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The theory of heavy-ion single-charge exchange reactions is reformulated. In momentum space, the reaction
amplitude factorizes into a product of projectile and target transition form factors, folded with the nucleon-
nucleon isovector interaction. The multipole structure of the transition form factors is studied in detail for Fermi-
type non-spin-flip and Gamow-Teller-type spin-flip transitions, also serving to establish the connection to nuclear
β decay. The reaction kernel is evaluated for central and rank-2 tensor interactions. Initial- and final-state ion-ion
elastic interactions are accounted for by a distortion coefficient. Since the ion-ion interactions are dominated by
the imaginary part of the optical potentials, the distortion coefficients can be evaluated in the strong absorption
limit. For a Gaussian potential form factor, the distortion coefficient is evaluated in closed form, revealing the
relation to the total reaction cross section. It is shown that at small momentum transfer distortion effects reduce
to a simple scaling factor, allowing us to define a reduced forward-angle cross section which is given by nuclear
matrix elements of β decay type. Thus we introduce new unit cross sections, as those traditionally used with
light projectiles for spectroscopic purposes, for heavy-ion charge-exchange reactions. Results are discussed
for τ± excitations of 18O and 40Ca, respectively. Spectral distributions of nuclear-charge-changing transitions
are obtained by self-consistent Hartree-Fock-Bogolubov (HFB) and quasiparticle random phase approximation
(QRPA) theory and compared to spectroscopic data. The interplay of nuclear structure and reaction dynamics
is illustrated for the single-charge exchange (SCE) reaction 18O + 40Ca → 18F + 40K at Tlab = 270 MeV, by
performing full-scale numerical calculations of the SCE cross section. We also show that the latter compare
rather well with the results obtained within the strong absorption limit, thus confirming the possibility to
factorize the forward-angle cross section into intrinsic nuclear transition dynamics and reaction dynamics.
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I. INTRODUCTION

Nuclear charge exchange reactions have been the major
source of information on the isospin and spin-isospin modes
of excitation in nuclei. The discovery of the giant Gamow-
Teller resonance (GTR) by the pioneering experiments at
IUCF [1] initiated widespread experimental and theoretical
research activities, continuing with increasing intensity until
today. Over the years, a wealth of data has been accumulated
as reviewed, e.g., in [2–6]. Beyond using nucleonic probes,
light-ion reactions as, e.g., (3He, 3H) have become another
workhorse of the field, now reaching accuracies that allow us
to investigate subtle details of spectral distributions in both
the τ+ and the τ− branches. Soon after the first light-ion
studies, heavy ions were used in charge exchange studies as
in Refs. [7,8]. It was recognized that peripheral heavy-ion
collisions, leading to direct reactions, are as useful for spectral
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studies as light-ion scattering. An especially appealing aspect
is the broad range of projectile-target combinations which, for
example, allow us to project out selectively specific features,
e.g., spin-flip and non-spin-flip transitions [9]. Nuclear spin
dynamics and the population of continuum states were central
aspects of the (7Be, 7Li) reactions considered in Refs. [10,11].
While the past experiments have been focused on single-
charge exchange (SCE) reactions, new territory was entered
with the pilot experiment of Cappuzzello et al. [12], which
studied a nuclear double-charge exchange (DCE) reaction.
The reaction 18O + 40Ca → 18Ne + 40Ar gave strong evi-
dence for a direct reaction mechanism even for double-charge
exchange processes. Quite recently, the NUMEN project at
LNS Catania was initiated, dedicated to investigations of SCE
and DCE heavy-ion reactions that elucidate and optimize their
potential for spectroscopic studies [13].

On the theoretical side, light-ion reactions have attracted
the greatest attention. SCE reactions are typically well de-
scribed by the distorted-wave Born approximation (DWBA)
methods in conjunction with microscopic nuclear structure
input. A comprehensive and still widely used formulation
of light-ion SCE reactions was worked out by Taddeucci
et al. [14], focusing on the spectroscopic applications. DWBA
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methods and microscopic nuclear structure input are also
essential for the quantitative description of heavy-ion SCE
reactions. Spectral results from shell model and quasiparti-
cle random phase approximation (QRPA) calculations were
indeed used already from the beginning, for example, in
Refs. [7–9] and also in the later investigations in Refs. [10,11].
An important difference between light- and heavy-ion colli-
sions lies in the reaction mechanism. In principle, heavy-ion
SCE reactions are proceeding by two competing reaction
mechanisms. The direct SCE process is a collisional process,
mediated by the exchange of charged mesons between pro-
jectile and target, as given by the isovector nucleon-nucleon
interaction. Hence, the direct SCE reaction mechanism is
probing directly the isospin structure of the ions. A competing
reaction mechanism is the sequential exchange of protons
and neutrons. This is at least a second-order process, mainly
probing the mean-field structure of the ions. In Refs. [7,9,15],
the two reaction scenarios have been discussed. Direct SCE
provides access to nuclear transition matrix elements with
spin-isospin vertices as in weak interaction β decay. This is
not the case for the transfer SCE mechanism. By a proper
choice of projectile and target, however, the transfer branch
can be suppressed. In this paper, we consider only the theory
of collisional direct SCE reactions.

In heavy-ion scattering above the Coulomb barrier, a
large number of reaction channels are available, absorbing
a considerable part of the incoming flux. Thus, heavy-ion
SCE reactions occur in a strongly absorptive environment,
although the SCE cross sections are a minor contribution to
the total reaction cross section. As any direct nuclear reaction,
peripheral heavy-ion charge exchange processes incorporate
reaction and nuclear structure dynamics. Both aspects are in-
timately interwoven and require their own specific theoretical
treatment.

In this paper, we present a concise formulation of the
theory. For the reaction part, our guiding principle is direct
nuclear reaction theory. In Sec. II, we recapitulate the the-
ory of charge exchange reactions, based on the distorted-
wave Born approximation (DWBA). Initial- and final-state
ion-ion interactions are described by optical potentials. Mi-
croscopic optical potentials are used, obtained in the im-
pulse approximation, by folding projectile and target Hartree-
Fock-Bogolubov (HFB) ground-state densities with free space
nucleon-nucleon T matrices. In this way, we overcome the
lack of elastic scattering data, inhibiting the determination of
empirical optical potentials. Until the availability of elastic
scattering data, we are left, however, with an open flank of
unchecked input. Special emphasis is laid on a suitable formu-
lation of the residual ion-ion charge exchange interaction. We
show that momentum representation is of special advantage,
allowing us to separate the interaction into operators acting in
projectile and target, respectively. We include central rank-0
and rank-2 tensor interactions. It is shown that these two types
of interactions can be represented by the same set of operators.
Expressions for the reaction amplitudes and differential cross
sections are derived.

In Sec. III, the intrinsic nuclear operators are evaluated in
second quantization, leading to a representation of the residual
ion-ion interaction in terms of one-body density operators.

Thus, we arrive at a formulation treating interactions and form
factors in the general scheme of second quantization, inde-
pendent of a particular nuclear structure model. The model
dependence is introduced only at the very end of the theo-
retical process when the one-body density matrices have to
be evaluated with respect to specific nuclear wave functions.
The relation of the form factor and SCE reaction amplitudes
to nuclear β decay is clarified by considering the limit of
low momentum transfer. The momentum space techniques are
found to provide the proper approach to disentangle reaction
and structure aspects. In heavy-ion SCE reactions, also the
projectile may have a number of bound excited states, requir-
ing to consider the combined spectral distributions of both
ions. Finally, we derive explicit expressions for forward angle
cross sections, showing that heavy-ion SCE reactions are
indeed providing access to nuclear matrix elements relevant
also for β decay. The results derived in this section are of
special importance since they show explicitly the potential of
heavy-ion SCE reactions for spectral investigations, including
the deduction of nuclear matrix elements for β decay.

Section IV as a central part of the paper is concerned
with the investigation of initial- and final-state interactions.
They are of crucial importance for an understanding of the
reaction yields on a quantitative level. Their effect is, of
course, treated properly on the quantum mechanical level by
direct reaction theory. However, in order to disentangle SCE
reaction dynamics and nuclear dynamics, a deeper insight
into elastic ion-ion interactions is necessary. For that purpose,
the momentum space formulation of the reaction amplitude
is of great advantage. The final result is surprisingly simple:
The main effect of ion-ion elastic interactions is finally to
act as a (momentum-dependent) weight factor in the folding
of the nuclear transition form factors, suitably described by
a distortion coefficient. The latter is found to be closely
related to the elastic optical model S matrix. In the strong
absorption limit, analytic expressions are derived in Gaussian
approximation for the transition potentials in Sec. IV C. In
leading order, elastic ion-ion interactions reduce to a simple
scaling law, suppressing, however, the SCE cross section by
many orders of magnitude with respect to the plane-wave
Born limit. SCE reactions in the strong absorption limit and an
interesting connection to eikonal theory is discussed in Sec. V.

Last but not least, the theoretical results are illustrated in
Sec. VI by numerical calculations. QRPA results for nuclear
SCE response functions are presented for 18O → 18F and
40Ca → 40K, respectively. We discuss results for optical po-
tentials and elastic scattering angular distributions, addressing
distortion effects due to ion-ion dynamics and examples of
charge exchange cross sections. As a case of physical inter-
est, we consider throughout the SCE reaction 18O + 40Ca →
18F + 40K at Tlab = 15 A MeV. Mathematical-theoretical de-
tails have been shifted into a few appendices. The paper closes
in Sec. VII with a summary and an outlook for future work.

II. THEORY OF HEAVY-ION SINGLE-CHARGE
EXCHANGE REACTIONS

Charge-changing reactions by strong interactions are off-
shell processes mediated by the exchange of virtual particles.
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FIG. 1. Graphical representation of a single-charge exchange
heavy-ion reaction by hadronic interactions corresponding to νβ

processes. Both (n, p)-type (left) and (p, n)-type (right) reactions,
as seen in the A → B transition in target system, are displayed,
indicating also the exchanged meson.

They require two reaction partners, which are acting mutually
as the source or sink, respectively, of the charge-changing
virtual meson fields, as depicted in Fig. 1. For experimental
reasons, the projectile-like ejectile should be preferentially
in a particle-stable state (see, however, (d, 2He) reactions
[16]), thus simplifying the detection. If the ejectile has only
a single bound state below the particle emission threshold, the
calculations and the interpretation of the spectroscopic data
are especially simple.

Here, we consider ion-ion SCE reactions according to
a
za + A

ZA → a
z±1b + A

Z∓1B, (1)

which change the charge partition by a balanced redistribution
of protons and neutrons.

The differential SCE cross section for a reaction connect-
ing the channels α and β is defined as

d2σαβ = mαmβ

(2πh̄2)2

kβ

kα

1

(2Ja + 1)(2JA + 1)

×
∑

Ma,MA∈α;Mb,MB∈β

|Mαβ (kα, kβ )|2d�, (2)

where kα (kβ) and mα (mβ) denote the relative 3-momentum
and reduced mass in the entrance (exit) channel α = {a,A}
(β = {b, B}). {JaMa, JAMA . . . } and {JbMb, JBMB . . . } ac-
count for the full set of (intrinsic) quantum numbers specify-
ing the initial and final channel states, respectively.

In the distorted-wave approximation, the direct charge
exchange reaction amplitude is given by the expression

Mαβ (kβ, kα ) = 〈χ (−)
β , bB|TNN |aA, χ (+)

α 〉. (3)

The distorted waves, denoted by χ
(±)
α,β for asymptotically

outgoing and incoming spherical waves, respectively, depend
on the respective channel momenta kα,β and the optical po-
tentials, thus accounting for initial-state (ISI) and final-state
(FSI) interactions.

The charge-changing process is described by the nucleon-
nucleon (NN ) T matrix TNN . Antisymmetrization between
target and projectile nucleons is taken care of by the stan-
dard procedure of attaching the spin and isospin exchange
operators to the T matrix and treating space exchange in

local momentum approximation; see, e.g., Refs. [17–19]. The
antisymmetrized T matrix is then given in nonrelativistic
momentum representation by

TNN (p) =
∑

S=0,1,T =0,1

{
V

(C)
ST (p2)[σ a · σ B]S

+ δS1V
(T n)
T (p2)S12(p)[τ a · τA]T

}
, (4)

including isoscalar and isovector central spin-independent
(S = 0) and spin-dependent (S = 1) interactions with form
factors V

(C)
ST (p2), respectively, and rank-2 tensor interactions

with form factors V
(T n)
T (p2). The form factors are complex-

valued scalar functions. Denoting the nucleon isospinors by
|p〉 and |n〉, respectively, we use the convention 〈p|τ0|p〉 =
+1, which implies τ−|p〉 = |n〉. The standard definition of the
rank-2 tensor operator is

S12(p) = 1

p2
(3σ a · p σA · p − σ a · σAp2), (5)

but for applications to nuclear reactions an equivalent, more
suitable representation is used, given by the scalar product
of two rank-2 tensors, namely the spherical harmonic Y2M (p̂)
and the rank-2 spin operator

S2M = [σ 1 ⊗ σ 2]2M =
∑
m1m2

(1m11m2|2M )σ1m1σ2m2 (6)

such that

S12 =
√

24π

5
Y2S2 =

√
24π

5

∑
M

Y ∗
2M (p̂)S2M, (7)

where Y ∗
2M = (−)MY2−M . For the present discussion, we ne-

glect two-body spin-orbit interactions in order not to overload
the presentation.

