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Abstract 
 

Firewalls provide the first line of defence of nearly 
all networked institutions today. However, Firewall 
ACL management suffer some problems that need to be 
addressed in order to be effective. The most studied 
one is rule set consistency. There is an inconsistency if 
different actions can be taken on the same traffic, 
depending on the ordering of the rules. In this paper a 
new algorithm to diagnose inconsistencies in firewall 
rule sets is presented. Although many algorithms have 
been proposed to address this problem, the presented 
one is a big improvement over them, due to its low 
algorithmic and memory complexity, even in worst 
case. In addition, there is no need to pre-process in 
any way the rule set previous to the application of the 
algorithms. We also present experimental results with 
real rule sets that validate our proposal. 
Keywords: diagnosis, consistency, conflict, firewall, 
acl, rule set 
 
1. Introduction 

A firewall is a network element that controls the 
traversal of packets across different network segments 
[1, 2], thus it is a mechanism to enforce an Access 
Control Policy, represented as an Access Control List 
(ACL). An ACL is in general a list of linearly ordered 
(total order) condition/action rules. A rule is defined as 
follows (Equation 1): 
 

{ } { },1 , :i i ii i n R condition action∀ ≤ ≤ ⇒  
Equation 1 

 
where i is the position of the rule in the ACL (or its 
priority) and n is the position of the last rule. ACL can 
be forward or backward checked, but in firewalls the 
most common method is forward checking. The 

condition part of the rule is a conjunctive set 

1 2 ... kS S S∧ ∧ ∧  of condition attributes or selectors, 
where k is the number of selectors. The condition set is 
typically composed of five elements, which correspond 
to five fields of a packet header [3]: Source IP, 
Destination IP, Source port, Destination port, Protocol. 
In firewalls, the process of matching TCP/IP packets 
against rules is called filtering. A rule matches a packet 
when the values of each field of the header of a packet 
are subsets or equal of the values of its corresponding 
rule selector. Firewalls implement ACL using its own 
low-level language, forming which is commonly 
denominated a rule set. 

The action part of the rule represents the action that 
should be taken for a matching packet. In firewalls, 
two actions are possible: accept or deny a packet. An 
example of a rule set which has been taken from [4] is 
presented in Table 1. 

Although deployment of firewalls is an important 
step in the course of securing networks, complexity of 
designing and maintaining firewall rule sets might limit 
the effectiveness of firewall security [7]. Firewalls 
have to face many problems in modern networks. One 
of the most important ones is rule set consistency. As 
can be seen from the example in Table 1, selectors of 
rules can overlap (for example, the protocol selector), 
and can even be rules that are totally equal to others. 
There is an inconsistency when two or more rules with 
different actions overlap. Since a packet can be 
matched with any of the overlapping rules, firewalls 
use a positional conflict resolution technique, taking 
the action of the first matching rule. Rule sets are 
usually composed of a number of rules ranging from 
tens to five thousand [3]. Algorithms and tools to 
isolate, identify and characterize inconsistencies must 
be provided in order to analyze firewall rule sets. 
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In this paper we define what is an inconsistency 

between an arbitrary number of rules in a firewall rule 
set. We propose to divide consistency management in 
two sequential phases: isolation and identification 
(diagnosis) of inconsistent rules, and characterization 
of the diagnosis. Finally, we propose a worst case 
O(kn2) time complexity process with the number of 
selectors (k) and rules (n), to automatically diagnose 
the inconsistent rules in a rule set, without doing rule 
decorrelation or any other pre-process, and give two 
algorithms that implement the diagnosis process. The 
characterization part has been left out as a topic for 
future research. A Java tool is available upon request. 

We consider this work a significant advance in 
consistency diagnosis in firewall rule sets, because to 
the best of our knowledge, this is the first time a 
process with such low algorithmic complexity has been 
proposed to automatically address this problem. 

The paper is structured as follows. In section 2 we 
review related works comparing them to our proposal. 

In section 3, we analyze the internals of the 
consistency problem in firewall rule sets. In section 4 
we propose the consistency-based diagnosis process, 
which is based in two algorithms. Finally, we give 
some concluding remarks in section 5. 

