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Abstract
In this paper, we define a new flavour of well-composedness, called strong Euler well-
composedness. In the general setting of regular cell complexes, a regular cell complex
of dimension n is strongly Euler well-composed if the Euler characteristic of the link of
each boundary cell is 1, which is the Euler characteristic of an (n−1)-dimensional ball.
Working in the particular setting of cubical complexes canonically associated with nD
pictures, we formally prove in this paper that strong Euler well-composedness implies
digital well-composedness in any dimension n ≥ 2 and that the converse is not true
when n ≥ 4.

Keywords Digital topology · Discrete geometry · Well-composedness · Cubical
complexes · Manifolds · Euler characteristic

Author names are listed in alphabetical order. This work has been partially supported by Grant PID2019-
107339GB-I00 funded by MCIN/AEI/10.13039/501100011033 and Grant P20_01145 funded by Agencia
Andaluza del Conocimiento.

B Rocio Gonzalez-Diaz
rogodi@us.es

Nicolas Boutry
nicolas.boutry@lrde.epita.fr

Maria-Jose Jimenez
majiro@us.es

Eduardo Paluzo-Hildago
epaluzo@us.es

1 EPITA Research and Development Laboratory (LRDE), Le Kremlin-Bicêtre, France

2 Departamento de Matematica Aplicada I, Universidad de Sevilla, Campus Reina Mercedes,
41012 Seville, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-021-00837-8&domain=pdf
http://orcid.org/0000-0001-9937-0033


Journal of Combinatorial Optimization

1 Introduction

The concept of well-composedness of a digital set (also called picture) was first intro-
duced in Latecki et al. (1995) for two-dimensional (2D) pictures and extended later in
Latecki (1997) for three-dimensional (3D) pictures: a well-composed picture satisfies
that its continuous analog has a boundary surface that is a manifold. The concept is
described in terms of forbidden subsets (also called critical configurations) for which
the picture is not well-composed. 3D well-composed pictures may have some compu-
tational advantages regarding the application of several algorithms in computer vision,
computer graphics and image processing (Siqueira et al. 2005; Boutry et al. 2018).
For example, the topology of a given 2D picture can be preserved by rigid transforma-
tions thanks to well-composedness; topology-preserving front propagation can lead to
well-composed segmentation; Euler numbers of 2D pictures can be computed locally
thanks towell-composedness; well-composed Jordan curves are known to separate the
digital plane; the boundary of the continuous analog of a well-composed 3D picture
is a manifold. Furthermore, numerous applications related to well-composed pictures
exist: the Marching Cubes Algorithm (Siqueira et al. 2008) has no ambiguous cases
on well-composed pictures (no hole problem occurs), we can obtain thin topological
maps on pictures thanks to well-composedness (Marchadier et al. 2004) and the tree
of shapes is well-defined (Géraud et al. 2013). Regarding the new flavour of strong
Euler well-composedness introduced in this paper, there is no known application so
far. Nevertheless, since strong Euler well-composedness can be defined on regular cell
complexes and because it implies DWCness on cubical grids, we think that this flavour
of well-composedness could be used in wider applications such as, for example, the
computation of thin topological maps on regular cell complexes.

In general, pictures are not a priori well-composed. Nevertheless, there are several
“repairing” methods for turning them into well-composed pictures (see, for example,
Boutry et al. 2015a, b; Lachaud and Montanvert 2000; Latecki 1998; Siqueira et al.
2008; Stelldinger and Latecki 2006).

In Boutry et al. (2015b), the concept of well-composedness and critical configu-
ration was extended to any dimension n ≥ 2. Then, an nD picture is continuously
well-composed if its continuous analog has a boundary surface that is an (n − 1)D
manifold, whereas an nD picture is digitally well-composed if it does not contain any
critical configuration.

Equivalences between different flavours ofwell-composedness have been studied in
Boutry et al. (2018), namely: continuouswell-composedness (CWCness), digital well-
composedness (DWCness), well-composedness in the Alexandrov sense (AWCness),
well-composedness based on the equivalence of connectivities (EWCness) and well-
composedness on arbitrary grids (AGWCness). More specifically, it is well-known
that AWCness, CWCness, DWCness and EWCness are equivalent in 2D. In 3D, only
AWCness, CWCness, and DWCness are equivalent. No link between AGWCness and
other flavours of well-composedness is known. For pictures of dimension n ≥ 4, our
knowledge of the logical relationships between CWCness, DWCness and EWCness
is very incomplete, though it has been shown that AWCness is equivalent to DWCness
(seeBoutry et al. 2020c) and thatDWCness impliesEWCness (seeBoutry et al. 2015b).
Recently, in Boutry et al. (2020b), a counterexample in 4D has been given to prove that

123



Journal of Combinatorial Optimization

DWCness does not imply CWCness, which the authors consider to be an important
result since it breaks with the idea that all the different flavours of well-composedness
are equivalent.

