first time a
process with such low algorithmic complexity has been
proposed to automatically address this problem.

The paper is structured as follows. In section 2 we
review related works comparing them to our proposal.

In section 3, we analyze the internals of the
consistency problem in firewall rule sets. In section 4
we propose the consistency-based diagnosis process,
which is based in two algorithms. Finally, we give
some concluding remarks in section 5.

2. Related works

The closest works to ours come from the firewall
diagnosis field. One of the most important advances
has been made by Al-Saher et al. [4, 12]. In their
works, authors define an inconsistency model for
firewall rule sets, and they provide an order-dependent
characterization of different kinds of inconsistencies by
pairs of rules. They give a combined algorithm to
diagnose and characterize inconsistencies between
every pair of rules. However, their algorithms do not
diagnose and characterize inconsistencies with a
combination of more than two rules. In addition, they
use rule decorrelation techniques as a pre-process in
order to decompose the rule set in a new one with non
overlapping rules, which is then used as input to their
algorithms. Since the proposed rule decorrelation
algorithms [8] have worst case exponential time and
space complexity, the worst case complexity of their
process is also exponential.

A modification to their algorithms was provided by
Cuppens et al. [13, 5], where they integrate the
decorrelation and consistency diagnosis and
characterization algorithms of Al-Shaer, and generate a
decorrelated and consistent rule set. Thus, due to the
use of the same decorrelation techniques, this proposal
has the same complexity problem of Al-Saher works.
Cuppens et al. provide a characterization technique
with multiple rules, instead of a two-by-two
characterization technique of Al-Shaer. The output of
their process is the inconsistency characterization (but
not the rules that cause the inconsistency), and a
consistent rule set. The consistent rule set is obtained
by automatically removing the inconsistent rules

Priority/ID Protocol Source IP Src Port Destination IP Dst Port Action
R1 tcp 140.192.37.20 any *.*.*.* 80 deny
R2 tcp 140.192.37.* any *.*.*.* 80 accept
R3 tcp *.*.*.* any 161.120.33.40 80 accept
R4 tcp 140.192.37.* any 161.120.33.40 80 deny
R5 tcp 140.192.37.30 any *.*.*.* 21 deny
R6 tcp 140.192.37.* any *.*.*.* 21 accept
R7 tcp 140.192.37.* any 161.120.33.40 21 accept
R8 tcp *.*.*.* any *.*.*.* any deny
R9 udp 140.192.37.* any 161.120.33.40 53 accept
R10 udp *.*.*.* any 161.120.33.40 53 accept
R11 udp 140.192.38.* any 161.120.35.* any accept
R12 udp *.*.*.* any *.*.*.* any deny

Table 1. Example of a firewall rule set

without asking the user, which could give a very
dangerous result, since the resulting rule set could not
conform to the initial user intentions [11]. Finally, it is
difficult to compare their algorithms with Al-Shaer
ones, since Al-Shaer performance analysis does not
include the time required for decorrelation.

Others have tried to address the consistency
problem using OBDDs, as is the case of Fireman [9],
but since complexity of OBDDs depends on the
ordering of its nodes, and the optimal ordering of
nodes is a NP-Complete problem [6], they also suffer
of the same complexity problem of the other reviewed
works.

The main difference of these works with ours is that

we propose an order-independent consistency-based
diagnosis process. The problem analysis enabled us to
dissociate the consistency diagnosis phase from the
conflict characterization one, obtaining a process that
is significantly faster and require less memory than
other existing proposals. Our algorithms have
polynomial worst case time complexity in O(kn2) with
the number of rules in the rule set (n) and with the
number of selectors (k) in the decision part of the rule,
and linear space complexity with the number of
inconsistent rules.

In addition, our process does not need to decorrelate
the rule set as a previous process to the analysis, and
does not use decorrelation at all in any step of the
process: it treats rules as they are provided in the rule
set. The use of decorrelation is the main reason of the
higher complexity of the algorithms given by Al-Shaer
[4] and Cuppens [13].

 However, our process does not cope with
redundancies, because redundancy is not a consistency
problem (it does not change the semantics of the rule
set). We do neither cope with conflict characterization,
and have left this topic for future research. The reason
is that it needs a deep analysis, since our approach is
completely different from the taken by other authors,
that due to space constraints, it is not possible to
include in this paper. Diagnosis characterization has
been left out as a topic for future research.

3. Analysis of the consistency problem

Before the definition of inconsistency is given, it is
important to review the inconsistencies characterized
in the bibliography. A complete characterization has
been given by Al-Shaer et al. [12] that include
shadowing, generalization, correlation and redundancy
(all of them except correlation are order-dependent).
Recall that redundancy will not be considered in this
work.

