
Clarifying the semantics of value in use cases through Jackson’s
Problem Frames

José M. Cañete-Valdeón ∗, Fernando Enríquez, Javier Ortega, Ernesto Veláquez

Department of Computer Languages and Systems, University of Sevilla, Spain

Abstract

Use cases constitute a popular technique to problem analysis, partly due to their focus on thinking in terms of the user needs. 
However this is not a guarantee for discovering all the subproblems that compose the structure of a given software problem. 
Moreover, a rigorous application of the technique requires a previous consensus about the meaning of I. Jacobson’s statement “a 
use case must give a measurable value to a particular actor” (The Rational Edge, March 2003). This paper proposes a particular 
characterisation of the concept of “value” with the purpose of problem structuring. To this aim we base on the catalogue of frames 
for real software problems proposed by M. Jackson (Problem Frames, 2001) and we reason about what could be valuable for the 
user on each problem class. We illustrate our technique with the analysis of a web auction problem.

Keywords: Software engineering; Problem analysis; Use cases; Problem frames
1. Introduction

Use cases [6–8] are a popular technique to problem
analysis. The main hypothesis held by the approach is
that software systems provide values to people, which
are delivered in discrete episodes of uninterrupted, in-
tense interaction. In such episodes people who receive
value can play one or several roles called “primary ac-
tors”. A use case groups all the interactions aimed at
delivering a certain value (including those that eventu-
ally fail in the purpose).

* Corresponding author. Tel.: +34 954 553 873. Postal address: De-
partamento de Lenguajes y Sistemas Informáticos, ETS de Ingeniería
Informática, Avenida Reina Mercedes, S/N, 41012 Sevilla, Spain.

E-mail address: jmcv@us.es (J.M. Cañete-Valdeón).
Focusing on the user needs is regarded as a useful
approach to the analysis of a problem [11]. However, in
general, such a focus is not enough in order to develop
a complete understanding of the problem concerns and
difficulties. Consider the analysis of a fire alarm prob-
lem [1]. The value that the system delivers to the resi-
dents of a building is safety against fires: to be informed
of any evidence of a fire. However such a benefit is not
obtained as the result of a discrete episode of interac-
tion between the user and the system, but rather during
the continuous functioning of the system since the very
moment in which it was connected. The obvious user-
system interaction is “connect system”, but this is not a
use case in the classic sense as nothing valuable is re-
turned.

Of course one may argue that the former exam-
ple corresponds to an autonomous control system with



a minimum user participation and hence the use-case
technique is simply not suitable. However the informa-
tion system that illustrates this paper, with plenty of
user interactions, is another example where use cases
are not enough to analyse the problem as it will be
shown. As Jackson argues [4], problem analysis cannot
be restricted to the interface between the user and the
computer since the problem is generally deeper into the
world.

Another important difficulty, which this paper fo-
cuses on, is that the use-case approach lays on the con-
cept of “value” but there is no bibliographic reference
where this concept is rigorously addressed (to the best
of our knowledge). The cause of this situation is that the
approach has not been developed to the extent where
there exists a clear understanding of the main types of
value that are commonly delivered by real-world soft-
ware systems. Note that the origin of the technique was
the observation of telecommunication systems, which
led to an initial conception of “value”. The problem lies
in that such a specialised meaning does not fit other
categories of systems. Consider a web auction system,
which will be our running example. A brief description
follows.

Web auction system. A system is needed to automate
English-type auctions on the web. People access the sys-
tem through a standard browser. Access is public but a
previous registration is required, which grants a creden-
tial. The latter must be presented to the system in sub-
sequent interactions. Sellers request auctions for items
to sell, indicating the minimum admissible bid as well
as initial and end times. Bids are accepted until the end
time is reached; when this happens, the auction winner
is the bidder who has issued the highest price. Bids are
processed as received.

Contrary to the fire alarm system, many user-system
interactions can be identified in this problem; for exam-
ple:

– Register in the system.
– Place a bid on an auction.
– Browse all active auctions.
– Request an auction for an item.

