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a b s t r a c t

Optimum operating conditions of a fuel cell will provide its maximum efficiency and the operating cost
will be minimized. Thus, operation optimization of the fuel cell is essential. Neural networks can
simulate systems without using simplifying assumptions. Therefore, the neural network can be used to
simulate complex systems. This paper investigates the effects of important parameters, i.e., temperature,
relative humidity in the cathode and anode, stoichiometry on the cathode and anode sides, on the po-
larization curve of a PEMFC (Proton Exchange Membrane Fuel Cell) having MPL (Micro Porous Layer) by
ANN (artificial neural network). For this purpose, an analytical model validated using laboratory data is
applied for prediction of the operating conditions providing maximum (and/or minimum) output power
of a PEM fuel cell for arbitrary values of the current. The mean absolute relative error was calculated to
1.95%, indicating that the network results represented the laboratory data very accurately. The results
show 23.6% and 28.9% increase of the power by the model and the network, respectively, when
comparing the maximum and minimum power outputs.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Fuel cells (FCs) can provide efficient energy conversion with a
low impact on the environment and accordingly they are consid-
ered as a potential source of alternative energy. FCs are of interest in
the production of independent commercial electricity, residential
applications, and power plants. PEMFCs usually operate at low
temperatures and may provide benefits like high energy density as
well as safe operation etc. Due to the low operating temperature
and good performance, PEMFCs are nowadays of great interest in
providing power for the propulsion in the automotive field [1].

Nevertheless, there are several barriers that have to be over-
come, e.g., high cost, weight, and volume, to make PEMFCs
competitive to traditional engine power systems, i.e., internal
(F.S. Nanadegani), enemati@
zo), Jose.Salva@kelvion.com
combustion engines [2e4]. Mathematical models and simulations
are then needed to enable design and performance improvements
and to optimize the operating conditions so that the output and
efficiency of the fuel cell can be increased [5]. The operating con-
ditions play a significant role in the PEMFC performance [6,7]. The
performance optimization is a key approach to achieve a cost
reduction in PEMFCs, as more compact stacks can be achieved
featuring a reduced number of cells for a given power output.

The method of artificial neural network (ANN) is known to be a
powerful tool in nonlinear modeling [8]. Several different ANN
models to optimize PEMFC operations [8e14] have been presented
and these include static and dynamic states, see Table 1.

A model for the management of water was developed by Zhang
et al. [15]. Using a repeated neural network optimization (RNN), a
prediction model control mechanism was proposed. The models
were implemented in MATLAB and SIMULINK environments. The
simulations revealed that by using this method, fluctuations in
water concentration in the cathode could be avoided and accord-
ingly the lifetime of the PEMFC stack could be prolonged. In another
study, Lebreton et al. [16] approved a Fault Tolerance Control
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Table 1
Applications of ANN for PEMFCs modeling.

References Input variables Output variables

Jemei et al. [8] (2003) Current and temperature in the stack, flow rates of hydrogen and
oxygen

Optimization of voltage

Jemei et al. [9] (2008) Flow and temperature in the stack, flow rates of oxygen and hydrogen,
air humidity

Optimization of voltage

Sisworahardjo et al. [10] (2010) Current and temperature in the stack Voltage, power, hydrogen flow rate
Yousfi-Steiner [11] (2011) Current and temperature in the stack, flow rates, dew point temperature Voltage, pressure drop
Chang [1] (2011) Operating temperature, flow rates of hydrogen and oxygen, current

load, pressure on oxygen and hydrogen sides
Optimization of Output, Voltage

Damour et al. [12] (2013) Flow rates of air and hydrogen, Operating temperature Power
Curteanu et al. [13] (2014) Current density, C/PBI, mean pore size, tortuosity, porosity Optimization of fuel cell efficiency
Han et al. [14] (2016) Cooling water temperature, air temperature, temperature difference of

cooling water, flow, air flow rate
Optimization of system efficiency
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Strategy (FTCS) for PEMFC water management and validated it for a
real PEMFC system. A combined method of the sequential neural-
network approximation and orthogonal arrays (SNAOA) to deter-
mine the performance parameters in the operation of PEMFCs was
presented by Chang [17].