All research works in this area follow their
definitions in one or another way.

All of these inconsistencies except redundancy are
graphically represented in Fig. 1. For the sake of
simplicity and due to space constraints, only one
example with two-rule inconsistencies with one
selector has been represented. The extension of this
example to n rules with 5 selectors each can easily be
done with a 5-face hypercube or penteract [14].

Attending to the characterization, two rules (Rx, Ry)
are correlated if they have a relation between all of its
selectors, and have different actions. Fig. 1(c)
represents a correlation inconsistency between two
rules with one selector each. As the figure shows, the
relation between the rules is not subset, nor superset,
nor equal. Fig. 1(a) represents a shadowing
inconsistency between two rules. The relation is
equality or subset of the shadowed rule (Ry) respect to
the general rule (Rx). Fig. 1(b) represents a
generalization inconsistency between two rules
(inverse of shadowing respect to the priority). The
relation is superset of the general rule respect to the
other one.

Figure 1. Graphical representation of three

types of inconsistencies in rule sets

In a closer look at shadowing and generalization

inconsistencies in Fig. 1, it can be seen that, in reality,
these two inconsistencies are the same one, and the
only thing that differentiates them is the priority of the
rules. Thus, if priority is ignored, these two
inconsistencies are special cases of a correlation. That
is, shadowing can be redefined as a correlation where
all selectors of one rule (the shadowed one) are subsets
or equal of the general rule. As generalization is the
inverse with respect to the priority of shadowing, a
generalization inconsistency can also be redefined as a

correlation where of all selectors of a rule (the general
one) are supersets of the other rule. So, the correlation
inconsistency can be redefined as the superset of all
inconsistencies, representing the most general case. For
that reasons, we propose to have only one o priority-
independent inconsistency definition in order to
simplify the diagnosis process. This approach
postpones characterization to a later step in order to
simplify the diagnosis process.

Definition 1. Inconsistency. Two rules are

inconsistent if the intersection of all of its selectors is
not empty, and they have different actions,
independently of the priority they have. The
inconsistency between two rules expresses the
possibility of a non desirable effect in the semantics of
the rule set. The semantics of the rule set could change
if an inconsistent rule is removed.

This definition can be extended to more than two

rules. Attending to Definition 1, all cases represented
in Fig. 1 are of the same kind, and are called
inconsistencies without any particular characterization.
Priority is only required if inconsistencies are going to
be characterized, which is not the focus of this paper.

If a rule set of n rules is consistent, the addition of a
new rule Rz cannot cause an inconsistency between any
of the consistent rules, but it can cause an
inconsistency with itself and with one to n of the
consistent ones. In the same manner, if a new rule is
added to an inconsistent rule set, this new rule cannot
create an existing inconsistency between existent rules,
nor eliminate it. It can only create new and
independent inconsistencies, or be an independent
(consistent) rule.

Also, because of the symmetry introduced in
Definition 1 (inconsistencies are diagnosed with
independence of the priorities), once a combination of
two rules is tested in the diagnosis process, the inverse
must not. That is, if Rx is inconsistent with Ry, then Ry
is also inconsistent with Rx. Thus, inconsistencies are
commutative.

As this analysis is extensible to an arbitrary number
of rules, inconsistency definition can isolate and
identify all possible inconsistencies between any
number of rules, since any problem can be decomposed
in two by two relations.

These properties introduce a huge reduction in
time complexity (of several orders of magnitude) to the
diagnosis process compared to other approaches taken
in the bibliography.

4. Consistency-based diagnosis of firewall
rule sets

The diagnosis process explained in this section is
divided in two steps. In the first step, all
inconsistencies are isolated between every pair of rules
in an order-independent process. In the second step, the
minimum number of conflicting rules is identified,
completing the consistency-based diagnosis process.
The full process, as will be showed, requires no
modification to the original rule set, or any pre-process
or rule decorrelation. The algorithms run in worst-case
quadratic time and have lineal space complexity with
the number of rules in the rule set.

4.1 Step 1. Isolation of inconsistent pairs of
rules

The first step of the process isolates the potentially
conflicting rules of the complete rule set and forms a
graph representing their relations. The algorithm
presented in Figure 2(a) receives a firewall rule set and
for each rule, it checks if there is an inconsistency with
any of the previous ones in the rule set, but not with the
following ones. The reason to only check if there is an
inconsistency with the previous rules and no with the
following ones is due to the commutative property of
inconsistency: in later iterations, rules that go after the
considered one are going to be tested against the
preceding ones.

