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Data engineers are very interested in data lake technologies due to the incredible abun-
dance of datasets. They typically use clustering to understand the structure of the datasets
before applying other methods to infer knowledge from them. This article presents the first
proposal that explores how to use a meta-heuristic to address the problem of multi-way
single-subspace automatic clustering, which is very appropriate in the context of data
lakes. It was confronted with five strong competitors that combine the state-of-the-art
attribute selection proposal with three classical single-way clustering proposals, a recent
quantum-inspired one, and a recent deep-learning one. The evaluation focused on explor-
ing their ability to find compact and isolated clusterings as well as the extent to which such
clusterings can be considered good classifications. The statistical analyses conducted on
the experimental results prove that it ranks the first regarding effectiveness using six stan-
dard coefficients and it is very efficient in terms of CPU time, not to mention that it did not
result in any degraded clusterings or timeouts. Summing up: this proposal contributes to
the array of techniques that data engineers can use to explore their data lakes.

� 2021 Elsevier Inc. All rights reserved.
1. Introduction

TheWeb is currently the most important data source since it provides a plethora of datasets on virtually any topics. A data
lake is a repository to which data engineers dump as many datasets as possible in an attempt not to miss any chances to infer
new valuable knowledge [41,25,33,15]. It is then not surprising that many IT providers are competing to devise technologies
that help data engineers work with their data lakes [22,4,34].

The key here is that data engineers are not expected to have any clues on the structure of the data; particularly, the data
are not expected to be pre-classified. This precludes using supervised machine-learning methods directly on them and
argues for using unsupervised methods on the hope to discover clusters of data that are compact, i.e., the data are similar
within the clusters, and isolated, i.e., they are dissimilar amongst the clusters [18]. Every cluster is then a sub-group of data
that may help data engineers understand the structure of the datasets in their data lakes. Once they are studied, they con-
stitute the starting point to apply other machine-learning methods whose ultimate goal is to infer new knowledge [20]. That
knowledge is expressed using models that capture the relationships amongst the attributes that flag a datum as belonging to
one or another cluster. Much effort is currently being put on explaining the models so that data engineers can interpret them
[17].

Ideally, a clustering technique must meet the following requirements in the context of data lakes: R1) it must be able to
deal with business data, since typical data lakes provide datasets in which data are observations or aggregations of other data
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that cannot be assumed to be normally distributed or to have any spatial and/or temporal relationships; R2) it must be
multi-way, which means that it must select a single subspace of informative attributes and cluster the original dataset in
that subspace simultaneously, since single-way proposals perform these tasks independently and they are known to produce
worse clusterings and multiple subspaces are often confusing for data engineers; R3) it must be able to deal with small- and
high-dimensional data, since typical data lakes have datasets whose dimensionalities range from a few to thousands of attri-
butes; R4) it must be automatic, that is, it must not require the user to provide the number of clusters manually, since the
data engineer may not be assumed to know anything about the structure of the datasets; R5) it must not require per-dataset
configuration, since typical data lakes provide far too many.

In the literature, there are many proposals that attempt to address the previous challenges
[48,21,26,23,42,7,16,46,36,2,47,14,9]. Many of them use algorithmic approaches whose goal is to find a good enough solu-
tion, but they usually have trouble to deal with large or high-dimensional datasets [11]. Many other proposals use meta-
heuristic approaches that map the problem onto nature-inspired processes. They are interesting insofar they can explore
complex search spaces in parallel, which definitely contributes to both effectiveness and efficiency; it is then not surprising
that they have found their way into many scientific and engineering problems [37,11]. Recently, some deep-learning
approaches have been published and they have proven to be very effective when dealing with images, text, or sounds
[35,24]. Unfortunately, meta-heuristics and deep learning are insufficiently explored; particularly, there are not any propos-
als to address multi-way single-subspace automatic clustering using meta-heuristics or the single- and multiple-subspace
problems using deep learning.

This article presents RóMULO, which explores the research niche regarding using meta-heuristics. It was confronted with
five strong competitors that integrate the state-of-the-art GSPPCA method [8] to find subspaces of informative attributes and
several methods to perform the clustering, namely: Affinity-Propagation, Mean-Shift, and OPTICS-Xi, which are classical pro-
posals, as well as PQC, which is a quantum-inspired proposal [12], and DCC, which is a deep-learning proposal [43]. The eval-
uation focused on two key points, namely: first, exploring their ability to find compact and isolated clusterings, which was
evaluated on 46 real-world data lakes with a total of 2561 datasets that provide 15435171 unclassified data; second, explor-
ing the extent to which such clusterings can be considered good classifications, which was evaluated on five additional data
lakes with a total of one hundred datasets that provide 1200552 pre-classified data. The comparison was performed in terms
of both effectiveness and efficiency. Regarding effectiveness, six standard coefficients were computed, namely: Silhouette,
Davies-Bouldin, Caliński-Harabasz, Adjusted Rand, Fowlkes-Mallows, and Accuracy. Regarding efficiency, the CPU time
was used as the main measure. Additionally, the ratio of degraded clusterings and the ratio of timeouts were computed.
The experimental results were studied using a statistically sound method, which confirmed that RóMULO ranks at the first
position regarding the six effectiveness coefficients and it is very efficient for practical purposes; furthermore, it was the only
proposal that did not result in any degraded clusterings or timeouts.

The rest of the article is organised as follows: Section 2 analyses the related work; Section 3 describes the details of the
proposal; Section 4 presents the experimental analysis; finally, Section 5 concludes the article.
2. Related work

This section reports on the most closely-related work. First, it introduces a conceptual framework that homogenises the
vocabulary in this area; then, the literature is reviewed along two axes: single-way versus multi-way proposals; finally, there
is a discussion that makes it clear the motivation behind RóMULO.

2.1. Conceptual framework

A dataset is a set of the form fx1; x2; . . . ; xng, where each xi is a d-dimensional vector of attributes xi ¼ ðxi;1; xi;2; . . . ; xi;dÞ
(n P 0; d P 1;1 6 i 6 n).

Clustering dataset X seeks to find k clusters (1 6 k 6 n) such that they are as compact (high intra-similarity) and isolated
(low inter-similarity) as possible [10]. The problem can be formalised as the following optimisation problem:
max f ðX;M;CÞ

st
Xk

j¼1

M½i; j� > 0 1 6 i 6 n

0 6 M½i; j� 6 1 1 6 i 6 n; 1 6 j 6 k

C½j� 2 P1X � P1ðA� RÞ 1 6 j 6 k
where f denotes a fitness function, X denotes the input dataset,M denotes a membership matrix, C denotes a clustering, and A
denotes a set of attributes. As usual, P1 denotes the non-empty powerset and R denotes the real numbers.

The fitness function helps assess how compact and isolated the clusters are. In the literature, there are many choices to
implement it. They range from simple coefficients to multi-objective functions [47,5,19,30,27,31]. Some coefficients can be
computed on the clusterings themselves because they focus on compactness and isolation only, but other coefficients require
the clustering plus a ground truth because they also measure the extent to which the clustering can be used to classify the
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data into a number of pre-defined classes. They all can be used to assess the same clustering from different, complementary
perspectives, which argues for a means to combine them using multi-objective functions. The Lexicase method is such a
multi-objective function and it was specifically designed to work in the context of genetic search strategies [19,27].