Which interactions can be regarded as valid use
cases? This depends on what the analyst understands
as “measurable value” [6]. Each analyst in a team will
probably have her opinion in this respect for each one of
the former points. If the team is only seeking an agree-
ment, the solution is easy: discuss until a consensus is
reached. However, use-case models are not just mere
project documentation but a tool to engineer the system.
Therefore choosing the “right” use cases is important.
How can the analysts know that they have chosen the
“right” use cases?

The definition of “value” depends on the method-
ological context as it will condition the use cases that the
analysts will identify. For example, the Rational Unified
Process (RUP) methodology is use-case driven. RUP
lays on the basis that engineers will identify the right use
cases at the requirements workflow, which are claimed
to determine the system architecture to a great extent
[7]. Such use cases are those that provide an “observ-
able result of value” [10]. The authors of RUP may have
a precise idea of what this means, but it is not described
in the bibliography. Identifying “wrong” interactions as
use cases will make the method not succeed.

Evidences of this lack of rigorous semantics for “val-
ue” can be found by examining the use-case bibliogra-
phy. Thus, in a recent work, Bittner and Spence [1] em-
ploy the term without providing a clear characterisation
of the concept. They simply state that individual func-
tions of the system, such as “validating a password”, are
not use cases [1, pp. 106–108]. All we can deduce from
this claim is that the results of such functions should not
be regarded as valuable, but why not?

A different approach is taken by Cockburn who ar-
gues that systems help primary actors to reach goals [3,
p. 27]; therefore we can infer that the obtained value
is to get some goals accomplished. The author identi-
fies three categories of typical goals according to their
granularity: summaries, user goals, and subfunctions.
Any of them may refer to varying scopes of “system”,
such as the whole company or the software system only.
In Cockburn’s approach, every user goal is unfolded
into a use case, as well as certain summaries and sub-
functions [3, pp. 66–67]. The author provides a simple
characterisation of what should be understood as a user
goal, including a time span (it typically takes from two
to twenty minutes), satisfaction (the primary actor is
claimed to go away happy after the interaction with the
system), and an increment of the user’s performance
(when iterating the goal).

The aim of this paper is to propose some categories
of values that help the engineer to identify use cases in
the analysis of a problem. While many alternative char-
acterisations of the concept might be considered, the
one reported here will be guided by the purpose of struc-
turing the software problem. For this reason we have
based on a well-validated theory: Michael Jackson’s
Problem Frames [4]. Such a work is a thorough study on
software problem analysis. The author identifies a num-



ber of classes (frames) of software problems that occur
with frequency in practise, often in combination. Our
strategy consists of specialising each frame in order to
accommodate the special features of the use-case view.
For each particularised frame we discuss which results
from the system could be regarded as valuable for the
user. This leads to the obtention of a catalogue of types
of values for frequent classes of problems. The valid-
ity of our approach is supported by its roots on a sound
theory about software systems.

The rest of the paper is organised as follows. In Sec-
tion 2 we report the obtention of the catalogue of value
types and suggest some guidelines for its application.
Section 3 illustrates the usefulness of the proposed cata-
logue with the analysis of the web auction problem. The
paper closes with conclusions in Section 4.

2. A catalogue of frequent values delivered by
software systems

The Problem Frames approach [4] thoroughly char-
acterises five classes of problems which are claimed to
commonly occur as components of real-world software
problems. They are named “basic frames”. Each one
presents a physical layout, i.e. a particular distribution
of the real-world domains that take part in the problem,
including the computer system itself (which is referred
to as the “machine domain”). A requirement determines
conditions on the domains that must be satisfied in or-
der to solve each problem class. We first present a very
brief overview of the basic frames and next we particu-
larise each one to the scheme of the use-case approach.
At the end of the section we propose some guidelines
for discovering use cases.