Each time the algorithm finds an inconsistency
between a pair of rules, the two rules are added as
vertices to a graph, with a non directed edge between
them. The algorithm returns a graph called Potential
Conflict Graph, or PCG. All possibilities have been
checked, as the inconsistency definition recognizes all
possible cases that generate inconsistencies, thus the
algorithm is complete.

Func buildPCG(in List: ruleset; out Graph: pcg)
Alg
 for each i=1..ruleset.size() {
 for each j=i+1..ruleset.size() {
 Vertex origin=uleset.get(i)
 Vertex destination=ruleset.get(j)
 if inconsistency(origin, destination) {
 // if vertices or edge are in the graph, nothing is done
 pcg.addVertex(origin)
 pcg.addVertex(destination)
 pcg.addEdge(origin, destination)
 }
 }
 }
End Alg

Func inconsistency(in Rule: Rx, Ry; out Boolean: b)
Alg
 b = false
 if (Rx.action != Ry.action) {
 b = true
 for each i=1..Rx.selectors.size()
 b = b AND intersection(Rx.selector.get(i), Ry.selector.get(i))
 }
End Alg

Figure 2(a) Algorithm 1. Inconsistency
isolation

The vertices of the PCG represent the rules that are

inconsistent with other ones, and the undirected edges
their relations. The PCG can be characterized in a
particular kind of graph: its edges are undirected
because of the commutative property of inconsistency;
it can have cycles depending of the relations between
the inconsistent rules (if they are correlated, it would
be cycles); and finally, it can be unconnected if there
are inconsistent rules which do not have a relation with
other inconsistent rules. Fig. 3 represents the resulting
PCG obtained from the application of Algorithm 1 to
the example of Table 1.

Figure 3. Algorithm 1 result: Potential
Conflicts Graph, PCG

4.2. Step 2. Identification of the Set of

Conflicting Rules

The second and last step of the process identifies the
minimal set of rules that generate inconsistencies with
another rule, or the diagnosis set.

Algorithm 2 (Fig. 2(b)) takes the PCG as input. The
algorithm takes iteratively the vertex with the greatest
number of adjacencies, that is, the vertex with the
greatest number of inconsistencies. If there are vertices
with the same number of adjacencies, the relative
ordering between them does not care. Then, this vertex
and its edges are removed from the PCG, generating an
independent cluster of inconsistent rules (ICIR) as a
tree with the removed vertex (the conflicting rule of the
cluster) as its root, and the inconsistent rules as its
leafs. If vertices with no edges are left in the PCG, then
these vertices are removed, since they are consistent by
definition (they do not have no more relations with
other rules of the PCG). Note that, as inconsistencies
have been decomposed in pair wise relations, the tree
is always formed by two levels.

Figure 2(b) Algorithm 2. Determination of
the Set of Conflicting Rules

A graphical representation of a partial trace of

Algorithm 2 over the previous PCG is presented in Fig.
4. At the first iteration, R8 was selected because it had
four inconsistencies (the greatest number of adjacent
vertices). It had been removed and formed the first
ICIR tree, with R8 as root, thus R8 is a conflicting rule.
In the second iteration, R12 was selected because it has
three inconsistencies (it is the vertex with the biggest
number of adjacent vertices). Then it was removed and
the second ICIR is formed. Vertices R9, R10 and R11
were removed from the PCG because they had no
adjacent vertices. In the third iteration, there is a
possibility of selecting R5, R1, R2, R3 and R4 as the
next vertex. The selection of one or other is arbitrary.
In this example, the algorithm selected R5, removed it
from the PCG with all its edges and formed the third
ICIR. At the end of this iteration the PCG was only

composed of a cycle of four vertices: R1, R2, R3, and
R4. The algorithm selected to remove R1 in the fourth
iteration and R4 in the fifth and last iteration, removing
the vertices and edges, and forming ICIR 4 and ICIR 5
respectively. Since no more vertices are left in the
PCG, the algorithm finished with a Set of Conflicting
Rules (SCR) of cardinality five, containing the rules
SCR={R8, R12, R5, R1, R4}. These rules are ICIR
roots, or the minimal number of rules that cause an
inconsistency with others.

Since the ICIR are small enough to be analyzed by a
human even in large rule sets, and are independent
clusters of inconsistencies, there is no real need to
characterize them. However, using existing taxonomies
[12], it is possible to automatically characterize each
inconsistency. For example, in ICIR5={root=R5, R7,
R6}, R6 is a generalization of R5, and R7 is correlated
with R5. As has been noted before, characterization is
a topic for future research.