 
2. Related works 

The closest works to ours come from the firewall 
diagnosis field. One of the most important advances 
has been made by Al-Saher et al. [4, 12]. In their 
works, authors define an inconsistency model for 
firewall rule sets, and they provide an order-dependent 
characterization of different kinds of inconsistencies by 
pairs of rules. They give a combined algorithm to 
diagnose and characterize inconsistencies between 
every pair of rules. However, their algorithms do not 
diagnose and characterize inconsistencies with a 
combination of more than two rules. In addition, they 
use rule decorrelation techniques as a pre-process in 
order to decompose the rule set in a new one with non 
overlapping rules, which is then used as input to their 
algorithms. Since the proposed rule decorrelation 
algorithms [8] have worst case exponential time and 
space complexity, the worst case complexity of their 
process is also exponential. 

A modification to their algorithms was provided by 
Cuppens et al. [13, 5], where they integrate the 
decorrelation and consistency diagnosis and 
characterization algorithms of Al-Shaer, and generate a 
decorrelated and consistent rule set. Thus, due to the 
use of the same decorrelation techniques, this proposal 
has the same complexity problem of Al-Saher works. 
Cuppens et al. provide a characterization technique 
with multiple rules, instead of a two-by-two 
characterization technique of Al-Shaer. The output of 
their process is the inconsistency characterization (but 
not the rules that cause the inconsistency), and a 
consistent rule set. The consistent rule set is obtained 
by automatically removing the inconsistent rules 

Priority/ID Protocol Source IP Src Port Destination IP Dst Port Action 
R1 tcp 140.192.37.20 any *.*.*.* 80 deny 
R2 tcp 140.192.37.* any *.*.*.* 80 accept 
R3 tcp *.*.*.* any 161.120.33.40 80 accept 
R4 tcp 140.192.37.* any 161.120.33.40 80 deny 
R5 tcp 140.192.37.30 any *.*.*.* 21 deny 
R6 tcp 140.192.37.* any *.*.*.* 21 accept 
R7 tcp 140.192.37.* any 161.120.33.40 21 accept 
R8 tcp *.*.*.* any *.*.*.* any deny 
R9 udp 140.192.37.* any 161.120.33.40 53 accept 
R10 udp *.*.*.* any 161.120.33.40 53 accept 
R11 udp 140.192.38.* any 161.120.35.* any accept 
R12 udp *.*.*.* any *.*.*.* any deny 

 
Table 1. Example of a firewall rule set 



without asking the user, which could give a very 
dangerous result, since the resulting rule set could not 
conform to the initial user intentions [11]. Finally, it is 
difficult to compare their algorithms with Al-Shaer 
ones, since Al-Shaer performance analysis does not 
include the time required for decorrelation. 

Others have tried to address the consistency 
problem using OBDDs, as is the case of Fireman [9], 
but since complexity of OBDDs depends on the 
ordering of its nodes, and the optimal ordering of 
nodes is a NP-Complete problem [6], they also suffer 
of the same complexity problem of the other reviewed 
works. 

 
The main difference of these works with ours is that 

we propose an order-independent consistency-based 
diagnosis process. The problem analysis enabled us to 
dissociate the consistency diagnosis phase from the 
conflict characterization one, obtaining a process that 
is significantly faster and require less memory than 
other existing proposals. Our algorithms have 
polynomial worst case time complexity in O(kn2) with 
the number of rules in the rule set (n) and with the 
number of selectors (k) in the decision part of the rule, 
and linear space complexity with the number of 
inconsistent rules. 

In addition, our process does not need to decorrelate 
the rule set as a previous process to the analysis, and 
does not use decorrelation at all in any step of the 
process: it treats rules as they are provided in the rule 
set. The use of decorrelation is the main reason of the 
higher complexity of the algorithms given by Al-Shaer 
[4] and Cuppens [13]. 

 However, our process does not cope with 
redundancies, because redundancy is not a consistency 
problem (it does not change the semantics of the rule 
set).  We do neither cope with conflict characterization, 
and have left this topic for future research. The reason 
is that it needs a deep analysis, since our approach is 
completely different from the taken by other authors, 
that due to space constraints, it is not possible to 
include in this paper. Diagnosis characterization has 
been left out as a topic for future research. 