An elegant representation of the T matrix is obtained in
terms of the spin-isospin operators

OST(i) = (σ i )
S (τ i )

T , (8)

which describe the operator structures of both the central
and tensor interactions. The operators OST lead to the rather
compact representation

TNN (p) =
∑
S,T

{
V

(C)
ST (p2)OST(1)OST(2) + δS1V

(T n)
T (p2)

×
√

24π

5
Y ∗

2 (p̂) · [OST(1) ⊗ OST(2)]2

}
, (9)

where scalar products are indicated as dot products and
the rank-2 tensorial coupling affects, of course, only the
spin degrees of freedom. The subset of isovector opera-
tors, corresponding to Fermi-type S = 0, T = 1 and Gamow-
Teller-type S = 1, T = 1 operators, contributes to the charge-
changing reaction amplitudes.

The matrix element of a single-charge exchange reaction,
Eq. (1), can be written in slightly different form as

Mαβ (kα, kβ ) = 〈χ (−)
β |Uαβ |χ (+)

α 〉. (10)
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The nuclear structure information on multipolarities, transi-
tion strength, and interactions are contained in the (antisym-
metrized) transition potential

Uαβ (rα, rβ ) = 〈JbMbJBMB |T (C)
NN + T

(T n)
NN ...|JaMaJAMA〉

(11)

depending on the channel coordinates rα,β . If recoil effects
due to the change of the mass partitions can be neglected
and antisymmetrization is taken into account by an equivalent
effective local interaction, one can just consider the local
transition potential Uαβ (r), where r = rα = rβ . Obviously, by
means of Eq. (11), the reaction amplitude, Eq. (10) can be
rewritten in terms of a sum of reaction amplitudes defined by
the tensorial rank r of the NN interaction,

Mαβ (kα, kβ ) = M
(C)
αβ (kα, kβ ) + M

(T n)
αβ (kα, kβ ) + · · ·

=
∑

r=C,T n...

M
(r)
αβ (kα, kβ ). (12)

III. SCE CROSS SECTION AND NUCLEAR
MATRIX ELEMENTS

A. Momentum representation

In order to obtain a deeper insight into the interplay of
nuclear structure and β-decay matrix elements on the one
side and heavy-ion reaction dynamics on the other side, a
more detailed study of the process is necessary. A convenient
approach is to consider the reaction amplitude in momentum
representation. A considerable advantage of that representa-
tion is that the transition potential Uαβ becomes separable
into target and projectile transition form factors. The intrinsic
nuclear transitions in either target or projectile are induced by
one-body operators of the type

RST(p, r) = 1

4π
eip·rOST, (13)

where r = rA,a indicates the intrinsic target and projectile
nuclear coordinates, respectively. For convenience, we have
introduced a normalization to the surface area of the unit
sphere. Transitions X → Y are described by the momentum
space form factors

F
(XY )
ST (p) = 〈JY MY |RST(p, rX )|JXMX〉. (14)

The form factors contain the full spectroscopic information
on the intrinsic nuclear transitions. In Appendix A, second
quantization is used to derive explicit expressions in terms of
one-body transition densities.

The reaction kernel is given by products of these form
factors

K
(ST )
αβ (p) = (4π )2

{
V

(C)
ST (p2)F (ab)†

ST (p) · F
(AB )
ST (p)

+ δS1

√
24π

5
V

(T n)
ST (p2)Y ∗

2 (p̂)

·[F (ab)†
ST (p) ⊗ F

(AB )
ST (p)

]
2

}
, (15)

where the rank-2 tensorial coupling relates to the spin degrees
of freedom only. In the central interaction part, the scalar
product indicates the contraction of the projectile and target
form factor with respect to the spin and isospin degrees
of freedom. The isospin degrees of freedom are, of course,
projected by the nuclear transitions to the proper combination
of τ± operators. In terms of the reaction kernels, the transition
potential is found as

Uαβ (p) =
∑
ST

K
(ST )
αβ (p). (16)

It remains to evaluate the integration over the relative motion
degrees of freedom, i.e., taking matrix elements with distorted
waves. Thus,

Mαβ (kα, kβ ) =
∫

d3p

(2π )3
〈χ (−)

β |e−ip·rUαβ (p)|χ (+)
α 〉 (17)

and by defining the distortion coefficient

Nαβ (kα, kβ, p) = 1

(2π )3
〈χ (−)

β |e−ip·r|χ (+)
α 〉, (18)

which will be discussed in detail below in Sec. IV, we obtain
the full reaction amplitude

Mαβ (kα, kβ ) =
∫

d3pUαβ (p)Nαβ (kα, kβ, p), (19)

showing the dressing of the nuclear transition potential by
initial- and final-state ion-ion interactions. Formally, the
above relation is fully equivalent to the DWBA amplitude
in coordinate space. The momentum representation, however,
has the important advantage that the intrinsic nuclear transi-
tion dynamics and the reaction dynamics appear in factorized
form.

The projectile and target transition form factors, Eq. (14),
are of a very general structure accounting for the complete set
of multipoles as contained in the plane waves. The integration
over the nuclear intrinsic coordinates, however, will project
on a subset of multipoles according to the multipolarity of the
transitions a → b and A → B, respectively.

A special feature is encountered in the rank-2 tensor am-
plitudes M

(T n)
αβ as discussed, e.g., Ref. [9]. By evaluating the

integrals explicitly, one finds that the presence of the spherical
harmonics of order 2 induces a corresponding rank-2 tensorial
coupling of the nuclear transition multipoles, Eq. (15). Except
for transitions involving only s-wave proton and neutron
orbitals, Gamow-Teller-like excitations are typically a mixture
of a leading multipolarity L1 and a subleading one with
L2 = |L1 ± 2|. β decay strongly favors the multipolarity with
the lower value of L1,2. That selectivity is missing in strong
interactions. Since in heavy-ion charge exchange reactions
especially processes with large angular momentum transfer
are favored, the whole spectrum of multipolarities becomes
visible.

The recoupling procedure, following standard rules [20]
and discussed in Appendix B, leads to the reduced form
factors F

J1J2
LS and H

J1J2
LS for central and tensor interactions,

respectively. Both are scalar functions of p2; J1,2 denote the
total angular momentum transfer in projectile and target,
respectively; L is the total orbital momentum transfer seen
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on the reaction α → β, and S = 0, 1 indicates as before the
spin structure of the transitions. These form factors determine
the multipole structure observed in angular distributions. In

general, they are given by superpositions of target and projec-
tile intrinsic form factors, as already evident from Eq. (15).
Anticipating the result, the reaction kernels become

K
(ST )
αβ (p) =

∑
J1M1,J2M2,LM

(JaMaJbMb|J1M1)(JAMAJBMB |J2M2)(J1M1J2M2|LM )iLYLM ( p̂)

× [
V

(C)
ST (p2)FJ1J2

LS (p2) + δS1V
(T n)
T (p2)HJ1J2

LS (p2)
]
, (20)

including central and rank-2 tensor interactions. Correspondingly, for the reaction amplitude, we obtain the expression

Mαβ (kα, kβ ) =
∑

J1M1,J2M2,LM

(JaMaJbMb|J1M1)(JAMAJBMB |J2M2)(J1M1J2M2|LM )

×
∫

d3pNαβ (kα, kβ, p)iLYLM ( p̂)M (JaJA,JbJB )
LJ1J2

(p2), (21)

where

M
(JaJA,JbJB )
LJ1J2

(p2) =
∑
S,T

δT 1
[
V

(C)
ST (p2)FJ1J2

LS (p2) + δS1V
(T n)
T (p2)HJ1J2

LS (p2)
]
. (22)

Exploiting the completeness and orthogonality relations of Clebsch-Gordan coefficients, the double-differential cross section
becomes

d2σαβ

d�dEx

=
∑

E∗
b ,E∗

B

mαmβ

(2πh̄2)2

kβ

kα

1

(2Ja + 1)(2JA + 1)

∑
LM,J1J2

∣∣∣∣
∫

d3pNαβ (kα, kβ, p)YLM (p̂)M (JaJA,JbJB )
LJ1J2

(p2)

∣∣∣∣
2

δ(E∗
b + E∗

B − Ex ).

(23)

The Dirac δ function projects the sum of excitation energies
onto the total effective energy loss Ex .

The mathematical structure of the SCE amplitudes are
strongly simplified for Ja = 0+ = JA. In that case, J1 = Jb

and J2 = JB and one obtains for the target [see Eq. (A13)]

F
(AB )
ST (p) =

∑
L,M

(LMSMS |JBMB )f (AB )
LSJB

(p2)iLYLM ( p̂).

(24)

The same kind of relation holds for the projectile. Besides
the triangle rule of angular momentum coupling, the al-
lowed values of the orbital angular momentum transfer L
are constrained further by parity selection rules. For 0+ →
JπJ transitions πJ = (−)J and πJ = (−)J+1 for natural and
unnatural parity transitions, respectively, and πJ = (−)L must
be fulfilled. For natural parity transitions with L = J , non-
spin-flip S = 0 and spin-flip S = 1 transitions are allowed,
while for unnatural parity transitions with L = |J ± 1| only
transitions with S = 1 will contribute.

B. Cross sections at low-momentum transfer

In the limit of low momentum transfer qαβ = kα − kβ →
0, the distortion coefficient, Eq. (18), approaches in leading
order a rather simple form:

Nαβ (kα, kβ, p) 	 N̄αβ (kα, kβ )δ(p − qαβ ). (25)

Hence, the momentum integration in Eq. (23) can be per-
formed, by which the integrand is projected to p = qαβ → 0.
The validity of this reduction will be discussed in detail below.
The important point is that to a good approximation nuclear

dynamics and reaction dynamics are becoming factorized
in forward angle cross sections. Thus, once N̄αβ has been
determined, nuclear transition probabilities are becoming ac-
cessible. They are contained in the form factors F

(XY )
ST of

Eq. (A13). More specifically, we need to consider the reduced
form factors f

(XY )
LSJ [see Eqs. (A13) and (A14)]. For small

momenta p → 0, we find

f
(XY )
LSJ (p2) ∼ pL

(2L + 1)!!

[ ∫ ∞

0
drr2+Lρ

(XY )
LSJ (r ) + O(p2)

]
,

(26)

given in leading order by the matrix element

b
(XY )
LSJ =

∫ ∞

0
drr2+Lρ

(XY )
LSJ (r ), (27)

which is the reduced transition amplitude of the multipole
operator

B(LST )JM (r) = rL[YL ⊗ (σ )S]JM (τ )T , (28)

carrying the same functional structure as the β-decay tran-
sition operators. The corresponding excitation probability is
given by

B
(XY )
LSJ = 1

2J + 1
|〈JY ||BLST J ||JX〉|2 = ∣∣b(XY )

LSJ

∣∣2
. (29)

Considering specifically transitions when both ions are in
0+ ground states, there will be for J > 0 in general two
contributing multipole form factors, namely those of the S =
0, 1 transitions of the same L = J for natural parity and those
of the L = J ± 1 transitions with fixed S = 1 for unnatural
parity. For natural parity transitions, the superposition will
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not modify the low-momentum behavior of the cross sections
but has to be taken into account for the extraction of the
corresponding transition strengths. At forward angles, the
cross section for natural parity transitions in both nuclei will
be of the type

dσFF

d�
∼ q2(Ja+JA )

[(2Ja + 1)!!(2JA + 1)!!]2 |N̄αβ |2

×∣∣V (C)
01 (0)b(AB )

JA0JA
b

(ab)
Ja0Ja

+ eiφaAV
(C)

11 (0)b(AB )
JA1JA

b
(AB )
JA1JA

∣∣2
,

(30)

where q = |kα − kβ | denotes the momentum transfer at for-
ward direction and φaA accounts for possible relative phase
factors of the target and projectile matrix elements. If one
of the nuclei undergoes a J = 0+ monopole excitation, i.e.,
a 0+

g.s. → 0+
Ex

transition, the S = 1 components will not con-
tribute and irrespective of the multipolarity of the excitations
in the second nucleus; only S = 0 transitions will be observed.

For unnatural parity states, the multipole mixtures lead to a
modification of the momentum dependence because for J �=
0− we have two angular momentum transfers, L = J − 1 and
L = J + 1. The forward cross section for unnatural parity
transitions in both nuclei behaves as

dσGG

d�
∼ q2(Ja+JA−2)

[(2Ja − 1)!!(2JA − 1)!!]2

∣∣V (C)
11 (0)

∣∣2|N̄αβ |2

×
[∣∣∣∣b(AB )

JA−11JA
+ q2

(2JA + 1)(2JA + 3)
b

(AB )
JA+11JA

∣∣∣∣
2

×
∣∣∣∣b(ab)

Ja+11Ja
+ q2

(2Ja + 1)(2Ja + 3)
b

(ab)
Ja+11Ja

∣∣∣∣
2
]
.

(31)

The contributions from the rank-2 tensor interactions are not
shown because they will be suppressed at small momentum
transfer. The multipole mixtures will change with the effective
momentum transfer at forward directions. If there is a 0− tran-
sition in one of the two nuclei, the corresponding transition
form factor reduces to a single contribution with L = 1 and
S = 1.