The membership matrix M has n rows and k columns; intuitively, M½i; j� indicates if the i-th datum in X belongs to cluster
C½j� or not (n ¼ jXj;1 6 k 6 n;1 6 i 6 n;1 6 j 6 k). A clustering proposal is hard if it assigns every datum to a single cluster
(81 6 i 6 n : 911 6 j 6 k : M½i; j� ¼ 1) and overlapping otherwise (81 6 i 6 n : 91 6 j 6 k : M½i; j� > 0). The latter can be crisp
if the membership matrix is Boolean (81 6 i 6 n : 81 6 j 6 k : M½i; j� 2 f0;1g) or fuzzy if it is a likelihood matrix
(81 6 i 6 n : 81 6 j 6 k : 0 6 M½i; j� 6 1).

The components of clustering C½j� are pairs of the form ðX 0;A0Þ, where X 0 denotes a non-empty subset of the input dataset X
and A0 is a non-empty subset of A� R (1 6 j 6 k;1 6 k 6 n;n ¼ jXj). Intuitively, X 0 denotes the subset of data in a particular
cluster and A0 denotes a set of pairs ðai;wiÞ in which each ai refers to an attribute and eachwi to a weight that represents how
informative it is (1 6 i 6 d; d P 1). A clustering proposal is single-way [23,47] if it clusters the data using all of the input

attributes, i.e., A0 ¼ fðai;1Þgdi¼1 (d P 1); it is multi-way [23,46,14,9] if it finds the subspace of most informative attributes

and clusters the datasets simultaneously, i.e., A0 ¼ fðai;wiÞgdi¼1 (d P 1;0 6 wi 6 1). The latter can be further subclassified
as crisp or fuzzy depending on whether the weights are Boolean or real. The single-way proposals must necessarily rely
on a pre-processor that selects the informative attributes [28,8], but Jain [23] found out that this typically results in worse
clusterings. A proposal is single-subspace if all of the clusters refer to the same subspace of attributes; it is multiple-subspace
if each cluster may refer to a different subset of attributes. A proposal is manual if the user must provide the number of clus-
ters to find beforehand; it is automatic if it can find the number of clusters automatically.

Clustering is inherently complex from a computational point of view. A basic hard single-way manual proposal has to
explore a search space whose size is the Stirling partition number [3,47], namely:
Sðn; kÞ ¼ 1
k!

Xk

i¼0

ð�1Þk�i k
i

� �
in:
If the number of clusters k is not known beforehand, then the search must be performed in a larger space whose size is the
Bell number, namely:
BðnÞ ¼
Xn
k¼0

Sðn; kÞ:
The search space grows by Oð2dÞ in multiple-subspace clustering problems with regard to single-subspace problems

because there are 2d � 1 non-empty subsets of attributes in a dataset with d-dimensional data (d P 1). Thus, in a data engi-
neering context, it does not generally make sense to try to find the optimal solution to a clustering problem, but an approx-
imate solution that is good enough for practical purposes.
2.2. Single-way clustering

Originally, most approaches to single-way clustering were algorithmic, but meta-heuristic approaches have found their
way into this field because their nature-inspired approaches help explore complex search spaces using multi-core and/or
multi-threaded CPUs. Recently, some proposals that are based on deep learning have also found their way into clustering,
with a focus on unstructured data like images, text, or sounds. Fig. 1 summarises the existing approaches; the labels on
the vertical axis describe the approach and the bars show the total number of proposals grouped by several temporal periods.

The surveys by Jain [23] and Xu and Tian [47] focus on algorithmic approaches. The most common ones are the following:
a) data distribution, which assumes that the clusters can be identified by finding sub-distributions of data; b) model fitting,
which generalises the previous idea to arbitrary statistical models whose parameters are fit to the data; c) density of data,
which assumes that clusters are high-density groups of data; d) graph theory, which assumes that the data are the nodes of a
graph in which the edges represent distance-based relationships amongst them; e) grid search, which assumes that the data
may be arranged in a grid in which the clusters are squared groups of data; f) k-means variants like bisecting k-means, kd-
means, single-pass k-means, k-medoids, kernel k-means, sort-means, k-harmonic means, or x-means; g) fractal theory,
which assumes that the clusters are subgroups that share some geometric properties with the whole dataset; h) kernel func-
tions, which project the input data onto higher-dimensionality attribute spaces in which clusters can be made apart easily; i)
ensemble modelling, which first generates candidate clusters using other techniques and then merges the results using con-
sensus functions; j) spectral graph theory, which addresses the problem as a graph partitioning problem; k) affinity propa-
gation, which computes the centroids of the clusters as the data with the highest affinity to the other data; l) quantum
mechanics, which maps the clustering problem onto some phenomena that are formalised using Schrödinger’s equation;
and m) hybrid approaches that have managed to successfully combine two or more of the previous ones.

The surveys by Hruschka et al. [21], Bong and Rajeswari [7], Rana et al. [42], Alam et al. [2], Nanda and Panda [36], García
and Gómez-Flores [14], and Figueiredo et al. [13] focus on meta-heuristic approaches. The most common ones are the fol-
lowing: a) evolutionary approaches, which are based on genetic algorithms, evolutionary strategies, genetic programming, or
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Fig. 1. Single-way clustering proposals.
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differential evolution; b) physical approaches, which are based on simulated annealing, memetic algorithms, harmony
search, shuffled frog leaping, quantum theory, gravitational search, or river dynamics; c) collective-intelligence approaches,
which are based on ant colonies, particle swarms, bee swarms, fish swarms, cat swarms, or invasive weeds; and d) bio-
inspired approaches, which are based on artificial immunity, bacterial foraging, or fireflies.

The surveys by Min et al. [35] and Karim et al. [24] focus on deep-learning approaches, which can be grouped as follows:
a) proposals that use an auto-encoder to compute a latent attribute space on which clustering techniques like k-means have
proven to work better than on the original datasets; b) proposals that use variational auto-encoders, which learn the distri-
bution model of the input data so that it can be used to generate new synthetic data for learning purposes; c) proposals that
rely on fully connected networks, convolutional networks, and deep-belief networks that must be trained using two com-
plementary loss functions; and d) proposals that rely on min–max adversarial games between two neural networks, namely:
a generative network that generates both similar and dissimilar synthetic data regarding a particular cluster and a discrim-
inative network that learns to classify a new datum as belonging to that cluster or not.

2.3. Multi-way clustering

Jain [23], Sim et al. [46], García and Gómez-Flores [14], and Deng et al. [9] surveyed the existing multi-way clustering
proposals, which can be subclassified according to whether they attempt to find the clusters in a single or multiple sub-
spaces. Most proposals use algorithmic approaches, only a few use meta-heuristic approaches, and none uses a deep-
learning approach, cf. Fig. 2.
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Fig. 2. Multi-way clustering proposals.
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Regarding the algorithmic approaches to single-subspace clustering, there are only two: a) the separate-feature approach,
which learns the weights of the attributes before finding the clusters, and b) the coupled-feature approach, which learns the
weights of the attributes during the clustering process.

Regarding the multiple-subspace problem, there are a few more algorithmic approaches, namely: a) projected clustering,
which relies on distance functions and/or data patterns; b) subspace clustering, which aims at finding all possible clusters in
all possible subspaces; c) projection/subspace approaches, which somewhat combine the previous approaches; d) multi-
weight k-means, e) multi-weight fuzzy c-means, and g) probability mixture, which are somewhat inspired by the classical
single-way counterparts; finally, h) there are some miscellaneous approaches that address the three most important prob-
lems with the previous ones, namely [26,9]: they focus on cluster compactness and neglect cluster isolation, they are very
sensitive to the configuration parameters, and they do not deal well with datasets with clusters of diverging sizes.

