
DOI: 10.1111/mice.12810

ORIG INAL ARTICLE

Deformation forecasting of a hydropower dam by
hybridizing a long short-termmemory deep learning
network with the coronavirus optimization algorithm
Kien-Trinh T. Bui1 José F. Torres2 David Gutiérrez-Avilés2
Viet-Ha Nhu3 Dieu Tien Bui4 Francisco Martínez-Álvarez2

1 Faculty of Water Resources Engineering,
Thuyloi University, Hanoi, Vietnam
2 Data Science and Big Data Lab, Pablo de
Olavide University, ES-41013 Seville,
Spain
3 Department of Geological-Geotechnical
Engineering, Hanoi University of Mining
and Geology, Hanoi, Vietnam
4 GIS Group, Department of Business and
IT, University of South-Eastern Norway,
Bø i Telemark, Norway

Correspondence
Kien-TrinhT.Bui, Faculty ofWater
ResourcesEngineering, ThuyloiUni-
versity,Hanoi,Vietnam
Email: bktrinh@tlu.edu.vn
FranciscoMartínez-Álvarez,Data Sci-
ence andBigDataLab, Pablo deOlavide
University, ES-41013 Seville, Spain.
Email: fmaralv@upo.es

Funding information
VietnamNational Foundation for Science
andTechnologyDevelopment (NAFOS-
TED),GrantNumber: 105.08-2018.06;
SpanishMinistry of Science, Innovation
andUniversities under project,Grant
Number: PID2020-117954RB-C21.

https://doi.org/10.1111/mice.12810

Abstract
The safety operation and management of hydropower dam play a critical role
in social-economic development and ensure people’s safety in many countries;
therefore, modeling and forecasting the hydropower dam’s deformations with
high accuracy is crucial. This research aims to propose and validate a newmodel
based on deep learning long short-term memory (LSTM) and the coronavirus
optimization algorithm (CVOA), named CVOA-LSTM, for forecasting the defor-
mations of the hydropower dam. The second-largest hydropower dam of Viet-
nam, located in the Hoa Binh province, is focused. Herein, we used the LSTM
to establish the deformation model, whereas the CVOA was utilized to opti-
mize the three parameters of the LSTM, the number of hidden layers, the learn-
ing rate, and the dropout. The efficacy of the proposed CVOA-LSTM model is
assessed by comparing its forecasting performance with state-of-the-art bench-
marks, sequential minimal optimization for support vector regression, Gaussian
process, M5’ model tree, multilayer perceptron neural network, reduced error
pruning tree, random tree, random forest, and radial basis function neural net-
work. The result shows that the proposed CVOA-LSTM model has high fore-
casting capability (R2 = 0.874, root mean square error = 0.34, mean absolute
error = 0.23) and outperforms the benchmarks. We conclude that CVOA-LSTM
is a new tool that can be considered to forecast the hydropower dam’s deforma-
tions.

1 INTRODUCTION

Dam safety has a large effect on many aspects of life, such
as life safety, property, and the dam’s ecological environ-
ment; therefore, safety monitoring is an essential part of
the dammanagement system (Salazar et al., 2017; Tu et al.,
2013; R. T. Wu et al., 2019).
The primary purpose of safety monitoring is to detect

abnormal movements on the surface or inside the dam to
take appropriate and timely remedies. Because of the non-
linear and complex characteristics of dam movement, it is
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still challenging for the managers to forecast this displace-
ment process with high accuracy (De Sortis & Paoliani,
2007; Mata, 2011; Salazar et al., 2015).
Forecasting and diagnosing deformations of

hydropower dambased on time seriesmonitoring data play
an essential role in dam safety assessment and risk man-
agement, especially with hydropower dams constructed
more than 40 years ago, where the technology and compu-
tational tool used were limited (Hariri-Ardebili & Salazar,
2020). In this regard, the forecasting accuracy of deforma-
tions is highly necessary for issuing crucial decisions.
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During the last 5 years, long short-termmemory (LSTM)
has received significant attention in time-series forecast-
ing and analysis due to its outstanding performance in var-
ious domains (Du et al., 2020; Y. Li et al., 2020). How-
ever, designing LSTM for the deformation forecasting of
hydropower dam is still challenging because it requires
adapting and optimizing various parameters. Herein, we
formulate the deformation forecasting as a multivariate
time-series regression. The inputs are factors related to the
upstream water level (UpL), the downstream water level,
the air temperature, and the dam’s age; the output is the
horizontal deformation (HD).
Nevertheless, designing accurate LSTM models is a dif-

ficult task because the performance of LSTM is very sen-
sitive with the hidden layer amount and the parame-
ters employed, and they should be determined objectively.
Additionally, LSTM has two major drawbacks: First, the
execution time is very high, and second, the model is quite
sensitive to its hyperparameters adjustment.
For these reasons, it is of utmost relevance to be able

to train the deep learning models with the optimal values
for the hyperparameters. This is typically done by means
of optimization methods or metaheuristics, highlighting
those based on bioinspired phenomena (Alba et al., 2013).
This hybridization usually leads to optimized deep learn-
ing models with high performance, which is a very hot
topic in the literature nowadays.
In this research, we partly fill this gap by propos-

ing a new approach for forecasting the deformation of
hydropower dam using deep learning LSTM (Lara-Benítez
et al., 2020; Torres et al., 2021) optimized by the coro-
navirus optimization algorithm (CVOA) and named as
CVOA-LSTM.TheCVOA is a newoptimization introduced
by Martínez-Álvarez et al. (2020) that mimics the devel-
opment and spread of the Severe Acute Respiratory Syn-
drome Coronavirus-2 (SARS-CoV-2), responsible for the
coronavirus disease 2019 (COVID-19). The purpose of the
CVOA here is to search and optimize the LSTM, aiming to
forecast the deformation with high accuracy.
The effectiveness of the proposed LSTM-CVOA hybrid