In addition, there are mixed transitions, combining a nat-
ural parity spin-flip excitation in one nucleus with unnatural
excitations in the other nucleus. The corresponding cross
sections are obtained in a similar way and are easily deduced
by an appropriate combination of the above results.

IV. INITIAL- AND FINAL-STATE INTERACTIONS

A. Distorted waves and distortion coefficient

For heavy-ion reactions, the elastic interactions in the
initial and the final channels play a key role for a quantitative
description of cross sections. In a microscopic description, the
optical potentials are obtained in a double-folding approach
[17]. In the many cases where elastic scattering data are not
available, the folding approach is in fact the only way to
obtain information on elastic ion-ion interactions. The double-
folding potential is defined in terms of the NN T matrix
and the ground-state densities of the interacting nuclei. Thus,

specific contributions, e.g., due to the coupling to breakup
and transfer channels or rotational and vibrational excitations,
are not included. Experience, however, shows that at kinetic
energies above the Coulomb barrier the double-folding po-
tential accounts surprisingly well for the elastic interactions
over large ranges of incident energies and projectile-target
combinations; see, e.g., Ref. [21]. The reason is that most
of the interaction effects are already covered by the multiple
scattering series inherent to an elastic amplitude iterated to
all orders, as in the case of the solutions of a Schrödinger-
type wave equation. A commonly used approach is the im-
pulse approximation, amounting to consider the isoscalar
and isovector (S = 0, T = 0, 1) parts of the free space NN
T matrix. Since there are no heavy-ion polarization data
available, spin-dependent parts of the optical potential are
neglected. Coulomb interactions, of course, must be included
as well. They are treated by folding the two-body projectile-
target nucleon Coulomb interaction with the nuclear charge
densities. Thus, we use

Uopt (r) = V (r) − iW (r) + Uc(r), (32)

where the imaginary part must in total correspond to an
absorptive potential, guaranteeing a positive absorption cross
section. The distorted waves are then defined by wave equa-
tions with the generic structure(

− h̄2

2mγ

∇2 + Uγ (r) − E(rel)
γ

)
χ (±)

γ (r,±k) = 0 (33)

for γ ∈ {α, β}. Erel
α,β = √

s − MA,B − Ma,b indicates the ki-
netic energy available in the projectile-target rest frame, with
MA,B and Ma,b denoting target and projectile rest masses.

B. Separation approach to the distortion coefficient

From Eq. (18), the limiting case of a system without ISI
and FSI interactions is immediately found by replacing the
distorted waves by plane waves (PW). Then, the distortion
coefficient reduces to

N
(PW )
αβ (kα, kβ, p) = δ(kα − kβ − p) (34)

and we retrieve the reaction amplitude, Eq. (19), in lowest-
order Born approximation as

M
(B )
αβ (kα, kβ ) ≡ Uαβ (qαβ ). (35)

In order to establish the connection of the full distorted wave
(DW) amplitudes to those of the PW limit, we need to consider
the distortion coefficient in more detail. For that purpose, we
separate the distorted waves |χ (±)

α,β 〉 into plane waves |kα,β〉 and

a residual distortion amplitude u
(±)
α,β (kα,β, r). On very general

grounds, such a separation is justified by the representation
of an interacting wave in terms of the Møller-wave operator
acting on a plane wave [22]. Assuming that u

(±)
α,β and Uαβ

commute, we define the distortion density

ηαβ = u
(−)†
β u(+)

α . (36)

Then, Eq. (18) is found to be given by the Fourier transform
of the distortion density

Nαβ (kα, kβ, p) = ηαβ (qαβ − p). (37)
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Since for a noninteracting system ηαβ (r) → η
(PW )
αβ (r) = 1, it

is useful to consider �αβ (r) = 1 − ηαβ (r). This allows to split
the distortion coefficient as follows:

Nαβ (kα, kβ, p) = N
(PW )
αβ (kα, kβ, p) − �αβ (qαβ − p), (38)

where now the ISI and FSI effects are fully contained in
the Fourier transform of �αβ . Correspondingly, the reaction
amplitude divides into

Mαβ (kα, kβ ) = M
(B )
αβ (qαβ ) −

∫
d3p�αβ (qαβ − p)M (B )

αβ (p)

= M
(B )
αβ (qαβ ) −

∫
d3q�αβ (q)M (B )

αβ (qαβ − q).

(39)

Assuming that �αβ is spherical symmetric, we obtain

Mαβ (kα, kβ )

= M
(B )
αβ (qαβ ) − 4π

∫ ∞

0
dqq2�αβ (q )M̄ (B )

αβ (qαβ, q ),

(40)

where

M̄
(B )
αβ (qαβ, q ) = 1

4π

∫
d�qM

(B )
αβ (qαβ − q) (41)

denotes the Born amplitude averaged over the orientations of
q. Referring to the definition of the Born amplitude, Eq. (35),
the angle integral can be performed analytically, and we obtain

M̄
(B )
αβ (qαβ, q ) =

∫
d3reiqαβ ·rUαβ (r)j0(qr ). (42)

The above relations involve in fact different scales, which
allow a separation ansatz: The distribution of the momenta
q is controlled by the optical model quantity �αβ with a
typical momentum spread of the order of the potential radius,
i.e., �qreac ∼ 1

Ropt
� 50 MeV/c. The momentum structure of

the Born amplitude is determined by the charge-changing
nuclear form factors F (ab),(AB ). Their overall momentum de-
pendence is closely related to the Fermi momenta of protons
and neutrons; thus �qnucl ∼ kF ∼ 300 MeV/c. Therefore, we
introduce the separation ansatz

M̄
(B )
αβ (qαβ, q ) 	 M

(B )
αβ (qαβ )hαβ (q ), (43)

where the separation function hαβ (q ) is determined by the
variation of the Born amplitude off the physical 3-momentum
shell qαβ .

Now, we perform the remaining integral and define the
absorption index

nαβ = 4π

∫ ∞

0
dqq2�αβ (q )hαβ (q ). (44)

The full reaction amplitude acquires a considerably simplified
structure,

Mαβ (kα, kβ ) = M
(B )
αβ (qαβ )(1 − nαβ ), (45)

given in leading order by the Born amplitude, scaled by a
distortion coefficient which should depend only weakly on the
momentum transfer for a meaningful factorization of Mαβ .

C. Separation function for Gaussian form factors

The separation ansatz discussed above can be checked, on
an analytical basis, if one adopts a Gaussian shape, UG, for the
transition potential Uαβ (p). Indeed, nuclear SCE transitions
are well modeled by surface form factors for which the
Gaussian shape is a quite convenient and realistic choice. For
the present purpose, it is sufficient to consider a transition
potential with a single Gaussian form factor,

UG(r, R) = 1

4π
U0e

− (r−R)2

2σ2 , (46)

which can be adjusted to microscopically derived shapes by an
appropriate choice of the centroid parameter R and the width
parameter σ . Considered as classical quantities, R and σ are
determined, in principle, by the radii and surface thicknesses
of the colliding ions. UG contains a rich multipole structure

UG(r, R) =
∑
LM

Y ∗
LM (R̂)ULM (r, R) (47)

with the multipole form factors

ULM (r, R) =
∫

dR̂YLM (R̂)UG(r, R) (48)

= U0e
− r2+R2

2σ2 iL(rR/σ 2)YLM (r̂), (49)

where iL(x) = iLjL(ix) is a modified spherical Bessel func-
tion. As discussed in Appendix C, the connection to the mi-
croscopic structure of the intrinsic nuclear transitions involved
in projectile and target is recovered by imposing on YLM (R̂)
a quantization condition in terms of the projectile and target
state operators, similar to the collective model of nuclear
excitations. There, it is also shown that within the Gaussian
approximation R and σ are determined by the corresponding
projectile and target quantities. The strength parameter U0 is
related to the volume integral of the NN T matrix. However,
for the following those details are of minor relevance because
state-independent, universal properties of distortion effects
in nonelastic ion-ion reactions are investigated. Thus, for
simplicity, we neglect the state dependence, choose U0 = 1,
and leave the determination of R and σ for later.

The Fourier-Bessel transform is derived analytically,

UG(p, R) =
√

π

2
σ 3eip·Re− 1

2 σ 2p2
, (50)

and the momentum space multipoles are obtained as above
by projecting on YLM (R̂). This amounts to expand the plane
wave into partial waves, resulting in

ULM (p, R) = 4π

√
π

2
σ 3e− 1

2 σ 2p2
jL(pR)iLYLM (p̂). (51)

According to Eq. (39), we need to evaluate UG(p) at p =
qαβ − q. This leads to

UG(qαβ − q, R) = UG(qαβ, R)Hαβ (q, ρ ), (52)

describing the (partial) separation of the dependencies on the
physical momentum transfer qαβ and the momentum shift q
due to the ISI-FSI interactions by means of

Hαβ (q, ρ ) = e− 1
2 σ 2q2

e−iq·ρ (53)
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with the pseudoradius

ρ = R + iσ 2qαβ, (54)

which is shifted into the complex plane by an amount con-
trolled by the width parameter σ . We use ρ =

√
ρ2, where

ρ2 = R2 − σ 4q2
αβ + 2iσ 2qαβ · R. (55)

Since ρ also depends on the on-shell momentum transfer
qαβ , the separation of variables is not yet fully achieved. The
function hαβ of Eq. (43) is given as

hαβ (q, ρ) = 1

4π

∫
dq̂Hαβ (q, ρ ) = e− 1

2 σ 2q2
j0(qρ) (56)

and the distortion coefficient (1 − nαβ ) is found according to
Eq. (44). Further insight into the modification introduced by
the ion-ion ISI and FSI interactions is obtained by using the
addition theorem for Bessel functions [23]

j0(qρ) =
∑

λ

(2λ + 1)Pλ(cos γ )jλ(qR)iλiλ(qqαβσ 2), (57)

where γ denotes the angle between R and qαβ . Furthermore,
using the addition theorem of spherical harmonics, we find

hαβ (q, ρ)

= 4πe− 1
2 σ 2q2

∑
λμ

iλYλμ(q̂αβ )Y ∗
λμ(R̂)jλ(qR)iλ(qqαβσ 2).

(58)

For momentum transfers in the range qαβ � 1/σ , which
amounts to about the order of 100 MeV/c, the sum is well
approximated by the monopole term,

hαβ (q ) = e− 1
2 σ 2q2

j0(qR)i0(qqαβσ 2), (59)

indicating a remaining dependence on the reaction momentum
transfer. This derivation, based on the Gaussian form factor,
allows one to understand the range of validity of the separation
ansatz, Eq. (43). Indeed, for transferred momenta approaching
zero, one recovers the complete factorization discussed above,
i.e.,

hαβ (q ) �→ e− 1
2 σ 2q2

j0(qR). (60)

V. DISTORTION COEFFICIENT IN THE STRONG
ABSORPTION LIMIT

A. Strong absorption limit and black disk approximation

In the derivation of Eq. (45), the critical step is clearly the
treatment of the distortion effects, which we consider next.
For strongly absorbing systems like ion-ion scattering, the dis-
torted waves are almost completely suppressed in the overlap
region, thus reflecting the large amount of channel coupling
which leads to a redirection of the incoming elastic probability
flux into a multitude of nonelastic reaction channels. Such
systems are described by optical potentials with a strong
imaginary part of a strength comparable in magnitude to the
real, diffractive part. Under such conditions, the distortion
amplitude introduced before resembles in coordinate space
a step function, ηαβ (r) ∼ eiφ(r)�(r − Rabs). In the following,
we neglect the phase factor given by φ. This picture coincides

with the black disk assumption (BD), where one considers that
a major part of the incoming flux is consumed by a (spherical)
absorber of radius Rabs, resulting in the total absorption cross
section

σ
(BD)
abs (

√
s) = πR2

abs(
√

s), (61)

and by equating σ
(BD)
abs and the quantum mechanical reaction

cross sections σ
(α,β )
abs the absorption radius Rabs is obtained.

Considering that σabs ∼ 1–3 b as a representative range of
values for ion-ion reaction cross sections at energies of a few
10 A MeV we find Rabs ∼ 5–10 fm. These values are implying
a variation of the function j0(qRabs) on a momentum scale
�qreac ∼ 1/Rabs ∼ 20–40 MeV/c, thus complying perfectly
well with the previous estimates.

In the BD limit, we can evaluate the distortion coefficient
in closed form. We find

�
(BD)
αβ (q ) = 1

2π2

Rabs

q

(
− ∂

∂q

)
j0(qRabs) (62)

and the scaling function is given by

n
(BD)
αβ (Rabs) = 2Rabs

π

∫ ∞

0
dqj0(qRabs)

∂

∂q
[qhαβ (q )], (63)

which corresponds to a Fourier-Bessel transform of hαβ (q ),
mapping the dependence on the variable q to the comple-
mentary variable Rabs. As discussed in Appendix D, for h(q )
given by Eq. (56), the black disk distortion coefficient can be
calculated in closed form, resulting in a superposition of error
integrals and Gaussians.