Regarding the meta-heuristic approaches to single-subspace clustering, no proposal was found in the literature. Regard-
ing multiple-subspace clustering, there are three approaches, namely: a) co-evolutionary clustering, which leverages attri-
bute weighting methods to deal with complex data and noisy and correlated attributes; b) particle swarm, which seeks for
near-optimal variable weights for a given objective function; and c) multi-objective evolution, which benefits from both the
merits of crisp subspace clustering and the good properties of the multi-objective optimisation-based approach for fuzzy
clustering. Unfortunately, the previous approaches have stability problems that hinder applying them to many real-world
datasets [26,9].
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Realise that there are not any deep-learning approaches to multi-way clustering since such techniques are not intended
to select any informative attributes, but to transform the original attributes into so-called latent attributes. They somewhat
encode the original attributes by aggregating the results output by several neurons on the hope that other techniques,
including clustering, become more effective and/or efficient when working on them. The latent attribute space is then not
generally expected to be understood by a data engineer; contrarily, a subspace of the original attributes helps data engineers
focus on the informative attributes that he or she needs to understand in order to grasp the structure of a dataset.
2.4. Discussion

The ideal clustering technique in the context of data lakes must meet the following requirements:

R1: Must be able to deal with business data. Typical data lakes provide business data that represent real-world entities or
events by means of vectors with many attributes. They can be observations or aggregations of other data that cannot be
assumed to be normally distributed or to have any spatial and/or temporal relationships. They may also include unstruc-
tured data like images, text, or sounds, which can be dealt with using specific-purpose proposals [39].
R2: Must perform multi-way clustering. Typical data lakes provide many attributes that are uninformative regarding the
structure of the data and make it difficult for data engineers to find it. Single-way proposals require a pre-processor to
find the most informative attributes and then cluster the dataset that results from projecting the original dataset onto
that subspace; multi-way proposals find the subspace of attributes and cluster the projected datasets simultaneously,
which has been proven to produce better results [23].
R3: Must deal with high-dimensional data. High data dimensionality is problematic because of two reasons [48,3,47,9]:
on the one hand, many attributes might be uninformative and introduce noise that does not help the data engineer
understand the structure of the data or the clustering algorithm to find good clusters; on the other hand, more attributes
means more inefficiency and more chances to miss the important attributes and the relationships amongst them that
help find good clusters [29].
R4: Must not require the user to provide the number of clusters. This means that the proposal must be able to guess the
number of clusters in the input datasets automatically and not require the user to set it beforehand. This is the case of
data lakes, since data engineers cannot be assumed to have any prior knowledge of the datasets in their data lakes,
but their topic. Unfortunately, not knowing the number of clusters beforehand is known to increase the size of the search
space exponentially [38,1], which is even more problematic in the context of data lakes as the size of the datasets
increases.
R5: Must not require per-dataset configuration. Finding the appropriate values of the configuration parameters typically
requires to perform grid search, which is an inherently costly and difficult procedure [29]. Furthermore, fine-tuning the
configuration parameters may induce a particular clustering instead of finding the actual clusters in the dataset [46]. In
the context of data lakes, there are typically too many datasets, which implies that fine-tuning the configuration param-
eters for each particular dataset is not generally a good idea.

The analysis of the literature in the previous sections reveals that there are many clustering proposals that might well
meet the previous requirements. What shines in this analysis is that there are some clear research niches, cf. Figs. 1 and
2, namely: using meta-heuristics to address the multi-way single-subspace problem or deep-learning to address the
multi-way single- or multiple-subspace problem. This article presents a proposal that explores the first research niche
and meets the previous requirements.

A quick reader might think that single-subspace clustering is not an actual problem since one might use a multiple-
subspace technique and then select the best subspace. That is not possible due to a subtle, but very important difference
between single- and multiple-subspace clustering. Single-subspace clustering refers to finding one subspace of attributes
in which the best possible clustering can be computed; note that a proposal like RóMULO can find multiple subspaces
and clusterings, but returns the best one, which is typically more than enough for practical purposes. What matters here
is that the best subspace (or the suboptimal ones) results in complete clusterings of the original dataset. Contrarily,
multiple-subspace clustering refers to finding multiple clusters in likely different subspaces of attributes; there is not gen-
erally a best subspace because all of the subspaces complement each other to produce a set of clusterings of the original
dataset. Selecting just one of the subspaces returned leads to a partial clustering of the original dataset. The idea of returning
multiple complementary clusterings in the context of data lakes is not that appealing since the ultimate goal is to help a data
engineer understand his or her datasets and to infer new knowledge from them. The more compact and isolated the data
returned and the less dimensions is generally the better because this helps focus on groups of similar data.

Finally, it is worth mentioning that a reviewer highlighted a possible connection between clustering in the context of data
lakes and so-called collaborative fuzzy clustering [40,44]. This technique was devised to deal with multiple datasets that pro-
vide complementary data, but cannot be merged, e.g., because of legal or performance issues. Collaborative fuzzy clustering
is a very good clustering technique in that context, but it is not generally applicable in the context of data lakes because of
the following reasons: it assumes that the datasets have the same attributes, it does not compute a subspace of informative
attributes, and it requires the number of clusters to be set beforehand.
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3. The algorithm

Algorithm1: The main method of RóMULO.

This section introduces the algorithm behind RóMULO. Algorithm1 sketches its main method and illustrates it using a
graphical abstract. It works on an input dataset X and outputs a subspace of attributes A and a clustering C. The method per-
forms three steps in sequence: computing the initial population, evolving it, and computing the results. For the sake of read-
ability, the configuration parameters of RóMULO are introduced as constants that are denoted using uppercase, multi-letter
identifiers.

Algorithm2: Method to generate a population.

method generatePopulation(X) returns P
n :¼ jXj
d :¼ dim X
P :¼ £
repeat PSIZE times
k :¼ uniformð2; dn=2eÞ
A :¼ ðbernoullið0:50Þ; . . .d ;bernoullið0:50ÞÞ
P :¼ P [ fðk;AÞg

end
end

The first step consists in generating a population P with PSIZE individuals, cf. Algorithm2. Generally speaking, the indi-
viduals are expected to encode the information that the meta-heuristic requires to make decisions regarding how to explore
the search space. Since RóMULO outputs a number of clusters and a subspace of attributes, then the search space consists of
tuples of the form ðk;AÞ, where k denotes the number of clusters and A is a Boolean vector that encodes the attributes that
must be used to compute the clusters. The method first initialises n and d to the number of data and attributes in the input
dataset X, respectively, and P to an empty set. It then iterates to generate a population with PSIZE individuals in set P. The
individuals are generated with random numbers of clusters (which are drawn from a Uniform distribution in interval ½2;n=2�,
where n denotes the number of data in the input dataset), and random subspaces of attributes (which are drawn from a Ber-
noulli distribution with mean 0:50, i.e., every attribute has the same chances to be selected).

The second step consists in evolving the initial population NGEN times using a ðMU þ LAMBDAÞ genetic strategy [6]. The
evolution is performed by generating dLAMBDAPSIZEe offsprings and then selecting the best dMUPSIZEe individuals to create
the new generation. Both LAMBDA and MU are introduced as percentages of the initial population size.
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Algorithm3: Method to generate the offspring.

method generateOffspring(P) returns
S :¼ £

repeat dLAMBDA PSIZEe times
if bernoulliðCXPBÞ then
x; y :¼ crossover(P)
S :¼ S [ fx; yg

else if bernoulliðMUTPBÞ then
x :¼ mutate(P)
S :¼ S [ fxg

else
fxg :¼ pickðP;1Þ
S :¼ S [ fxg

end
end

end

Algorithm3 shows the method that generates the offspring. It iterates a total of dLAMBDAPSIZEe times and produces the
offspring as follows: it first determines if two new offsprings must be generated by crossing two existing individuals, which
happens according to a Bernoulli random variable with mean probability CXPB; if crossing is not selected, then the method
determines if a new offspring must be generated by mutating an existing individual, which happens according to a Bernoulli
random variable with mean probability MUTPB; if neither crossing nor mutation are selected, then one random individual is
picked from the population and cloned. (In the pseudo-code, pickðk; PÞ denotes a random subset of k different individuals
from population P.).