2.1. The basic problem frames

The layout of the “required behaviour frame” con-
sists of a machine domain and a controlled domain;
communication takes place over an interface of shared
phenomena. The requirement is to achieve that the con-
trolled domain behaves in a certain, preestablished way,
so such a domain is assumed to be causal (i.e. its behav-
iour can be predicted) [4, pp. 85–86].

A variant of the former frame includes an explicit
(human) operator who communicates with the machine
and can issue commands. The requirement “constrains
the behaviour of the controlled domain by describing
general rules for its behaviour and specific rules for
how it must be controlled in response to the operator’s
commands” [4, p. 90]. This variant is called the “com-
manded behaviour frame”.
The “simple workpieces frame” is somewhat similar
to the former one in that there is also a user who is-
sues commands to the machine [4, p. 125]. The main
difference is in the characteristics of the central domain
(named “workpieces”): although it has a causal aspect
supporting its operations and their effects, its main sig-
nificance is lexical [4, p. 127]. In consequence it is inert:
it may change its state in response to an externally con-
trolled event, but it initiates no state changes and no
events [4, p. 97]. The problem requirement stipulates
what effects the commands issued by the user to the ma-
chine should have on the symbolic values and states of
the workpieces [4, p. 97].

An important class of problems is represented as the
“information display frame”. The layout consists of a
machine connected, on the one hand, to some (causal)
domain of the real world and, on the other, to a domain
with display capabilities. The requirement is that certain
information about the real world is continually needed,
and it must be presented at the display; thus a correspon-
dence is stipulated between the symbolic requirement
phenomena of the display and the causal requirement
phenomena of the real world [4, p. 93].

A last basic frame is called the “transformation
frame”. The machine has access to some computer-
readable input files. The requirement is that some output
files must be derived by the machine from the given
data, and their contents and format must follow certain
rules [4, pp. 99–100].

2.2. Identifying values in the basic problem frames

As we explained at the introduction, the theory be-
hind the use-case technique assumes a simple layout
consisting on a user interacting with the system, as well
as a simple requirement: such an interaction must de-
liver some value to the user playing the role of pri-
mary actor. Therefore we have to specialise the different
frames in order to fit such conditions.

Only two basic frames explicitly include a human
domain interacting with the software system, namely
“commanded behaviour” and “simple workpieces”. We
specialise the remaining three by inserting an explicit
human domain that interacts with the machine. This is
allowed by the Problem Frames approach (an “operator
variant”; see [4, pp. 214–219]).

The “required behaviour frame” with the addition of
an operator is equivalent to the “commanded behaviour
frame”. Note that the problem requirement on the be-
haviour of the controlled domain upon a command is not
restricted to discrete action courses but the specification
of a continuous activity is also allowed. For example,



a security system may be responsible for activating the
alarms of a building whenever a security violation is de-
tected, once the operator has issued a “connect system”
command. While classic (Jacobson’s) use cases seem to
be restricted to the achievement of a discrete behaviour
at the end of the interaction, our characterisation will
also embrace continuous behaviour as a valuable result
in a control problem: when the interaction finishes, the
user can “go away happy” expecting that the system is
ensuring a continuous, desired behaviour of some part
of the world.

The beneficiary may be the operator herself, or she
may act on behalf of another user. The latter layout can
be obtained by making the operator be a “connection
domain” between the machine and another domain rep-
resenting the real beneficiary. This is allowed in Prob-
lem Frames under the topic “connection variants” [4,
pp. 219–229].

What is the profit that the user can obtain? The exe-
cution of one particular command may or may not be
a valuable achievement. We would need more infor-
mation about the concrete problem to decide this. For
example, the value delivered by a painting robot on a car
manufacturing plant is to get a car painted; this may re-
quire more than one command from the operator. At the
abstraction level of the “commanded behaviour frame”
all we can assert is that the value obtained by the user
is twofold: some part of the world will behave in a de-
sired way1 and the guarantee that this is achieved with
the available set of commands at the interface with the
machine.