In hαβ , see Eq. (56), the parameter σ controls the slope
of the momentum distribution around the physical momen-
tum transfer qαβ . By the arguments given above, we expect
σ ∼ O(1/kF ), thus being related to the binding properties
of nuclei. Hence, the width of the Gaussian form factor
is determined by the surface diffuseness of nuclear density
distributions. The (off-shell) diffraction structure of the tran-
sition form factors, which is described by R, is more directly
affected by the nuclear geometry, which to a large extent is
a mean-field effect, thus related to the radii of the nuclear
densities, Ra,A. Taking into account the modifications by the
folding with the NN interaction, we estimate therefore R ∼
O(Rpot ), where Rpot is the radius of the ion-ion potential.

B. Relation to eikonal theory

The distortion coefficient, Eq. (18), approaches a well-
known limit for p → 0, given by the S matrix [24]. Evaluating
explicitly the case α = β gives

Nαβ (kα, kβ, p)p=0 → ND = 1

(2π )3
〈χ (−)

α |χ+
α 〉

= 1

k2
α

δ(kα − k′
α )

1

4π
Sα, (64)

resulting in the optical model S matrix, given by the partial-
wave S-matrix elements S�:

Sα =
∑

�

(2� + 1)P�(cos θ )S�. (65)
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The δ function takes care of energy conservation, reflecting
the on-shell property of the S matrix. In the on-shell limit, the
quantity �αβ , Eq. (38), is determined by the elastic scattering
amplitude. Hence, the distortion coefficient can be understood
as an off-shell extension of the elastic scattering amplitude.

Averaging the modulus squared of Sα over the final mo-
mentum direction, we find

〈|Sα|2〉 =
∑

�

(2� + 1)|S�|2. (66)

Removing the divergent part of that summation—reminiscent
of the δ function deriving from the plane-wave components—
we end up with the absorption coefficients A� = 1 − |S�|2,
which determine also the total reaction cross section. Thus,
in the case of the strong absorption characterizing heavy-ion
collisions, the distortion coefficient is closely related to the
reaction cross section.

At incident energies well above the Coulomb barrier,
eikonal theory is in fact a suitable method to investigate fur-
ther distortion effects. The absorptive heavy-ion interactions
allow us to use eikonal theory already at the relatively low
energies as considered here. In the nuclear interior where
also the real potential is sizable, the deep imaginary potential
suppresses the scattering waves by many orders of magnitude.
Thus, to a large extent the reaction is blind against the region
where the potentials may be of the same magnitude or even
larger than the kinetic ion-ion energy. The scattering process
is determined by the regions where the imaginary potential
strength has decreased to values smaller than the real part of
the potential plus the kinetic energy.

In eikonal theory, the S matrix is given by an integral over
impact parameters b

Sα = 1

2π

∫ ∞

0
dbbJ0(qb)eiχα (b), (67)

where J0(x) is the ordinary Bessel function of order n =
0, q = |kα − k′

α| denotes the elastic momentum transfer. The
S matrix is given now by the profile function χα (b) depending
on the impact parameter b, as discussed in Appendix E.
A projection on vanishing longitudinal momentum transfer
qz = 0 is obtained reflecting the fact that distortion affects in
the first place the transversal components of scattering wave
functions. Thus, finally we obtain1

〈|Sα|2〉 = 1

2π

∫ ∞

0
dbbe−2Im(χα (b)). (68)

In Fig. 2, the quantum mechanical absorption factor Al =
1 − |S�|2, evaluated numerically, and the eikonal analog 1 −
|S(b)|2 are compared for the reaction 18O + 40Ca at TLab =
15 A MeV. The same optical potential is used, assuring that
the reaction cross section is reproduced in eikonal approx-
imation (see next section). The agreement is striking. The
reason that eikonal theory is doing so well at this low energy

1At low energies, Coulomb barrier effects may be taken into
account by the additional factor e−2πηS , where ηS is the Sommerfeld
parameter.

FIG. 2. Comparison of quantum mechanical (DW) and eikonal
(EW) results for the absorption factors A� = 1 − |S�|2 shown as
functions of the impact parameter b 	 �/kα .

is the strong absorption by which contributions of Re[χ (b)]
are strongly suppressed in the space regions where Im(Uopt )
is sizable.

C. Mass and energy dependence of absorption effects

An important conclusion from the foregoing discussion is
the paramount role of absorption effects for which the ab-
sorption radius Rabs is the key quantity. Moreover, according
to Appendix E, in the strong absorption limit the distortion
coefficient is fixed once Rabs is known, together with the
nuclear shape parameters. For our purpose, it is enough to
consider the imaginary part of the optical potential W (r). In
the present context, W (r) plays the role of an effective eikonal
potential which has to be adjusted such that the quantal results
are reproduced as close as possible. A spherical-symmetric
potential of Gaussian shape is used:

W (r ) = −W0e
−r2/R2

W . (69)

The radius parameter RW and the potential strength are fixed
by comparison to quantum mechanical results for the total
reaction cross section for two reference systems: 18O + 40Ca
and 18O + 116Sn at Tlab = 270 MeV [13]. Denoting the mass
numbers of projectile and target by Ap,T , a proper description

of the two systems is obtained with RW = r0

√
A

2
3
p + A

2
3
T ,

where r0 = 0.783 fm and

W0 = w
(
A

2
3
p + A

2
3
T

)−3/4
, (70)

with w = 5902.743 MeV. Interestingly, the potential depth
behaves according to the so-called URα law, which was found
in the early days of the nuclear optical model by Hodgson
[25,26], when studying ambiguities of optical potentials. In
our case, we have α = 3/2. We also note that the eikonal ap-
proximation works rather well for shallow optical potentials,
as given by our parametrization. For instance, for the sys-
tem 18O + 40Ca we find RW 	 3.375 fm and strength W0 	
660 MeV, resulting in σ

(α)
abs 	 2.14 b and Rabs 	 8.26 fm. As
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discussed in Sec. IV C, the transition potential is described by
a surface-centered Gaussian,

UG(r, RG) ∼ e−(r−RG )2/2σ 2
(71)

with RG = rG

√
A

2
3
p + A

2
3
T , rG = 1.2 fm. The width parameter

σ ≈ 1 fm corresponds to the width obtained by folding two
nuclear transition form factors of Gaussian shape, each with
σa,A ∼ 0.7 fm (see Appendix C and Sec. IV C).

Thus, we have at hand all quantities necessary to evaluate
the distortion amplitude ηαβ and the total absorption cross sec-
tion σ

(α,β )
abs as functions of mass and energy, by the formalism

of Appendix E. Then, from the absorption radius, we derive,
within the black disk approximation, the distortion coefficient
(1 − nBD) and the distortion factor fBD = |1 − nBD|2 (see
Appendix D).

The dependence of Rabs(AP ,AT , TLab) on the ion masses
and the incident energy is illustrated in Fig. 3. The variation of
the ratio Rabs/RW on the target mass number AT is displayed
on the upper panel for the three choices of projectiles, namely
12C, 18O, and 28Si at fixed energy TLab = 270 MeV. The ratio
decreases mildly by a few percent with increasing AT , imply-
ing an A1/3 dependence for Rabs. A slight increase with AP

is found, reflecting slightly larger variation with the projectile
mass.

In the lower panel of Fig. 3, the dependence of Rabs/RW

on the incident energy is shown, fixing the target to 40Ca.
Here, one finds a behavior similar to the mass dependence:
The absorption radii decrease continuously with increasing
incident energy. From Eqs. (E16) and (E17), one finds for
small energies a logarithmically divergent dependence on
TLab, which for large energies changes to a dependence on
1/kα ∼ 1/

√
Tlab.

The mass and energy dependences of the distortion factor
fBD are explored in Fig. 4. Over the shown mass range, a
decrease by several orders of magnitude is found, indicating
the smallness of cross sections to be expected for heavy targets
and increasing projectile mass. The results indicate, on the
other hand, that lighter projectiles are leading to a less extreme
suppression.

As a function of energy, fBD increase rapidly with TLab

as seen in the lower panel of Fig. 4. Thus, combining these
results with those on the mass dependence, we conclude that
already a moderate increase of the incident energy will lead
to considerably larger cross sections also for heavier target-
projectile combinations.

VI. APPLICATIONS TO HEAVY-ION-INDUCED
SCE REACTIONS

A. Spectroscopy of charge changing nuclear excitations

The theoretical methods developed in the previous sections
are mainly applied in the following to the SCE reaction
18O + 40Ca → 18F + 40K, at Tlab = 15 A MeV [27], which
has been recently investigated by the NUMEN Collaboration
[12]. Some illustrative results will be also shown at different
beam energies and for the 18O + 116Sn → 18F + 116In reac-
tion. In this section, we consider first charge changing nuclear
excitations in a self-consistent approach using nuclear HFB

FIG. 3. Upper panel: Variation of the effective absorption radius
Rabs with projectile and target mass. Gauss-eikonal-approximation
(GEA) results are shown for the projectiles 12C (lower curve, red),
18O (center curve, red), and 28Si (upper curve, green), respectively, on
targets with mass numbers 10 � AT � 210. Lower panel: Variation
of the effective absorption radius Rabs with incident energy. GEA
results are shown for reactions on 40Ca with the projectiles 12C (lower
curve, red), 18O (center curve, red), and 28Si (upper curve, green),
respectively.

mean-field theory for ground states and QRPA theory for
the transition densities. In combination, these two methods
provide a versatile toolbox with appropriate instruments for
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FIG. 4. Upper panel: Variation of the distortion factor fBD with
projectile and target mass. GEA results are shown for the projectiles
12C (lower curve, red), 18O (center curve, red), and 28Si (upper curve,
green), respectively, on targets with mass numbers 10 � AT � 210.
Lower panel: Variation of the distortion factor fBD with incident
energy. GEA results are shown for reactions on 40Ca with the
projectiles 12C (upper curve, red), 18O (center curve, red), and 28Si
(lower curve, green), respectively.

TABLE I. Ground-state properties of the A = 18 and the A =
40 isobars. The observed and the calculated binding energies per
nucleon are shown in the second and third columns. Density and
charge root-mean-square radii are noted by rd and rchrg, respectively.
The data are taken from the AMDC mass evaluation [30].

Nucleus Bexp(A)/A Btheo(A)/A rd rchrg

[MeV/A] [MeV/A] [fm] [fm]

18N 7.038 7.236 2.790 2.693
18O 7.767 7.894 2.740 2.757
18F 7.632 7.329 2.763 2.854
40K 8.538 8.620 3.369 3.449
40Ca 8.551 8.618 3.373 3.486
40Sc 8.174 8.269 3.381 3.524

the proper description of nuclear spectroscopy over most
of the nuclear mass table, except for the lightest nuclei.
The reaction theoretical aspects will be addressed afterward.
There, the focus will be in the first place to clarify and
establish a couple of special aspects of heavy-ion reactions
at intermediate energies, rather than fitting data.

1. HFB mean-field description of the A = 18 and A = 40 isobars

For the practical calculations, the quasiparticle spectrum
and the single-particle wave functions are obtained by density
functional theory. An energy density functional (EDF) along
the line of Refs. [19,28] is constructed, using a G matrix
interaction, supplemented by three-body terms. First vari-
ation leads to single-particle-wave equations with effective
density-dependent potentials and pairing interactions, solved
self-consistently by HFB and BCS methods. In the particle-
particle channel, an effective density-dependent contact pair-
ing interaction is used. The strength is derived from the nn and
pp singlet-even Born matrix elements of the Bonn interaction
in the nonrelativistic reduction found in Ref. [29]. Such an
approach leads to state-dependent pairing gaps which are
determined self-consistently in parallel to the HFB iteration
procedure. In Table I, HFB results for the ground states
of mass-18 and mass-40 nuclei are listed. For the A = 18
isobars, the measured binding energies are reproduced by
better than 4%. As typical for a mean-field description with
global parameter sets, the agreement improves with increas-
ing mass. The binding energies of the A = 40 isobars are
described by better than about 1%. A similar dependence will
also be detected for the QRPA results discussed below. For
the single-particle spectra entering into the QRPA calcula-
tions, proton and neutron continuum states are included up
to single-particle energies of 100 MeV. They are obtained
by using the self-consistent HFB mean-field potentials, thus
avoiding artificial, nonphysical nonorthogonality effects. The
single-particle continua are described by a dense spectrum of
discrete states. Enclosing the system into a spherical cavity of
a size of up to 100 fm, an average energy spacing of about
20 keV is obtained. The optical potentials discussed above are
calculated with the 18O and 40Ca HFB ground-state densities.
They are displayed in Fig. 5.
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FIG. 5. Proton and neutron HFB ground-state densities for 18O (left) and 40Ca (right), respectively. In 18O, the onset of a neutron skin is
visible.

2. SCE response functions

Nuclear charge changing excitations consist of two
branches: The np−1 branch probes the τ+ response and pn−1

excitations probes the τ− response, intimately related to the
β± processes of weak interactions. In both 18O and 40Ca,
however, the mixing of the two branches is negligible.

Physically, the 2QP configurations will be coupled to 4QP
and higher order many-body configurations. These couplings
induce non-Hermitian polarization self-energies �QQ(ω) =
�c(ω) − i

2�c(ω) where real and imaginary parts are con-
nected by a dispersion relation. The self-energies are de-
scribed by a global energy-dependent parametrization accord-
ing to the procedure discussed in Refs. [31,32].