A number of articles have used other methods to optimize the
operation of a single PEMFC [5,18e23]. Salva et al. [5] conducted an
optimization study to maximize the performance polarization
curve with EES (solving the engineering equation). Mawardi et al.
[18] suggested an optimization model maximize the power density
of a PEMFC. The numerical model of the fuel cells was solved using
simulated annealing and a simplex search algorithm. The Taguchi
method was applied by Kaytakoglu and Akyalcin [19] to find the
optimal operating conditions for maximum PEMFC power density.
Askarzadeh and Rezazadeh [20] applied a modified particle swarm
optimization (MPSO) method for a PEMFC. They proved that the
MPSO can be regarded as a useful and reliable method to optimize
themodel parameters. They claimed that also it might be applicable
for solving other complex problems of optimization of fuel cells.
Meidanshahi and Karimi [21] considered a nonlinear dynamic
model for a PEMFC analysis in one dimension. The operating con-
ditions of the cell were optimized at steady-state conditions in
order to obtain the most suitable parameters for achieving the
highest and most uniform distribution of the current density. The
differential evolution (DE) was used as an optimization algorithm.
Zhang et al. [22] determined the optimum temperature of a high-
temperature PEMFC in terms of performance and CO tolerance as
well as durability. Kanani et al. [23] applied the response surface
method (RSM) to find out the maximum power of a single PEMFC.

In addition, in other works ([24,25]) parameter optimization of a
PEMFC stack has been investigated. A niche hybrid genetic algo-
rithm (HGA) was used by Mo et al. [24] to optimize a PEMFC. The
input-output data used by them were output-voltage and demand
current of the stack, cathode and anode pressures. Their genetic
algorithm is a modified one and they found that it might be
effective and reliable to optimize themodel parameters of a PEMFC.
Liu et al. [25] used an orthogonal experimental design for the
optimization of the performance of a PEMFC stack. For this purpose,
the operating parameters included operating temperature, stoi-
chiometry in the cathode, relative humidity as well as back-
pressure. The results revealed that operating temperature and
stoichiometry in the cathode side have a greater impact on the
output voltage and efficiency of the stack compared to other
parameters.

The ANN has advantages over other analytical methods. Among
these, it is worthwhile to mention the use of fewer assumptions for
modeling and excellent non-linear approximation ability. In addi-
tion, an incomplete database can be applied and it has a low
sensitivity to noise [26].

In this paper, the artificial neural network is applied to find the
operating conditions which maximize and/or minimize the power
output. An analytical one-dimensional model introduced by Salva
et al. [27] is used as a dataset for the ANN network (section 2). This
model simulates the main phenomena occurring during the fuel
cell operation, i.e., electrochemistry, mass transport (gas and liquid)
and heat transfer. In addition, the analytical model has been thor-
oughly validated versus experimental data including cell voltage
and water content inside the PEMFC (Tests were conducted in the
previous work [5] for a 50 cm2 fuel cell). Two parameters were used
simultaneously in the validation process to ensure that the results
are accurate. Validation was carried out for different operating
conditions, i.e., temperature, cathode and anode stoichiometry, and
relative humidity in the cathode and anode. The NeuroSolutions
software [28] is used to simulate and analyze a PEMFC performance
using an artificial neural network (ANN) approach. There are three
basic steps in developing the neural network, namely network
training on the data, network testing for accuracy, and creating
predictions/classifications from new data. The NeuroSolutions
Excel can handle this entirely automatically in one simple step [28].
The main novelty of the current work is the analysis of a PEMFC
with an MPL and maximizing the operating conditions for any
current. The ANN model can simulate the system without using
simplifying assumptions and to provide a powerful optimization
tool.
2. The single PEMFC performance

The single cell voltage (Vcell) is given by Eq. (1), [6,7].

Vcell ¼ E0ðT ; PÞ� ha;a �
��ha;c���hr �hm;a �

��hm;c
�� (1)

where E0ðT ;PÞrepresents the equilibrium open-circuit potential of
the cell (V), ha;cand ha;aare the activation overpotentials in the
cathode and anode (V), respectively, hr is the ohmic overpotential
(V) while and hm;aare the concentration overpotentials in the
cathode and anode (V), respectively.
2.1. Equilibrium open-circuit potential

From Nernst equation, one finds the equilibrium open-circuit
potential as given by equation. (2), [29,30].
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where �G0ðTÞ, R, F, P0, Psat, Panode=cathodeare the Gibbs free energy
(J), ideal gas constant (8.314 J/moleK), Faraday constant (96,487C/
mole), reference pressure (Pa), saturation pressure (Pa), operating
pressure in anode and cathode (Pa), respectively, n is the number of
moles of electrons in a reaction (2 for anode side and 4 for cathode
side), yi represents hydrogen mole fraction at the anode and water
and oxygen mole fraction, respectively, at the cathode.
2.2. Calculation of activation overpotentials

The activation overpotentials are calculated by using the Tafel
simplification [6,7] and are given by Eqs. (3) and (4).

ha;a ¼
RT
aaF

ln
�

i
i0;a

�
(3)

ha;c ¼
RT
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ln
�

i
i0;c

�
(4)

where T and i represent operating temperature (oC) and current
density (A/m2), respectively, ac and aa are the charge transfer co-
efficients at the cathode and anode, respectively, while i0;c and i0;a
are exchange current densities in the cathode and anode (A/m2),
respectively.