In Gonzalez-Diaz et al. (2015, 2017), Boutry et al. (2019), we defined another
flavour of well-composedness called self-dual weak well-composedness (swWCness)
that extends the notion of DWCness to any regular cell complex. Roughly speaking, a
regular cell complex is a topological space made up of a collection of k-cells (home-
omorphic1 to k-dimensional balls) glued together by their boundaries. A regular cell
complex satisfying that any of its k-cell is a k-dimensional cube is referred to as a
cubical complex. A cubical complex Q(I ) can always be associated with any nD
picture I (we will see later how to construct Q(I ) from I ). We say that a regular cell
complex K (I ) is a cell complex over I if there exists a deformation retraction from
K (I ) to Q(I ). Besides, K (I ) is said to be weakly well-composed if, for each vertex v

on the boundary of K (I ), the set of n-cells of K (I ) incident to v are face-connected.
In Gonzalez-Diaz et al. (2015, 2017), Boutry et al. (2019), we also developed a topo-
logical method for repairing the cubical complex Q(I ) canonically associated with an
nD picture I not being DWC. Such a method constructs a “simplicial decomposition”(
PS(I ), PS(bI )

)
of I , where bI is I ’s complement (an nD picture that is precisely

defined in Definition 1), and where PS(I ) and PS(bI ) satisfy the following conditions:

(1) PS(I ) is a cell complex over I , PS(bI ) is a cell complex over bI , and
(2) PS(I ) and PS(bI ) areweaklywell-composed, that is,

(
PS(I ), PS(bI )

)
is self-dual

weakly well-composed.

As it is shown inBoutry et al. (2019), in the setting of cubical complexes canonically
associated with nD pictures, swWCness is equivalent to DWCness for all n ≥ 2. Our
ultimate goal is to prove that our topological reparation method provides CWC regular
cell complexes.

Since, according to us, such a goal is not reachable yet, in Boutry et al. (2020a),
we proposed an intermediary flavour of well-composedness, called Euler well-
composedness (χWCness). The cell complex K (I ) over I is χWC if the Euler
characteristic of the link of each vertex of the boundary of K (I ) is equal to 1, which
is the Euler characteristic of an (n − 1)-dimensional ball. Although partial results
regarding χWCness for nD pictures (in the case of n = 2, 3, 4) were given in Boutry
et al. (2020a), we have observed that, in general, χWCness does not imply DWC-
ness. For example, consider the 4D picture I in Fig. 1, whose foreground is the set of
points FI = {(0, 1, 0, 0), (0, 0, 0, 0), (0, 0, 1, 0), (1, 0, 1, 0), (1, 1, 1, 0), (0, 2, 0, 0),
(0, 2, 1, 0), (1, 2, 1, 0)}. Clearly, I contains the 2D critical configuration {p, p′}where
p = (0, 1, 0, 0) and p′ = (1, 1, 1, 0), while it can be shown that Q(I ) is χWC. This
is established below in the proof of Lemma 3. That proof also shows that Q(bI ) is
χWC. It follows from the χWCness of Q(I ) and Q(bI ) in this example that Theorem
4 of Boutry et al. (2020a) is actually incorrect – its computer-assisted “proof” was
unfortunately flawed. The fact that a 4D picture I need not be DWC even if both of
Q(I ) and Q(bI ) are χWC is a significant weakness of the concept of χWCness.

1 Two topological spaces are homeomorphic if there exists a biyective bicontinuous function between them.
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Fig. 1 A 4D counter-example
showing that χWCness does not
imply DWCness in 4D

Accordingly, the present paper will introduce a new flavour of well-composedness

called strong Euler well-composedness (
+
χWCness), which is a concept more restric-

tive than the one of χWCness given in Boutry et al. (2020a), with the aim of proving

that
+
χWCness implies DWCness in any dimension n ≥ 2, even though the con-

verse is not true in any dimension n ≥ 4. The authors are convinced that CWCness

implies
+
χWCness, but do not have a rigorous proof of this at the moment. In such a

case,
+
χWCness would be an effectively computable property useful to detect cases in

which the cubical complex canonically associated with a DWC picture is not CWC.
The plan is the following: Sect. 2 recalls the background needed to understand

the rest of the paper. Section 3 introduces the concept of strong Euler well-
composedness. Section 4 shows that strong Euler well-composedness implies digital
well-composedness. Section 5 shows that the converse is not true. Finally, Sect. 6
concludes the paper.

2 Background

First, let us introduce the concept of n-dimensional digital sets (also called nD pic-
tures), taken from the field of digital geometry.

Definition 1 (nDpicture) Let n ≥ 1 be an integer and Z
n the set of points with integer

coordinates in R
n . An nD picture is a pair I = (Zn, FI ), where FI is a subset of Z

n .
The set FI is called the foreground of I and the set Z

n\FI the background of I . The
complement of I is defined as the nD picture bI = (Zn, Z

n\FI ).

We say that a property P of nD pictures is self-dual if an nD picture I has property
P whenever the picture bI has property P .

In Boutry et al. (2015b), the concept of block was introduced to extend the notion
of DWCness to any dimension. Given a point z ∈ Z

n and a family of vectors F =
{ f 1, . . . , f k} ⊆ B (where B = {e1, . . . , en} is the canonical basis of Z

n), the k-block
associated with the pair (z,F) is the set defined as:

B(z,F) =
⎧
⎨

⎩
z +

∑

i∈�1,k�

λi f i : λi ∈ {0, 1}, ∀i ∈ �1, k�

⎫
⎬

⎭
.
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Thus, a 0-block is a point, a 1-block is a set of two points in Z
n on an unit edge, a

2-block is a set of four points on a unit square, and so on. A subset B ⊂ Z
n is called a

block if there exists a couple (z,F) ∈ Z
n × P(B) (where P(B) represents the set of

all the subsets of B), such that B = B(z,F).