Algorithm4: Method to crossover two individuals.

method crossover(P) returns (x0; y0)
fx; yg :¼ pickðP;2Þ
(k1;A1) :¼ x
(k2;A2) :¼ y
d :¼ dim P
p :¼ uniformð1; d� 1Þ
x0 :¼ (k2;A2½1 : p� � A1½pþ 1 : d�)
y0 :¼ (k1;A1½1 : p� � A2½pþ 1 : d�)

end

Algorithm4 presents the method to perform crossover. First, it picks any two individuals x and y from population P and
extracts their components ðk1;A1Þ and ðk2;A2Þ. Next, it computes the number of attributes d in population P and generates a
random natural p in interval ½1; d� 1�. Then it generates the following offsprings: x0 ¼ ðk2;A2½1 : p� � A1½pþ 1 : d�Þ and
y0 ¼ ðk1;A1½1 : p� � A2½pþ 1 : d�Þ, where v½i : j� denotes the slice of vector v from its i-th position up to its j-th position and
v � u denotes the catenation of vectors v and u. Summing up, the offsprings exchange the number of clusters in their parents
and a part of their subspaces of attributes.

Algorithm5: Method to mutate an individual.

method mutate(P) returns x0

fxg :¼ pickðP;1Þ
(k;A) :¼ x
k0 :¼ uniformðk� 1; kþ 1Þ
p :¼ uniformð1; jAjÞ
d :¼ dim P
A0 :¼ A½1 : p� 1� � ðnot A½p�Þ � A½pþ 1 : d�
x0 :¼ (k0;A0)

end
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Algorithm5 presents the method to perform mutation. First, it picks an individual x from population P and extracts its
components ðk;AÞ. Next, it computes a random natural in interval ½k� 1; kþ 1�, which will be used as the number of clusters
in the offspring; it also computes a random natural in interval ½1; jAj� that represents the attribute to be mutated in the off-
spring. Finally, it assembles and returns the new offspring.

Once the new offspring has been generated, the ðMU þ LAMBDAÞ genetic strategy selects the best dMUPSIZEe individuals
from both the current population and the offspring. It is implemented using the version of the Lexicase method that was
described by Cava et al. [27]. Helmuth et al. [19] published an in-depth analysis of Lexicase; their conclusion was that this
method is very appropriate in cases in which it is not easy to aggregate multiple quality indicators into a single value. This is
the case of RóMULO, whose search strategy seeks to minimise the number of clusters and to maximise the Silhouette coef-
ficient, to minimise the Davis-Bouldin coefficient, and to maximise the Caliński-Harabasz coefficient. Intuitively, it seeks to
minimise the number of clusters since the smaller number of clusters the easier for a data engineer to understand them; it
seeks to optimise the other coefficients because they are known to achieve their best values when the clusters are compact
and isolated. Aggregating the four indicators into a meaningful single value is not easy because they range in different inter-
vals whose lower and upper bounds do not have homogeneous interpretations. In such cases, the Lexicase method provides a
good solution to implement a multi-objective fitness function. Note that selecting the best individuals requires to evaluate
them using the three previous coefficients. Simply put: the original dataset must be projected onto the subspace of attributes
selected by each individual and then the projection must be clustered using any applicable proposal in the literature. Note
that the decision on which exact proposal must be used requires some experimentation, which is the reason why it is
deferred to the section on the experimental analysis.

The main loop of the algorithm evolves the initial population NGEN times. When it finishes, the best individual from the
last population is selected. Let that individual be ðk;AÞ. The main method then projects the input dataset onto the subspace of
attributes denoted by A and then clusters the resulting projection using the same method used to compute the coefficients
that guide the search process.
4. Experimental analysis

This section presents the details behind the experimental analysis, namely: first, the experimental setting is described;
then, the configuration procedure is explained; next, the experimental methodology is introduced; after that, the experimen-
tal results regarding clustering power are presented; finally, the experimental results regarding classification power are also
presented.

4.1. Experimental setting

RóMULO1 was implemented using Python 3.7.6 and several components: DEAP 1.3.1 to implement the meta-heuristic, Pan-
das 1.0.3 to implement the datasets, NumPy 1.18.2 to implement vector and matrix operations, and Scikit-Learn 0.24.2 to lever-
age the implementation of some classical clusterers and to compute performance measures; the implementations of GSPPCA
[8], PQC [12], and DCC [43] were provided by their authors.

The experiments regarding the ability to find compact and isolated clusterings were run on a collection of 46 data lakes
that provide 15435171 unclassified data that are grouped into 2561 datasets. They were sampled from several open-data
governmental repositories (Brazil, Canada, France, Spain, USA, and UK) and several reputed organisations (Kaggle, UCI, World
Bank, and World Health Organisation). Table 1 provides a description in terms of name, number of datasets, number of data,
number of attributes, and ratio of informative attributes according to GSPPCA. The data lakes have an average of 55:67 data-
sets, with a global minimum of four datasets and a global maximum of 531 datasets. They range in average size from 556:28
to 7632:70 data per dataset, with an average of 3755:78 data, a global minimum of three data, and a global maximum of
43828 data; the average number of attributes ranges from 38:76 to 2995:02 attributes per dataset, with an average of
477:64 attributes, a global minimum of three attributes, and a global maximum of 69166 attributes. The average ratio of
informative attributes ranges from 0:19 to 0:87 per dataset, with an average of 0:55, a global minimum smaller than 0:01,
and a global maximum that equals 1:00. As of the time of writing this article, this is the largest experimentation repository
in the context of data lakes. These data were not pre-classified because they are business data without any particular
purposes.

The experiments regarding the extent to which the clusterings returned by RóMULO or the competitors can be considered
good classifications were run on five additional data lakes that provide 1200552 pre-classified data that are grouped into
100 datasets. They were randomly sampled from the open-data repositories by Kaggle, OpenML, and the UCI, plus some stan-
dard evaluation datasets from Scikit-Learn and some common synthetic datasets. Table 2 summarises them: the data lakes
have an average of 20:00 datasets, with a global minimum of four datasets and a global maximum of 53 datasets. They range
in average size from 154:60 to 35461:20 data per dataset, with an average of 7674:36 data, a global minimum of seven data,
and a global maximum of 52619 data; the average number of attributes ranges from 15:60 to 3465:20 attributes per dataset,
with an average of 520:96 attributes, a global minimum of two attributes, and a global maximum of 10000 attributes. The
1 RóMULO and the experimental data lakes are available at https://doi.org/10.17632/y5v2zy356t.1.
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Table 1
Description of the clustering data lakes.