Eqs. (5) and (6) are used to calculate the exchange current
densities, [6].

i0;a ¼ iref ;a
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where iref ;a and iref ;c are the reference values of the exchange cur-
rent densities without concentration losses and at a certain refer-
ence temperature for the anode or cathode (A/m2), respectively.
Cc;GDL�CL and Ca;GDL�CL represent the oxygen or hydrogen concen-
tration at the cathode and anode side (mol/m3), respectively. The
activation energies, Ea;a and Ea;c, are valid at the anode and cathode
electrodes (J/mol), respectively. Cref is a reference concentration
(mol/m3), and gi means the reaction order of the elementary charge
transfer step.
2.3. Calculation of the ohmic overpotential

The electrical conductivity and thickness of the bipolar plates,
GDLs, CLs, MPLs and the membrane affect the ohmic overpotential.
In addition, as the contact resistance at the interface between the
GDL and bipolar plate affects the performance of the fuel cell, it is
included in the ohmic overpotential [31].

The ohmic overpotential is calculated by Eq. (7) [32].
hr ¼ i
�
2
tBP
sBP

þ2
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þ2
tMPL

sMPL
þ 2

tCL
sCL

þ tMem

sMem
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�
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where ti and si are thickness (m) and electrical conductivity (1/
Um), respectively, of the BP (bipolar plate), GDLs, MPLs, CLs and the
MEA (membrane electrode assembly). Rcontact is the contact resis-
tance at the interface between the GDL and bipolar plate (Um2).

The electrical conductivities were picked up in available data-
sheets for each material [33e35]. The membrane protonic con-
ductivity is a function of the water content and is calculated by Eq.
(8) [36].

smembrane ¼ exp
�
1268

�
1

303
� 1
T

��
ð0:005193l�0:00326Þ (8)

where l denotes the water content inside the membrane. This
parameter is calculated by Eq. (9) [6,31,32,37].

l¼
� �0:043þ 17:18a� 39:85a2 þ 36a2 if a<1

�14þ 14ða� 1Þ if a>1
(9)

where a is the water activity which is calculated by Eqs. (10)-(12),
[31,37].

aa ¼
Cmem
H2O;a

RT

Psat
(10)

ac ¼
Cmem
H2O;c

RT

Psat
(11)

a¼ aa þ ac
2

(12)

where Cmem
H2O;a

and Cmem
H2O;c

, respectively, represent the water concen-

trations at the anode and cathode sides (mol/m3) of the membrane.

2.4. Calculation of the concentration overpotentials

The expressions to calculate the concentration overpotentials
are shown in Eqs. (13) and (14), [6,7].
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where ni is the number moles of electrons in the reactions (2 for
anode side and 4 for cathode side) and ilim;i is the limiting current
density at the cathode or anode sides. The limiting current densities
can be found, e.g., experimentally.

3. Artificial neural network (ANN)

An artificial neural network (ANN) is built up of a number of
elementary processing units, called neurons, which are connected
together into a neural network. The relationship between two
neurons is handled by weight functions [11].

With an available set of input and output data, the ANN is able to
learn and construct non-linear mappings providing incentive so-
lutions for modeling complex systems, especially those that are
known to be without variable relationships. Concerning the struc-
ture of neural networks, two basic topologies exist, namely feed-
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forward networks and recurrent networks. In the feed-forward
network, outputs of a certain layer are inputs of the following
adjacent layer. The so-called hidden layers are situated between the
input nodes and the output layer [38].

Among the different ANNs, the MLP (Multi-Layer Perceptron)
type is the most common one used in PEMFC modeling [39]. The
MLP has three sections: the input layer, the output layer, and the
intermediate or hidden layer. Any section can have several layers.
Each unit performs a biased weighted sum of the inputs and sends
this information to a transfer function. The output is given by the
activation level of this transfer function. The organization of neu-
rons is a set of parallel layers [11].

When the numbers of layers and neurons within these layers are
fixed, training algorithms are applied to determine the network
weights. The main purpose is to minimize the deviation between
the calculated output from the neural network and an experiment.
There are many techniques for training a neural network. The two
main techniques employed by neural networks are known as su-
pervised learning and unsupervised learning. The most common
supervised training algorithm is known as back-propagation [39].
Network training with back-propagation algorithms requires the
steps described below:

� A set of examples is assembled for the network training. Each
item includes inputs into the network and the corresponding
solution which represents the desired output from the network.

� The network output is calculated.
� The deviation between the output of the network and the target
vector of the learning pair is calculated.

� The network weights are set in a way that minimizes the error.
� Steps 1e4 are repeated for each vector in the instruction class to
reduce the error for the entire class in a way that is acceptable.

By providing each set of information to the network, weights are
corrected. Once the entire data set has been given to the network,
an epoch has been completed. Another issue addressed in the
learning algorithm is when the training should end. To do this, one
of the following three methods can be used:

� A constant value for the number of times (epoch) is to provide
the total data to the network. If the results are not satisfactory at
the end of the training, the steps will be repeated again.