Definition 2 (antagonists) Two points p, q belonging to a block B are said to be
antagonists in B if their distance is equal to the maximum distance using the L1-
norm2 between two points in B, that is, ‖p − q‖1 = max

{‖r − s‖1 : r , s ∈ B
}
.

Remark 1 The antagonist of a point p in a block B containing p exists and is unique.

Notice that when two points (x1, . . . , xn) and (y1, . . . , yn) inZ
n are antagonists in a

k-block with k ∈ �0, n� then there is a set {i1, . . . , ik} ⊆ �1, n� such that |xi − yi | = 1
for i ∈ {i1, . . . , ik} and xi = yi otherwise.

Definition 3 (critical configuration) Let I = (Zn, FI ) be an nD picture and B a k-
block with k ∈ �2, n�. We say that I contains a critical configuration in the block B if
FI ∩ B = {p, p′} or FI ∩ B = B\{p, p′}, with p, p′ being antagonists in B.

The above concept of critical configuration is used to define the notion ofDWCness,
based on local patterns, in any dimension.

Definition 4 (digital well-composedness) An nD picture is said to be digitally well-
composed (DWC) if it does not contain any critical configuration in any block.

Notice that the above definition of digital well-composedness is self-dual.
Roughly speaking, an nD cubical complex Q is a special kind of regular cell com-

plexmade up of a collection of n-dimensional cubes glued together by their boundaries
(faces). If a k-dimensional cube (k-cell) μ ∈ Q is a face of an �-dimensional cube
(�-cell) σ ∈ Q and k < � then μ is said to be a proper face of σ and σ a proper
coface of μ. A maximal cell of Q is not a proper face of any other cell of Q. The
next definition states how an nD cubical complex can always be associated with an
nD picture.

Definition 5 (cubical complex canonically associated with an nDpicture) The cubical
complex Q(I ) canonically associated with an nD picture I = (Zn , FI ) is the nD
cubical complex whose maximal cells are n-dimensional unit cubes centered at each
point in FI and whose (n − 1)-faces are (n − 1)-dimensional unit cubes parallel to
the coordinate hyperplanes.

Figure 2 shows, from left to right, the cubical complexes canonically associated
with a 2D picture and a 3D picture that each have two foreground points.

Notice that each cell in the cubical complex Q(I ) is uniquely determined by the
coordinates of its barycenter. This way, each n-dimensional cube can be encoded by
its barycenter, which is a point p ∈ Z

n ; its (n − 1)-faces by points under the form
p± 1

2e
i , with ei ∈ B = {e1, . . . , en}; in general, its k-faces can be encoded by points

under the form p+∑
i∈{i1,...,in−k } λi ei , where {i1, . . . , in−k} is a set of n− k different

indices in �1, n� and λi ∈ {± 1
2 }. That is, k-cells are represented by points with k

integer coordinates and n − k coordinates that are odd multiples of 1
2 .

2 The L1-norm of a vector α = (α1, . . . , αn) is ||α||1 = ∑
i∈�1,n� |αi |.
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Fig. 2 Top figures: a 2D cubical
complex (left) and a 3D cubical
complex (right) whose maximal
cells are centered at the
foreground points of the pictures
shown below the complexes.
Points in red correspond to the
foreground of the pictures
whereas points in blue belong to
the foreground of the
complement of the pictures
(Color figure online)

Fig. 3 Left: a 2-dimensional cube and its faces (edges in red and vertices in blue). Right: a 3-dimensional
cube and its faces (square faces in green, edges in red and vertices in blue) (Color figure online)

Remark 2 In the sequel, we will identify a k-cell of Q(I ) with its barycenter, if no
confusionmay arise. Besides, fromnowon,when needed and for the sake of simplicity,
a point p in R

n will be expressed as Cartesian products of its coordinates:

p = (p1, . . . , pn) = (p1, . . . , pi ) × (pi+1, . . . , pn) = · · · = (p1) × · · · × (pn).

Besides, when a coordinate is repeated k times, wewill write (p1, k. . ., p1) = (p1)k .
These notations could be combined. For example:

(p1, p2, p3, p4, p4) = (p1, p2, p3) × (p4)
2,

{(p1, p2, 0, p4, p4), (p1, p2, 1, p4, p4)} = {(p1, p2, x) : x ∈ {0, 1}} × (p4)
2,

{(p1, p2, 0, 0), (p1, p2, 0, 1), (p1, p2, 1, 0), (p1, p2, 1, 1)} = (p1, p2) × {(0), (1)}2.

The boundary surface of an nD cubical complex Q, denoted by ∂Q, is the (n−1)D
cubical complex composed by the (n − 1)-dimensional cubes that are proper faces
of exactly one maximal cell of Q, together with all their faces. See Fig. 3 for toy
examples.