In the specialised “information display frame”, the
user (directly or through a connection domain) issues
enquires to the system, requesting some information
about a certain physical domain. Such a variant of the
basic frame is so common that Jackson gives it a name:
the “commanded information frame” [4, pp. 215–216].
The information is the value that the user obtains.

The “simple workpieces frame” allows the user to
create and edit a certain class of computer-processable
entities. Therefore the value for the user is constituted
by the workpieces obtained according to the commands
issued by the user herself.2 The symbolic phenomena of
such workpieces will often have some meaning to the
human user or to other people [4, p. 97].

The “transformation frame” deals with lexical do-
mains. The value for the user is twofold: the output and

1 Despite the non-applicable or even dangerous commands that the
operator might issue.

2 And, as in the commanded behaviour frame, despite the non-
applicable or dangerous commands that the operator might issue.
the guarantee that such an output conforms to the con-
version rules. The interaction between the operator and
the system includes commands such as “start”, which
instructs the machine to begin the process, as well as
any other data required by the system during the trans-
formation. For example, LATEX transforms TEX files into
DVI files according to certain rules. The system issues a
prompt when some error is found during compilation;
an operator command is then required to resume the
transformation.

Table 1 summarises our conclusions. As we have
based on the Problem Frames theory, we can be con-
fident that these values commonly happen in real-world
software problems.

2.3. Guidelines for use-case identification

Next we suggest some guidelines in order to help the
reader to apply the values of Table 1.

– Study the (physical) domains in the problem con-
text, as indicated by Jackson in the Problem Frames
approach [4, Ch. 2]. Pay attention to the different
kinds of users and the roles they play in the prob-
lem. Note that the users of the system are not nec-
essarily those who directly interact with the com-
puter but one or more connection domains may
exist (e.g., in a library administration problem, a li-
brarian may use the machine on behalf of the library
members who are users in their own right).

– Focus on the users’ high-level goals in the prob-
lem context, i.e. goals related to the problem but
far away from the computer interface. A good tech-
nique for determining whether you are overgener-
alising the goals is to anchor yourself in your cus-

Table 1
Values obtained by the user from each basic problem frame, in the par-
ticular case that he benefits from the system through discrete episodes
of interaction

Basic problem frame Obtained value

Required behaviour + operator
(commanded behaviour)

Some part of the world will behave
in a desired way with the guarantee
that this is achieved with the
available set of commands at the
interface with the machine.

Information display + operator Information about the world.

Simple workpieces The workpieces obtained according
to the commands issued by the user.

Transformation + operator The output and the guarantee that
such an output conforms to the
conversion rules.



Table 2
Some subproblems of the web auction problem. They are named according to the names of their machines

Subproblem PF Domains Trace

Register machine-1 WP Credentials (workpieces), User (operator) UC11
Info. machine-1 ID Auctions* (real world), Web browser (display) UC12
Contract machine-1 WP Contracts for bidders (workpieces), Current bidder (operator) UC13
Control machine-1 CB Bidders (controlled domain), Current bidder (operator) UC13
Register machine-2 WP Declarations of payment (workpieces), Winning bidder (operator) UC2

Contract machine-2 WP Auction contracts (workpieces), Seller (operator) UC31
Info. machine-2 ID Declarations of payment (real world), Web browser (display) UC32
Register machine-3 WP Declarations of shipment (workpieces), Seller (operator) UC33

Model builder ID Auction contracts & clock (real world), Auctions Model (display) –
Control machine-2 CB Bidders (controlled domain), Current bidder (operator) –
Control machine-3 RB Users (controlled domain) –

The last column indicates the use case that motivated each subproblem. Abbreviations: PF (problem frame), RB (required behaviour), CB (com-
manded behaviour), ID (information display), and WP (workpieces).

* As explained in the text, web auctions are (socio-technical-legal) processes. The only way the system can observe auctions is through a model,
but this will be discovered later (with the introduction of the model builder subproblem). Therefore the Auctions domain should be replaced for the
Auctions Model domain.
tomer: do not go beyond the customer’s authority in
the problem [4, pp. 29–33].