model has been used for forecasting the deformationmon-
itoring data at the Hoa Binh hydropower dam of Viet-
nam, the second-largest dam in Southeast Asia. LSTM-
CVOA is compared with benchmark algorithms, that is,
support vector regression optimized by the sequentialmin-
imal optimization (SMO-SVR), Gaussian process (GP), M5
model tree (M5’), multi-layer neural network (MLPNeu-
ralNet), reduced error pruning decision tree (REPTree),
random tree (RT), random forest (RF), and radial basis
function neural network (RBFNeuralNet). The popular
hydrostatic-season-time (HST) model for dam monitor-
ing has also been used as a baseline. Furthermore, differ-
ent CVOA is compared to different optimization strategies

such as grid search (GS), random search (RS), and genetic
algorithms, showing better performance for all the com-
pared cases.
The rest of the paper is structured as follows. Section 2

discusses related works. The underlying foundations of
the methods used are introduced in Section 3. Section 4
presents the case study. Section 5 details how the pro-
posed methodology has been applied to the case-study
data. Section 6 reports the results achieved and discusses
them. Finally, conclusions, limitations, and future works
are summarized in Section 7.

2 RELATEDWORKS

Various methods have been proposed for forecasting and
analyzing the dam displacement, and they could be cat-
egorized as deterministic group, statistical group, and
machine learning methods (Salazar et al., 2017). Based on
the definition, the deterministic group refers to the phys-
ical models, but physical models do not necessarily need
to be deterministic. In fact, they can be used as a simu-
lation tool in a probabilistic assessment. For example, the
input uncertainties can be quantified, sampled, and propa-
gated through the simulationmodel to generate probabilis-
tic outputs. In addition, one could also conduct simulation
optimization.
Deterministic methods are well-known as the finite ele-

ment method (Gurbuz, 2011; Pereira et al., 2020), bound-
ary element method (Antes & Von Estorff, 1987). In these
methods, parameters/quantities related to structures, such
as material, stress-strain, seepage, are employed to estab-
lish mathematical functions to relate the dam’s displace-
ment over time. Therefore, they are commonly used in the
damdisplacement analysis at the constructing and first fill-
ing phases.
When the monitoring time-series data is long enough,

statistical methods, that is, hydrostatic–seasonal–time
(Sigtryggsdóttir et al., 2018), have more advantages than
deterministic methods in terms of more straightforward
function form and calculating speed (Shao et al., 2017; Sto-
janovic et al., 2013; Wei et al., 2020). However, in some
cases, it is impossible to obtain enough time-series data, so
the reliability of the methods is not guaranteed. Besides, as
we know, dam deformation is a typical nonlinear process,
so it is difficult for statistical methods to forecast with high
accuracy (Salazar et al., 2015).
Recently, machine learning, that is, neural net-

works (Kao & Loh, 2013; Mata, 2011; Ranković et al.,
2012; Rodríguez et al., 2019; Salazar et al., 2017), artificial
immune algorithm (Xi et al., 2011), support vectormachine
(SVM; Ranković et al., 2014; Salazar et al., 2015; Su et al.,
2017; Tabari & Sanayei, 2018; Wei et al., 2020; Zheng
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et al., 2013), wavelet SVM (Su et al., 2018), RF and boosted
regression tree (Salazar et al., 2016), GP (Kang & Li, 2020),
multivariate adaptive regression splines (Salazar et al.,
2015), adaptive neural fuzzy inference system (Bui et al.,
2018; Ranković et al., 2012; Taormina & Chau, 2015), multi-
block-based diagnosismethod (Qin et al., 2017), and signal-
residual amendment (Wei et al., 2020), have successfully
forecasted dam displacement with great accuracy results.
More recently, recurrent neural networks (RNN) and

variants like LSTM networks, introduced by Hochreiter
and Schmidhuber (1997), have received great attention in
solving regression problems in various engineering fields
(Chen et al., 2020; Hua et al., 2019; Ni et al., 2020; Ni
et al., 2020; Divina et al., 2020; Torres et al., 2018; Tor-
res, Troncoso, et al., 2019; Zhang et al., 2019). More-
over, much attention has been paid to the optimization
of such models, which are quite sensitive to the param-
eters setting (Charte et al., 2020; Siqueira et al., 2020;
Thurnhofer-Hemsi et al., 2020). Ribeiro et al. (2019) com-
pared Seasonal Autoregressive Integrated Moving Aver-
age (SARIMA), Seasonal Autoregressive Integrated Mov-
ing Average Exogenous model (SARIMAX), and a hybrid
SARIMAX-LSTM for forecasting the concrete dam’s dis-
placements with a report that the hybrid model is capa-
ble of providing a better forecast accuracy. Yang et al.
(2020) employed LSTM to predict a concrete dam’s defor-
mation with good results (Rafiei et al., 2017; Rafiei and
Adeli, 2017). Y. Li et al. (2020) proposed an ensemble of
the Loess-based seasonal-trend decomposition, extra trees,
and LSTM for analyzing the displacements of a concrete
dam with outstanding forecasting performance. Liu et al.
(2020) consider the integration of themoving average tech-
nique, principal component analysis, and LSTM for pre-
dicting displacements of arch dams with a conclusion that
the LSTM-MA delivers better prediction results.
Overall, though these machine learning algorithms

require long time-series data, they are potent tools in non-
linear process relationships of the dam displacement and
influence of external factors. Nevertheless, there is no con-
sensus on which machine algorithm is the best for fore-
casting deformations of dams. As a result, the exploration
and development of new algorithms to improve forecast-
ing capability is still an essential issue in dam deformation
analysis.

3 CASE STUDY

3.1 Overview of the hydropower dam

In this research, a hydropower dam located in the Da river
section flowing through the Hoa Binh city in northwest
Vietnam was adopted as a case study (see Figure 1).