� During the training, after every round of data provided to the
network, training is temporarily stopped and the network per-
formance is measured. Network performance measurement can
be conducted against a training series or a Cross-Validation Data
series.

� The two above methods as graduation criteria can be combined.

Generally, the performance of a neural network is tested against
a cross-validation data series to judge the future outcome of the
network and prevent over-network training.

A suitable learning algorithm for training MLPs is the Genetic
Algorithm (GA). GA imitates natural evolution. A population of
chromosomes is a better solution due to different selection,
crossover, andmutation. A uniform distribution of the population is
randomly assigned primarily and the number of chromosomes
contained is described by the population size. The chromosomes
include optimized parameters and evaluation of the value of the
solution is done using a fit function. This method is repeated many
times and a parameter named “number of generations” is defined
[40]. Genetic algorithms are generally applied in four procedures
[28]:

� Best inputs to the neural network are chosen;
� Neural network parameters are optimized;
� Training of actual network weights;
� Choose/modify neural network architecture.

In this study, the procedure to design the networks was
implemented by the NeuroSolutions software [28]. Users can train
a neural network and test its performance directly in this software.
In addition, this software has powerful built-in features which can
be used to genetically optimize the network parameters. The soft-
ware combines a neural network and a genetic algorithm to obtain
the optimal network size and parameters [41].

4. Application of NeuroSolutions for excel

The NeuroSolutions software is used as it has powerful built-in
features that can find the optimal neural network for a problem.
These are genetically optimization of the network parameters,
ability to train a neural network multiple times, and changing each
neural network parameter in several implementations. Neuro-
Solutions for Excel is broken down into five major modules that are
used to create and train a network. These modules are shown in
Fig. 1 [42] and described below.

4.1. Preprocess data

This module is used to apply different preprocessing techniques
to the raw data to provide it as input into the neural network.

4.2. Tag data

This module is used to graphically tag portions of the data as
Training Input, Training Desired, Cross-Validation Input, Cross-
Validation Desired, Testing Input, and Testing Desired.

� Column(s) as Input: The selection of this menu item allows one
to tag columns of data as Input.

� Column(s) as Desired: The selection of this menu item allows
one to tag columns of data as Desired.

� Rows by percentages: The selection of this menu item provides a
quickmethod for tagging multiple rows of data. Selection of this
sub-menu item allows one to enter the percentages (of the total
number of rows) to tag as Cross-Validation and Testing. The
remaining part of the data will be tagged as Training.
4.3. Create/open network

This module is used to create a NeuroSolutions breadboard
(neural network).

4.4. Training the network

This module is used to train a network using one of the several
built-in training processes. This powerful module permits the user
to easily find the optimum network for a particular problem.

� Train Genetic: The selection of this option trains the active
NeuroSolutions breadboard while genetically optimizing the
network choice of inputs, step sizes, momentum values, and the
number of processing elements in the hidden layer(s). Other
parameters can also be optimized by setting them up manually
within NeuroSolutions. The goal of the optimization is to find
the parameter settings that result in a minimum error. If cross-
validation is used, the goal will be to minimize the cross-
validation error. Otherwise, the goal will be to minimize the



Fig. 1. Flow diagram for methodology of work with NeuroSolutions software.
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training error. To perform genetic training, first, an initial pop-
ulation of networks is randomly created, each having a different
set of parameters. Each of these networks is then trained and
evaluated (to determine its fitness) based on theminimum error
achieved. The characteristics of the good networks are then
combined and mutated to create a new population of networks.
Again, the networks in this population are evaluated and the
characteristics of the best networks are passed along to the next
generation of networks. This process is repeated until the
maximum generations or maximum evolution time is reached
or the user stops the evolution.

� Train: The selection of this menu item, the active Neuro-
Solutions breadboard is trained one time and the best network
weights are saved.
Table 2
Ranges of network input parameters.

Parameter Range

Current (A) 0e15
la 1.5, 3, 5
lc 2, 3, 5
RHc=a (%) 50, 80, 100
T (Co) 50, 60, 70
4.5. Tests of the network

This module is used to test the network after the optimum
network has been found using the Train Networkmodule. In testing
the network, various performance measures are computed.

4.6. Analyze the network

This model aims to analyze the findings.
Fig. 2. Illustration of a feed-f
5. On designing the fuel cell artificial neural network

In this study, the process of designing the network is imple-
mented by NeuroSolutions, where the MLP model of the neural
network is constructed. The topology of the network is depicted in
Fig. 2. As can be seen in this Figure, the network includes one input
layer, two hidden layers, and one output layer. Network inputs are
operation temperature, relative humidity, anode stoichiometry,
cathode stoichiometry aswell as current. The output of the network
is the voltage. Table 2 shows the ranges of network input param-
eters. The hyperbolic tangent activation function (fðxÞ ¼ tanhðxÞ ¼
ex�e�x

exþe�x) is used for the hidden and output layers.
To create the network, 1296 series of data, 1296 inputs (T, i, RH,

anode stoichiometry and cathode stoichiometry) were used. For
orward neural network.