 
3. Analysis of the consistency problem 

Before the definition of inconsistency is given, it is 
important to review the inconsistencies characterized 
in the bibliography. A complete characterization has 
been given by Al-Shaer et al. [12] that include 
shadowing, generalization, correlation and redundancy 
(all of them except correlation are order-dependent). 
Recall that redundancy will not be considered in this 
work. 

All research works in this area follow their 
definitions in one or another way. 

All of these inconsistencies except redundancy are 
graphically represented in Fig. 1. For the sake of 
simplicity and due to space constraints, only one 
example with two-rule inconsistencies with one 
selector has been represented. The extension of this 
example to n rules with 5 selectors each can easily be 
done with a 5-face hypercube or penteract [14]. 

Attending to the characterization, two rules (Rx, Ry) 
are correlated if they have a relation between all of its 
selectors, and have different actions. Fig. 1(c) 
represents a correlation inconsistency between two 
rules with one selector each. As the figure shows, the 
relation between the rules is not subset, nor superset, 
nor equal. Fig. 1(a) represents a shadowing 
inconsistency between two rules. The relation is 
equality or subset of the shadowed rule (Ry) respect to 
the general rule (Rx). Fig. 1(b) represents a 
generalization inconsistency between two rules 
(inverse of shadowing respect to the priority). The 
relation is superset of the general rule respect to the 
other one. 

 

 
Figure 1. Graphical representation of three 

types of inconsistencies in rule sets 
 
In a closer look at shadowing and generalization 

inconsistencies in Fig. 1, it can be seen that, in reality, 
these two inconsistencies are the same one, and the 
only thing that differentiates them is the priority of the 
rules. Thus, if priority is ignored, these two 
inconsistencies are special cases of a correlation. That 
is, shadowing can be redefined as a correlation where 
all selectors of one rule (the shadowed one) are subsets 
or equal of the general rule. As generalization is the 
inverse with respect to the priority of shadowing, a 
generalization inconsistency can also be redefined as a 



correlation where of all selectors of a rule (the general 
one) are supersets of the other rule. So, the correlation 
inconsistency can be redefined as the superset of all 
inconsistencies, representing the most general case. For 
that reasons, we propose to have only one o priority-
independent inconsistency definition in order to 
simplify the diagnosis process. This approach 
postpones characterization to a later step in order to 
simplify the diagnosis process. 

 
Definition 1. Inconsistency. Two rules are 

inconsistent if the intersection of all of its selectors is 
not empty, and they have different actions, 
independently of the priority they have. The 
inconsistency between two rules expresses the 
possibility of a non desirable effect in the semantics of 
the rule set. The semantics of the rule set could change 
if an inconsistent rule is removed. 

 
This definition can be extended to more than two 

rules. Attending to Definition 1, all cases represented 
in Fig. 1 are of the same kind, and are called 
inconsistencies without any particular characterization. 
Priority is only required if inconsistencies are going to 
be characterized, which is not the focus of this paper. 

If a rule set of n rules is consistent, the addition of a 
new rule Rz cannot cause an inconsistency between any 
of the consistent rules, but it can cause an 
inconsistency with itself and with one to n of the 
consistent ones. In the same manner, if a new rule is 
added to an inconsistent rule set, this new rule cannot 
create an existing inconsistency between existent rules, 
nor eliminate it. It can only create new and 
independent inconsistencies, or be an independent 
(consistent) rule. 

Also, because of the symmetry introduced in 
Definition 1 (inconsistencies are diagnosed with 
independence of the priorities), once a combination of 
two rules is tested in the diagnosis process, the inverse 
must not. That is, if Rx is inconsistent with Ry, then Ry 
is also inconsistent with Rx. Thus, inconsistencies are 
commutative. 

As this analysis is extensible to an arbitrary number 
of rules, inconsistency definition can isolate and 
identify all possible inconsistencies between any 
number of rules, since any problem can be decomposed 
in two by two relations. 