The underlying space of an nD cubical complex Q, i.e., the union of the n-
dimensional cubes of Q as subspaces of R

n , will be denoted by |Q|. An nD cubical
complex Q is said to be (continuously) well-composed (CWC) if |∂Q| is an (n − 1)D
manifold, that is, each point of |∂Q| has a neighborhood in |∂Q| homeomorphic to
R
n−1.

123



Journal of Combinatorial Optimization

3 Introducing the concept of strong Euler well-composedness

In this section, we introduce a new concept of Euler well-composedness that is more
restrictive than the one given in Boutry et al. (2020a).

Definition 6 (Euler characteristic) Let S be a finite set of cells. Let ak denote the
number of k-cells of S. The Euler characteristic of S is defined as:

χ(S) =
∞∑

k=0

(−1)kak .

Recall that the Euler characteristic of a regular cell complex depends only on its
underlying space’s homotopy type (Hatcher 2002, p. 146).

Although the following concepts could be defined on regular cell complexeswithout
problem, we will define them in terms of nD cubical complexes, since that will be our
context.

Definition 7 (star and link) (Edelsbrunner and Harer 2010) Let σ be a cell of a given
nD cubical complex Q. Then,

– The closure of σ , denoted Cl (σ ), is the set of cells having σ as a coface.3 By
extension, the closure of a set of cells is the union of the closure of each cell in the
set.

– The star in Q of σ , denoted StQ(σ ), is the set of cells of Q having σ as a face.4

By extension, the star in Q of a set of cells is the union of the star in Q of each
cell in the set.

– The link in Q of σ , denoted LkQ(σ ), is the closure of the star in Q of σ minus
the star in Q of the closure of σ , that is, Cl StQ(σ )\StQCl (σ ). In other words,
LkQ(σ ) is the set of cells in Q that share a coface but no face with σ .

We need now to extend the notion of χ -critical vertex given in Boutry et al. (2020a)
to the notion of χ -critical cell.

Definition 8 (χ -critical cell) Let Q be an nD cubical complex, n ≥ 2. A cell σ ∈ ∂Q
is χ -critical for Q if:

χ
(
LkQ(σ )

) �= χ(Bn−1) = 1,

where B
n−1 is an (n − 1)-dimensional ball.

For example, in all the cases of Fig. 4 except for case (c), the vertex v is a χ -critical
vertex for Q(I ). Nevertheless, in case (c), the edge e is χ -critical for Q(I ).

Remark 3 Let Q(I ) be the cubical complex canonically associated with an nD picture
I , n ≥ 1. Let v be a vertex (0-cell) of Q(I ). Then, χ(Cl StQ(I )(v)) = 1 since

3 Observe that σ ∈ Cl (σ ) since σ is considered to be a coface of itself.
4 Observe that σ ∈ StQ(σ ) since σ is considered to be a face of itself.
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Fig. 4 Different cases of a vertex v on the boundary of the cubical complex Q(I ) canonically associatedwith
an nD picture I . LkQ(I )(v) is drawn in grey. aA 2D case of a χ - critical vertex v, with χ

(
LkQ(I )(v)

) = 2.
b A 3D case of a χ -critical vertex v, with χ

(
LkQ(I )(v)

) = 2. c A 3D case of a vertex v on the boundary
that is not a χ -critical vertex, since χ

(
LkQ(I )(v)

) = 1. d Complementary configuration of case c) in which
v is a χ -critical vertex, with χ

(
LkQ(I )(v)

) = 0

|Cl StQ(I )(v)| is contractible.5 Besides, StQ(I )Cl (v) = StQ(I )(v) ⊆ Cl StQ(I )(v)

since Cl v = {v}. Therefore,

χ
(
LkQ(I )(v)

) = χ
(
Cl StQ(I )(v)

) − χ
(
StQ(I )(v)

) = 1 − χ
(
StQ(I )(v)

)
. (1)

The result below extends Remark 3 to k-cells with k ≥ 0.

Lemma 1 Let Q(I ) be a cubical complex canonically associated with an nD picture
I and let σ be a k-cell of Q(I ) with k < n, then:

χ
(
LkQ(I )(σ )

) = 1 − (−1)kχ
(
StQ(I )(σ )). (2)

Proof We will proceed by induction. If k = 0, then Eq. (2) coincides with Eq. (1).
Let k > 0. Using the notation given in Remark 2, we can assume, without loss of
generality, that

σ = (0)k ×
(
1

2

)n−k

.

Let I0 be the picture such that FI0 = FI ∩ ((0) × Z
N−1). Then FI0 = (0) × FJ for

some (n − 1)D picture J . Let

σ ′ = (0)k−1 ×
(
1

2

)n−k

.

Then σ = (0) × σ ′ and σ ′ is a (k − 1)-cell of Q(J ). Now,

StQ(I )(σ ) = (
(0)k ×

{(
1

2

)
, (0), (1)

}n−k ) ∩ Q(I )

5 A topological space is contractible if it is homotopy equivalent to a point (Hatcher 2002, p. 2).
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and StQ(I0)(σ ) = StQ(I )(σ ). Similarly,

StQ(J )(σ
′) = (

(0)k−1 ×
{(

1

2

)
, (0), (1)

}n−k ) ∩ Q(J ).