Number of data Number of attributes Ratio of informative attributes

Data lake Number of datasets Minimum Average Maximum Minimum Average Maximum Minimum Average Maximum

Adolescents NIH 22 4679 9110.00 22671 23 55.32 138 0.04 0.80 1.00
Agrifood Exports 11 6 27.91 53 10 33.64 63 0.27 0.85 1.00
Agro climatic 47 444 8970.28 10000 15 15.00 15 0.20 0.77 1.00
Argentina Climate 23 27 2722.35 8000 7 126.87 535 0.01 0.29 1.00
Art Funding 7 12 306.71 1000 34 359.00 798 0.05 0.61 1.00
Beaches Euskadi 16 40 229.88 1159 12 84.88 231 0.03 0.10 0.25
Brasilian Taxes 31 8 4704.16 8788 6 15.61 30 0.15 0.39 1.00
Citizen Workforce 23 6 2233.87 8000 10 172.78 925 0.13 0.76 1.00
COVID 113 26 4898.96 9092 5 258.94 9291 0.00 0.27 1.00
Crimes 149 35 8512.27 10000 24 81.41 449 0.02 0.59 1.00
Deputies Canary 29 3 72.34 667 6 20.00 46 0.11 0.33 0.67
Disasters 19 109 1641.11 10000 53 760.16 4570 0.01 0.55 1.00
Divorces 17 24 354.76 1176 34 207.24 353 0.01 0.29 1.00
Doctoral Graduates 178 33 7304.76 12201 15 58.73 3932 0.00 0.63 1.00
EU Fruit Data 30 87 2674.77 5000 21 231.57 1218 0.01 0.75 1.00
Farm Operators 29 792 7013.00 10000 36 184.14 257 0.02 0.80 1.00
Gas Emissions 17 4 2148.76 5000 4 257.71 3530 0.01 0.85 1.00
Hiking Tours 16 44 2495.13 5000 12 2346.38 3508 0.00 0.20 1.00
Homicide Victims 11 100 1503.09 3396 18 56.55 141 0.04 0.51 1.00
Husa Data 350 3402 10704.45 12345 190 190.00 190 1.00 1.00 1.00
Marriage 4 17 17.00 17 22 74.50 100 0.71 0.76 0.82
Microsoft Kinetic 20 806 2458.90 5775 82 82.00 82 1.00 1.00 1.00
National Households 70 14 8686.50 10000 4 1922.59 2185 0.00 0.80 1.00
NBA Raptors 8 179 5774.00 7000 31 9092.50 69166 0.00 0.17 1.00
Puerto Rico Media 7 37 50.00 84 7 8.71 13 0.23 0.41 0.50
Regular Force Outflow 10 20 20.90 22 3 5.60 17 0.29 0.53 1.00
Rental Property NY 15 493 3303.13 5000 208 965.87 3643 0.00 0.74 1.00
Riddler Castles 5 886 1067.20 1403 11 52.40 159 0.04 0.30 0.55
Rockfall Risk 20 362 1951.75 2627 27 33.90 35 0.93 0.98 1.00
Second Language 20 9 3522.55 10000 11 656.80 3249 0.00 0.29 1.00
Steller Sea Lions 41 24 9280.07 43828 35 247.17 1232 0.01 0.11 1.00
Tax Filers 531 1430 4616.57 9284 65 148.95 1318 0.00 0.79 1.00
Teen Pregnancy 18 117 6787.83 10000 35 72.89 120 0.03 0.73 1.00
Tourist

Accommodation
21 26 1206.57 6011 46 1661.00 17570 0.16 0.92 1.00

Trump world trust 7 15 31.00 37 40 42.14 43 0.12 0.30 0.83
Tuition Fees 25 2494 7934.44 10000 40 226.36 4598 1.00 1.00 1.00
TV Access Services 5 324 3022.60 8688 125 318.00 507 0.02 0.61 1.00
TV Commercials 13 1546 9975.77 33117 201 203.31 205 0.54 0.59 0.82
UBER Trips 11 59 3079.73 7154 7 254.27 1196 0.00 0.30 1.00
University Spending 30 792 6491.93 7500 47 83.03 794 1.00 1.00 1.00
US Weather History 10 365 365.00 365 16 16.00 16 0.19 0.48 0.88
Vehicle Pedestrian Inv 326 121 8563.55 8737 34 35.93 37 0.08 0.20 0.31
Voter Turnout 4 5512 6312.75 7428 49 53.00 58 0.09 0.12 0.16
WiFi Hotspots 30 4 553.50 13395 4 91.27 1091 0.03 0.64 1.00
Women World Cup 88 24 32.06 52 46 55.18 65 0.05 0.08 0.11
World Cup 84 32 32.00 32 52 52.00 52 0.06 0.08 0.10

Grand average 55.67 556.28 3755.78 7632.70 38.76 477.64 2995.02 0.19 0.55 0.87
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average ratio of informative attributes ranges from 0:23 to 0:98 per dataset, with an average of 0:63, a global minimum smal-
ler than 0:01, and a global maximum that equals 1:00. The data in these data lakes were pre-classified by their corresponding
authors, but the classes were not used during the clustering processes, only to compute the effectiveness measures.

There are not any direct competitors with which RóMULO can be compared experimentally because there are not any
multi-way single-subspace automatic clustering techniques in the literature. The idea was then to implement some indirect
competitors by assembling a pipeline in which the first stage computes a subspace of informative attributes and the second
stage performs single-way automatic clustering. The choice regarding the first stage was to use GSPPCA [8], which is the
most recent unsupervised proposal that can deal with business data [28]. The choice regarding the second stage was to
use some classical proposals, including Affinity-Propagation, Mean-Shift, and OPTICS-Xi, as well as PQC [12] and DCC
[43], which are the most recent quantum-inspired and deep-learning proposals, respectively.

The machinery used to run the experiments consisted in a computer that was equipped an Intel Core i7-9700F processor
with eight single-threaded cores at 3:70 GHz and 16 GiB of DDR4 RAM memory at 2:67 GHz. The operating system used was
Windows 10 Pro.
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Table 2
Description of the classification data lakes.

Number of data Number of attributes Ratio of informative attributes

Data lake Number of datasets Minimum Average Maximum Minimum Average Maximum Minimum Average Maximum

Kaggle 21 165 8139.81 51047 5 206.00 2219 0.01 0.49 1.00
OpenML 53 7 6992.00 52619 3 373.00 10000 0.03 0.56 1.00
Sckit-Learn 4 400 13745.00 39550 64 1799.00 4096 0.70 0.93 1.00
Synthetic 9 60 6687.00 10000 2 165.00 450 0.33 0.85 1.00
UCI 13 141 2808.00 24090 4 61.00 561 0.06 0.32 0.91

Grand average 20.00 154.60 7674.36 35461.20 15.60 520.80 3465.20 0.23 0.63 0.98
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4.2. Configuring RóMULO and the competitors

A subset of 100 datasets was randomly selected from the experimental data lakes. They were used to perform grid search
over the space of configuration parameters of RóMULO and the competitors. Table 3 describes the configuration parameters.
The first column refers to the proposal, the second column describes the configuration parameters and the values that were
examined; the values that were selected are highlighted in boldface. The proposals were executed using all of the combina-
tions of values for their configuration parameters and the ones that resulted in better performance according to the Lexicase
method were selected; see the performance measures used in the following subsection.

RóMULO requires to use a base clusterer to compute the fitness of the individuals and to compute its final result. The deci-
sion was to use the well-known k-Means algorithm using a custom initialisation procedure [32]. The alternative was to use
Birch, but, unfortunately, it failed to handle many high-dimensional datasets in the experimental data lakes.

Note, too, that Mean-Shift and PQC do not require any configuration parameters to be adjusted using grid search because
the authors devised estimation methods that are applied to the input datasets automatically.
4.3. Experimental methodology

The datasets were cleaned as follows: text fields were removed, dates, times, co-ordinates, and other such structured
fields were split into their constituent parts, and enumerated fields were one-hot encoded. Each competitor was run on each
dataset using its best configuration parameters and several performance measures were computed and collected.
Table 3
Configuration parameters.