– Identify the value that can be obtained from each
goal by referring to Table 1. If no value can be iden-
tified, the goal might be hiding a composite problem
with multiple values for the user.3 This may be the
case even if a value has been successfully identified.
An approach is to find a refinement of the goal such
that the obtained subgoals are sufficient for satis-
fying the higher-level one, and try to identify their
values in the table. If some value(s) has been iden-
tified for a goal, allocate a use case for such a goal.

– Operationalise each goal by means of a success sce-
nario. Then try to identify which values in the table
can be obtained from each step. This process can
be repeated until the steps are so simple that they
do not provide any value to the user (in Cockburn’s
model such steps correspond to low-level subfunc-
tions). If some value has been identified for a step,
allocate a use case for such a step. Allocate one
additional use case for composing those that have
been obtained from the scenario, unless such a use
case has previously been allocated for the goal.

– The identified values indicate the existence of sub-
problems. Therefore a preliminary decomposition
in frames has been obtained. Additional frames can
be discovered by considering the concerns of the
already identified ones as well as by studying the

3 It is noteworthy that the basic frames identified by Jackson are
typical but they do not constitute an exhaustive catalogue [4, p. 351].
Therefore the values of Table 1 cover many but not all the possible
goals that one can potentially find in a given problem.
problem domains [4]. The decomposition heuristics
proposed by Jackson will be specially useful.

3. Applying the catalogue of values to the web
auction problem

This section presents a partial analysis of the web
auction problem (introduced at Section 1) according
to the proposed technique and explains how the use
cases and the subproblems are discovered. Table 2 sum-
marises the resulting problem analysis.

We distinguish two roles that people play in their
interactions with the auction system: bidder and seller.
They constitute our primary actors. We begin by study-
ing their goals in the world, far away from the computer
interface.

3.1. Bidders

A bidder is a person ultimately interested in acquir-
ing an item in a web auction, at least as far as the prob-
lem concerns. In a first approach, the benefit obtained
from this goal seems to be the item itself, but this value
is beyond those of Table 1 and therefore we still have
not got a criterium for allocating a use case related to
the goal. Let us try to operationalise the goal with a sce-
nario:

(i) Win the item in a web auction.
(ii) Pay for the item.

(iii) Pick up the item when it arrives.



Only the first two steps seem to require an interaction
with the machine. Let us try to identify their associated
values.

The value of winning an item in a web auction is
the obtention of a legal right (plus an obligation) to buy
the item. In other words: the establishment of a contract.
Contracts are conceptual entities, physically represented
in paper or, in this case, as workpieces. The creation of
such workpieces is valuable for the bidders. This agrees
with Table 1, which reveals a workpieces subproblem.
Therefore we can allocate a use case (UC1) for this goal.

However, on the one hand, it may not be obvious
for the analyst to discover this value at the outset. On
the other hand, winning an item is a complex goal and
we do not know whether it hides additional values. For
these reasons we recommend to operationalise the goal
with a scenario. One possibility is:

(i) Register in the system.
(ii) Locate an auction where the desired item is being

sold.
(iii) Place bids on the auction.

Register is related to the creation of a credential that
enables access to the system services. A credential is
a computer-processable entity and, just like a work-
piece, it can be created, modified, and possibly deleted.
Therefore this can be regarded as a workpieces sub-
problem, where the observable value is the credential
itself. According to the problem statement, such an ob-
ject must accompany all the subsequent events that the
user issues to the system. In Problem Frames this can
be represented as roles, which describe the participants
in an event [4, pp. 80–81]. For example, assume that
PlaceBid(e) denotes that e is an event of class Place-
Bid. Then we define some roles: Credential(e, c) de-
notes that c plays the role of the credential in event e,
Bidder(e, b) denotes that b plays the role of the bidder
in event e, and Amount(e, q) denotes that q plays the
role of the amount in event e.