Then, it is satisfied that StQ(I )(σ ) = (0) × StQ(J )(σ
′), which indicates that

χ(StQ(I )(σ )) = −χ(StQ(J )(σ
′)).

Now, let us prove that χ
(
LkQ(I )(σ )

) = χ
(
LkQ(J )(σ

′)
)
. Readily,

Cl StQ(I )(σ ) =
{
(0),

(
1

2

)
,

(
−1

2

)}
× Cl StQ(J )(σ

′).

Besides, Cl (σ ) = {
(0),

( 1
2

)
,
(− 1

2

)} × Cl (σ ′) and then

StQ(I )Cl (σ ) = ( {
(0),

(
−1

2

)
,

(
1

2

)
, (−1), (1)

}
× StQ(J )Cl (σ

′)
) ∩ Q(I ),

from which we conclude that LkQ(I )(σ ) = {
(0),

( 1
2

)
,
(− 1

2

)} × LkQ(J )(σ
′). Then,

χ
(
LkQ(I )(σ )

) = −χ
(
LkQ(J )(σ

′)
) + χ

(
LkQ(J )(σ

′)
) + χ

(
LkQ(J )(σ

′)
)

= χ
(
LkQ(J )(σ

′)
)
.

Now, assuming by induction that χ
(
LkQ(J )(σ

′)
) = 1 − (−1)k−1χ

(
StQ(J )(σ

′))
then

χ
(
LkQ(I )(σ )

) = χ
(
LkQ(J )(σ

′)
) = 1 − (−1)k−1χ

(
StQ(J )(σ

′))
= 1 − (−1)k−1

( − χ
(
StQ(I )(σ ))

) = 1 − (−1)kχ
(
StQ(I )(σ )),

concluding the proof. �
It follows from Lemma 1 that a cell σ ∈ ∂Q(I ) is χ -critical for Q(I ) if and only

if:

χ
(
StQ(I )(σ )

) �= 0.

Notice that, following the same arguments as in the proof of Lemma 1, we can
express the star and the link of any k-cell σ of Q(I ) (0 < k < n) in terms of the star
and the link of a vertex v of Q(J ), where J is an (n− k)-dimensional “slice” of I and
we have that χ

(
StQ(I )(σ )

) = (−1)kχ
(
StQ(J )(v)

)
and, therefore, χ

(
LkQ(I )(σ )

) =
χ

(
LkQ(J )(v)

)
.

123



Journal of Combinatorial Optimization

Remark 4 Let Q(I ) be the cubical complex canonically associated with an nD picture
I , n ≥ 2. Then, for any vertex v ∈ ∂Q(I ), there exist 2k

(n
k

)
k-cells in StQ(I )∪Q(bI )(v).

Hence,

χ
(
StQ(I )∪Q(bI )(v)

) =
n∑

k=0

(−1)k 2k
(
n

k

)
= (−1)n .

Besides, sinceχ
(
StQ(I )(v)

)=χ
(
StQ(I )∪Q(bI )(v)

)−χ
(
StQ(I )∪Q(bI )(v)\StQ(I )(v)

)

then:

χ
(
StQ(I )(v)

) = (−1)n − χ
(
StQ(I )∪Q(bI )(v)\StQ(I )(v)

)
.

Moreover, if σ is an r -cell of ∂Q(I ) then for 0 ≤ k ≤ n − r the number of

(r + k)-cells in StQ(I )∪Q(bI )(σ ) is 2k
(n − r

k

)
, and

χ
(
StQ(I )∪Q(bI )(σ )

) =
n−r∑

k=0

(−1)r+k 2k
(
n − r

k

)
= (−1)n .

Then,

χ
(
StQ(I )(σ )

) = (−1)n − χ
(
StQ(I )∪Q(bI )(σ )\StQ(I )(σ )

)
.

Definition 9 (strong Euler well-composedness) An nD cubical complex is Euler well-
composed (χWC) if it has no χ -critical vertices (Boutry et al. 2020a). It is strongly

Euler well-composed (
+
χWC) if it has no χ -critical cells.

Observe that the definition of
+
χWCness is more restrictive than the definition of

χWCness given in Boutry et al. (2020a) in the sense that we do not only check if there
are χ -critical vertices (or 0-cells) but we also check if there are χ -critical k-cells for

any k ∈ Z. With the following lemma, we can conclude that
+
χWCness and DWCness

are equivalent when we deal with cubical complexes canonically associated with nD
pictures for n = 2, 3.

Lemma 2 Let Q(I ) be the cubical complex canonically associated with an nD picture
I for n = 2, 3. Then Q(I ) has no χ -critical cells if and only if I is DWC.

Proof We have verified by computer search that there are no counterexamples to this
lemma. �

With the following result, we can conclude that the definition of sχWCness given in

Boutry et al. (2020a) is weaker than the definition of
+
χWCness given in this paper for

nD pictures with n ≥ 4, that is, sχWCness does not imply
+
χWCness for nD pictures

with n ≥ 4.