4.3. Algorithmic complexity. Empirical

results
Time complexity of Algorithm 1 is linear with the

number of selectors of rules (inconsistency() method),
k, and quadratic with the number of rules of the rule set
(iteration), n. Therefore, worst case time complexity is
in O(k(n2-n))=O(kn2). In a typical rule set with 5
selectors per rule, k=5.

Worst case time complexity of Algorithm 2 is
O(h*n) with the number of conflicting rules or ICIRs
(iteration), h, and with the number of vertices in the
graph (minimum calculation), v (in worst case, v=n)

Space complexity of Algorithm 1 is linear with the
number of rules in the rule set. In the presented
example, there are 12 inconsistencies (Fig. 6), forming
a graph with 12 vertices and 13 edges (Fig. 7). Note
that the number of edges is the same that the number of
inconsistent rules.

Figure 4. Trace of Algorithm 2 applied to Fig. 3 PCG

Algorithm 2 also needs some space to represent all
ICIR. The number of ICIR increase linearly with the
number of inconsistent rules. But note that, as the
algorithm is creating the ICIR, the corresponding
vertices and edges are removed from the PCG, so only
small amount of additional temporal space is necessary
over the space needed for the PCG, in order to
represent the duplicate vertices that are left in the PCG
because they already have inconsistencies with other
vertices. For example, in the iteration one of Fig. 8,
ICIR 1 has the vertices {R2, R3, R6, R7}, that will be
removed in later iterations.

Therefore the combined worst case complexity of
the full process is the maximum between them, O(kn2)
time complexity and O(n) space complexity. This
complexity analysis show that presented solution is, to
the best of our knowledge, the most efficient solution
to this problem in time and space, even for worst case.

Comparing the results of the presented algorithms
with Al-Shaer et al. ones [4], the presented algorithms
diagnose one more inconsistency, which is the one
between rules R11 and R12.

Applying the algorithms to the example presented
by Cuppens et al. [13] the generated ICIRs are
ICIR1={root=R4, R3, R2, R5} and ICIR2={root=R1,
R2, R5}. Again, the presented algorithms can diagnose
more inconsistencies than the ones proposed by them.

In order to empirically compare the efficiency of the
proposed algorithms, we have developed a preliminary
characterization step based on a work in progress,
applying the characterization described by Al-Shaer et
al. [4], but with the improvement of being able to
characterize inconsistencies caused by the union of
rules. This step is not described in this paper due to
space constraints. However, to make more realistic the
comparison, we have measured the time of the
proposed algorithms plus the characterization step.
Take into account that the characterization algorithms
are a polynomial approximation to the optimum. Also
note that the full process time is dominated by the
Algorithm 1 complexity.

As real rule sets have been used, Fig. 5 and Table 2
represent an average case. Tests have been run with
and without wildcard rules (WR, deny all and allow all
rules), in order to know the impact these rules have in
the complexity of the algorithms. Results show that
time is under 350ms until rule set size reaches 900
(used in Fireman [9]). For rule sets about the sizes used
by Al-Shaer and Cuppens examples, that is between
zero and 80 rules, time is between zero (zero rules) and
0,6 milliseconds (80 rules), and between zero and
0,35ms if wildcard rules are removed. Experiments
were performed on a monothreaded Java
implementation with JVM 1.6.0_02, and on a machine
with Intel Core Duo T2400 and 1Gb RAM DDR667.

Empirical results show that the presented proposal
is, to the best of our knowledge, orders of magnitude
faster than other published ones, and requires less
memory.

Size TOTAL
w/ WR (ms)

#Removed
WR

TOTAL
w/o WR (ms)

50 0,37 4 0,26
144 3,57 4 2,55
238 13,47 10 7,83
450 51,75 10 24,43
900 318,28 11 89,64
Table 2. Performance evaluation

Figure 5. Performance evaluation

5. Conclusions and future works

In this paper, we have analyzed the consistency
diagnosis problem in firewall rule sets, and decided to
divide diagnosis and characterization in two different
steps. We explained that redundancy is not an
inconsistency, because it does not change the
semantics of the rule sets, and focused our work on the
relations that can change the semantics of the rule set.
We have proposed an abstract definition of
inconsistency that covers all cases characterized in the
bibliography. Based on this definition, we revisited the
consistency problem in firewall rule sets and showed
that all relations between more than two rules can be
decomposed in simpler pair wise relations, without
decorrelating the rule set.