The value of locating an auction is obtaining infor-
mation about a reality: the active auctions. Just like
loans in a library system are better regarded as processes
than as entities [4, pp. 171–172], an auction can be
thought of as a process too, i.e. a collection of events
that are ordered in time: a seller requests to auction an
item, the system indicates that the auction begins, bid-
ders place bids, the system indicates that the auction
ends. It is important to note that these events are associ-
ated to (temporary) legal relationships. We will explain
them throughout this section. Therefore this is an infor-
mation display subproblem: certain information about
the auctions is needed.

Finally, placing a bid on an auction pursues two
goals. On the one hand, to establish a contractual re-
lationship between the bidder and the seller. This con-
tract determines rights and obligations. For example,
the bidder commits herself to pay an amount equal to
the placed bid for the item if she eventually becomes
the auction winner. Shipment costs can be included in
the contract. In a web auction, contracts are represented
by computer-processable entities. According to Table 1,
the creation of such lexical entities is the obtained value
in a workpieces subproblem. This was the value that we
originally identified for the goal Win the item in a web
auction.

On the other hand, an auction is a social process
where placing a bid has an effect on the other bidders.
From the viewpoint of the user who places the new bid,
a (secondary) goal is to achieve that the user who held
the maximum bid looses her right to buy the item. This
is a kind of control on the behaviour of the compet-
ing bidder: she will not be able to buy the item when
the auction ends (unless she bids again before this hap-
pens). According to Table 1 a desired behaviour is a
value in itself and it corresponds to a commanded be-
haviour subproblem4 with the user who places the cur-
rent maximum bid as operator. The requirement for this
subproblem can be extended to the whole Bidders do-
main and formulated as: bidders different from the one
who places the current maximum bid will not be able to
buy the item when the auction ends.

In summary, we have identified three use cases in-
cluded in Win the item in a web auction (UC1):

– UC11: Register in the system. Value: creation of a
workpiece (the credential).

– UC12: Locate an auction. Value: information about
a reality (an auction where the desired item is cur-
rently being sold).

– UC13: Place a bid. The value is composite:
• Create a contractual relationship between bidder

and seller. Value: creation of a workpiece (the
contract).

4 The commanded behaviour frame regards the controlled domain
as causal. In the particular case of this subproblem, the Bidders do-
main is modelled as a causal domain. This makes sense if we regard
that a bidder needs to issue a PaymentComplete event to the system in
order to buy an item and being its legal owner; if such an event is in-
hibited for a particular bidder, then it is impossible for him to legally
acquire the item. This causality grants the machine a certain control
over the Bidders domain.



• Avoid that competing bidders acquire the desired
item. Value: to control a domain (all the bidders
except the currently winning bidder).

Regarding the second step in the scenario of acquir-
ing an item in a web auction, Pay for the item, let us
assume for simplicity that payments are made by means
different from the system: bank transfers, postal send-
ing, etc. The value of this goal is to fulfil the auction
contract and therefore it does not appear in Table 1. In
order to identify possible use cases we elaborate a suc-
cess scenario for this goal:

(i) Make a bank transfer to the seller for the value that
is specified in the contract.

(ii) Indicate to the system that the payment has been
made.

The machine does not participate in the first step. The
second one denotes a goal whose value is to physically
register a legal declaration: the winner of the auction has
made the payment and fulfilled the contract. This dec-
laration has the form of a lexical unit, and its creation
is valuable for the winning bidder. Therefore this is a
workpieces subproblem. We allocate a use case (UC2)
for the goal of the second step. Such a use case is initi-
ated by a PaymentComplete event.

For completeness, it is useful to add one additional
use case that includes the ones that have resulted from
the scenario of the goal of acquiring an item in a web
auction. We may denote it as UC0 (Acquire an item in a
web auction). Its value is the composition of the values
of the included use cases (UC1 and UC2).

3.2. Sellers

A seller is ultimately interested in selling an item.
As far as the problem concerns, a possible way to sat-
isfy this goal is by auctioning the item on the web, a
more specific goal. In both cases the value is to have
the item sold, which is measurable (e.g., as a relation
of the economic gain and the time invested on the sale).
However this value is beyond those of Table 1 so it is
probably of little usefulness if our purpose is structuring
the problem.