123



Journal of Combinatorial Optimization

Fig. 5 An example of a 4D
picture whose canonically
associated cubical complex has

the χ -critical cell
(
1
2 , 1

2 , 1
2 , 0

)
.

The five red points constitute the
foreground of the picture.
Observe that the 4D picture of
Fig. 1 can be obtained from this
4D picture by a reflection in the
hyperplane x2 = 1 (Color figure
online)

Lemma 3 The fact that neither Q(I ) nor Q(bI ) has χ -critical vertices does not imply
that Q(I ) has no χ -critical cells for any nD picture I with n ≥ 4.

Proof Let us compute a counterexample for the statement presented above. Con-
sider the cubical complex Q(I ) canonically associated with an nD picture I =
(Zn, FI ) with n ≥ 4, such that FI = {(0, 1, 0), (0, 0, 0), (0, 0, 1), (1, 0, 1), (1, 1, 1),
(0, 2, 0), (0, 2, 1), (1, 2, 1)} × (0)n−3 (see Fig. 1). Then, the set of n-cells of Q(I )
incident to the (n − 3)-cell

σ =
(
1

2
,
1

2
,
1

2

)
× (0)n−3

is:

{
(0, 1, 0), (0, 0, 0), (0, 0, 1), (1, 0, 1), (1, 1, 1)

} × (0)n−3

(see Fig. 5). Observe that σ ∈ ∂Q(I ) and StQ(I )(σ ) is the set:

{
σ
} ∪ {

(
x,

1

2
,
1

2

)
,

(
1

2
, x,

1

2

)
,

(
1

2
,
1

2
, x

)
: x ∈ {0, 1}} × (0)n−3

∪ {(
x, y,

1

2

)
,

(
1

2
, x, y

)
: x, y ∈ {0, 1}} × (0)n−3

∪ {
(
0,

1

2
, 0

)
,

(
0,

1

2
, 1

)
,

(
1,

1

2
, 1

)
} × (0)n−3

∪ {
(0, 1, 0), (0, 0, 0), (0, 0, 1), (1, 0, 1), (1, 1, 1)

} × (0)n−3.

Then,

χ
(
StQ(I )(σ )

) = (−1)n−3 + 6(−1)n−2 + 11(−1)n−1 + 5(−1)n = (−1)n+1 �= 0.
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Therefore, σ is a χ -critical (n − 3)-cell for Q(I ) (with n − 3 ≥ 1), so Q(I ) is not
+
χWC.

Now, let us prove that none of the vertices of ∂Q(I ) areχ -critical for Q(I )or Q(bI ).
That is, let us prove that if v ∈ ∂Q(I ) then χ

(
StQ(I )(v)

) = 0 = χ
(
StQ(bI )(v)

)
.

First, let us see that χ
(
StQ(I )(v)

) = 0.
Let xn be the last coordinate of v (then xn = ± 1

2 ). Let

A = {σ = (y1, . . . , yn) ∈ StQ(I )(v) : yn = 0}

and

B = {σ = (y1, . . . , yn) ∈ StQ(I )(v) : yn = xn}.

Then, StQ(I )(v) = A  B. Let f : A → B such that f (σ ) = (y1, . . . , yn−1, xn)
for each σ = (y1, . . . , yn−1, 0) ∈ A. Then, χ({ f (σ )}) = −χ({σ }) for any σ ∈ A
since the dimension of f (σ ) is one less than the dimension of σ . Therefore,

χ
(
StQ(I )(v)

) = χ(A) + χ(B) =
∑

σ∈A

χ({σ }) +
∑

σ∈A

χ({ f (σ )}) = 0.

Second, let us see that χ
(
StQ(bI )(v)

) = 0.
Let us observe that StQ(I )∪Q(bI )(v)\StQ(bI )(v) is isometric to one of the following

sets:

A1 = {
(0, 0, 0)

} × (0)n−3,

A2 = {
(0, 0, 0), (0, 0, x) : x ∈ { 1

2 , 1
} } × (0)n−3,

A3 = {
(0, 0, 0), (0, 0, x), (x, 0, 1) : x ∈ { 1

2 , 1
} } × (0)n−3,

A4 = {
(0, 0, 0), (0, 0, x), (x, 0, 1), (0, x, 0), (1, x, 1) : x ∈ { 1

2 , 1
} } × (0)n−3.

An intuition of this last assertion can be obtained by looking at Fig. 6 where each
colored point represents a set of 2n−3 vertices of ∂Q(I ) that have the same first three
coordinates, and for every vertex v in that set the point’s color indicates which set Ai

the set StQ(I )∪Q(bI )(v)\StQ(bI )(v) ⊂ StQ(I )(v) is isometric to. In all cases,

χ
(
StQ(I )∪Q(bI )(v)\StQ(bI )(v)

) = (−1)n .

Finally, by Remark 4,

χ
(
StQ(bI )(v)

) = (−1)n − χ
(
StQ(I )∪Q(bI )(v)\StQ(bI )(v)

) = 0.