This is the second largest hydroelectric project in South-
east Asia after the Son La hydropower plant in the north
of Vietnam that was completed in 2012. The hydropower
project, which was designed, supplied equipment, and
constructed by the former Soviet Union started on Novem-
ber 6, 1979, and was completed on December 20, 1994
(Vladimirov et al., 2003).
The project consists of eight hydroelectric generators

with a total capacity of 1920 MW, and they were located
in the underground of an effusive rock hill, which can suf-
fer from seismic and earthquakes up to Level 8 (Ezersky &
Eppelbaum, 2017; Ezerskii et al., 1990). In the first period
of the operation, the electricity production accounted for
about 40% of the total production in Vietnam, and dur-
ing the last 26 years, this project has produced about 230
billion kWh. Besides the power supply, the project’s other
primary function is to regulate and control floods to ensure
safety for both the Hanoi capital and the Red River Delta
provinces, where the total population is more than 22.5
million people in 2019 (GSO, 2020).
This project’s dam was constructed from 1981 to 1990,

and this is the clay core-based rock-earth fill dam with a
length and height of 734 and 128 m, respectively. The high-
est water level is designed at 120 m, whereas the lowest
level is 80 m. The dam can withstand the highest differ-
ence in height between the upstream and the downstream
water levels of 102 m.
The monitoring data at the dam showed that the differ-

ence in the water flow between the dry and flood seasons
is large. For example, in 1971, a recorded flow in the dry
season is 600 m3/s, and the flood season is up to 14800
m3/s. It should be noted that the total reservoir area is
around 208 km2, and the total water storage volume is 9.45
billion m3.

3.2 Health monitoring data

To monitor the dam behavior, a geodetic network with 12
points has been established on the downstream face, in
which 6 points (PV2, PV4, PV6, PV8, PV10, PV12) have
been placed at 123 m high, whereas the six remaining
points (PV1, PV3, PV5, PV7, PV9, PV11) have setup at 75 m
high. The horizontal movement of those points was mea-
sured and determined using a triangular geodetic network
measured. Therein, theodolites were used for the mea-
surement before the year 2000, and then, total stations
have been replaced and used for the measurement until
now.
In this analysis, the HD data measured at the PV6 point

in around 22 years, from January 23, 1998, to September 5,
2019, were considered. The PV6 point was selected because
it is located near the middle of the dam (123 m high).
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F IGURE 1 Hoa Binh hydropower dam: (a) Location of the dam; (b) the dam view from the google earth; (c) the dam from the
downstream view; and (d) the dam from the upstream view (photo courtesy of Ngoc Thanh)

TABLE 1 A statistical overview of the time-series data for the horizontal deformation (HD) analysis in this research

No. Variable Unit Min Max Mean Std. error Std. dev
1 HD m 0.088 0.199 0.121 0.001 0.022
2 Upstream water level m 78.56 117.25 104.92 0.64 10.38
3 Downstream water level m 9.65 21.65 13.53 0.13 2.16
4 Air temperature Degree 12.40 32.30 24.37 0.29 4.72
5 Dam age Month 92.47 355.63 222.45 4.77 76.95

Together with the HD data, other related time-series
data were monitored, including UpL, downstream water
level (DoL), air temperature (t), and the dam age in month
(θ) were also considered. The statistical description of the
monitoring data used in this analysis is shown in Table 1
and graphical presentations of these data are shown in
Figure 2.
According to the report of Hoa Binh hydropower com-

pany, from the year 2005, TCA2003 of Leica (precision

of 0.5″ for horizontal displacement angular and 1 mm +

1 ppm/0.3 s for distance) was used tomeasure the 31 angles
and 28 distances in the monitoring network.
After adjusting the computation of each monitoring

epoch, the coordinates and position of all monitoring
points are determined inaccuracy of 1 mm or below. Thus,
this value also is the accuracy of individual value in each
monitoring epoch and is chosen as the standard error of
dam horizontal displacement time-series in Table 1.



BUI ET AL. 5

F IGURE 2 Time series monitoring data: (a) horizontal deformation (HD; m) at the PV6 station and (b) air temperature (o)

4 BACKGROUND OF THE EMPLOYED
ALGORITHM

This section provides the necessary theoretical informa-
tion for a better understanding of the proposed approach.
Thus, Section 4.1 introduces the LSTM network and Sec-
tion 4.2, the CVOA, used to optimize the deep learning
model hyperparameters.

4.1 LSTM networks

This section describes the mathematical foundations
underlying the LSTM network. LSTMs are RNN architec-
tures used in deep learning. Such architecture is particu-
larly suitable to process images, video, or speech, leading
to successful applications in civil and infrastructure engi-
neering (Jeong et al., 2020; Jiang&Zhang, 2020; F. Ni et al.,



6 BUI ET AL.

2019; Xu et al., 2020). However, it can also be applied to the
field of time-series forecasting, as widely discussed in the
literature, given their ability to deal with lags of arbitrary
duration.
Standard RNNs suffer from gradient issues, which con-

sists of decreasing the gradient as the number of lay-
ers increases. Actually, for RNNs with a high number
of layers, the gradient becomes almost null, preventing
the network from learning. For this reason, these net-
works have a short-term memory and do not obtain good
results when dealing with long sequences that require
memorizing all the information contained in the complete
sequence.
LSTM recurrent networks have emerged to solve the

vanishing gradient problem (Hochreiter et al., 1997), using
three gates to keep longstanding relevant information and
discard irrelevant information. These gates are:

1. Forget gate, Γf. It decides the information that should
be discarded or saved. A value near to 0 means that
the past information is forgotten, while a value near 1
means that it is kept.

2. Update gate, Γu. It decides which new information ct to
use to update the ct memory state. Thus, ct is updated
using both Γf and Γu.