It is noteworthy that the goal auctioning an item on
the web adds an additional value that is not necessar-
ily present in the generic selling an item: the obtention
of a legal contract by which someone commits himself
to buy the item. We know that such a contract is repre-
sented in the problem as a workpiece, and its creation
is regarded as valuable according to Table 1. Therefore
we identify a use case (UC3) related to the goal auction-
ing an item on the web. In order to discover additional
values we operationalise the goal as a success scenario:

(i) Register in the system.
(ii) Request auctioning the item at a certain date.

(iii) Wait for the payment from the auction winner.
(iv) Send the item to the winner and indicate this to the

system.

Registry has already been covered as use case UC11.
Request auctioning an item is an event associated to a
legal contract, with rights and obligations. For example,
the seller commits herself to sell the item to the auc-
tion winner for the same price as the maximum placed
bid (shipment costs can also be included). The result-
ing value is that such a contract is created. As contracts
are represented by lexical units, we have a workpieces
subproblem. We identify a new use case (UC31).

Waiting for the payment requires information about
the moment when the associated workpiece is created,
so we have another information display subproblem.
The part of the real world under observation is consti-
tuted by the declarations of payment. We tag the new
use case as UC32.

Finally, indicating that the item has been sent is an
event from the seller to the system. The value is to phys-
ically register a declaration: the seller has complied with
his part of the contract. If such a declaration is regarded
as a lexical unit, this is again a workpieces subproblem.
We identify a new use case (UC33).

3.3. Additional subproblems

So far we have focused on the users’ point of view,
obtaining a number of subproblems. However this per-
spective does not ensure a complete problem analysis.
There are additional concerns and difficulties that can
only be discovered from other perspectives, by studying
all the domains in the problem and not just the so-called
primary actors. For brevity we shall only indicate some
of the subproblems that have been overlooked.

Studying the Auctions domain uncovers new sub-
problems. We previously argued that auctions could be
regarded as processes. In traditional English-type auc-
tions the auctioneer determines the beginning and the
end of the process. In web auctions this responsibility
rests on the computer system. This can be regarded as a
model-building subproblem [4, Ch. 7], which is a spe-
cialised information display frame. The part of the real
world under observation is the domain constituted by
the auction contracts and the clock. When the current



date and time are equal to the starting date and time stip-
ulated at the contract of an auction, the model builder
machine issues an AuctionStarted event, which is regis-
tered in the model. The end of an auction is similar. Such
a model is a lexical domain which can be consulted by
other subproblems, e.g., to determine the current active
auctions (remember the information display subprob-
lem that appeared at UC12).

An interesting event in the auction process is the
placing of a bid. An overlooked problem concern is a
property of English auctions [9]: once a bid b is placed
for an amount q , no other bid b′ can be placed for an
amount q ′ if q ′ � q . This can be regarded as a com-
manded behaviour subproblem on the Bidders domain:
when event PlaceBid(e) happens, no bidder will be able
to participate in an event PlaceBid(e′) if Amount(e, q)

and Amount(e′, q ′) and q ′ � q .
Finally, studying the Credentials domain (which ap-

peared at UC11) we realise that only users with a cre-
dential in such a domain are allowed to access the
system services. This constraint determines a required
behaviour subproblem on the users: they will not be
able to make any service request e to the system if
Credential(e, c) and c does not belong to the Creden-
tials domain.

4. Conclusions

Focusing on the users and their needs is a useful ap-
proach to the analysis of a software problem [11]. The
use-case technique naturally fits such an approach and
it is broadly extended. Further, important software de-
velopment methods such as RUP [7,10] are based on
this focus on the user. While we do not question the
benefits of the strategy, we argue that it is not enough
to achieve a complete problem analysis and structuring.
Jackson’s Problem Frames [4] is a rigourous and val-
idated approach to the same purpose, and it allows to
achieve a complete understanding of the software prob-
lem. In this paper we have provided a simple road for
analysts who feel comfortable with use cases towards
the benefits of problem frames. The obtained use cases
and frames constitute a sound basis for further problem
analysis and solution development (e.g., architectural
design [5,7]).