�

Definition 10 (self-dual strong Euler well-composedness) The cubical complex Q(I )
canonically associated with an nD picture I is self-dual strongly Euler well-composed

(s
+
χWC) if both Q(I ) and Q(bI ) are

+
χWC.
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Fig. 6 A drawing of the vertices of the cubical complex Q(I ) canonically associated with the nD picture I
defined in the proof of Lemma 3. Each colored point represents a set of 2n−3 vertices of ∂Q(I ) that have the
same first three coordinates; the point’s color indicates the isometry class of StQ(I )∪Q(bI )(v)\StQ(bI )(v)

for every vertex v in that set. That is, StQ(I )∪Q(bI )(v)\StQ(bI )(v) is isometric to A1 if the point is red,
isometric to A2 if it is green, isometric to A3 if it is blue, and isometric to A4 if it is purple (A1, A2, A3,
and A4 are defined in the proof of Lemma 3) (Color figure online)

Lemma 4 If Q(I ) is s
+
χWC then, for any vertex v of ∂Q(I ), the following equation is

satisfied:

χ
(
Lk∂Q(I )(v)

) = χ(Sn−2) = 1 + (−1)n−2

or, equivalently,

χ
(
St∂Q(I )(v)

) = 1 − χ(Sn−1) = (−1)n−1.

Proof Let us assume that

χ
(
LkQ(I )(v)

) = 1 = χ
(
LkQ(bI )(v)

)
,

that is,

χ
(
StQ(I )(v)

) = 0 = χ
(
StQ(bI )(v)

)
.

Now, since

χ
(
StQ(I )∪Q(bI )(v)

) = χ
(
StQ(I )(v)

) + χ
(
StQ(bI )(v)

) − χ
(
St∂Q(I )(v)

)

then, using Remark 4, we conclude that:

χ
(
St∂Q(I )(v)

) = (−1)n−1.

�
Nevertheless, the converse is not true.
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Lemma 5 The fact that χ
(
St∂Q(I )(v)

) = (−1)n−1 for any vertex v ∈ ∂Q(I ) does not
imply that Q(I ) is χWC nor that I is DWC.

Proof Case (b) of Fig. 4 is a simple counterexample. In that case, we have that
χ

(
St∂Q(I )(v)

) = (−1)n−1 but χ
(
StQ(I )(v)

) = −1 �= 0. Besides, case (b) of Fig. 4 is
not DWC.

In the next section, we will prove our main result, that is,
+
χWCness implies

DWCness in any dimension n ≥ 2 although the converse is not true when n ≥ 4.

Therefore, in principle, we do not need the concept of self-dual
+
χWCness for our

purpose. We end this section with the open question of whether self-dual strong Euler
well-composedness is in fact equivalent to strong Euler well-composedness.

4 Strong Euler well-composedness implies digital well-composedness

Let us now see one of the two main results of the paper, stating that
+
χWCness implies

DWCness for any nD picture with n ≥ 2.

Theorem 1 Strong Euler well-composedness implies digital well-composedness in nD
for n ≥ 2.

Proof Let us prove that not DWCness implies not
+
χWCness. Let I = (Zn, FI ) be

an nD picture with n ≥ 2, and let k be an integer in �0, n − 2�. Let {p, p′} be two
antagonists in an (n − k)-block B that yields a critical configuration for I .

Let us assume, first, that FI ∩B = {p, p′}, that is, it is a critical configuration. Then
p+p′
2 encodes a k-cell σ in ∂Q(I ). Let us prove that σ is a χ -critical cell for Q(I ), that

is, let us prove that χ
(
LkQ(I )(σ )

) �= 1. First, observe that LkQ(I )(σ ) = L(p) L(p′)
where, for q = p, p′,

L(q) = {μ ∈ LkQ(I )(σ ) : μ is a face of then-cell centered atq}.

Now, since χ(L(p)) = χ(L(p′)), then

χ
(
LkQ(I )(σ )

) = χ(L(p)  L(p′)) = χ(L(p)) + χ(L(p′)) = 2χ(L(p)) �= 1

and then σ is χ -critical for Q(I ). In the other case, where B\FI = {p, p′}, when σ is
the k-cell centered at p+p′

2 , the set StQ(I )∪Q(bI )(σ )\StQ(I )(σ ) consists just of the two
n-cells centered at p and p′. Hence, χ

(
StQ(I )∪Q(bI )(σ )\StQ(I )(σ )

) = 2(−1)n and,
by Remark 4,

χ
(
StQ(I )(σ )

) = (−1)n − χ
(
StQ(I )∪Q(bI )(σ )\StQ(I )(σ )

) = (−1)n − 2(−1)n,

so χ
(
StQ(I )(σ )

) = (−1)n+1 �= 0 and then σ is χ -critical for Q(I ). �
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Fig. 7 As explained in
Theorem 2, for n ≥ 4, there
exists a family of DWC pictures
In such that Q(In) are not
χWC. This picture corresponds
to the case n = 4

5 Digital well-composedness does not imply (strong) Euler
well-composedness

Let us see next, an example of an nD picture (n ≥ 4) that is digital well-composed
but not Euler well-composed, showing that DWCness does not imply χWCness and,

therefore, DWCness does not imply
+
χWCness.

Theorem 2 DWCness does not imply χWCness for any dimension n ≥ 4.