Table 4
Operating conditions in the three tests.

T (Co) P (bar) RHc=a (%) la lc

Test 1 50 1 50 1.5 2
Test 2 50 1 100 1.5 2
Test 3 50 1 100 1.5 3.5
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each of these, there is one input, and accordingly we have 1296
outputs. The data were randomly divided into three independent
subsets, namely 70% for training, 20% for cross-validation and 10%
for tests. This division ensures that each subset contains the same
amount of data from any operating mode as the initial dataset [11].

The number of neurons in the first and the second hidden layers
of the network was 40 and 45, respectively. It should be noted that
there is no precise method allowing the selection of the optimal
neuron number in the hidden layers. In this work, a “trial-and-er-
ror” procedure is adopted. It starts from a small number of neurons
and this number is successively increased until an acceptable
compromise between complexity and performance of the model is
achieved [11]. Associated with this procedure, the mean square
error of the difference between the response values of the experi-
mental data and the model data was calculated. The
LevenbergeMarquardt procedure is selected for the learning rule
and the number of the maximum epoch was set to 1000.

The training algorithm used was GA (Train Genetic option as
indicated in Section 4.4), which performs the training while
genetically optimizing the network’s choice of inputs, step sizes,
momentum values, and the number of processing elements in the
hidden layers. The goal of the optimization is to find the parameter
settings that result in the minimum error (minimize the training
error). The software creates first a random initial population of
networks with each a different set of parameters. Each of these
networks is then trained and evaluated to determine its fitness
based on the minimum error achieved. The characteristics of the
good networks are then combined and mutated to create a new
population of networks. After a new evaluation, the characteristics
of the best networks are passed along to the next generation of
networks. The parameters of GA that were chosenwere: Number of
Epoch: 1000; Population size: 50; Maximum generations: 100;
Maximum evaluation time: 60.

Table 3 reports the performance of networks 1 to 4 in terms of
the mean square error (MSE), the root mean square error (RMSE),
and the linear correlation coefficient (r) between model data and
neural network outputs. The MSE and RMSE are defined in Eqs. (15)
and (16) below.

MSE¼ 1
N

XN
i¼1

ðdesired output� network outputÞ2 (15)

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðdesired output� network outputÞ2
vuut (16)
6. Results and discussion

6.1. Experimental validation

To find the fuel cell polarization curve, three experiments were
performed. These were conducted in previous work [5] for a 50 cm2
Table 3
Performance of GA-ANN model.

Performance Run 1

Number of neurons First layer 10
Second layer 10

MSE 0.09851
RMSE 0.31386
r 0.9591
fuel cell. The operating conditions for these three experiments are
provided in Table 4. The validation of the model [27] is presented in
Fig. 3. The polarization curves obtained by the model correspond
well with the experimental data. Average absolute relative errors
(AARE) are used to compare the experimental data with the results
from the model and are calculated by Eq. (17).

AARE¼ 1
N

XN
i¼1

����Model value� Experimental value
Experimental value

���� (17)

The results show that Test 1, Test 2 and Test 3 achieved 3.68%,
2.80% and 2.01% of the AARE, respectively, indicating that good
matching between the model and experimental data has been
reached.

6.2. Optimization results

The output results of the neural network trained by the genetic
algorithm in comparisonwith the model results suggested by Salva
et al. [27] are presented in Fig. 4. According to this Fig. and 1.95% of
AARE, the network training is deemed successful by the genetic
algorithm and good agreement between network results and
model results is found.

According to the results obtained from the neural network, the
operating conditions offering maximum power output and the cell
voltage corresponding to these conditions are shown in Table 5. The
polarization curve with the best performance appears due to a
combination of four different polarization curves.

� Set 1: T ¼ 70 �C, RHa/c ¼ 100%, la ¼ 5, lc ¼ 5
� Set 2: T ¼ 70 �C, RHa/c ¼ 100%, la ¼ 5, lc ¼ 2
� Set 3: T ¼ 60 �C, RHa/c ¼ 100%, la ¼ 5, lc ¼ 2
� Set 4: T ¼ 60 �C, RHa/c ¼ 80%, la ¼ 3, lc ¼ 3

Differences between the different sets confirm the importance
of choosing appropriate operating conditions for various currents.
The polarization curves, as well as the maximum performance of
the PEMFC for the four different operating conditions, are shown in
Fig. 5.