Analysts who address problems with the use-case
approach often find themselves with the question of
what should be regarded as “valuable” for the users of
the system-to-be. Many characterisations of the concept
may be proposed for different purposes. In this paper
we have reported one with the purpose of employing
the use-case technique to problem structuring. To this
aim we have based on the catalogue of basic problem
frames. We have also proposed some guidelines for ap-
plying the characterisation to problem analysis.

The so-called CRUD use cases [3, Ch. 14] are an
example of the consequences of a fuzzy semantics for
“value”. The word is an acronym for typical operations
on databases: create, retrieve, update, and delete. As
Cockburn points out [3, p. 145]: “So far there is no con-
sensus on how to organise all those little use cases”. If
they provide real value to the user, they should explic-
itly appear in the analysis. But, again, what is value?
Our approach ensures that only those CRUD use cases
which can be associated to a workpieces subproblem in
the problem context are relevant to the analysis; the re-
maining ones are actually part of a particular system
implementation (e.g., the manipulation of a database).
There is one exception to this rule: the introduction of
a model domain, which is actually part of the solution
[4, p. 182]. However, in the Problem Frames approach
the introduction of such a domain is controlled; it is jus-
tified solely in terms of understanding the problem [4,
Ch. 7].

Problem frames are accompanied by a convenient
graphical notation named “frame diagrams” [4, App. 1].
While we have not employed diagrams to illustrate the
web auction example, they can be easily generated from
the domains of Table 2 and the requirements described
in Section 3.

We have not proposed a notation for linking use cases
with their corresponding frames but we have denoted
such associations in a tabular form. Another simple op-
tion could be to annotate use-case descriptions with the
names of the related subproblems, which can also be
shown as notes attached to the ellipses in use-case dia-
grams.

The work presented in this paper is the elaboration
of an idea included in Cañete-Valdeón’s PhD thesis [2].
We must remark that the proposed characterisation is an
initial contribution to clarify the concept of value. It can
be refined by further studying each problem class and
by identifying new frames.

Acknowledgements

The authors want to explicitly express their grati-
tude to the anonymous reviewers. Their comments have
greatly contributed to improve the clarity and quality of
this work.

References

[1] K. Bittner, I. Spence, Use Case Modeling, Object Technology
Series, Addison-Wesley, 2003.



[2] J.M. Cañete-Valdeón, A theory of languages and design meth-
ods in software engineering, PhD thesis, Universidad de Sevilla,
2006.

[3] A. Cockburn, Writing Effective Use Cases, Addison-Wesley,
2001.

[4] M. Jackson, Problem Frames. Analyzing and Structuring Soft-
ware Development Problems, Addison-Wesley, ACM Press,
2001.

[5] M. Jackson, Problem structure and dependable architecture, in:
R. de Lemos, C. Gacek, A. Romanovsky (Eds.), Architecting De-
pendable Systems III, Springer-Verlag, 2005.

[6] I. Jacobson, Use cases—yesterday, today, and tomorrow, The Ra-
tional Edge, March 2003.
[7] I. Jacobson, G. Booch, J. Rumbaugh, The Unified Software De-
velopment Process, Object Technology Series, Addison-Wesley,
1999.

[8] I. Jacobson, M. Christerson, P. Jonsson, G. Övergaard, Object-
Oriented Software Engineering: A Use Case Driven Approach,
Addison-Wesley, ACM Press, 1992.

[9] P. Klemperer, Auctions: Theory and Practice, Princeton Univer-
sity Press, 2004.

[10] P. Kruchten, The Rational Unified Process: An Introduction,
Addison-Wesley Professional, 2003.

[11] D. Leffingwell, D. Widrig, Managing Software Requirements:
A Unified Approach, Addison-Wesley, 2000.