Proof Let us fix n ≥ 4. We will give an example of an nD picture In = (Zn, FIn ) (see
Fig. 7) such that In is DWC but Q(In) is not χWC. Let

FIn = {
(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 1, 1),

(1, 1, 1, 1), (1, 1, 1, 0), (1, 1, 0, 0), (1, 0, 0, 0)
} × {(0), (1)}n−4.

To prove that In is DWC we only have to check that it does not contain any critical
configuration. This has been checked in Boutry et al. (2020a) when n = 4 and the
same reasoning can be extended to nD for n > 4.

Now, observe that the set of n-cubes of Q(In) encoded by FIn are incident to the
vertex v = ( 1

2

)n ∈ ∂Q(I ). Then, to prove that Q(In) is not χWC, it is enough to
check that χ

(
StQ(In)(v)

) �= 0.
Let us see that the counterexample works in 4D. In that case, v = ( 12 ,

1
2 ,

1
2 ,

1
2 )

and the hypercubes in StQ(I4)(v) are encoded by the points (0, 0, 0, 0), (0, 0, 0, 1),
(0, 0, 1, 1), (0, 1, 1, 1), (1, 1, 1, 1), (1, 1, 1, 0), (1, 1, 0, 0) and (1, 0, 0, 0). Then, it
is easy to check that χ

(
StQ(I4)(v)

) = 1 − 8 + 24 − 24 + 8 = 1 �= 0, so
Q(I4) is not χWC. Another way to see that Theorem 2 holds when n = 4 is that
StQ(I4)∪Q(bI4)(v)\StQ(I4)(v) = A  B where A is composed by the eight 3-cells cen-
tered at the barycenters of the eight edges that joint two gray points of Fig. 7 and B is
composed by the eight 4-cells centered at the eight grey points. Then,

χ
(
StQ(I4)∪Q(bI4)(v)\StQ(I4)(v)

) = χ(A) + χ(B) = 8 − 8 = 0
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and hence, by Remark 4,

χ
(
StQ(I4)(v)

) = (−1)4 − χ
(
StQ(I4)∪Q(bI4)(v)\StQ(I4)(v)

) = (−1)4 − 0 = 1 �= 0.

Consider the general case n > 4. Let d ∈ �0, n�. Let us denote by a(d,n) the number
of d-cells incident to v in the nD cubical complex Q(In). Then,

a(0,n) = 1,
a(d,n) = 2a(d−1,n−1) + a(d,n−1) for d ∈ �1, n − 1� because a d-cell in Q(In)
is constructed by adding an extra coordinate of 0 or 1 at the end to the list of
coordinates of a point encoding a (d−1)-cell in Q(In−1) or adding the coordinate
1
2 at the end of the list of coordinates of a point encoding a d-cell in Q(In−1),
a(n,n) = 2a(n−1,n−1).

Therefore,

χ
(
StQ(In)(v)

) =
∑

d∈�0,n�

(−1)da(d,n) = 1 +
∑

d∈�1,n�

(−1)da(d,n)

= 1 + 2
∑

d∈�1,n�

(−1)da(d−1,n−1) +
∑

d∈�1,n−1�

(−1)da(d,n−1)

= 1 − 2
∑

d∈�0,n−1�

(−1)da(d,n−1) +
∑

d∈�1,n−1�

(−1)da(d,n−1)

= 1 − 2χ
(
StQ(In−1)(v)

) + χ
(
StQ(In−1)(v)

) − 1

= −χ
(
StQ(In−1)(v)

)
.

Since χ
(
StQ(I4)(v)

) = 1 then

χ
(
StQ(In)(v)

) = (−1)n �= 0.

So, Q(In) is not χWC. �

Corollary 1 DWCness does not imply
+
χWCness for any dimension n ≥ 4.

We finish this section with a table summarising the main results obtained so far

regarding the concepts of DWCness and
+
χWCness:

n = 2, 3 DWCness ←→ +
χWCness

n ≥ 4 DWCness
�

←−
+
χWCness
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6 Conclusions and future works

In this paper, we have provided a new flavour of well-composedness, called strong
Euler well-composedness, that is more restrictive than the definition of Euler well-
composedness given in Boutry et al. (2020a). We have proven two fundamental
properties: first, strong Euler well-composedness implies digital well-composedness
in any dimension n ≥ 2; second, the converse is not true: digital well-composedness
does not imply strong Euler well-composedness as soon as we are in dimension n ≥ 4.

As a future work, we plan to prove that the definition of
+
χWCness provided in this

paper is robust to cubical barycentric subdivisions. Observe that a cubical barycentric
subdivision of Q(I ) is the nD cubical complex canonically associated with the linear
interpolation of the nDpicture I in all the possible directions ei , being {e1, . . . , en} the
canonical basis ofZ

n . This is another reason why we believe that it is a better choice to
define well-composedness based on χ -critical cells and not only on χ -critical vertices
as it was done in Boutry et al. (2020a).

We also plan to prove that if we apply the reparationmethod given inGonzalez-Diaz
et al. (2015, 2017), Boutry et al. (2019) to any χ -critical cell, then PS(I ) (i.e., the

simplicial subdivision of the “repaired complex” P(I )) is
+
χWC, going a step forward

to our ultimate goal that is to prove that P(I ) is a CWC regular cell complex.
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