Proposal Configuration parameter/ Values

CXPB: crossover probability
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
MUTPB: mutation probability
0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
PSIZE: size of the initial population
10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00
LAMBDA: percentage of offsprings to generate (relative to the SIZE parameter)
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
MU: percentage of individuals to select (relative to the SIZE parameter)
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
NGEN: number of generations

RóMULO 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00
epsi: convergence criterion
1.00-10 1.00-09 1.00-08 1.00-07 1.00-06 1.00-05 1.00-04 1.00-03 1.00-02 0.00 + 00
nit: dimension of the latent space

GSPPCA 25.00 50.00 75.00 100.00 125.00 150.00 200.00 250.00 300.00 350.00
dampling: extent to which the current value is maintained relative to incoming values

Aff.-Prop. 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
bandwidth: bandwidth used in the RBF kernel

Mean-Shift Adjusted using the estimation procedure provided by Scikit Learn.
xi: minimum steepness on the reachability plot that constitutes a cluster boundary

OPTICS-Xi 0.01 0.01 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80
k: proportion of neighbours used to estimate the local covariance matrix for each datum

PQC Adjusted using the estimation procedure provided by the authors.
d: embedding dimensionality (ratio of the input dimensionality)
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
k: number of neighbours (ratio of the number of input data)
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
M: period of graduated non-convexity

DCC 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00
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Table 4
Clustering power: Silhouette.
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The effectiveness measures regarding the ability to find compact and isolated clusterings were the Silhouette, the Davies-
Bouldin, and the Caliński-Harabasz coefficients. The Silhouette coefficient ranges in interval ½�1:00;þ1:00�, where the higher
its value, the better; the Davies-Bouldin coefficient ranges in interval ½0:00;þ1�, where the lower its value, the better; and
the Caliński-Harabasz coefficient ranges in interval ½0:00;þ1�, where the higher its value, the better. We also computed the
degradation ratio to assess the proportion of useless clusterings that consists of a single cluster or a cluster per datum. It
ranges in interval ½0:00;þ1:00�, where the smaller its value, the better.

The effectiveness measures regarding the extent to which the clusterings can be considered good classifications were the
Adjusted Rand, the Fowlkes-Mallows, and the Accuracy coefficients. They all address the problem of mapping the classes that
are inferred from the clustering, which are machine-learnt and have no meaning for the user, onto the classes in the ground
truth, which are user-provided and expected to have a meaning for the user; they differ in their approach and the perspective
fromwhich they address the comparison. The Adjusted Rand coefficient takes into account the effects of randomness in clus-
tering; it ranges in interval ½�1:00;þ1:00�, where the greater its value, the better. The Fowlkes-Mallows coefficient takes into
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account the effects of noise and the Accuracy coefficient puts an emphasis on both true positives and true negatives. They
both range in interval ½0:00;þ1:00�, where the higher their values, the better. We also computed the degradation ratio.

The efficiency measures were the time to execute each experiment and the timeout ratio. The time was measured in CPU
minutes, which helps reduce noise as much as possible since the times measured at the CPU level are generally more stable
and consistent throughout repeated experiments than the wall time. A timeout of 240 min (four hours) was set to compute
the subspace of informative attributes using GSPPCA and an additional 240-min timeout was set to run the clusterers. Very
likely, few data engineers would be willing to wait for eight hours to compute a clustering, but it puts an upper, sensible limit
to the total time required to run the experiments.

The experimental results were analysed using the following statistical method at the standard significance level
(a ¼ 0:05) [45]: first, the empirical ranks regarding each measure were computed; second, Iman-Davenport’s omnibus test
was used to determine if there were any significant differences in the empirical ranks; if there were, then Hommel’s post hoc
Table 5
Clustering power: Davies-Bouldin.
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test was used to find the exact significant differences. Note that non-parametrical tests were used because the analysis of the
experimental results using Shapiro–Wilk’s and Levene’s tests concluded that they were distributed neither normally nor
homocedastically.
4.4. Analysis of clustering power

Tables 4–9 summarise the results regarding the ability of RóMULO and the competitors to find compact and isolated clus-
ters. Their structure is very homogeneous, namely: part a) shows the averages per data lake, which helps have an overall
picture of which ones resulted easier to cluster and which ones resulted more difficult; part b) shows some statistics that
Table 6
Clustering power: Caliński-Harabasz.
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help understand how the results are distributed on the datasets, namely: the quartiles, the average, the standard deviation,
the variance, and the length of the 95% confidence interval; part c) shows a boxplot that provides a graphical insight into the
distribution of the performance measures; part d) shows the results of the statistical analysis, namely: the proposal, its cor-
responding empirical rank, the p-value computed by Iman-Davenport’s omnibus test, and the p-value computed by Hom-
mel’s post-host test; and part e) provides a graphical representation of the statistical analysis using critical difference
diagrams.

Regarding the Silhouette coefficient, cf. Table 4, RóMULO ranks at the first position and it is followed by the competitors
based on Mean-Shift, Affinity-Propagation, OPTICS-Xi, DCC, and PQC. RóMULO attains an average Silhouette coefficient of
0:36, with a minimum of �0:28 and a maximum of 1:00. The minimum occurs in a dataset from the ‘‘Disasters” data lake
Table 7
Clustering power: Time.
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Table 8
Clustering power: Degradation.
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with roughly ten thousand 4570-dimensional data. The problem with this dataset is that the data are too deeply interwo-
ven2 and RóMULO could not find a single subspace to make them apart. In this particular case, the competitors based on OPTICS-
Xi and PQC failed to produce any results and the competitor based on DCC attained a coefficient of �0:79, but the competitors
2 The datasets in which RóMULO performed the worst were explored as follows: they were projected onto 100 random subspaces of attributes varying the
ratio of selected attributes from 10% to 100% in equally-sized increments; the projections were then re-projected onto a three-dimensional space using the
well-known t-SNE method; the resulting data were analysed visually and clustered using the three classical methods in the experimental study. If the
experimenter could not spot any compact and isolated clusters and the clusterings computed were degraded or resulted in very poor effectiveness coefficients,
the conclusion was then that the data in those datasets are too deeply interwoven. That makes it difficult to set them apart without the help of a data engineer
who can really understand the meaning of the data and performs some attribute engineering.
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based on Affinity-Propagation and Mean-shift attained positive results; the latter were designed to find the clusters by selecting
a number of data that is grown/shifted to form the clusters using affinity/density criteria, which generally helps them identify
the clusters in the subspace of attributes returned by GSPPCA more easily than RóMULO can do on the original attributes. The
statistical analysis confirms that RóMULO ranks at position 2:39 and it is followed by the competitors based on Mean-Shift at
position 2:44, Affinity-Propagation at position 2:92, OPTICS-Xi at position 3:74, DCC at position 4:20, and PQC at position 5:31.
The p-value returned by the statistical tests is zero or nearly zero in each comparison, which is a strong indication that the
experimental results support the hypothesis that RóMULO ranks the first regarding the Silhouette coefficient.