These properties introduce a huge reduction in 
time complexity (of several orders of magnitude) to the 
diagnosis process compared to other approaches taken 
in the bibliography. 
 

4. Consistency-based diagnosis of firewall 
rule sets 

The diagnosis process explained in this section is 
divided in two steps. In the first step, all 
inconsistencies are isolated between every pair of rules 
in an order-independent process. In the second step, the 
minimum number of conflicting rules is identified, 
completing the consistency-based diagnosis process. 
The full process, as will be showed, requires no 
modification to the original rule set, or any pre-process 
or rule decorrelation. The algorithms run in worst-case 
quadratic time and have lineal space complexity with 
the number of rules in the rule set.  
 
4.1 Step 1. Isolation of inconsistent pairs of 
rules 

The first step of the process isolates the potentially 
conflicting rules of the complete rule set and forms a 
graph representing their relations. The algorithm 
presented in Figure 2(a) receives a firewall rule set and 
for each rule, it checks if there is an inconsistency with 
any of the previous ones in the rule set, but not with the 
following ones. The reason to only check if there is an 
inconsistency with the previous rules and no with the 
following ones is due to the commutative property of 
inconsistency: in later iterations, rules that go after the 
considered one are going to be tested against the 
preceding ones.  

Each time the algorithm finds an inconsistency 
between a pair of rules, the two rules are added as 
vertices to a graph, with a non directed edge between 
them. The algorithm returns a graph called Potential 
Conflict Graph, or PCG. All possibilities have been 
checked, as the inconsistency definition recognizes all 
possible cases that generate inconsistencies, thus the 
algorithm is complete. 

 



Func buildPCG(in List: ruleset; out Graph: pcg)
Alg
    for each i=1..ruleset.size() {
        for each j=i+1..ruleset.size() {
            Vertex origin=uleset.get(i)
            Vertex destination=ruleset.get(j)
            if inconsistency(origin, destination) {
                // if vertices or edge are in the graph, nothing is done
                pcg.addVertex(origin)
                pcg.addVertex(destination)
                pcg.addEdge(origin, destination)
            }
        }
    }
End Alg

Func inconsistency(in Rule: Rx, Ry; out Boolean: b)
Alg
    b = false
    if (Rx.action != Ry.action) {
        b = true
        for each i=1..Rx.selectors.size()
            b = b AND intersection(Rx.selector.get(i), Ry.selector.get(i))
    }
End Alg  

Figure 2(a) Algorithm 1. Inconsistency 
isolation 

 
The vertices of the PCG represent the rules that are 

inconsistent with other ones, and the undirected edges 
their relations. The PCG can be characterized in a 
particular kind of graph: its edges are undirected 
because of the commutative property of inconsistency; 
it can have cycles depending of the relations between 
the inconsistent rules (if they are correlated, it would 
be cycles); and finally, it can be unconnected if there 
are inconsistent rules which do not have a relation with 
other inconsistent rules. Fig. 3 represents the resulting 
PCG obtained from the application of Algorithm 1 to 
the example of Table 1. 

 

 
 

Figure 3. Algorithm 1 result: Potential 
Conflicts Graph, PCG 

 
4.2. Step 2. Identification of the Set of 

Conflicting Rules 

The second and last step of the process identifies the 
minimal set of rules that generate inconsistencies with 
another rule, or the diagnosis set. 

Algorithm 2 (Fig. 2(b)) takes the PCG as input. The 
algorithm takes iteratively the vertex with the greatest 
number of adjacencies, that is, the vertex with the 
greatest number of inconsistencies. If there are vertices 
with the same number of adjacencies, the relative 
ordering between them does not care. Then, this vertex 
and its edges are removed from the PCG, generating an 
independent cluster of inconsistent rules (ICIR) as a 
tree with the removed vertex (the conflicting rule of the 
cluster) as its root, and the inconsistent rules as its 
leafs. If vertices with no edges are left in the PCG, then 
these vertices are removed, since they are consistent by 
definition (they do not have no more relations with 
other rules of the PCG). Note that, as inconsistencies 
have been decomposed in pair wise relations, the tree 
is always formed by two levels. 