It is observed that for low currents, the optimal operating con-
ditions appear at high temperatures, high relative humidity, high
stoichiometry at the cathode and anode sides. If the current is
increased, the outputs of the network recommend a reduction of
the temperature from 70 �C to 60 �C. In addition, cathode stoichi-
ometry should be reduced from5 to 2, but anode stoichiometry is at
the maximumvalue. This is because an increase in the temperature
also increases the limiting current density [43]. Hydrogen is
Run 2 Run 3 Run 4

15 35 40
15 40 45
0.01546 0.00276 0.00038
0.12433 0.05254 0.01949
0.9635 0.9761 0.9876



Fig. 3. Validation of the model versus experiments in terms of polarization curves.
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transferred from the flow channels at a much faster rate at high
currents, but within the air cathode, excessive water is produced in
the form of liquid. This creates a gas-liquid two-phase flow in the
porous cathode electrode. Transport of two-phase gaseous
reactants to the reaction surface, i.e., the cathode-membrane
interface, then becomes a mass transfer limiting mechanism [44].
In Fig. 5, the set 4 shows an abnormal behavior at a current around
13 A. A similar thing is also reflected in Fig. 6. This might be due the



Fig. 4. Comparison of optimization results (network results) with model results of
Salva et al. [27].

Table 5
Operating conditions for the maximum power.

Current (A) la lc RHc=a (%) T (Co) Cell voltage (V)

0 5 5 100 70 1.0090
1 5 5 100 70 0.9321
2 5 2 100 70 0.8795
3 5 2 100 70 0.8315
4 5 2 100 70 0.7920
5 5 2 100 60 0.7700
6 5 2 100 60 0.7463
7 5 2 100 60 0.7309
8 5 2 100 60 0.7184
9 5 2 100 60 0.7043
10 5 2 100 60 0.7002
11 5 2 100 60 0.6902
12 5 2 100 60 0.6840
13 3 3 80 60 0.6710
14 5 2 100 60 0.6612
15 5 2 100 60 0.6523

Fig. 5. Polarization curves for four different operating conditions and maximum
performance.

Fig. 6. Polarization curves for three operating conditions and the minimum
performance.
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fact that the relative humidity has its minimum value at this
current.

At a certain limited range of the operating parameters, besides
the operating conditions offering maximum power output and
corresponding cell voltages, there are some operating conditions
offering minimum power and corresponding cell voltages. Those
conditions are shown in Table 6 for various currents (based on
network results). These results clearly show that selecting oper-
ating conditions is important to increase the output power of a
specific PEM fuel cell [5]. The polarization curve with the worst
performance is found by combining three different polarization
curves.

� Set 5: T ¼ 50 �C, RHa/c ¼ 50%, la ¼ 1.5, lc ¼ 5
� Set 6: T ¼ 60 �C, RHa/c ¼ 50%, la ¼ 1.5, lc ¼ 5
� Set 7: T ¼ 50 �C, RHa/c ¼ 100%, la ¼ 5, lc ¼ 2

The polarization curves corresponding to these three operating
conditions and theminimum performance of the PEMFC are shown
in Fig. 6. It is observed that at low currents, high stoichiometry at
the cathode, low temperature, and relative humidity, as well as low
stoichiometry at the anode provide the lowest power and worst
performance. On the other hand, under these conditions, the acti-
vation losses are the highest [5]. By increasing the current, the
network results show only a change with temperature and the
PEMFC performance will change. An increase of the temperature
from 50 �C to 60 �C increases the ohmic losses and dry-out of the
membrane takes place [5].

At a current of 13 A, the cell shows the lowest power. The
operating condition at this current shows the maximum value of
relative humidity. This result is according to the literature because
humidification is not important at high currents. The reason is that
dehydration may occur at the anode side and flooding at the



Table 6
Operating conditions for minimum power.

Current (A) la lc RHc=a (%) T (Co) Cell voltage (V)

0 1.5 5 50 50 0.9502
1 1.5 5 50 50 0.8733
2 1.5 5 50 50 0.8261
3 1.5 5 50 50 0.7693
4 1.5 5 50 50 0.7266
5 1.5 5 50 50 0.9698
6 1.5 5 50 50 0.6688
7 1.5 5 50 60 0.6426
8 1.5 5 50 60 0.6185
9 1.5 5 50 60 0.5906
10 1.5 5 50 60 0.5581
11 1.5 5 50 60 0.5389
12 1.5 5 50 60 0.5229
13 5 2 100 50 0.3131

Fig. 8. Influence of operating temperature on the PEMFC performance.
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cathode side. Accordingly, the humidifying of the cathode gas
stream is not meaningful [45].