The residual interactions are obtained by second variation
of the same EDF as used in the HFB ground-state calculations,
leading to density-dependent Landau-Migdal parameters. For
the present purpose, the isovector interactions are of primary
interest. Because of the density dependence, the Landau-
Migdal interactions include rearrangement contributions de-
scribing an additional effective screening of the 2QP interac-
tion vertices and wave function renormalizations.

Below, results of our nuclear structure calculations will be
discussed for charge-changing excitations of 18O and 40Ca. As
test operators, we use the multipole operators

TLSJM =
(

r

Rd

)L

[σ S ⊗ YL]JMτ±, (72)

which are of a structure similar to the weak interaction oper-
ators of nuclear β decay. However, here we consider the full
spectrum of spatial and spin multipoles; i.e., we also include
response functions for transitions which would be strongly
suppressed in β decay. The normalization to the half-density
radius Rd of the respective parent nucleus removes to a large
extent the (trivial) dependence of response functions on the
nuclear size. In the following, all data on energy spectra were
taken from the NNDC online compilation [33].

3. Charge-changing response functions for 18O

The HFB ground state of 18O is given by a semimagic
configuration: For the protons, the perfect Z = 8 shell closure
as in 16O is maintained but the two valence neutrons are in
an open-shell configuration in the d 5

2
shell. Thus, the two

charge-exchange branches involve quite different configu-
rations. The low-energy np−1 excitations lead to negative-
parity JP = 0−, 1−, 2−, 3− ground-state multiplet of states
in 18N, as allowed by the transitions from the 1p-proton
shell to the (2s, 1d)-neutron shell. Experimentally, one finds
18N (1−, g.s.), followed by states at Ex = 115 keV and Ex =
588 keV, tentatively assigned as JP = 2−, and a tentative
JP = 3− state at Ex = 747 keV but the JP = 0− state is
missing. The low-energy spectrum of the complementary
pn−1 branch, populating states in 18F, is determined by
configuration of 1d 5

2
neutron hole states and proton states

in the (2s, 1d) shell. In principle, this allows a ground-
state sextet with JP = 0+, 1+, 2+, 3+, 4+, 5+. Experimen-
tally, a 18F(1+, g.s.) is found, followed by a JP = 3+ state
at Ex = 937 keV, a JP = 0+ state at Ex = 1042 keV, and
a JP = 5+ state at Ex = 1121 keV. The first JP = 2+
state is found at the much higher energy Ex = 2523 keV.
Thus, a much richer spectrum than in 18N is observed.
At Ex = 1181 keV, a JP = 0− is observed and at Ex =
2101 keV a JP = 2− state is seen. These negative- parity
intruder states indicate an imperfect closure of the proton 1p
shell.

In contrast to the data, the QRPA calculations lead to a
somewhat more spread out spectrum. Overall, however, the
agreement is very satisfactory in view of the restriction to
the 2QP-configuration space. The model calculations, shown
in Fig. 6, predict a JP = 4+ ground state, followed by a
JP = 5+ state at Ex = 172 keV, a nearby JP = 3+ state
at Ex = 197 keV, and a JP = 2+ state at Ex = 305 keV.
Another JP = 2+ state is obtained at Ex = 980 keV. At
Ex = 3298 keV and Ex = 4049 keV, a JP = 0+ doublet is
predicted. The two states may be the theoretical counterparts
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FIG. 6. QRPA response functions for 18O → 18F transitions. Results for the multipole transition operators TLSJM = ( r
Rd

)L[σ S ⊗ YL]JMτ+
are shown where Rd = 2.74 fm corresponds to the half-density radius of 18O.

of the two observed JP = 0+ states at Ex = 1042 keV and
Ex = 4753 MeV, respectively. Above Ex ∼ 5.6 MeV, the pro-
ton continuum is populated, thus leading to particle unstable
states.

Overall, the rather complex spectrum is described surpris-
ingly well by the QRPA calculations, which is especially
worthwhile since global model parameters were used without
any attempt at fine-tuning.
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FIG. 7. QRPA response functions for 40Ca → 40K transitions. Results for the multipole transition operators TLSJM = ( r
Rd

)L[σ S ⊗ YL]JMτ−
are shown where Rd = 3.72 fm corresponds to the half-density radius of 40Ca.

4. Charge-changing response functions for 40Ca

Since 40Ca is a (double-magic) N = Z nucleus, protons
and neutrons are occupying the same single-particle orbitals.
Therefore, also the odd-odd daughter nuclei 40K and 40Sc are

of a mirrorlike level structure, reflecting the almost conserved
isospin symmetry. The low-energy part of both excitation
branches is determined by hole states in the (2s, 1d) shell
and particle states in the (2p, 1f ) shell. Thus, negative-parity
states with JP = 0− · · · 5− will prevail in the spectra. Ex-
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perimentally, one finds for both daughter nuclei a JP = 4−
ground state. In 40K, a triplet of JP = 3−, 2−, 5− states is seen
at Ex = 29, 80, and 891 keV. Another JP = 2−, 3− doublet is
found at Ex = 2047, 2070 keV and the first JP = 1− occurs
at Ex = 2104 keV. At Ex = 2626 keV, a JP = 0− state is
seen. However, there are also positive-parity intruder states
which, similar to the A = 18 systems, indicate the lack of per-
fect shell closures. Above Ex ∼ 2.5 MeV, a dense spectrum of
positive- and negative-parity states is observed. The spectrum
of 40Sc is less well known, but tentative assignments of spins
and parity indicate at least for the ground-state multiplet
a very similar JP = 4−, 2−, 3−, 5− level sequence with a
comparable spacing.

Using the same scheme as in the previous case, also
here HFB single quasiparticle energies, pairing amplitudes,
and wave functions for 40Ca have been used to construct
the polarization propagators. The QRPA spectra for 40K are
shown in Fig. 7. The A = 40 ground-state multiplets are
satisfactorily described: A JP = 4− ground state is obtained
and we observe the level sequence JP = 3−, 5−, 2− at Ex =
302, 501, 1008 keV. As in the data, JP = 0−, 1− states are
found at higher energies, namely Ex = 3726 keV and Ex =
3562 keV. Positive-parity states are expected to occur at
very high energy, in fact beyond the continuum thresholds.
The reason is that the 40Ca HFB ground state is given by a
perfect double-magic shell closure. However, as discussed in
Refs. [34,35], core polarization will modify that picture by
dissolving the shell closures in 40Ca on a level of about 10 to
15% and intruder positive-parity states may be present also at
low energy.

We emphasize again that the same EDF was used as in
the A = 18 calculations, refraining from parameter adjust-
ments. As is typical for mean-field-based theories, in this case
the larger mass of the parent nucleus led to an even better
agreement with data. Thus, we may conclude that the QRPA
approach provides a quite reliable description of SCE spectra.

B. Optical potential and elastic scattering

A key issue for understanding heavy-ion reactions on a
quantitative level is the proper treatment of ion-ion interac-
tions. Their paramount role is evident by considering the huge
total reaction cross sections, which reflect the importance of
absorption of the incoming flux into a multitude of reaction
channels. Because of the lack of elastic scattering data, em-
pirical optical potentials are not available for the projectile-
target systems under scrutiny. Thus, we calculate the optical
potential fully microscopically in a folding approach. The
HFB ground-state densities discussed above are folded with
the NN T -matrix interaction, including both the isoscalar
and isovector components. Because heavy-ion scattering is a
strongly absorptive process, elastic scattering and peripheral
inelastic reactions are mainly sensitive to the nuclear surface
regions of the interacting nuclei. Thus, to a very good approx-
imation, in-medium modifications of interactions can be ne-
glected in the elastic ion-ion interactions and we are allowed
to use the free-space NN T matrix as the dominant leading-
order impulse approximation. In the numerical calculations,
the NN T matrix derived by Franey and Love [36] was used,

TABLE II. Defining quantities of the double-folding optical
potential for the systems 18O + 40Ca and 18O + 116Sn at Tlab =
270 MeV. Volume integrals per projectile and target nucleon numbers
are denoted by I0/N . HFB ground-state densities and the free-space
NN T -matrix interaction obtained from Ref. [36] were used.

Uopt Target I0/N [MeV fm3]/N
√

〈r2〉 [fm]

ReUopt
40Ca −439.71 4.75

ImUopt
40Ca −319.37 4.61

ReUopt
116Sn −543.09 5.70

ImUopt
116Sn −503.33 5.58

extrapolated down to the present energy region. The approach
is used for calculating the real and the imaginary parts of
the optical potentials in the incident and the exit channels.
The Pauli principle is taken care of by the pseudopotential
approach in local momentum approximation [17]. Distorted
waves are obtained by solving the Schrödinger equation with
these microscopically derived optical potentials as discussed
in Sec. IV.

Characterizing quantities like volume integrals (per nu-
cleon) and root-mean square radii are found in Table II, for
the 18O + 40Ca and 18O + 116Sn systems at the beam energy
Tlab = 270 MeV.

Corresponding reaction cross sections are represented in
Fig. 8, as a function of the beam energy. In Ref. [21], Khoa
et al. have used the double-folding approach in a systematic
study of 12C + 12C and 16O + 16O elastic scattering in about
the same range of incident energies. For those lighter systems,
they found total reaction cross sections of about 1.5 to 1.8 b,
which is in fair agreement with our results for the heavier
target-projectile combinations. In Ref. [37], the fusion cross
section of 16O + 40Ca has been measured resulting in values
of about σf ∼ 1.2 b at energies below Tc.m. ∼ 100 MeV. Since
σf is only a part of the total reaction cross, that value should
be considered as a lower limit for σabs, thus supporting the re-
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FIG. 8. Reaction cross sections as a function of beam energy, for
the systems 18O + 40Ca and 18O + 116Sn. The results are in quanti-
tative agreement with those of the double-folding investigations by
Khoa et al. [21].
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FIG. 9. Elastic scattering angular distributions for 18O + 40Ca at
several beam energies, normalized to the Rutherford cross section,
are shown as a function of the momentum transfer. The momentum
range corresponds up to twice the Fermi momentum at central
nuclear density, qα,β ≈ 600 MeV/c.

sults of Fig. 8. We emphasize, however, that finally the ion-ion
potentials have to be adjusted once elastic scattering data will
be available. Results for the elastic scattering cross sections,
normalized to the Rutherford cross section, are shown in
Fig. 9 for the 18O + 40Ca system at different beam energies.
At extremely small momentum transfer (i.e., extreme forward
scattering angles) it is dominated by pure Coulomb scattering,
but beyond qαβ ≈ 200 MeV/c, the short-range nuclear parts
are taking over.

C. Distortion effects in heavy ion SCE cross sections

Following the reaction and nuclear structure formalism
outlined above, numerical calculations of single charge ex-
change cross section have been performed [38]. Form fac-
tors are derived by folding the transition densities with the
projectile-target residual charge exchange interaction where
the momentum representation is used [18]. In order to main-
tain self-consistency as much as possible, we use the same
2QP isovector interaction as in the nuclear structure calcu-
lations. The operator structure includes spin-dependent and
spin-independent direct and exchange central interactions, to-
gether with second-rank tensor terms. The NN spin-orbit in-
teractions have been neglected. The procedure follows closely
the approach used successfully in our previous investigations
of SCE reactions [8–11,38].

The closest resemblance to nuclear β decay processes is
found in pure Gamow-Teller (spin-isospin flip with JP = 1+)
or pure Fermi (isospin flip with JP = 0+) excitations, respec-
tively. However, strong interaction processes are less selective
on multipolarities than weak interactions. Moreover, because
of the peripheral character of inclusive heavy-ion reactions,
very often transition of higher angular momentum transfer
are favored. Thus, heavy-ion SCE reactions enable to probe
the whole spectrum of Gamow-Teller-like spin-isospin-flip
and Fermi-like isospin-flip multipole transitions, discussed
in the previous section, allowing us to study multipolarities
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FIG. 10. DWBA cross section as a function of target excitation
energy, integrated over the full angular range (top panel), and angular
distribution for Ex = 0 MeV (bottom panel) for several multipoles,
contributing to Fermi-like transitions in the target. Calculations are
for the reaction 40Ca(18O, 18F)40K reaction at Tlab = 270 MeV using
double-folding optical potentials and QRPA response functions.

suppressed otherwise in weak decay processes. From the
theoretical discussion it is clear that distortion effects are
playing a significant role in heavy-ion SCE reactions. Results
for SCE single- and double-differential cross sections in full
DWBA are shown in Figs. 10–12, for the reaction 18O +
40Ca → 18F + 40K with Qgs = −2.97 MeV. The complemen-
tary SCE reaction 18O + 40Ca → 18N + 40Sc is kinematically
suppressed because of the large Qgs = −28.22 MeV.

For the Gamow-Teller (Fermi) case, we consider tran-
sitions leading to the 1+ ground state (0+ excited state)
of 18F and populating several 40K excited states, identified
by the spin J and the excitation energy Ex = E∗

B . For the
present purpose, we neglect the small variations in excitation
energy of the 18F ground-state multiplet, treating the states
as energetically degenerate with vanishing excitation energy.
From Figs. 10–12, it is straightforward to note that JP = 1+
and JP = 0+ target transitions contribute significantly to the
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FIG. 11. DWBA cross section as a function of target excitation
energy, integrated in the full angular range, for several multipoles,
contributing to Gamow-Teller-like transitions, with natural parity
(top panel) and unnatural parity (bottom panel), in the target. The
system is the same as in Fig. 10, using again QRPA spectral
distributions.

cross section at low excitation energies and dominate at small
angles.