3. Output gate,Γo. It decideswhich is the output value that
will be the input of the next hidden unit.

The information of the at−1 previous hidden unit and the
information of the xt current input is passed through the
sigmoid activation function, σ, to compute all the gate val-
ues and through the tanh activation function to compute
the ct new information, which will be used to update the
values. The equations defining an LTSM unit are:

𝑐𝑡 = tanh (𝑊𝑐 [𝑎𝑡−1, 𝑥𝑡] + 𝑏𝑐) (1)

Γ𝑢 = 𝜎 (𝑊𝑢 [𝑎𝑡−1, 𝑥𝑡] + 𝑏𝑢) (2)

Γ𝑓 = 𝜎
(
𝑊𝑓 [𝑎𝑡−1, 𝑥𝑡] + 𝑏𝑓

)
(3)

Γ𝑜 = 𝜎 (𝑊𝑜 [𝑎𝑡−1, 𝑥𝑡] + 𝑏𝑜) (4)

𝑐𝑡 = Γ𝑢∗𝑐𝑡 + Γ𝑓∗ 𝑐𝑡−1 (5)

𝑎𝑡 = Γ𝑜∗ tanh (𝑐𝑡) (6)

where Wu, Wf, Wo, bu, bf, and bo are the weights and the
bias that govern the behavior of the Γu, Γf and Γo gates,
respectively, whereasWc and bc are the weights and bias of
the ct memory cell candidate.

An illustration of a hidden unit in aN LSTM deep learn-
ing model is shown in Figure 3.

4.2 CVOA

The CVOA is a bioinspired metaheuristic first proposed by
Martínez-Álvarez et al. (2020). CVOAwas developed based
on the COVID-19 spreading model, the disease caused
by the SARS-CoV-2 virus, first reported in 2019. One of
the main features lies in its remarkable trade-off between
intensification and diversification to efficiently explore the
search space. In this work, the CVOA is employed to opti-
mize the hyperparameters of an LSTM model, but the
authors claimed that it can be used to optimize any kind
of algorithm. The LSTM hybridization was done through a
new dynamic individual codification proposal. Every indi-
vidual can be of different lengths, according to the num-
ber of layers the individual codifies. Furthermore, real data
from the Spanish electricity market were used to assess its
performance, reaching quite remarkable results in terms of
accuracy and outperforming other well-established mod-
els optimized with other metaheuristics.
CVOA mimics how the coronavirus infects and spreads

the disease. In particular, every infected individual iden-
tifies one solution, and the infection process stands for
the exploration of new solutions. As for any metaheuris-
tic, CVOA must ensure both intensification and diversifi-
cation.
On the one hand, the intensification is controlled as fol-

lows. It is well-known that the infection rate for COVID-
19 is 3 when no face masks are worn, social distancing
T is not followed, or no vaccines had been inoculated
into the population (WHO, 2021), which means that every
infected individual can infect three more individuals on
average. In other words, given a solution (infected indi-
vidual), three new solutions are explored (three new indi-
viduals are infected from the current one). Additionally,
the existence of super-spreaders has also been reported in
the literature. This involves a high infection rate for such
individuals; that is, certain infected individuals will infect
more than three individuals, on average.
On the other hand, the diversification is controlled by

considering that some individuals can travel and visit
regions of the search space that are far away. In other
words, travelers will lead to the exploration of new solu-
tions quite dissimilar.
It is worth mentioning that all probabilities and rates

have been retrieved from the real values of the COVID-
19. This prevents the user from consuming time in adjust-
ing the CVOA parameters because all of them are set
by default. However, different values can be assigned to
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F IGURE 3 Description of the hidden unit in a long short-term memory (LSTM), * and + operators identify the multiplication and sum
of the element-wise vector, respectively

simulate different strains, with higher fatality rates or
higher infection rates, for instance. A very useful feature
is the parallel implementation, also proposed in this work,
since it explains how to run different strains with different
setup values.
The main CVOA steps can be summarized as follows:

1. Step 1: Patient-zero (PZ) generation. This step consists
of randomly generating the initial solution. If previous
knowledge about the problem is known, this step can
be avoided and the optimization process cane be started
from any arbitrary solution.

2. Step 2: Spreading the disease. Every solution will
infect new ones, according to some parameters such
as the probability of death (solutions that will not be
explored), spreading rate (the number of new solutions
explored from a previous one), super-spreading rate
(same as the spreading rate but with higher values),
traveling probability (infection of quite dissimilar solu-
tions for a better exploration of the search space).

3. Step 3: Updating populations. CVOA maintains three
different sets of solutions: infected (current iteration),
deaths (solutions that cannot infect anymore), and
recovered (solutions already explored that might re-
infect if the re-infection probability is met).

4. Step 4: Stop criterion. CVOA ends its execution after a
given number of iterations or if the infected population
is empty.

5 PROPOSED HYBRID APPROACH
FOR DEFORMATION FORECASTING OF
HYDROPOWER DAMS

This section describes the dataset (Section 5.1) and dis-
cusses the configuration for the CVOA-LSTM (Section 5.2).

5.1 Dataset description

As mentioned above, in this work, we employed the mea-
sured data at the PV6 point (see Figure 1) for nearly 22
years, from January 23, 1998, to September 5, 2019, with
260 measured cycles, retrieved on a monthly basis. Since
machine learning models are based on time-series mea-
sured data only, without considering the physical char-
acteristics of the dam materials in the modeling (Salazar
et al., 2016), therefore, to forecast the dam deformation, it
is necessary to determine its influencing factors.
Literature review shows that hydraulic load, tempera-

ture, and dam age (Bui et al., 2018; Dai et al., 2018; Kang
et al., 2017; Lin et al., 2019; Luo et al., 2019; Ren et al., 2020;
Shi et al., 2018; Zou et al., 2018) are the main influencing
factors; therefore, in this research, UpL, UpL, t, and θwere
considered.
Because the dam deformation modeling in this research

uses the concept the HST that is widely accepted and used
by engineers in the dam modeling (Salazar et al., 2015),
therefore, higher orders of UpL should be considered, that
is, UpL2, UpL3, UpL4, whereas time lags of t can be used
as t15, t30, t45, and t60, which are the air temperature at 15,
30, 45, and 60 days, respectively, before each measuring
cycle.
Regarding the dam age, both θ and ln(θ) should be used