The polarization curve and the power curve for maximum and
minimum performance are presented in Fig. 7. This figure confirms
the very good agreement between the network and the model. The
network results of the output power indicate that for the operating
conditions of maximum performance, the power value reaches
9.78 W at 15 A. On the other hand, the maximum output power
with minimum operating conditions is about 4.07 W at 13 A. A
comparison between the operating condition of maximum per-
formance with the operating condition of minimum performance,
at a reference current of 12 A, shows 23.6% (8.02 W versus 6.49 W)
and 28.9% (8.16 W versus 6.33 W) increase of the power by the
model and the network, respectively.
6.3. Optimization of the operating conditions

In the following, the network results are used to predict the
influence on the PEMFC performance based on changes in the
operating conditions. As high temperature, high relative humidity,
high stoichiometry at the cathode and anode sides provide the best
performance (see section 4.2), these conditions (T ¼ 70 �C, RHa/

c ¼ 100%, la ¼ 5, lc ¼ 5) are selected as the fixed condition.
Fig. 8 depicts the effect of the operating temperature of the
Fig. 7. Polarization power curves for maximum and minimum power.
PEMFC on the polarization curves at fixed operating conditions
(P ¼ 1 bar, RHa/c ¼ 100%, la ¼ 5, lc ¼ 5) for three temperatures
(50 �C, 60 �C, and 70 �C). At low current densities, an increase in
temperature improves the cell performance. Nevertheless, at high
currents, an increased temperature gives the opposite result. This is
so because as the temperature increases, the membrane ion con-
ductivity is increased as well, which improves the diffusion of the
hydrogen protons in the membrane. In addition, as the electro-
chemical reaction becomes faster, the water production in the
cathode is increased which results in better hydration of the
membrane. Accordingly, the membrane ionic resistance is reduced
[46]. Then the performance of the cell is improved. At high current,
an increased temperature imposes an increase in the water vapor
partial pressure, which reduces the negative influence of flooding
but it may also lead to membrane drying, which results in a
decrease in ion conductivity. As a result, the performance of the cell
decreases.

In Fig. 9, the influence of the relative humidity on the polari-
zation curves of the PEMFC at a fixed operating condition (P¼ 1 bar,
T ¼ 70 �C, la ¼ 5, lc ¼ 5) is depicted for three relative humidities
(50%, 80% and 100%). By increasing the RH of the reactants,
improvement of the performance is achieved. This is so as a change
in the water mole fraction, due to the higher relative humidity of
the inlet gases, increases the amount of water in the membrane.
Then a reduction of the ionic resistance occurs and the proton
movement is enhanced and accordingly the outlet current is
increased at a certain voltage. As membrane drying is greater at
higher temperatures, a higher inlet RH is contributing to the
membrane hydration. For low currents, a change in the relative
humidity does not affect the performance. In contrast, at high
currents, a higher relative humidity improves the performance, as a
considerable drop in the ohmic resistance occurs. These results
agree with those presented in Ref. [47e49].

Fig. 10 provides the influence of the anode stoichiometry on the
polarization curves of the PEMFC at fixed operating conditions
(P ¼ 1 bar, T ¼ 70 �C, RH ¼ 100%, lc ¼ 5) for three anode stoichi-
ometries (1.5, 3 and 5). It is observed that for all currents, increasing
the anode stoichiometry improved cell performance, but the
change is not so significant. Because this increase leads to increased
hydrogen concentration, the electrochemical reaction rate is



Fig. 10. Influence of anode stoichiometry on the PEMFC performance.

Fig. 11. Influence of cathode stoichiometry on the PEMFC performance.Fig. 9. Influence of relative humidity on the PEMFC performance.
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increased as well.
Fig. 11 provides the influence of cathode stoichiometry on the

polarization curves of the PEMFC at fixed operating conditions
(P ¼ 1 bar, T ¼ 70 �C, RH ¼ 100%, la ¼ 5) for three cathode stoi-
chiometries (2, 3 and 5). At low currents, a change in the cathode
stoichiometry does not affect the cell performance. However, at
high currents, a decrease of the cathode stoichiometry results in
improvement of the cell performance. At low current, the cell is
influenced significantly by the activation losses and it is found that
cell performance is almost independent of the cathode stoichiom-
etry. Limitations of the mass transport or concentration over-
potentials appear when the reactants cannot be supplied
sufficiently fast for the chemical reaction to take place. This may
happen at high currents when a lot of liquid water is produced at
the cathode [50], so for high currents, decreasing the cathode
stoichiometry improves the cell performance. In addition, in this
situation, the concentration of water inside the duct increases
faster and as a result, the membrane becomes humidified more
quickly.