Having in mind to illustrate global features of heavy-ion
SCE reactions, we will focus thereafter on pure Gamow-
Teller excitations in both projectile and target. The results
concerning distortion effects and the relation of the (physical)
DWBA cross section to the plane wave counterpart and the
β-decay matrix elements is to a large extent independent of
the multipolarity, at least at small momentum transfer. Thus,
without loss of generality, it is sufficient to consider a single
multipolarity.
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FIG. 12. DWBA angular distribution for Ex = 0 MeV, for sev-
eral multipoles contributing to Gamow-Teller-like transitions, with
natural parity (top panel) and unnatural parity (bottom panel), in the
target. The system is the same as in Fig. 10.
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FIG. 13. Cross sections as a function of the target excitation
energy, Ex , for the J P = 1+ transition, for the SCE reaction
40Ca(18O, 18F)40K reaction at Tlab = 270 MeV, integrated over the
full angular range. The different curves show the effect of Coulomb
potential [UC (r )], of real [V (r )] and imaginary [W (r )] components
of the optical potential, and of the full potential (DWBA), with
respect to PWBA calculations. The system is the same as in the
previous figures.

In order to understand the influence of the elastic ion-ion
interactions on SCE processes, we first disentangle the various
contributions to the optical potentials. Figure 13 displays
the (18O, 18F(g.s.)) total cross section σαβ as a function of
the target excitation energy, integrated over the full angular
range. Calculations are performed in the plane-wave Born
approximation (PWBA), as well as considering separately
the effects of Coulomb potential and of real and imaginary
parts of the nuclear optical potential, and, finally, combining
all these potentials in DWBA. Already at the PWBA level,
one can appreciate the main excitation peaks contributing to
JP = 1+ transitions in the target. With respect to the latter
results, it is observed that the cross section decreases when
the effect of the Coulomb repulsion is taken into account or
increases when considering the contribution of the (attractive)
real part of the nuclear optical potential. However, the most
striking feature is the strong suppression, by about a factor
500–600, observed just taking into account the imaginary part
of the optical potential, which essentially brings the cross
section down to the value associated with the full DWBA
calculation. This indicates that the DWBA result is mainly
explained in terms of strong absorption effects, as expected
in heavy-ion reactions, and justifies the strong absorption
approach, underlying the black disk approximation to model
the ion-ion initial- and final-state interactions (see Sec. V).

Moreover, the calculations show that absorption effects
also affect the diffraction pattern of the nonelastic angular dis-
tributions: Under strong absorption conditions, the transition
occurs effectively in the surface layers of the reacting nuclei
which consequently is reflected in the structure of the angular
distribution. The effect is most pronounced in transitions of
low multipolarities.

The interplay between central and tensor terms of the
effective interaction is investigated next. Results are shown
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in Figs. 14 and 15, together with the contributions associated
with the two multipolarities (L = 0, 2) leading to JP = 1+
transitions. One can see that the central interaction contribu-
tion to the angle-integrated cross section is fully dominated
by L = 0 transitions. The differential cross section, Fig. 15,
is shown for the state at the lowest excitation energy (Ex =
E∗

B = 0 MeV), that as discussed before is an intruder state for
the 40K ground state. The same conclusion holds, as far as the
small angles shown on the figure are concerned.

The tensor interaction is seen to slightly reduce the cross
section in the PWBA case and, in the full DWBA calculations,
for the main excitation peaks. Actually, as shown in Fig. 15,
the tensor contributions also shift the cross section to larger
angles, especially in the PWBA calculations, owing to the
dominant role of L = 2 transitions in this case.
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FIG. 15. Angular distribution for the target state at Ex = 0. The
plot shows the effects related to central and tensor components of the
nuclear interaction, for the two multipolarities allowed by J π = 1+

transitions: L = 0, 2. Same system as in the previous figures.
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energy, integrated over the full angular range, for the reaction 18O +
116Sn at Tlab = 270 MeV. Transitions leading to the 18F g.s. and
to J π = 1+ states of the target are considered. PWBA and DWBA
results are compared.

In Fig. 16, we show the angle-integrated cross section cal-
culated for the system 18O + 116Sn, at the same beam energy
Tlab = 270 MeV. Jπ = 1+ transitions are considered in both
projectile and target. The same QRPA approach, as described
above for the 18O + 40Ca system, has been employed to eval-
uate the corresponding form factors. By comparing PWBA
and DWBA results, one can notice that a smaller distortion
factor is obtained for this reaction, with respect to the 40Ca
target case. This trend is in agreement with the mass behavior
predicted by the eikonal approximation; see Fig. 4.

Guided by the previous analysis, in the following we will
consider, for the sake of simplicity, excitations corresponding
to L = 0 and we will neglect the tensor part of the effective
interaction.

D. Cross-section factorization

As stressed in Sec. IV C, the case when the transition
form factors, Eq. (A13), can be approximated by a Gaussian
function is of a particular advantage for the separation of
the distortion effects. This implies that the spatial transition
densities contained in Eq. (A14) correspond to the multipole
components of a Gaussian. Following the formalism outlined
in Sec. IV C, we parametrize the microscopic transition den-
sities, as obtained from our QRPA calculations for projectile
and target, by a superposition of Gaussians.

Combining the results of projectile and target and neglect-
ing the momentum dependence of the interaction form factor
V C

ST(p2), which is quite flat in the low-momentum transfer
range corresponding to θ ∈ [0◦, 10◦], one can finally extract
the parameters (R and σ ) entering the expressions in Eqs. (50)
and (51) for the full reaction amplitude in Born approxi-
mation, M

(B )
αβ (p), which in the Gaussian representation can

be evaluated analytically in closed form. Given Ra (RA) and
σa (σA) are the Gaussian parameters referring to the projectile
(target) transition density, the combined, effective transition
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radius is R2 = R2
a + R2

A, and for the corresponding form
factor width one finds σ 2 = σ 2

a + σ 2
A. Then also the averaging

over the orientation of the off-shell momentum q, can be per-
formed, leading to the reduced Born amplitude M̄

(B )
αβ (qαβ, q ),

which plays a central role for studies of distortion effects.
For the reaction under investigation, we find R ≈ 5 fm,

σ ≈ 1.2 fm. Figure 17 shows the results obtained for the
monopole term UL=0, according to the full expressions
Eqs. (41) and (42), or adopting the (partial) separation ansatz,
as in Eqs. (52) and (59). One can observe that, whereas the
separation ansatz works quite well for small values of qαβ (see,
for instance, the results corresponding to qαβ ≈ 20 MeV/c),
important deviations from the exact results are seen for larger
qαβ values.

Let us first consider the case of small momentum trans-
fer (qαβ = 20 MeV/c). Using Eq. (63), the distortion factor
fBD = |1 − nαβ |2 is readily obtained in the black disk approx-
imation.2 This is shown in Fig. 18 as a function of the absorp-
tion radius Rabs. Here, the results obtained with the full ex-
pression of h(q ), as given in Appendix D, practically coincide
with the approximate expressions, Eqs. (59) and (60). Guided
by the total reaction cross section obtained numerically by the
quantal partial wave method (σabs 	 2.14 b, see Fig. 8), we
adopt Rabs = √

(σabs/π ) ≈ 8 fm. Correspondingly, the sup-
pression factor is found to be fBD(analytical)|Ex = 0

θ = 0

	 8.14 ×
10−4, in good agreement with the numerical DWBA/PWBA
result, fBD(numerical)|Ex = 0

θ = 0

	 8.35 × 10−4, as it can be ex-

tracted from the ratio between DWBA and PWBA calcula-
tions at zero angle. As already anticipated above, owing to
the important effects associated with the imaginary part of the

2This relation is reminiscent of the aforementioned relation of the
on-shell distortion coefficient to the elastic S matrix; see Sec. V B.

0 3 6 9
R

abs
 [fm]

0

0.2

0.4

0.6

0.8

1

f B
D

FIG. 18. Distortion factor as a function of Rabs, for the separation
function hαβ (q ) corresponding to Eq. (59) (see text).

optical potential, the black disk assumption represents quite
well the distortion effects predicted by the full DWBA calcu-
lations. Figure 19 shows the distortion factor fBD, extracted
by the ratio of DWBA and PWBA forward cross sections
for the systems 18O + 40Ca and 18O + 116Sn, as a function
of the beam energy. The distortion factor drops sharply at
low beam energy, despite the smaller absorption cross section
seen in Fig. 8. This indicates that at beam energies close to
the Coulomb barrier the BD assumption is lacking the addi-
tional suppression effects coming from the Coulomb barrier.
However, as one can see on Fig. 19, at higher energy the
distortion factor is increasing rather slowly and a quite good
general agreement with the results obtained within the eikonal
approximation, Fig. 4, is observed. Hence, at energies well
above the Coulomb barrier, DWBA and PWBA forward angle
cross sections are related to a good approximation by scaling
factors, depending only moderately on the incident energy.
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FIG. 19. The distortion factor fBD is displayed as a function
of the beam energy for two reaction systems: 18O + 40Ca and
18O + 116Sn. The results were obtained numerically by the ratio of
the quantum mechanical DWBA and PWBA forward angle cross
sections.
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The question may arise on the range of validity of the
separation ansatz at finite momentum transfer. Explicit calcu-
lations can be easily performed in the full BD approximation,
Eq. (40), and with the approximations introduced in Eq. (43),
considering the separation function given by Eqs. (59) and
(60). The results confirm that the black disk approximation
indeed accounts appropriately for the absorption effects with,
however, as a few caveats. So, as to be expected, we find that
the scaling factor generally depends on qαβ , limiting, e.g., the
separation ansatz of Eq. (60) to low-momentum transfers up
to qαβ ≈ 50 MeV/c. The description is improved by using the
partial separation ansatz of Eq. (59), which extends the range
of validity over a larger region of qαβ values, in the present
case to momentum transfers of about 100 MeV/c.

The results discussed here for Ex = 0 can be extended eas-
ily to transitions leading to other excited states. We conclude
that the full cross-section factorization is generally valid for
small momentum transfer, i.e., in the case of low-energy
excitations and forward angles. Under these conditions, it
is possible to isolate in the SCE reaction amplitude the
contribution of the Born amplitude, as done in Eq. (45). This
is particularly important because it allows us to access direct
information on the nuclear matrix elements, which are linked,
in turn, to β-decay strengths, as discussed in Appendix F.

VII. SUMMARY AND OUTLOOK

Heavy-ion reactions are of wide interest by their own
because of the possibility to explore several excitation mech-
anisms by the same experiment. Charge-changing reactions,
in particular, open unprecedented perspectives for detailed
nuclear structure investigations of the many-body dynamics
underlying also β-decay processes. In this paper, we have
presented a revised approach to the theoretical modeling
of nuclear SCE reactions. In a strictly microscopic picture,
we have reformulated the reaction dynamical aspects in the
framework of DWBA theory. Central and rank-2 tensor in-
teractions were considered. In momentum representation, the
reaction amplitude was separated formally into projectile and
target transition form factors and the distortion coefficient,
accounting for ISI and FSI ion-ion interactions.

HFB theory is used to describe the projectile and target
ground states. The charge changing nuclear excitations were
described by correlated 2QP configurations including residual
quasiparticle interactions. Effects beyond mean-field dynam-
ics were treated by introducing dynamical self-energies of a
universal character. Thus, an extended QRPA approach was
obtained. The QRPA problem is solved by direct solution of
the Dyson equation, which is closely connected to the po-
larization propagators formalism. Nuclear response functions
were introduced as the appropriate method for investigating
charge-changing external fields which in the present context
are provided by the isovector NN projectile-target interac-
tions.

The nuclear structure approach has been illustrated in
calculations for charge-changing excitations of 18O and 40Ca.
Response functions for multipole operators, intimately con-
nected to weak interactions at low momentum transfer, have
been discussed. As illustrative—and typical—examples, re-

sults for both τ± branches have been presented. The 18F
spectra could be reproduced satisfactorily well. An even better
agreement with spectral data was obtained for the heavier
system 40K.

Our previous investigations of heavy-ion SCE reactions
have shown that fully quantum mechanical DWBA calcula-
tions with microscopic nuclear structure input describe ob-
served cross sections quantitatively. Thus, from the theoretical
side we have a powerful and successful toolbox at hand.
However, for the direct extraction of spectroscopic quantities
from measured cross sections, a separation of reaction and
nuclear dynamics contributions is of great advantage. In this
respect, a central goal of our investigation was to explore in
detail the interplay of reaction and nuclear structure aspects
in heavy-ion SCE cross section, aiming at identifying the
conditions under which the two parts factorize, thus giving
access to nuclear matrix elements relevant for β-decay pro-
cesses. We note that this point has been widely investigated for
reactions involving light projectiles (such as protons or 3He)
at energies of a few hundred MeV per nucleon and found to be
a quite useful tool to extract direct information on the β-decay
strength of the target. Here, we could show that heavy-ion
reactions of a few tens of MeV per particle are in principle
as well suited for such explorations.