(Stojanovic et al., 2013). As a result, 12 input factors used
are UpL, UpL2, UpL3, UpL4, DoL, t, t15, t30, t45, t60, θ, ln(θ),
whereas the output is the HD value. In order to avoid a
potential bias deformation modeling of the dam, all input
values were normalized in a range from 0 to 1 (Bui et al.,
2018).
Training the model is a key step in time-series forecast-

ing. The use of k-fold cross-validation is not considered
in this work due to some well-known limitations in time-
series forecasting: use of future values to predict past ones,
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the existence of gaps in time leading to the loss of rele-
vant information, and data leakage in training and test.
However, the time-series datawere separated into two sub-
sets, with a 70/30 ratio. The first subset is that the train-
ing dataset has 160 cycles, measured from January 23,
1998, to February 17, 2011 (with, again, a 70/30 ratio for
training and validation), whereas the second subset is the
test set consisting of 100 measured cycles from March 14,
2011, to September 5, 2019. Other similar strategies such as
time-series split and block time-series split () could have
been used, but preliminary results generatedworse results,
probably due to the small size of the dataset.
Besides, it was expected that data de-trending and scal-

ing may have improved the results, but, unfortunately,
such preliminary experimentation led to worse results in
terms of accuracy and all performance metrics considered
in this work.

5.2 Configuring the CVOA-LSTMmodel

For establishing the LSTMmodel for forecasting the defor-
mation of the hydropower dam, it is necessary to properly
determine three parameters: number of layers (L), learn-
ing rate (LR), and dropout (Drop), because they strongly
influence the forecasting capability of the resulting model.
The literature review showed that no thump rule is avail-
able for the determination of these parameters; therefore,
in this work, the CVOA is proposed to search and optimize
the three elements:

1. Number of hidden layers (L): This element identifies
the possible number of layers in the architecture of the
LSTM. In this work, a restriction to 1 < L ≤ 11 was con-
sidered.

2. Learning rate (LR): This variable encodes the learning
rate used in the LSTM. In this research, we considered
values as 100, 10–1, 10–2, 10–3, 10–4, and 10–5.

3. Dropout (Drop): This parameter encodes the LSTM
dropout in the interval [0, 0.45], with step 0.05.

Herein, a three-dimensional searching space (L, LR, and
Drop) is established. L is of the utmost relevance and
is highly related to the variable length of the individual
because, for every layer, the number of neurons must be
encoded. For instance, if L= 4, then four new valueswould
be optimized, corresponding to the number of neurons
existing in each of these four layers. The number of possi-
ble neurons per layer is in the range [25, 300], with step 25.
An illustration of the individual codification proposed

to hybridize the CVOA-LSTM model is depicted in
Figure 4. The parameters adopted for the CVOA in this
analysis are depicted in Table 2. It is worthmentioning that

one of the main features of CVOA is that such configura-
tion is suggested to be always the same (Martínez-Álvarez
et al., 2020) since CVOA mimics the COVID-19 spreading
model, and the metrics and statistics are well-known. It
is also true that these metrics have evolved over time as
the pandemic has shown new statistics across the world.
But it has been decided to use the original parameter val-
ues proposed since the use of some others may deeply vary
the functioning of CVOA, which is not the scope of this
paper.

6 RESULTS AND ANALYSIS

Please note that, in this project, the time-series data were
processed and visualized using Microsoft Excel 2020 and
ArcGIS Pro 2.6. The code of the proposed hybrid model
is available at Martínez-Álvarez et al. (2020), whereas
the benchmark algorithms above are available at WEKA
3.7.10.

6.1 Objective function and performance
assessment of the CVOA-LSTMmodel

In order to measure if the combination of the three param-
eters (L, LR, and Drop) is the best or not, a cost function
must be employed. In this research, mean absolute error
(MAE) in Equation (7) was employed as the cost function:

MAE =
1

𝑛

𝑛∑
𝑖=1

||| 𝑑𝑖 − 𝑑𝑖
||| (7)

The selection of this metric lies in the need of discov-
ering absolute values for the dam displacements. While
other problems are likely to express the errors in relative
terms and use metrics such as mean absolute percentage
error, in this study, this value does not provide relevant
information.
Besides, the quality of the resulting model was further

assessed and quantified using the popular statistical met-
rics in the field of HD, such as root mean square error
(RMSE) and coefficient of determination (R2; M. Li et al.,
2019; Salazar et al., 2017; Su et al., 2018), as shown below:

RMSE =

√√√√ 1

𝑛

𝑛∑
𝑖=1

(𝑑𝑖 − 𝑑𝑖)
2

(8)

𝑅2 = 1 −

∑𝑛

𝑖=1

(
𝑑𝑖 − 𝑑𝑖

)2

∑𝑛

𝑖=1

(
𝑑𝑖 − 𝑑𝑖

)2 (9)
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F IGURE 4 Proposed codification for the individual in this research

TABLE 2 The employed parameters for the coronavirus optimization algorithm (CVOA) algorithm

No Parameter Description Value
1 Prob. D Probability of dying 0.05
2 Prob. SS Probability of being a super-spreader 0.10
3 Prob. RI. Probability of reinfection 0.02
4 Prob. IS. Probability for an individual of being isolated 0.70
5 Prob. TV Probability of traveling to other search space regions 0.10
6 Social Dist. Number of iterations without social distancing [7, 12]
7 Pan. DR. Number iterations 20
8 Strains Number of threads 4
9 Np Number of coronavirus in the population 30