It must be noted that the conclusions of the proposed ANN
model in this work may not be directly applicable in practice to any
cell and operating conditions, as the properties and design of the
cell components are obviously playing a fundamental influence on
the operating conditions that lead to optimum performance. The
analysis and discussions presented are corresponding to the range
of operating conditions defined in Sections 6.2 and 6.3 together
with the cell used (with components described in Salva et al. [27]).
However, the methodology for the ANN model development pre-
sented in this work is applicable to any fuel cell and could be used
to optimize the performance of the fuel cell being considered in
each case.
7. Conclusions

An artificial neural network (ANN) approach was applied to
maximize the output power of a PEMFC for various currents.
Various operating conditions were considered, i.e., operating tem-
perature, relative humidity, stoichiometry at cathode and anode
sides at a constant pressure of 1 bar. For this particular case, the
comparison between the operating condition of maximum per-
formance with the operating condition of minimum performance
at a reference current of 12 A, shows 23.6% (8.02 W versus 6.49 W)
and 28.9% (8.16 W versus 6.33 W) increase of the power outputs by
the model and the network, respectively.

As the network results presented a very good agreement with
model results, as AARE was 1.95%, the network results were used to
study the influence of the operating conditions on the PEMFC
performance. The main conclusions are as follows:

1. For low currents, an increase of the temperature improved the
performance of the cell, but for higher currents, the cell per-
formance decreased as the partial pressure of water vapor was
increased due to the increased temperature and membrane
drying.
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2. For low currents, the cell performance was relatively constant as
the relative humidity was changed, but with increasing current,
the cell performance was more perceptible to a change in rela-
tive humidity. Thus, as the relative humidity increases, due to
the reduced charge transfer resistance, the cell performancewas
improved.

3. For all currents, increasing the anode stoichiometry improved
the cell performance, but the change was not so significant. This
improvement resulted in increased hydrogen concentration and
then the electrochemical reaction rate was improved.

4. For low currents, a change of the cathode stoichiometry did not
affect the cell performance. However, for high currents, the
relative humidity was important. At high RH values, due to the
mass transport limitations or concentration overpotentials, a
decrease of the cathode stoichiometry improved cell perfor-
mance. At low RH values, in general, it is better to increase the
cathode stoichiometry as higher oxygen and water removal
capability is achieved.

All the considered parameters in the model concerned the
operating conditions of the PEM fuel cell, and therefore the power
output was predicted only based on the optimum operating con-
ditions. Optimization of the PEMFC performance based on design
parameters will be in the scope of future investigations. The per-
formance optimization is a key approach to achieve a cost reduction
in PEMFCs, as more compact stacks can be achieved featuring a
reduced number of cells for a given power output. The proposed
ANN model revealed the maximum (or minimum) power output
and the optimal operating conditions for any current, enabling the
prediction of the optimal operation conditions for any current for
achieving the maximum power output. The application of the ANN
developed to the analysis of a PEMFC with MPL is also a novelty of
this work.
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Nomenclature
Abbreviations

ANN: artificial neural network
BP: Bipolar Plate
CL: Catalyst Layer
DE: Differential evolution
EES: Engineering Equation Solver
FTCS: Fault Tolerant Control Strategy
GDL: Gas Diffusion Layer
HGA: Hybrid Genetic Algorithm
MLP: Multi-layer feed-forward networks
MPL: Micro Porous Layer
MPSO: Modified Particle Swarm Optimization
PEM: Polymer Electrolyte Membrane
PEMFC: Polymer Electrolyte Membrane Fuel Cell
RNN: Recurrent Neural Network
SNAOA: Sequential Neural-network Approximation and Orthogonal Arrays

Symbols

a: water activity
Cmem
H2O;i: water concentration in the membrane in anode and cathode (mol/m3)

Ci;GDL�CL: hydrogen or oxygen concentration at the GDL-CL interface of the anode or
cathode (mol/m3)

Cref : reference concentration (mol/m3)
Ea;i : activation energy in anode and cathode (J/mol)

E0ðT;PÞ: theoretical equilibrium open-circuit potential of the cell (V)
F: Faraday constant (96,487 C/mol)
i: current density (A/m2)
ilim;i : limiting current density in anode or cathode (A/m2)
i0;i : exchange current density in anode and cathode (A/m2)
iref ;i : reference exchange current density in anode and cathode (A/m2)
G: Gibbs free energy (J)
ni: equivalent electrons per mole of reactant (2 for anode side and 4 for cathode side)
P0: reference pressure (Pa)
Psat : saturation pressure (Pa)
Panode=cathode: operating pressure in anode and cathode (Pa)
R: constant of the ideal gases (8.314 J/mol K)
Rcontact : contact resistance between the GDL and the BP (Um2)
RH: Relative humidity
T: operating temperature (T)
ti: Thickness (m)
Vcell: output voltage (V)
yi: mole fraction of hydrogen, water and oxygen in anode and cathode

Greek letters

ai: charge transfer coefficient in anode and cathode
gi: reaction order for the elementary charge transfer step
ha;i : activation overpotentials in anode and cathode (V)
hm;i : concentration overpotentials in anode and cathode (V)
hr : ohmic overpotential (V)
l: water content inside the membrane
si: electrical conductivity (1/ Um)
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