 

 
 

Figure 2(b) Algorithm 2. Determination of 
the Set of Conflicting Rules 

 
A graphical representation of a partial trace of 

Algorithm 2 over the previous PCG is presented in Fig. 
4. At the first iteration, R8 was selected because it had 
four inconsistencies (the greatest number of adjacent 
vertices). It had been removed and formed the first 
ICIR tree, with R8 as root, thus R8 is a conflicting rule. 
In the second iteration, R12 was selected because it has 
three inconsistencies (it is the vertex with the biggest 
number of adjacent vertices). Then it was removed and 
the second ICIR is formed. Vertices R9, R10 and R11 
were removed from the PCG because they had no 
adjacent vertices. In the third iteration, there is a 
possibility of selecting R5, R1, R2, R3 and R4 as the 
next vertex. The selection of one or other is arbitrary. 
In this example, the algorithm selected R5, removed it 
from the PCG with all its edges and formed the third 
ICIR. At the end of this iteration the PCG was only 



composed of a cycle of four vertices: R1, R2, R3, and 
R4. The algorithm selected to remove R1 in the fourth 
iteration and R4 in the fifth and last iteration, removing 
the vertices and edges, and forming ICIR 4 and ICIR 5 
respectively. Since no more vertices are left in the 
PCG, the algorithm finished with a Set of Conflicting 
Rules (SCR) of cardinality five, containing the rules 
SCR={R8, R12, R5, R1, R4}. These rules are ICIR 
roots, or the minimal number of rules that cause an 
inconsistency with others. 

Since the ICIR are small enough to be analyzed by a 
human even in large rule sets, and are independent 
clusters of inconsistencies, there is no real need to 
characterize them. However, using existing taxonomies 
[12], it is possible to automatically characterize each 
inconsistency. For example, in ICIR5={root=R5, R7, 
R6}, R6 is a generalization of R5, and R7 is correlated 
with R5. As has been noted before, characterization is 
a topic for future research. 

 
4.3. Algorithmic complexity. Empirical 

results 
Time complexity of Algorithm 1 is linear with the 

number of selectors of rules (inconsistency() method), 
k, and quadratic with the number of rules of the rule set 
(iteration), n. Therefore, worst case time complexity is 
in O(k(n2-n))=O(kn2). In a typical rule set with 5 
selectors per rule, k=5. 

Worst case time complexity of Algorithm 2 is 
O(h*n) with the number of conflicting rules or ICIRs 
(iteration), h, and with the number of vertices in the 
graph (minimum calculation), v (in worst case, v=n) 

Space complexity of Algorithm 1 is linear with the 
number of rules in the rule set. In the presented 
example, there are 12 inconsistencies (Fig. 6), forming 
a graph with 12 vertices and 13 edges (Fig. 7). Note 
that the number of edges is the same that the number of 
inconsistent rules. 

 
Figure 4. Trace of Algorithm 2 applied to Fig. 3 PCG 



Algorithm 2 also needs some space to represent all 
ICIR. The number of ICIR increase linearly with the 
number of inconsistent rules. But note that, as the 
algorithm is creating the ICIR, the corresponding 
vertices and edges are removed from the PCG, so only 
small amount of additional temporal space is necessary 
over the space needed for the PCG, in order to 
represent the duplicate vertices that are left in the PCG 
because they already have inconsistencies with other 
vertices. For example, in the iteration one of Fig. 8, 
ICIR 1 has the vertices {R2, R3, R6, R7}, that will be 
removed in later iterations. 

Therefore the combined worst case complexity of 
the full process is the maximum between them, O(kn2) 
time complexity and O(n) space complexity. This 
complexity analysis show that presented solution is, to 
the best of our knowledge, the most efficient solution 
to this problem in time and space, even for worst case. 

Comparing the results of the presented algorithms 
with Al-Shaer et al. ones [4], the presented algorithms 
diagnose one more inconsistency, which is the one 
between rules R11 and R12. 

Applying the algorithms to the example presented 
by Cuppens et al. [13] the generated ICIRs are 
ICIR1={root=R4, R3, R2, R5} and ICIR2={root=R1, 
R2, R5}. Again, the presented algorithms can diagnose 
more inconsistencies than the ones proposed by them. 