6.2 Training and validating results of
the CVOA-LSTMmodel

The training process for the CVOA-LSTM was started by
randomly generating an initial individual and named as
PZ. Herein, the position of PZ with three coordinates (L,
LR, and Drop) in the three-dimensional searching space is
a solution for the CVOA-LSTM, and the quality of the solu-
tion ismeasured byMAE. The training process was contin-
ued where the spreading the disease phase was activated,
and 30 individuals were affected. Then, every individual
infects new ones, and a new population was updated.With
the new population, the MAE value for each CVOA-LSTM
model corresponding to each individual was computed
and compared to find the optimized one. This was an iter-
ation process. The proposed CVOA-LSTM approach has
obtained very competitive results, with RMSE = 0.26 cm,
MAE = 0.23 cm, and R2 = 0.912, which were reached
after the ninth iteration and just some improvements were

reported during the next five iterations. Then, no improve-
ment was derived. For this reason, the stop criterion was
met, and the executionwas stopped after only 12 iterations.
Table 3 shows themetrics evolve after each iteration.We

see that the best results are derived with the individual [4,
3, 2] + [3, 3], which were decoded to the following values:
the learning rate is 10–4, the dropout is 0.2, and the number
of the hidden layers is 2, whereas the number of neurons
for each layer is 100.
After the 12 training iterations, RMSE and MAE of the

CVOA-LSTM model are 0.24 and 0.21 cm, respectively,
which are significantly lower than the standard deviation
value of the HD (2.20 cm, Table 1). These indicate that
the CVOA-LSTM model performed well. R2 is 0.988 (Fig-
ure 5a), denoting a small difference between the measured
and the computed values. The difference of RMSE and
MAE values of the CVOA-LSTMmodel is 0.03 cm indicat-
ing that the variance of the error in the training dataset is
low (Figure 5a).



10 BUI ET AL.

TABLE 3 Performance of the CVOA-LSTMmodel for the HD in this analysis

Iteration
Root mean square
error (RMSE; cm)

Mean absolute error
(MAE; cm) R2

1 10.15 10.13 0.372
2 3.15 3.05 0.526
3 0.74 0.62 0.684
4 0.41 0.32 0.728
5 0.38 0.31 0.790
6 0.37 0.30 0.812
7 0.34 0.29 0.852
8 0.31 0.26 0.886
9 0.26 0.23 0.912
10 0.24 0.21 0.988
11 0.24 0.21 0.988
12 0.24 0.21 0.988

F IGURE 5 R2 of the CVOA-LSTMmodel: (a) the validation set and (b) the test set

The running time for these experiments during the
training phase was 10,162 s.
The forecasting capability of the HD of the CVOA-LSTM

model is assessed using the 100 samples measured from
March 14, 2011, to September 5, 2019, in the validating
dataset. The result is shown in Figures 5b and 6 and
Table 4. RMSE, MAE, and R2 of the CVOA-LSTM model
are 0.34 cm, 0.23 cm, and 0.874, respectively, denoting that
the proposed model performs forecasting well. The small
difference (0.11 cm) between the RMSE value and theMAE
value indicates a lowvariance of the error in forecasting the
HD.

6.3 Comparison with other machine
learning regressions for the HD

The validity of the CVOA-LSTM model for forecasting
the HD of hydropower dam was assessed by compar-

ing its performance with nine well-established state-of-
the-art machine learning regression algorithms, that is,
SMO-SVR, GP, M5’, MLPNeuralNet, REPTree, RT, RF, and
RBFNeuralNet. Furthermore, HST has been used given its
popularity for dam deformation forecasting. Finally, other
optimizing strategies such as GS, RS, and genetic algo-
rithms have been used to find the LSTM hyperparameters.
The selection of them is an attempt of covering different
learning paradigms and provide comparisons as robust as
possible.
For the SMO-SVRmodel, the radial basis function (RBF)

was used, and the two turning parameters of the model,
the regularization (C) and the kernel width (γ), were deter-
minedusing the popular grid-search algorithm.As a result,
C = 5.5 and γ = 0.0062 were found the best for this
hydropower dam data.
For the GP model, the kernel of RBF was employed.

Herein, the two parameters, the level of Gaussian noise
(g) and the kernel width (γ), were also searched and
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F IGURE 6 Performance of the CVOA-LSTMmodel: (a) Predicted HD values versus measured HD value and (b) residual values

TABLE 4 Performance of the nine state-of-the-art machine learning regression models for forecasting the hydropower dam deformation

HD
model

Validation set Test set
RMSE (cm) MAE (cm) R2 RMSE (cm) MAE (cm) R2

SMO-SVR 0.75 0.53 0.884 0.87 0.80 0.792
Gaussian process (GP) 0.90 0.63 0.865 0.47 0.41 0.764
M5 model tree (M5’) 0.61 0.47 0.922 0.71 0.63 0.781
MLPNeuralNet 0.75 0.57 0.882 1.06 0.99 0.759
REPTree 0.66 0.48 0.903 0.93 0.79 0.436
Random tree (RT) 0.03 0.02 0.998 0.56 0.48 0.449
Random forest (RF) 0.23 0.18 0.990 0.81 0.68 0.496
RBFNeuralNet 1.19 0.93 0.701 1.33 1.20 0.446
HST 0.78 0.58 0.901 0.85 0.67 0.812
GS-LSTM 0.65 0.49 0.943 0.85 0.69 0.833
RS-LSTM 0.61 0.43 0.956 0.82 0.59 0.821
GA-LSTM 0.65 0.46 0.932 0.78 0.56 0.847
CVOA-LSTM 0.24 0.21 0.988 0.34 0.23 0.874

Abbreviations: GS-LSTM, grid search-LSTM; HST, hydrostatic-season-time; MLPNeuralNet, multilayer perceptron neural network; RBFNeuralNet, radial basis
function neural network; REPTree, reduced error pruning tree; RS-LSTM, random search-LSTM; SMO-SVR, sequential minimal optimization for support vector
regression.

optimized using the aforementioned grid-search algo-
rithm. The result showed that g = 0.95 and γ = 0.004 are
the optimized values for this analysis.
For the M5’, the minimum number of instances at a leaf

note of 1 was used.