Regarding the Davies-Bouldin coefficient, cf. Table 5, RóMULO ranks at the first position and it is followed by the com-
petitors based on Mean-Shift, Affinity-Propagation, OPTICS-Xi, DCC, and PQC. RóMULO attains an average Davies-Bouldin
Table 9
Clustering power: Timeouts.
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coefficient of 1:95, with a minimum that is nearly zero and a maximum of 12:25. The maximum occurs in a dataset from the
‘‘WiFi Hotspots” data lake with roughly thirteen thousand 18-dimensional data. Note that the dataset is relatively large in
data, but small in dimensionality. The problem with this dataset is that the data are too deeply interwoven in all possible
subspaces, which resulted in very bad results using all of the competitors. In this particular case, the competitors based
on Mean-Shift and PQC failed to produce any results; the competitors based on OPTICS-Xi and DCC produced clusterings
with the highest Davies-Bouldin coefficients; the exception was the competitor based on Affinity-Propagation which
attained a coefficient as small as 0:80 but output a large number of small clusters due to its approach to select a subset
of data and grow/shift them to form the clusters. The statistical analysis confirms that RóMULO ranks at position 2:42
and it is followed by the competitors based on Mean-Shift at position 2:50, Affinity-Propagation at position 2:84, OPTICS-
Xi at position 3:13, DCC at position 4:76, and PQC at position 5:35. Note that the p-value returned by the statistical tests
is zero or nearly zero in each comparison, which is a strong indication that the experimental results support the hypothesis
that RóMULO ranks the first regarding the Davies-Bouldin coefficient.

Regarding the Caliński-Harabasz coefficient, cf. Table 6, RóMULO ranks at the first position and it is followed by the com-
petitors based on Affinity-Propagation, Mean-Shift, OPTICS-Xi, DCC, and PQC. RóMULO attains an average Caliński-Harabasz
coefficient of 197:08, with a minimum of 0:74 and a maximum of 993:36. The minimum occurs in a dataset from the ‘‘WiFi
Hotspots” data lake with six 14-dimensional data. This is a very small dataset both in terms of number of data and attributes,
but there is not a single subspace in which good clusters can be found because the data are deeply interwoven regarding all
of the attributes. In this particular case, the competitors returned degenerated clusterings. The statistical analysis confirms
that RóMULO ranks at position 2:12 and it is followed by the competitors based on Affinity-Propagation at position 2:67,
Mean-Shift at position 2:94, OPTICS-Xi at position 3:17, DCC at position 4:78, and PQC at position 5:32. Note that the p-
value returned by the statistical tests is zero in each comparison, which is a strong indication that the experimental results
support the hypothesis that RóMULO ranks the first regarding the Caliński-Harabasz coefficient.

Regarding efficiency, cf. Table 7, RóMULO ranks at the fifth position. The statistical tests return a zero p-value for every
comparison, which is a strong indication that the differences in rank are significant. Clearly, the search strategy used in
RóMULO has a negative impact on its efficiency, which is clearly compensated because of its ability to find better clusterings.
Table 10
Classification power: Adjusted Rand.
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Note that the experiments run with RóMULO took from a minimum of 0:01 minutes to a maximum of 187:20 minutes. The
minimum was achieved on the smallest datasets; the maximum occurred on a dataset in the ‘‘Steller Sea Lions” data lake
that has 37270 data with 181 attributes each. Note that this is not the largest dataset in the experimental repositories,
but one in which RóMULO could not easily find the appropriate subspace of informative attributes. The other proposals were
also inefficient when working on this dataset and the reason was, again, that it provides many uninformative attributes that
result in too deeply interwoven data. Note, too, that the timings vary significantly from data lake to data lake; recall that they
consists of real-world datasets whose size ranges from an average minimum of 556:28 data to an average maximum of
7632:70 data per data lake and whose dimensionalities range from an average minimum of 38:76 attributes to an average
maximum of 2995:02 attributes; inevitably, that has an important impact on the variance of the clustering time.

Tables 8 and 9 report on the ratio of degraded clusterings and timeouts, respectively. Note that RóMULO is the only pro-
posal that attains 0:00 degradation ratio and 0:00 timeout ratio. The reason is that its search strategy quickly discards indi-
viduals that result in degraded clusterings and focus on promising candidates without timing out. Regarding the ratio of
degraded clusterings, it is closely followed by the competitors based on Affinity-Propagation and OPTICS-Xi with an average
ratio of 0:03, and then come the competitors based on PQC with an average ratio of 0:08, DCC with an average ratio of 0:10,
and Mean-Shift with an average ratio of 0:11. Regarding the ratio of timeouts, it is identical to the competitor based on DCC
with a ratio of 0:00, it is closely followed by the competitors based on Mean-Shift with an average ratio of 0:02, OPTICS-Xi
with an average ratio of 0:05, and then come the competitors based on Affinity-Propagation with an average ratio of 0:17 and
PQC with an average ratio of 0:78.

The conclusion is that RóMULO ranks the first regarding the Silhouette, the Davies-Bouldin, and the Caliński-Harabasz
coefficients. It is closely followed by the competitors based on Affinity-Propagation and Mean-Shift and then come the com-
petitors based on OPTICS-Xi, DCC, and PQC. It performs quite well regarding efficiency and does not result in any degraded
clusterings or timeouts. The statistical analysis confirmed that the differences in rank are significant.
4.5. Analysis of classification power

Tables 10–15 summarise the results regarding the extent to which the clusterings returned by RóMULO and the competi-
tors can be considered good classifications. The structure of these tables is the same as before.
Table 11
Classification power: Fowlkes-Mallows.
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Table 12
Classification power: Accuracy.
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Regarding the Adjusted Rand coefficient, cf. Table 10, RóMULO ranks at the first position and it is followed by the com-
petitors based on Affinity-Propagation, Mean-Shift, OPTICS-Xi, DCC, and PQC. RóMULO attains an average Adjusted Rand
coefficient of 0:04, with a minimum of �0:12 and a maximum of 1:00. The minimum occurs in a dataset from the ‘‘OpenML”
data lake that has seven 1024-dimensional data with three classes. The other competitors attained similar values for this
coefficient, ranging from the competitor based on Affinity-Propagation, which attained exactly the same value, to the com-
petitor based on DCC, which attained a value of 0:01. Note that this is a particularly difficult dataset3 because there are too
few data, but they are highly dimensional and the number of sample data per class is very low; simply put, this dataset provides
little evidence to learn a good classifier. The best value was attained on a dataset from the ‘‘Kaggle” data lake with roughly three
hundred 21-dimensional data with two classes. The other competitors attained a value that was nearly 0:00 with this dataset,
which is peculiar since there are many pairs of attributes that result in perfect linear classifiers. Such attributes are quickly dis-
covered by RóMULO; unfortunately, GSPPCA selects five attributes whose values are too interwoven and make it difficult for the
competitors to make the classes apart. The statistical analysis confirms that RóMULO ranks at position 2:46 and it is followed by
the competitors based on Affinity-Propagation at position 2:83, Mean-Shift at position 3:33, OPTICS-Xi at position 3:56, DCC at
position 4:25, and PQC at position 4:59. Note that the p-value returned by the statistical tests is below the significance level in
every comparison, which supports the hypothesis that RóMULO ranks the first regarding the Adjusted Rand coefficient.

Regarding the Fowlkes-Mallows coefficient, cf. Table 11, RóMULO ranks at the first position and it is closely followed by
the competitor based on Mean-Shift; then come the competitors based on OPTICS-Xi, Affinity-Propagation, PQC, and DCC.
RóMULO attains an average Fowlkes-Mallows coefficient of 0:38, with a minimum of 0:01 and a maximum of 1:00. The worst
value is attained with a dataset from the ‘‘OpenML” data lake that provides 21427 data with 18 attributes and 287 classes.
The competitors based on Affinity-Propagation, PQC, and DCC timed out with this dataset; only the competitors based on
Mean-Shift and OPTICS-Xi could process it and they attained a Fowlkes-Mallows coefficient of 0:11 and 0:08, respectively.
3 The datasets in which RóMULO performed the worst were explored as follows: a ROC analysis was performed using Random Forest (tree learning), J4.8 (rule
learning), Naive Bayes (Bayesian learning), and a five-layer Perceptron (neural leaning); k-means was also run by setting k to the number of classes in the
corresponding dataset. The data were considered too deeply interwoven if the average ROC coefficient was close to 0:50, which basically indicates that the
classifiers learnt make random predictions, or if the effectiveness coefficients were very poor. Such datasets are particularly difficult to deal with because they
require a data engineer who can really understand their meaning to perform some attribute engineering.