Performing explicit calculations for the reaction 18O +
40Ca at Tlab = 15 A MeV, we have shown that in heavy-
ion reactions the distortion effects are strongly amplified,
where the imaginary part of the nuclear optical potential is
playing the major role. Indeed, SCE cross sections obtained
with only the imaginary potential (i.e., neglecting real part
and Coulomb interaction) in the initial- and final-state elastic
ion-ion interactions coincide almost perfectly with results by
full DWBA calculations. Thus, the distortion effects are in
fact mainly absorption effects which are well reproduced in
the strong absorption limit by the black disk approximation.
Within such a scheme, we have worked out a factorization of
the reaction cross section which is well suited for reactions
characterized by small momentum transfer.

The investigations have shown that heavy-ion SCE reac-
tions indeed allow us to extract from the forward-angle cross
section, i.e., at small momentum transfer, a direct information
on the product of the β-decay strengths in projectile and
target. Hence, also in the case of heavy-ion reactions, we are
led to define a “unit” cross section, which allows us to relate
the SCE differential cross section to the β-decay strengths.
For a given projectile, calculations performed in the black disk
approximation suggest a ≈1/A dependence of the distortion
factor on the target mass. The dominant role played by ISI
and FSI demands for studies of elastic scattering. Angular
distribution data in at least one of the involved channels would
be of high importance as a countercheck of the accuracy of the
microscopically derived ion-ion potentials which are central
parts of the presented approach.

Eikonal theory provides an elegant approach to investigate
universal aspects of the mass and energy dependences of
distortion effects. These kinds of predictions are of interest
especially for estimates of yields to be expected in future
experiments. The intentions of the present eikonal studies
is to encircle global trends and variations of cross sections.
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We emphasize again that for a quantitative analysis of a
given reaction a fully quantum mechanical calculation, as
indicated, will be the preferred method. Here, we have used
physically meaningful but schematic descriptions for the mass
and energy dependences of the input quantities, as there are
optical potentials and transition potentials. Both quantities
were approximated by Gaussian form factors.

Within the Gauss-eikonal approximation, the mass and
energy dependences of the distortion factor were investigated
in the strong absorption limit. An attractive feature of GEA
approach is that it allows us to connect the phenomenological
concept of black disk (or black sphere) scattering to the
microscopic background. The results for the distortion factor
are clearly indicating certain constraints on heavy-ion SCE
reactions: The magnitude of the cross sections will depend
critically on the projectile-target combination. At fixed energy,
systems with low total mass are favored, meaning that, e.g.,
an increase of the target mass will result in a decreasing cross
section. The same is true for a variation of the projectile mass.
However, this mass effect can be compensated to a large extent
by varying the energy because the coefficient fBD increases
rapidly with incident energy.

Broad space was given to a formulation covering reaction
and nuclear structure aspects on the same footing. By practical
considerations, the main weight was laid on reactions at
energies well above the Coulomb barrier. Such reactions are
of high interest for currently active experiments, e.g., within
the NUMEN project at LNS Catania [12]. The theoretical
results, however, apply to other choices of projectile-target
combinations and energy as well. These developments of
the theory of heavy-ion SCE reactions open new interesting
perspectives for experiments involving unstable nuclei [39]
and for studies of double charge exchange (DCE) reactions.
The extension to heavy-ion DCE reactions will be the topic of
a forthcoming paper. In fact, with appropriate extensions, the
methodology developed in this work is a suitably entry point
for investigations of second-order processes as the heavy-ion
DCE reactions, allowing us to establish their possible relation
to double-β-decay processes.
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APPENDIX A: SECOND QUANTIZATION AND
ONE-BODY TRANSITION DENSITIES

The spacial multipole components of the transition oper-
ator, Eq. (13), lead to the irreducible tensor operators (for
S = 0, 1)

RLSJM(r, σ ) =
∑

ML,MS

(LMLSMS |JM )iLYLML
(r̂)

(
σMS

)S

= [iLYL(r̂) ⊗ (σ )S]JM, (A1)

where YLML
denotes spherical harmonics functions. In the

second quantization, the one-body transition matrix elements
for n → p transitions are given by

U
ST LML

jpmpjnmn
(p2) =

∑
JM

(LMLSMS |JM )〈jpmp|jL(pr )

×RLSJM(r, σ )τ+|jnmn〉, (A2)

where jL(x) are Bessel functions. For p → n transitions, one
can write a similar expression, exchanging n and p indices and
replacing τ+ by τ−. After we apply the Wigner-Eckardt theo-
rem [20], the matrix elements separate into a Clebsch-Gordan
coefficient and a reduced matrix element. This allows us to
perform the summation over the proton and neutron magnetic
quantum numbers, leading to the one-body transition density
operators

A
†
JM (jpjn) =

∑
mpmn

(jpmpjnmn|JM )a†
jpmp

ãjnmn
, (A3)

where ãjm = (−)j+maj−m denotes the conjugated operator.
The proton-neutron and the neutron-proton particle-hole op-
erators are related by Hermitian conjugation,

A
†
JM (jnjp ) = (−)J+MAJ−M (jpjn), (A4)

reflecting charge-conjugation symmetry. The reduced isovec-
tor matrix elements is

ŪLSJ
jpjn

(p2) =
√

2

Ĵ
〈�pspjp||jL(pr )RLSJ ||�nsnjn〉, (A5)

where Ĵ = √
2J + 1 and sp = sn = 1

2 . The factor
√

2 results
from the isospin structure of the isovector nucleon-meson
vertices. These steps lead to the representation of the tran-
sition operators in terms of irreducible tensor components of
conserved total angular momentum J∑

mpmn

U
ST LML

jpmpjnmn
(p2)a†

jpmp
ajnmn

=
∑
JM

(LMLSMS |JM )ŪLSJ
jpjn

(p2)A†
JM (jpjn). (A6)

Thus, using second quantization, the transition operator be-
comes

RST(p, a†a) =
∑

LMLJM

Y ∗
LML

(p̂)(LMLSMS |JM )
∑
jp,jn

{
ŪLSJ

jpjn
(p2)A†

JM (jpjn) + ŪLSJ
jnjp

(p2)A†
JM (jnjp )

}
. (A7)
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The target transition form factors are now given as

F
(AB )
SMS

(p) =
∑

λAμAIANA

Y ∗
λAμA

(p̂)(λAμASMS |IANA)

⎧⎨
⎩

∑
jp,jn

Ū
λASIA

jpjn
(p2)〈JBMB |A†

IANA
(jpjn)|JAMA〉

+
∑
jp,jn

Ū
λASIA

jnjp
(p2)〈JBMB |A†

IANA
(jnjp )|JAMA〉

⎫⎬
⎭ (A8)

and accordingly in the projectile system. For a given reaction,
only one of the terms in Eq. (A8) is effectively contributing
to the transition: If, e.g., a p−1n-type transition is occurring
in the projectile, only the parts containing operators of a

†
nap

structures give nonvanishing contributions while the comple-
mentary a

†
pan operator branch is only active in the target, and

vice versa.
The spectroscopy of the charge exchange process is now

contained in one-body transition density matrix elements de-
fined as

DJM
jcjd

(Jf Mf , JiMi ) = 〈Jf Mf |A†
JM (jcjd )|JiMi〉. (A9)

The Wigner-Eckardt theorem leads to

DJM
jcjd

(Jf Mf , JiMi )

= (−)Jf −Mf
(
Jf Mf Ji − Mi |J − M

)
D̄J

jcjd
(Jf , Ji ) (A10)

with the reduced one-body transition density

D̄J
jcjd

(Jf , Ji ) = 1

Ĵ
〈Jf ||A†

J (jcjd )||Ji〉. (A11)

If the parent state has Ji = 0, the result simplifies to

DJM
jcjd

(Jf Mf , 00) = D̄J
jcjd

δJJf
δMMf

. (A12)

The same simplification is obtained for the case Jf = 0.
Obviously, the one-body transition densities are the ele-

ments of central importance for the spectroscopy of the charge
exchange process. They are providing access to the many-
body structure of the underlying nuclear wave functions.
The evaluation of the one-body transition densities requires
knowledge of the structure of the initial and final nuclear
states, establishing the connection to nuclear structure theory.

By standard angular momentum coupling techniques,
Eq. (A8) becomes

F
(AB )
ST (p) =

∑
L,ML,J2,M2

(JAMAJBMB |J2M2)(LMLSMS |J2M2)

× f
(AB )
LSJ2

(p2)iLYLML
( p̂) (A13)

and corresponding expressions are found for projectile transi-
tions. In Eq. (A13), the reduced form factors f

(XY )
LSJ have been

introduced. The latter are related to the corresponding reduced

radial transition densities ρ
(XY )
LSJ by a Fourier-Bessel transform:

f
(XY )
LSJ (p2) =

∫ ∞

0
drr2ρ

(XY )
LSJ (r )jL(pr ). (A14)

The total angular momentum transfer in the projectile and
target system are given by J1,2, defining the set of multipole
components which are contributing to a given reaction leading
from initial states Ja,A to final states Jb,B . These relations
are expressed by the first Clebsch-Gordan coefficient in the
above equations. In accordance with the investigations of the
previous section, these multipoles carry substructures given
by the coupling of orbital (L1,2) and spin (S1,2) angular
momentum transfers, as expressed by the second Clebsch-
Gordan coefficients in Eq. (A13).

APPENDIX B: ANGULAR MOMENTUM
DECOMPOSITION OF THE REACTION KERNEL

The decomposition of the full reaction kernel and corre-
spondingly the reaction amplitude relies on their decomposi-
tion into irreducible tensorial components. For that purpose,
the product of the projectile and target form factors, Eq. (14),
must be recoupled to total angular momentum. We use the
addition theorem of spherical harmonics [20]

iL1YL1m1 (p̂)iL2YL2m2 (p̂)

=
∑
LML

(−)
L1+L2−L

2
L̂1L̂2√

4πL̂
(L10L20|L0)

× (L1m2L2m2|LM )iLYLM (p̂). (B1)

Then, for a central interaction, the product of nuclear form
factors is obtained as

F
(αβ )
ST (p) =

∑
J1,M1,J2,M2,L,M

(JaMaJbMb|J1M1)

× (JAMAJBMB |J2M2)(J1M1J2M2|LM )

× iLYLM ( p̂)FJ1J2
LS (p2), (B2)

with the reduced multipole form factors

F
J1J2
LS (p2) =

∑
L1L2

ALS (L1L2, J1J2)f (ab)
L1SJ1

(p2)f (AB )
L2SJ2

(p2).

(B3)
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We have introduced the recoupling coefficients

ALS (L1L2, J1J2) = (−)
L1+L2−L

2
L̂1L̂2√

4πL̂
(L10L20|L0)(−)L2+J1−LW (L1J1L2J2; LS)Ĵ1Ĵ2, (B4)

where W (abcd; ef ) is a Racah coefficient [20].
The rank-2 tensor component requires additional recoupling of the spin and orbital angular momentum operators in order to

comply with the quadrupole character of the vertex. The resulting form factor can be cast into a form similar to Eq. (B2):

H
(αβ )
ST (p) =

∑
J1,M1,J2,M2,L,M

(JaMaJbMb|J1M1)(JAMAJBMB |J2M2)(J1M1J2M2|LM )iLYLM (p̂)HJ1J2
L1 (p2). (B5)

The reduced form factors, however, are of a somewhat more involved structure:

H
J1J2
L1 (p2) =

∑
L1,L2,L′

BLL′ (L1L2, J1J2)f (ab)
L11J1

(p2)f (AB )
L21J2

(p2). (B6)

In this case, the recoupling coefficient is given by

BLL′ (L1L2, J1J2) =
√

24π

5
(−)

L1+L2−L

2
L̂1L̂2

√
5

4πL̂

(
L10L20|L′0

)(
L′020|L0

)
Ĵ1Ĵ2L̂

′√5

⎧⎪⎨
⎪⎩

L1 1 J1

L2 1 J2

L′ 2 L

⎫⎪⎬
⎪⎭, (B7)

where the object in the last line is a 9-j symbol [20].

APPENDIX C: GAUSSIAN FORM FACTORS AND
MICROSCOPIC NUCLEAR STRUCTURE

The price paid for the advantage of the Gaussian approx-
imation that the dependencies on the ion masses and sizes
are directly accessible by closed-form expressions is that the
connection to microscopic nuclear structure seems to be lost.
However, by reinterpretation of the parametrical dependence
on the yet-to-be-specified radius R, that connection can be
restored under certain constraints. In leading order, the transi-
tion potential Eq. (14) is given by replacing the NN T matrix
by a contact interaction where the strength if given by the
momentum space amplitude at p = 0, i.e., the volume inte-
gral. Denoting the intrinsic projectile and target coordinates
by r1,2, respectively, and the ion-ion relative coordinate by
r, the zero-range assumption implies r1 + r − r2 = 0. For a
contact interaction, the folding integral defining the transition
potential reduces to the folding of the nuclear transition form
factors. For that purpose, we assume that the intrinsic nuclear
transitions a → b and A → B are described by Gaussian
form factors

FN (rN ) = CNe
− 1

2σ2
N

|rN−RN |2
, (C1)

where N ∈ {ab,AB} (N = 1, 2) and the normalization con-
stant is chosen as CN = (

√
2πσN )−3 such that FN has a

volume integral equal to unity. In coordinate space, we have
to evaluate a folding integral of the type

F12(r) = C1C2

∫
d3r1e

− 1
2σ2

1
(r1−R1 )2

e
− 1

2σ2
2

(r1+r−R2 )2

. (C2)

With the substitutions x = r1 − R1 and ρ = r + R1 − R2, the
integral becomes

F12(r) = C1C2

∫
d3xe

− 1
2σ2

1
x2

e
− 1

2σ2
2

(x+ρ )2

. (C3)

The angle integrations lead to modified Bessel function of
order n = 0. The remaining integration can be performed in
closed form with the final result

F12(r, R) = 1

(
√

2πσ )3
e− 1

2σ2 (r−R)2

. (C4)

The width is given by

σ 2 = σ 2
1 + σ 2

2 , (C5)

and the centroid radius is found as

R = R1 − R2, (C6)

which plays the role of a scale-defining quantity. Considered
as classical mathematical objects, the vectors R1,2 are free
parameters reflecting the nuclear scales. Thus, we use R1,2 ∼
A

1
3
1,2. Since the relative orientation of the two centroid vectors

is arbitrary, we use the averaging, resulting in R2 = R2
1 +

R2
2 	 A

2
3
1 + A

2
3
2 .