In order to validate our results, we have designed
two algorithms that should be applied sequentially. The
first one creates a graph that represents all potential
inconsistencies between rules. This graph responds to
the inconsistency isolation process. In the second one
the graph is used to construct independent clusters of
inconsistent rules, and represent each cluster as a two
level tree. The root of the tree was defined as a
conflicting rule of the rule set. The set formed by the
roots of all ICIR form the minimal set of conflicting
rules, diagnosis set, or the set rules that can be
removed from the rule set in order to get a consistent

one. Isolation and identification conforms the full
consistency-based diagnosis process.

We compared our results with other works in the
bibliography, and showed that our algorithms can
diagnose more cases. A time and space complexity
analysis was done and showed that the full process has
worst case O(kn2) time complexity with the number of
rules in the rule set (n) and with the number of
selectors in the condition part of the rule (k). Space
complexity is linear with the number of rules in the
rule set. A basic performance evaluation was also
presented. To the best of our knowledge, this is the
most efficient solution in time and space to address this
problem.

However, our approach has some limitations that
give us opportunities for improvement in future works.
The most important one is that our proposal cannot
diagnose redundancies, although they are not
considered inconsistencies in this paper. Proposals
made by other researchers, although not diagnosing all
inconsistencies and having worst time and space
complexity, can diagnose redundant rules.

Although the process presented in this paper can
diagnose inconsistencies, it cannot characterize them.
This is another main topic for future research.

Acknowledgements

This work has been funded by the Spanish
Ministerio de Educación y Ciencia under grant
DPI2006-15476-C02-01. Many thanks to Pablo Neira
Ayuso for providing us with real rule sets for testing.

References
[1] D. Chapman and E. Zwicky. Building Internet Firewalls,
Second Edition, O’Reilly & Associates, Inc., 2000.

[2] W. Cheswick and S. Belovin. Firewalls and Internet
Security, Second Edition, Addison-Wesley, 2003.

[3] David E. Taylor. Survey and taxonomy of packet
classification techniques. ACM Computing Surveys, Vol. 37,
No. 3, 2005. Pages 238 – 275.

[4] E. Al-Shaer, Hazem H. Hamed. Modeling and
Management of Firewall Policies". IEEE eTransactions on
Network and Service Management (eTNSM) Vol.1, No.1,
2004.

[5] J. García-Alfaro, N. Boulahia-Cuppens, F. Cuppens,
Complete Analysis of Configuration Rules to Guarantee
Reliable Network Security Policies, Springer-Verlag
International Journal of Information Security (Online) (2007)
1615-5262.

[6] B. Bollig, I. Wegener. “Improving the Variable Ordering
of OBDDs is NP-Complete”. IEEE Transactions on
Computers, Vol.45 No.9, September 1996.

[7] A. Wool. A quantitative study of firewall configuration
errors. IEEE Computer, 37(6):62-67, 2004.

[8] S. Luis, M. Condell. "Security policy protocol." IETF
Internet Draft IPSPSPP-01, 2002.

[9] L. Yuan, J. Mai, Z. Su, H. Chen, C. Chuah, P. Mohapatra.
FIREMAN: A Toolkit for FIREwall Modelling and
ANalysis. IEEE Symposium on Security and Privacy
(S&P’06). Oakland, CA, USA. May 2006.

[10] A. Mayer, A. Wool, E. Ziskind. Offline Firewall
Analysis. International Journal of Information Security, Vol.
5, No. 3, Pages 125-144. Springer-Verlag, 2005.

[11] S. Pozo, R. Ceballos, R. M. Gasca. "CSP-based Firewall
Rule Set Diagnosis using Security Policies." International
Symposium on Frontiers in Availability, Reliability and
Security (FARES), in International Conference on
Availability, Reliability and Security (ARES), Vienna,
Austria. IEEE Computer Society Press, April 2007.

[12] H. Hamed, E. Al-Shaer "Taxonomy of Conflicts in
Network Security Policies." IEEE Communications
Magazine Vol.44, No.3, 2006.

[13] F. Cuppens, N. Cuppens-Boulahia, J. García-Alfaro.
"Detection and Removal of Firewall Misconfiguration."
IASTED International Conference on Communication,
Network and Information Security (CCNIS), Phoenix, AZ,
USA. ACTA Press, 2005. 0-88986-537-X

[14] Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973),
Dover edition, ISBN 0-486-61480-8 p.296, Table I (iii):
Regular Polytopes, three regular polytopes in n-dimensions
(n>=5)