122



Table 13
Classification power: Time.
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The dataset was inspected and the conclusion was that the attributes had very few different values, which made it really
difficult to make the 287 classes apart; note that it was not a problem with the amount of data, which is relatively large,
but the few attributes and values in comparison with the relatively large number of classes. The best value was attained with
the same dataset that maximised the Adjusted Rand coefficient; the competitors behaved similarly regarding the Fowlkes-
Mallows coefficient. Basically, RóMULO could easily find the subspace of attributes that helps make the classes apart, but
GSPPCA selected five attributes that did not help in this task. The statistical analysis confirms that RóMULO and the competi-
tor based on Mean-Shift share the first position in the ranking because the p-value from their comparison is above the sig-
nificance level; then come the competitors that are based on OPTICS-Xi, Affinity-Propagation, PQC, and DCC, whose
comparisons result in statistically-significant differences because the returned p-values are zero or nearly zero.

Regarding the Accuracy coefficient, cf. Table 12, the competitor that is based on Affinity-Propagation ranks at the first
position and it is followed by RóMULO and the competitors that are based on Mean-Shift, OPTICS-Xi, DCC, and PQC. RóMULO
attains an average Accuracy coefficient of 0:53, with a minimum of 0:02 and a maximum of 1:00. The worst value is attained
in a dataset from the ‘‘OpenML” data lake that has 1480 data with 10000 attributes and 50 classes. The competitors based on
PQC and DCC timed out on this dataset and the competitors based on Mean-Shift and OPTICS-Xi attained the same accuracy
as RóMULO on it; only the competitor based on Affinity-Propagation could attain an accuracy of 0:40. The dataset was
inspected and the conclusion was that its data are, again, far too interwoven to make the classes clearly apart using cluster-
ing; neither was RóMULO able to find any good subspaces of attributes. The best value was attained with the same dataset as
was the case regarding the previous coefficients. The statistical analysis confirms that the competitor based on Affinity-
Propagation ranks at the first position and it is closely followed by RóMULO, which is statistically indistinguishable from
it because the p-value returned by Hommel’s test is above the significance level; then come the competitors that are based
on Mean-Shift, OPTICS-Xi, DCC, and PQC, whose comparisons result in statistically-significant differences because the
returned p-value is below the significance level in each case.

Regarding efficiency, cf. Table 13, RóMULO ranked at the third position in these experiments; the results indicate that the
competitor based on OPTICS-Xi is the most efficient one, which is closely followed by the one based on Affinity-Propagation;
the competitors that are based on Mean-Shift, DCC, and PQC rank behind RóMULO. From the previous experimentation, it is
clear that the search strategy of RóMULO has a negative impact on its efficiency, but it generally finds better clusterings; the
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Classification power: Degradation.
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experimentation to check how powerful it is for classification purposes confirms the previous finding, since it can work in
reasonable times and attain very good classification scores. It takes from a minimum of 0:01 minutes on a small dataset from
the ‘‘OpenML” data lake with 85 data that have four attributes and four classes to a maximum of 57:93 minutes on a large
dataset from the ‘‘Kaggle” data lake with 51047 data that have 874 attributes and two classes; the other competitors timed
out on this dataset where RóMULO could attain an Adjusted Rand Coefficient of 0:00, a Fowlkes-Mallows coefficient of 0:22,
and an Accuracy coefficient of 0:43.

Tables 14 and 15 report on the ratio of degraded clusterings and timeouts, respectively. Note that RóMULO and the com-
petitor based on PQC are the only proposals that attain 0:00 degradation ratio in this experimentation; in the case of
RóMULO, this is again due to its ability to quickly discard degraded clusterings; in the case of the competitor based on
PQC, the result is not that surprising since it was the proposal that resulted in less degraded ratios in the previous experi-
mentation. The statistical analysis confirms that RóMULO is closely followed by the proposals based on PQC, DCC, Affinity-
Propagation, and OPTICS-Xi, which are indistinguishable from it because the p-values returned for these comparisons are
clearly above the significance level; the last position in the rank is for the competitor based on Mean-Shift and the difference
was confirmed to be statistically significant because the p-value returned was clearly below the significance level. Regarding
the ratio of timeouts, RóMULO is again the only proposal that could process all of the datasets within the time constraints
that were set; then come the competitors based on OPTICS-Xi with a ratio of 0:09, Mean-Shift with a ratio of 0:12, Affinity-
Propagation with a ratio of 0:16, DCC with a ratio of 0:48, and PQC with a ratio of 0:58. The statistical analysis makes it clear
that RóMULO and the competitors based on OPTICS-Xi, Mean-Shift, and Affinity-Propagation are statistically indistinguish-
able because the p-value returned by Hommel’s test is clearly above the significance level; it also makes it clear that the
competitors based on DCC and PQC rank below the previous group because the p-value computed is zero in both cases
and this implies that the differences in rank are very significant.

The conclusion is that RóMULO ranks the first regarding the Adjusted Rand, the Fowlkes-Mallows, and the Accuracy coef-
ficients. Regarding the first coefficient, the differences in rank are statistically significant with regard to all of the other com-
petitors; regarding the second and the third coefficient RóMULO shares the first position in the rank with the competitors
based on Mean-shift and Affinity-Propagation, respectively. It is closely followed by the competitors based on Affinity-
Propagation, Mean-Shift, and OPTICS-Xi, and then come the competitors based on DCC and PQC. It performs quite well
regarding efficiency and does not result in any degraded clusterings or timeouts.
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Classification power: Timeouts.
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5. Conclusions

This article introduces a new clustering proposal called RóMULO. It is intended to help data engineers extract new knowl-
edge from their data lakes by finding compact and isolated clusters in a subspace of informative attributes. It explores a
research niche that has not been studied before: using a genetic meta-heuristic to perform multi-way single-subspace auto-
matic clustering.

RóMULO was confronted with five strong competitors that combine the state-of-the-art attribute selection proposal with
three classical single-way clustering proposals, a recent quantum-inspired one, and a recent deep-learning one. They were
explored regarding their ability to find compact and isolated clusterings and the extent to which those clusterings can be
considered good classifications. The first exploration was performed using the Silhouette, the Davies-Bouldin, and the
Caliński-Harabasz coefficients; the second one was performed using the Adjusted Rand, the Fowlkes-Mallows, and the Accu-
racy coefficients. Furthermore, it was very efficient regarding CPU time and it did not result in any degraded clusterings or
timeouts. The conclusions regarding the rankings were supported by means of the corresponding statistical analyses at the
standard significance level.

Future research includes exploring how an engineer can include some background knowledge into the clustering process,
e.g., to flag some data as belonging to the same or different clusters or to provide custom attribute transformers in the case of
non-numeric attributes. Exploring whether some ideas based on collaborative filtering might help improve the efficiency in
the case of large datasets is also worth exploring. Much attention shall also be paid to exploring other meta-heuristics, e.g.,
coral-reef or quantum optimisation, and deep learning.
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