Regarding theMLPNeuralNet model, the structure with
two neurons in the hidden layer showed the best result.We
used a learning rate (η) of 0.3 and a momentum (α) of 0.2.
Besides, the logistic sigmoid and linear were used as the
activation and transfer functions, respectively.
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TABLE 5 Wilcoxon rank-sum results for all the evaluated methods

Models GP M5’ MLP REPTree RT RF RBF HST GS-LSTM RS-LSTM GA-LSTM CVOA-LSTM
SMO-SVR ** ** * ** * ** ** * ** ** ** **

GP ** ** ** ** ** ** ** ** ** ** **

M5’ ** * * ** ** * ** ** ** **

MLP ** * ** * ** ** ** ** **

REPTree * * ** ** ** ** ** **

RT ** * ** ** ** ** **

RF ** ** ** ** ** **

RBF ** ** ** ** **

HST ** ** ** **

GS-LSTM * ** **

RS-LSTM * *

GA-LSTM **

Abbreviations: GS-LSTM, grid search-LSTM; HST, hydrostatic-season-time; MLPNeuralNet, multilayer perceptron neural network; RBFNeuralNet, radial basis
function neural network; REPTree, reduced error pruning tree; RS-LSTM, random search-LSTM; SMO-SVR, sequential minimal optimization for support vector
regression.
** and * denote p < 0.001 and p < 0.05, respectively.

For the REPTree model and RT model, the minimum
total weight of the samples in a leaf used is 2.0. Regard-
ing the RF model, 500 trees were used to ensure the diver-
sity of the ensemble forest (Alam et al., 2020). With ref-
erence to the RBFNeuralNet model, nine clusters were
adopted using a trial and test analysis. The performance of
these machine learning regression models for forecasting
the hydropower dam deformation is shown in Table 4 and
Figures A1 and A2.
As for the HST model, it is composed of functions mul-

tiplied by coefficients estimated using the multiple lin-
ear regression method. Such coefficients model the elas-
tic effect hydrostatic pressure, the thermal component,
and the irreversible displacements (Belmokre et al., 2021;
Sigtryggsdóttir et al., 2018).
Finally, three different metaheuristics have been used to

optimize the LSTM network, in particular the GS strategy
proposed in Torres et al. (2019), the RS proposed in Torres
et al. (2018), and the genetic algorithm proposed in Divina
et al. (2020). Note that all of themwere designed and devel-
oped to optimize LSTM networks.
Regarding the nine well-established machine learn-

ing methods, we observe that, excepting the RBFNeu-
ralNet model, the other models fit well with the train-
ing dataset (Table 4). The highest degree of fit is the
RT model (R2 = 0.998, RMSE = 0.03, MAE = 0.02),
which is perhaps due to overfitting. The RF model is
the second-best model but, this time, its values do not
seem to exhibit overfitting. (R2 = 0.990, RMSE = 0.23,
MAE = 0.18). They are followed by the M5’ model
(R2 = 0.922, RMSE = 0.61, MAE = 0.47), the REPTree
model (R2 = 0.903, RMSE = 0.66, MAE = 0.48), the SMO-
SVR model (R2 = 0.884, RMSE = 0.75, MAE = 0.53), MLP-

NeuralNet model (R2 = 0.882, RMSE = 0.75, MAE = 0.57),
the GP model (R2 = 0.865, RMSE = 0.90, MAE = 0.63),
and the RBFNeuralNet model (R2 = 0.701, RMSE = 1.19,
MAE = 0.93). Compared to the CVOA-LSTM model (R2 =
0.988, RMSE = 0.24, MAE = 0.21), the RT model and the
RFmodel perform slightly better, whereas the other bench-
mark models have a lower degree of fit with the training
dataset (Table 4 and Figures A1 and A2).
It is worth noting that HST has a remarkable per-

formance in the training set even though is far
from being the best result (R2 = 0.901, RMSE = 0.78,
MAE = 0.58).
The three other optimization methods reach simi-

lar results, being slightly better than HST (GS-LSTM:
R2 = 0.943, RMSE = 0.65, MAE = 0.49; RS-LSTM:
R2 = 0.956, RMSE = 0.61, MAE = 0.43; GA-LSTM:
R2 = 0.932, RMSE = 0.65, MAE = 0.46).
Regarding the forecasting capability of the eight state-

of-the-art machine learning regression models, the valida-
tion data was used, and the result is presented in Table 4
and Figures A1–A3. It could be seen that the SMO-SVR
model (R2 = 0.792, RMSE = 0.87, MAE = 0.80) has the
highest forecasting capability, followed by the M5’ model
(R2 = 0.781, RMSE= 0.71,MAE= 0.63), theGP (R2 = 0.764,
RMSE = 0.47, MAE = 0.41), the MLPNeuralNet model
(R2 = 0.759, RMSE = 1.06, MAE = 0.99). The other mod-
els have poor performance, the RF model (R2 = 0.496,
RMSE = 0.81, MAE = 0.68), the RT model (R2 = 0.449,
RMSE = 0.56, MAE = 0.48), and the REPTree model
(R2 = 0.436, RMSE = 0.93, MAE = 0.79).
HST reaches the best results in terms of the R2 and is

outperformed by a few methods in terms of RMSE and
MAE (R2 = 0.812, RMSE = 0.85, MAE = 0.67). But it is
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especially remarkable that training and test results do not
differ much.
That is, it exhibits a robustness superior to the pre-

vious methods. GS-LSTM (R2 = 0.833, RMSE = 0.85,
MAE = 0.69), RS-LSTM (R2 = 0.821, RMSE = 0.82,
MAE = 0.59), and GA-LSTM (R2 = 0.847, RMSE = 0.78,
MAE = 0.56) clearly outperform the eight state-of-the-
art methods in all the metrics considered. Additionally,
althoughGS-LSTMshows similar performance toHST,RS-
LSTM and GA-LSTM also outperform it, achieving very
competitive results.
Nevertheless, the forecasting capabilities of the eight

state-of-the-art machine learning regression models, HST
and GS-LSTM, RS-LSTM and GA-LSTM are clearly lower
than that of the proposed CVOA-LSTMmodel (R2 = 0.874,
RMSE = 0.34, MAE = 0.23).
Finally, the running time for the eight state-of-the-art

methods was 37 s on average. As for the HST model, it
took 13 s. Finally, GS-LSTM, RS-LSTM, andGA-LSTM took
7340, 4398, and 9854 s, respectively. CVOA-LSTM took
10265 s.