In order to empirically compare the efficiency of the 
proposed algorithms, we have developed a preliminary 
characterization step based on a work in progress, 
applying the characterization described by Al-Shaer et 
al. [4], but with the improvement of being able to 
characterize inconsistencies caused by the union of 
rules. This step is not described in this paper due to 
space constraints. However, to make more realistic the 
comparison, we have measured the time of the 
proposed algorithms plus the characterization step. 
Take into account that the characterization algorithms 
are a polynomial approximation to the optimum. Also 
note that the full process time is dominated by the 
Algorithm 1 complexity. 

As real rule sets have been used, Fig. 5 and Table 2 
represent an average case. Tests have been run with 
and without wildcard rules (WR, deny all and allow all 
rules), in order to know the impact these rules have in 
the complexity of the algorithms. Results show that 
time is under 350ms until rule set size reaches 900 
(used in Fireman [9]). For rule sets about the sizes used 
by Al-Shaer and Cuppens examples, that is between 
zero and 80 rules, time is between zero (zero rules) and 
0,6 milliseconds (80 rules), and between zero and 
0,35ms if wildcard rules are removed. Experiments 
were performed on a monothreaded Java 
implementation with JVM 1.6.0_02, and on a machine 
with Intel Core Duo T2400 and 1Gb RAM DDR667. 

Empirical results show that the presented proposal 
is, to the best of our knowledge, orders of magnitude 
faster than other published ones, and requires less 
memory. 

 

Size TOTAL 
w/ WR (ms) 

#Removed 
WR 

TOTAL 
w/o WR (ms) 

50 0,37 4 0,26 
144 3,57 4 2,55 
238 13,47 10 7,83 
450 51,75 10 24,43 
900 318,28 11 89,64 
Table 2. Performance evaluation 

 
Figure 5. Performance evaluation 

 
5. Conclusions and future works 

In this paper, we have analyzed the consistency 
diagnosis problem in firewall rule sets, and decided to 
divide diagnosis and characterization in two different 
steps. We explained that redundancy is not an 
inconsistency, because it does not change the 
semantics of the rule sets, and focused our work on the 
relations that can change the semantics of the rule set. 
We have proposed an abstract definition of 
inconsistency that covers all cases characterized in the 
bibliography. Based on this definition, we revisited the 
consistency problem in firewall rule sets and showed 
that all relations between more than two rules can be 
decomposed in simpler pair wise relations, without 
decorrelating the rule set. 

In order to validate our results, we have designed 
two algorithms that should be applied sequentially. The 
first one creates a graph that represents all potential 
inconsistencies between rules. This graph responds to 
the inconsistency isolation process. In the second one 
the graph is used to construct independent clusters of 
inconsistent rules, and represent each cluster as a two 
level tree. The root of the tree was defined as a 
conflicting rule of the rule set. The set formed by the 
roots of all ICIR form the minimal set of conflicting 
rules, diagnosis set, or the set rules that can be 
removed from the rule set in order to get a consistent 



one. Isolation and identification conforms the full 
consistency-based diagnosis process. 

We compared our results with other works in the 
bibliography, and showed that our algorithms can 
diagnose more cases. A time and space complexity 
analysis was done and showed that the full process has 
worst case O(kn2) time complexity with the number of 
rules in the rule set (n) and with the number of 
selectors in the condition part of the rule (k). Space 
complexity is linear with the number of rules in the 
rule set. A basic performance evaluation was also 
presented. To the best of our knowledge, this is the 
most efficient solution in time and space to address this 
problem. 

However, our approach has some limitations that 
give us opportunities for improvement in future works. 
The most important one is that our proposal cannot 
diagnose redundancies, although they are not 
considered inconsistencies in this paper. Proposals 
made by other researchers, although not diagnosing all 
inconsistencies and having worst time and space 
complexity, can diagnose redundant rules. 

Although the process presented in this paper can 
diagnose inconsistencies, it cannot characterize them. 
This is another main topic for future research. 
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