Within the above zero-range approximation, the transition
potential, Eq. (46), is given by the superposition of a spin-
scalar (S = 0) and a spin-vector (S = 1) component

UG(r) =
∑

S=0,1,T =1

ISTB
(ab,AB )
ST F

(ab,AB )
12,ST (r, RST), (C7)

where IST ≡ V
(C)

ST (p = 0) denotes the volume integral of the
interaction. The crucial point is how to incorporate the under-
lying microscopic nuclear structure physics. The simplest, but
rather schematic approach is to use projectile and target spec-
tral distributions averaged over multipolarities. Such a solu-
tion is indicated above: The nuclear charge-changing spectral
transition strengths for projectile and target are contained in
B

ab,AB
ST , obtained, e.g., by the response function formalism,

Sec. VI A.
In a refined approach, the multipole structure of the form

factors and spectral distributions should be combined explic-
itly. On a formal level, this is achieved by identifying YLM (R̂)
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as a dynamical quantity with an operator structure inducing
intrinsic nuclear transitions. Formally, this is achieved by
imposing the quantization conditions

YLM (R̂) → YLM (�†)

=
∑
λκ

bλ(ab)bκ (AB )[�†
λ(ab)�†

κ (AB )]LM, (C8)

i.e., a representation by the state operators �
†
λ,κ of projectile

and target, respectively. λ and κ include spin and orbital angu-
lar momenta. The coupling to good total angular momentum
transfer L is indicated. The expansion coefficients are given
by nuclear multipole transition amplitudes. Thus, we have
obtained a relation similar to the collective model approach
to nuclear spectroscopy of Bohr and Mottelsen [40], widely
used in the past for nuclear reactions. Thus, the essence of the
Gaussian form factor is seen to separate the state-dependent
transition form factors into a state-independent spatial form
factor ULM (r), Eq. (48), and state-dependent amplitudes bμ,
giving rise to the multipole spectral distributions

B
(aA,bB )
L = 〈bB|YLM |aA〉 (C9)

and the multipole transition potentials

U
aA,bB
ST ,LM (r) = B

(aA,bB )
L ISTULM (r), (C10)

where the spectral amplitudes and the reduced form factors
will depend in general also on the spin transfer S.

APPENDIX D: GAUSSIAN APPROACH TO THE BLACK
DISK DISTORTION FACTOR

As discussed, the separation function h(q ) is well approx-
imated by the modified Gaussian in Eq. (56),

h(q ) = e− 1
2 q2σ 2

j0(qρ). (D1)

The parameter σ controls the slope of the momentum distribu-
tion around the momentum transfer p = qαβ . The (off-shell)
diffraction structure is determined by ρ. Thus, we have to
evaluate the integral

nBD = 2Rabs

π

∫ ∞

0
dqj0(qRabs)

∂

∂q
[qh(q )], (D2)

which is given explicitly by the three-parameter form

nBD = 2Rabs

π

∫ ∞

0

sin (qRabs)

qRabs
e− 1

2 σ 2q2

×
[
−σ 2q

ρ
sin (qρ) + cos (qρ)

]
dq. (D3)

The absorption radius, Rabs, is fixed by the total reaction cross
section. The integral can be performed in closed form, with
the result

nBD = 1

2

{
erf

[
1√
2σ ′ (R′ − ρ ′)

]
+ erf

[
1√
2σ ′ (R′ + ρ ′)

]}

−
√

2

π

σ ′

2ρ ′
[
e− 1

2σ ′2 (R′−ρ ′ )2 − e− 1
2σ ′2 (R′+ρ ′ )2]

(D4)

expressed in terms of the scaled (dimensionless)
quantities R′ = Rabs/R, σ ′ = σ/R, q ′

αβ = qαβR, and

ρ ′ =
√

1 − σ ′4q ′2
αβ + 2iσ ′2q ′

αβ cos γ . nBD is a complex-valued
function, because it depends on the complex pseudoradius
ρ ′. Moreover, nBD contains the full set of multipoles in qαβ .
Typical results for nBD are displayed in Fig. 18, for qαβ ≈ 0.

APPENDIX E: DISTORTION COEFFICIENT
IN EIKONAL APPROXIMATION

For wavelengths λ ∼ 1/k short against the scale Rpot of the
interaction zone, i.e., ξ = kRpot � 1 semiclassical descrip-
tions become an appropriate description for nuclear reactions.
In the case considered here, we have kα 	 10 fm−1 and Rpot 	
5 fm (see Table II), leading to ξ 	 40. Thus, despite the rather
low energy of Tlab = 270 MeV, the kinematical conditions
allow us to apply eikonal theory [41]. The distorted waves are
given as

χ (+)
α (kα, r) = eiS (+)

α (ρ,z)e+ikα ·r, (E1)

χ
(−)∗
β (kβ, r) = e−iS

(−)∗
β (ρ ′,z′ )e−ikβ ·r, (E2)

with the asymptotically in- and outgoing eikonals

S (+)
α (ρ, z) =

∫ z

−∞
dζ [Qα (ρ, ζ ) − kα], (E3)

S
(−)∗
β (ρ ′, z′) =

∫ z′

+∞
dζ (Qβ − kβ ), (E4)

where z and z′ are directed along the channel momenta kα and
kβ , respectively. We have defined the local channel momenta

Qγ (ρ, ζ ) =
√

k2
γ − 2mγ

h̄2 Uγ (ρ, ζ ) (E5)

and ρ, z are oriented such z coincides with the direction of kα

and ρ ′, z′ are taken accordingly with respect to kβ . Hence, we

identify u
(±)
α,β = e±iS

(±)
α,β , leading to

ηαβ = u
(−)∗
β u(+)

α = ei(S (+)
α −S

(−)∗
β ) = eiφαβ−καβ , (E6)

where the (real) phase shift φαβ and the attenuation exponent
καβ are given by the sum of the real and imaginary parts,
respectively, of the eikonals. For small momentum and en-
ergy transfer, we may neglect the differences in the channel
momenta and potentials. Furthermore, at small momentum
transfer, z and z′ may be assumed to be parallel. Under such
conditions, the distortion amplitude is given by the (diagonal)
distortion phase shift and attenuation exponent

φα (ρ) 	
∫ +∞

−∞
dζRe[Qα (ρ, ζ )] − kα, (E7)

κα (ρ) 	
∫ +∞

−∞
dζ Im[Qα (ρ, ζ )]. (E8)

As discussed in Sec. V B, in the strong absorption limit we
need to consider φα only in space regions where κα has
decreased to O(1) or less. In those space regions, typically
also Re(Uopt ) is already of small magnitude. Hence, we can
neglect terms of order Uα/k2

α and obtain the standard eikonal
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expressions

φα (ρ) 	 − mα

h̄2kα

∫ +∞

−∞
dζRe[Uα (ρ, ζ )], (E9)

κα (ρ) 	 mα

h̄2kα

∫ +∞

−∞
dζ Im[Uα (ρ, ζ )], (E10)

usually combined in the profile function χα = φα − iκα . For
the present purpose, it is sufficient to consider the attenuation
exponent. Assuming Gaussian form factors and spherical
symmetry,

Uα (r ) = −U0e
−r2/R2

U − iW0e
−r2/R2

W (E11)

with potential strengths U0 > 0 and W0 > 0, the leading-order
absorption exponent is obtained in closed form:

κα (ρ) = √
π

mαW0

h̄2kα

RWe−ρ2/R2
W , (E12)

depending only on the modulus of ρ. Corresponding expres-
sions are obtained for φα .

Within the Gaussian approximation, the reaction cross sec-
tion can be evaluated in closed form. As shown in Ref. [42],
the key point is to consider the continuity equation of the
distorted waves from which one derives the relation

σ
(α)
abs = − 2mα

h̄2kα

∫
d3r|χ (+)

α (kα, r)|2Wα (r)

=
∫

d2ρ(1 − e−2κα (ρ ) ). (E13)

For a Gaussian W (r ), the integration can be performed ana-
lytically. As anticipated before, the result may be expressed
indeed in a form resembling in structure the black disk ex-
pression

σ
(α)
abs (

√
sα ) = πR2

abs(
√

sα ), (E14)

but where the effective absorption radius is related to the
potential radius RW by the shape function f (x)

R2
abs(

√
sα ) = f (ξ (Wα, kα ))R2

W . (E15)

The shape function is given analytically by

f (x) = γ + log(x) + Ei(1, x), (E16)

where γ = 0.5772... denotes Euler’s constant and Ei(1, x) is
an exponential integral. f (x) is increasing steadily with x,
vanishing at x = 0 and diverging logarithmically for x � 1.
The argument

ξ (W, k) = √
πkRW

W0

Tcm
, (E17)

depends on the reduced mass, the energy, and the absorption
potential. Tcm = (h̄k)2/2m is the kinetic energy in the rest
frame, and kRW ∼ �g corresponds to a grazing angular mo-
mentum with respect to the potential W . Hence, the absorption
and the potential radius are relate in a nontrivial manner,
changing with mass and energy. Results have been shown in
Fig. 3.

APPENDIX F: UNIT CROSS SECTION AND
β-DECAY STRENGTHS

In this Appendix, we indicate the connection of the present
formulation to the approach developed by Taddeucci et al.
[14] for light-ion SCE reactions. As a side aspect, a schematic
approach is derived from the full theory. In the Born approxi-
mation, the reaction cross section, Eq. (2), is simply given by
the product of a kinematical factor and the modulus squared
of the reaction amplitude Uα,β in Eq. (16).

As shown in Sec. VI D, the distortion effects obtained in
DWBA can be accounted for at small momentum transfer by
means of the scaling function: fBD(Rabs, R, σ ) = |1 − nαβ |2.

Let us keep considering only L = 0 transitions, for both
projectile and target, and only the central part of the nuclear
interaction. Then, the SCE cross section, for small momentum
transfer, can be recast in the form [see also Eqs. (30) and (31)]

dσαβ = Kf (Tlab, ω)(2S + 1)|V (C)
ST (0)|2∣∣b(ab)

0SS

∣∣2∣∣b(AB )
0SS

∣∣2

× exp
[− 1

3q2
αβ (〈r2〉a + 〈r2〉A)

]
fBD(Rabs, R, σ ),

(F1)

where the expansion of the Bessel function in Eq. (A14) at
small argument has been considered: j0(x) ≈ 1 − 1/6 x2 ≈
exp(−1/6 x2). Thus, in the above equation, 〈r2〉a and 〈r2〉A
denote the mean square radius of proton and neutron transition
densities, respectively. The kinematical factor Kf (Tlab, ω) is
given by

Kf (Tlab, ω) = mαmβ

(2πh̄2)2

kβ

kα

. (F2)

It essentially depends on the energy loss ω = Ex −
(MA + Ma − MB − Mb ) = Etot − Qgs, where Ex = E∗

b +
E∗

B is the total excitation energy.
The cross section can be rewritten as

dσαβ = F (qαβ, ω)σU

∣∣b(ab)
0SS

∣∣2∣∣b(AB )
0SS

∣∣2
, (F3)

where we define a “unit” cross section, in analogy with what
is usually done for SCE reactions involving light projectiles
[14], as

σU = Kf (Tlab, 0)|V (C)
ST (0)|2fBD(Rabs, R, σ ). (F4)

The function F , mainly determining the shape of the cross
section, is given by

F (qαβ, ω) = Kf (Tlab, ω)

Kf (Tlab, 0)
exp

[
−1

3
q2

αβ (〈r2〉a + 〈r2〉A)

]
.

(F5)

We note that the two equations above retrace the formal-
ism developed in Ref. [14]. From Eq. (F5), it follows that
F (qαβ, ω) → 1 for (qαβ, ω) → (0, 0), so that the propor-
tionality coefficient between the SCE cross section and the
product of the β decay strengths relative to projectile and
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target reduces to σU . In the plane-wave limit, σU becomes

σU = Kf (Tlab, 0)
∣∣V (C)

ST (0)
∣∣2

(F6)

so that it is characterized by a weak mass dependence [14]. On
the other hand, the distortion factor fBD may vary significantly
with the system mass, as shown by Figs. 4 and 19.
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