6.4 Discussion of the results

The result in this study shows that the forecasting accu-
racy is strongly dependent on the number of L, LR, and
Drop of the LSTMmodel; therefore, it is necessary to deter-
mine them properly. Herein, the new CVOA is proposed
to search and optimize these parameters. As a result, the
high forecasting performance of the hybrid CVOA-LSTM
model (Table 4 and Figures 5 and 6) indicates that the
CVOA algorithm works efficiently in finding optimized
values for the three parameters. Thus, with only 12 itera-
tions, 36 possible combinations of L, LR, and Drop were
explored to search these optimized values, which indicate
that the CVOA algorithm has a high convergence speed.
The efficacy of the CVOA-LSTM model for forecast-

ing the deformation of hydropower dam was checked
by comparing eight soft computing (C. L. Wu & Chau,
2013) algorithms, SMO-SVR, GP, and M5’, MLPNeuralNet,
REPTree, RT, RF, RBFNeuralNet. They are state-of-the-art
algorithms that have been used for predicting dam behav-
iors in various studies. The outstanding forecasting per-
formance of the CVOA-LSTM model (Table 4 and Fig-
ures 5 and 6) indicates that the proposed CVOA-LSTM is
a new model that should be considered for dam safety
monitoring.
Among the eight soft computing models, RF, RT, REP-

Tree, and RBFNeuralNet show some problems of over-
fitting, which were revealed by high performance in the
training phase but poor forecasting results. This is because
the first three models use the weighted average method

to compute weights from the training data. However, due
to the damage, the deformation values in the validation
dataset are out of the range, compared to those of the train-
ing dataset. Consequently, these models have some prob-
lems in extrapolating deformation values far from those
they have learned.
Regarding the data used in hydropower dam defor-

mation forecasting, it is suggested that the monitoring
data for training and validating should be at least 5 and
3 years, respectively (ICLA, 2012), to ensure reasonable
accuracy. In this analysis, we used the monitoring data in
13 years, from 1998 to 2011, for training models. Whereas
8 years measured data from 2011 to 2019 for validating
models; therefore, the time span of the data used is
satisfied.

6.5 Statistical analysis

This section is devoted to evaluating the statistical signifi-
cance of themodel developed. The goal is to show that such
model provided results significantly different from those of
the other considered models.
The standard Wilcoxon rank-sum non-parametric

(Haynes, 2013) test has been chosen to perform the statis-
tical comparison. The metric selected has been MAE, as it
was used as a cost function for optimizing all the methods.
Table 5 shows statistically significance in all cases, dis-

tinguishing two cases: those with ps < 0.001 (denoted by
**) and those with ps < 0.05 (denoted by *).

7 CONCLUDING REMARKS,
LIMITATIONS, AND FUTUREWORKS

This research proposed and validated a new hybrid deep
learning model, named CVOA-LSTM, for forecasting the
deformation of the hydropower dam. A total of 260 moni-
toring samples spanning 21 years from 1998 to 2019 at the
second-largest hydropower dam in Vietnam were used to
verify the proposedmodel. Based on the finding, some con-
cluding remarks are below:

1. LSTM is powerful for establishing a model to forecast
the deformation of hydropower dam; however, it is chal-
lenging to determine the best structures, the learning
rate parameter, and the dropout parameter; therefore,
the optimization of these parameters must be carefully
considered when using LSTM for dam behavior analy-
sis in other research.

2. Based on the high forecasting performance of the pro-
posed CVOA-LSTM model in this work, it can be
concluded that proven CVOA is a good solution for
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optimizing the three parameters of the proposed model
autonomously.

3. The forecasting capability of the proposed CVOA-
LSTM outperform that of the state-of-the-art machine
learning algorithms (SMO-SVR, GP, M5’, MLPNeu-
ralNet, REPTree, RT, RF, RBFNeuralNet); therefore,
the CVOA-LSTM is an alternative tool, which should
be considered for the deformation forecasting of the
hydropower dam.

4. One of themain limitations of thismethod is that LSTM
networks take much time to be executed. When opti-
mized with metaheuristics, this time can be extremely
high and, for this reason, only fast metaheuristics or
with few configurations should be used.

5. Furthermore, the use of transfer learning or deep rein-
forcement learning (Sorensen et al., 2020) should be
considered due to the reduced size of the dataset
analyzed, which can be considered a limitation of this
work. Both learning paradigmswould help themodel to
capture new features and find more complex relations.

6. Future research should consider other new optimiza-
tion algorithms for searching optimized parameters of
LSTM.

7. Future research should consider the application of
other deep learning models, such as Gated Recur-
rent Units (GRU) or Temporal Convolutional Networks
(TCN), given their usefulness for dealing with time
series.
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F IGURE A1 R2 of the HD models on the validation dataset: (a) the sequential minimal optimization for support vector regression
(SMO-SVM) model, (b) the Gaussian process (GP) model, (c) the M5 model tree (M5’) model, and (d) the MLPNeuralNet model

F IGURE A2 R2 of the HD models on the test dataset: (a) the SMO-SVMmodel, (b) the GP model, (c) the M5’ model, and (d) the
MLPNeuralNets model
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F IGURE A3 Predicted HD values versus measured HD values and the residual of the SMO-SVMmodel (a,b) and the GP model (c,d).
The M5’ (e,f) and the MLPNeuralNets model (g,h)
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F IGURE A3 Continued
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