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ABSTRACT

The colossal solution spaces of most configurable systems make 
intractable their exhaustive exploration. Accordingly, relevant 
anal-yses remain open research problems. There exist analyses 
alterna-tives such as SAT solving or constraint programming. 
However, none of them have explored simulation-based 
methods. Monte Carlo-based decision making is a simulation-

based method for deal-ing with colossal solution spaces using 
randomness. This paper proposes a conceptual framework that 
tackles various of those anal-yses using Monte Carlo methods, 
which have proven to succeed in vast search spaces (e.g., game 
theory). Our general framework is described formally, and its 
flexibility to cope with a diversity of analysis problems is discussed 
(e.g., finding defective configurations, feature model reverse 
engineering or getting optimal performance configurations). 
Additionally, we present a Python implementation of the 
framework that shows the feasibility of our proposal. With this 
contribution, we envision that different problems can be ad-
dressed using Monte Carlo simulations and that our framework 
can be used to advance the state of the art a step forward.
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1 INTRODUCTION
The Automated Analysis of Feature Models (AAFM) [9, 58] is one 
of the most active Software Product Line (SPL) research areas in 
the last decade [8]. In highly configurable systems, the AAFM is a 
challenging task because it requires to cope with numerous inter-
related features and colossal configuration spaces. For example, 
we find multiple operations such as counting the number of prod-
ucts [23, 35, 70] and optimizing configurations [30, 37, 49] that 
are performed over the whole configuration space. Also, there are 
operations that are performed over the feature models (e.g., evolu-
tion [44] and reverse engineering [18, 43]). Finally, there are other 
analyses over the products (e.g., testing [26, 57]) or over the con-
straints of the feature models [69].

Many of these analyses have to to deal with uncertainty, as under-
taking an exhaustive exploration of the whole configuration space 
is usually intractable. In addition, other relevant analyses have not 
been explored in-depth yet. In some cases, complex computations 
are required to take simple actions. For instance, deciding when to 
include or exclude a feature in a configuration impacts the conve-
nience and analysis of further selections [54, 55]. Moreover, those 
decisions are not commonly intuitive. For instance, when reverse en-
gineering feature models, practitioners have to decide the structure 
of the resulting feature model in terms of the parent-child relation-
ships [4, 43]. Other situations require tackling uncertainty because 
of the aforementioned combinatorial nature of the configuration 
space. For instance, solving analyses of probability in configuration 
selections according to performance is challenging [48, 53].

When coping with large search spaces, existing techniques present 
several drawbacks [58]. AAFMs have relied on propositional logic 
or SAT solving [7, 67], constraint programming [9], Binary De-
cision Diagrams (BDD) [22, 35], statistical analysis [33], genetic 
algorithms [42, 43], or metaheuristics [75], among others [25]. How-
ever, SAT solvers could face scalability problems for large-scale 
models [67], statistical analysis [32, 33] require the construction 
of BDDs, which can be intractable [70] and other approaches like 
genetic algorithms [42, 43] and metaheuristics [75] require to in-
corporate specific domain knowledge, and analyzing and inferring 
results from the final solutions which is not straightforward.

In this paper, we present a conceptual framework based on so-
called Monte Carlo methods [39], which use randomness for de-
terministic problems that are difficult or impossible to solve using 
traditional approaches. They can be used with little or no domain 
knowledge, and have succeeded on difficult problems where other 
techniques have failed. In particular, we adopt the Monte Carlo 
Tree Search (MCTS) [12, 14] method. MCTS has been successfully
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applied to several domains [12], standing out in game theory [65] 
where has been shown to scale to large search spaces such as those 
that typically characterize SPLs. Thus, we conjecture that MCTS 
will show great promise in the AAFMs. In this paper, we make the 
following contributions:
• We formally present our MCTS framework (Section 2).

• We identify a set of analysis problems in SPL that can be worthy

of examining with the MCTS method, and map them to the

conceptual framework (Section 3).

• We formally describe different problems over configurations

(Section 4) and features models (Section 5) using our framework,

and explain the knowledge we can infer with MCTS.

• Weprovide a Python implementation of our proposal (Section 6)
1
.

MCTS has already had a profound impact on artificial intelligence

for domains that can be represented as trees of sequential decisions,

particularly games and planning problems. With this contribution,

we envision that different problems can be addressed using Monte

Carlo simulations and that this new approach can be of big value

to advance the state of the art of the AAFMs a step forward.

2 MONTE CARLO TREE SEARCH
This section presents our conceptual framework (Section 2.1) to

model problems that can be solved with Monte Carlo methods, and

especially with the Monte Carlo Tree Search method (Section 2.2).

2.1 MCTS conceptual framework
Monte Carlo Tree Search (MCTS) [14] is a method for finding opti-

mal decisions in a given domain by taking random samples in the

decision space and building a search tree according to the results.

The resulting search tree is then used for possible future decisions.

MCTS is based on decision and game theory [62], and on Monte

Carlo [39] and bandit-based methods [47], where sequential deci-

sion problems are modeled as a Markov Decision Process [62] with
the following elements (𝑆, 𝑠0, 𝑡, 𝐴, 𝜃, 𝜇):
• 𝑆 : the set of states.

• 𝑠0 ∈ 𝑆 : the initial state which specifies how the problem is set

up at the start.

• 𝑡 : 𝑆 → B: a terminal condition, which is true when the problem

is over (i.e., there are no more decisions to be taken) and false

otherwise. States where no more decisions can be taken are

called terminal states. The set of terminal states is called 𝑆𝑇 ⊆ 𝑆 .

• 𝐴: the set of valid actions. An action is valid if it can be applied

to a state under a certain condition of applicability.

• 𝜃 : 𝑆 ×𝐴 → 𝑆 : the state transition function, which defines the

result of applying an action, leading to a new successor state.

• 𝜇 : 𝑆 → R: reward function (also known as utility, objective or
payoff function). It defines the final numeric value for a problem

that ends in a terminal state 𝑠𝑡 ∈ 𝑆𝑇 .
As illustrated in Figure 1 (a), the initial state 𝑠0, the set of actions

𝐴, and the transition function 𝜃 define the search space for the prob-
lem — i.e., a tree where each node represents a state of the domain,

and directed links to child nodes represent actions leading to suc-

cessor states. Thus, overall decisions are modeled as sequences of

(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛) pairs. Monte Carlo methods are used to decide the

optimal decision (i.e., choosing an action) from a given state 𝑠 by

running simulations. A simulation is a random or statistically biased

1
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Figure 1: Problemmodeled as a sequence of (𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛) de-
cisions (a), and the Monte Carlo simulations approach (b).
sequence of actions applied to the given state until a terminal ter-

minal state 𝑠𝑡 is found. The terminal state 𝑠𝑡 is then evaluated using

the reward function 𝜇 and obtaining a reward value 𝑧𝑖 associated

with that simulation, as shown in Figure 1 (b). Running a number

of simulations 𝑁 from the given state 𝑠 , Monte Carlo approximates

the expected reward of each action that can be performed from that

state 𝑠 , i.e., 𝑄 (𝑠, 𝑎). The expected reward of an action is called the

𝑄-value (also called Monte-Carlo value or MC value) [29] of that
action and is defined as the mean of all rewards obtained from the

simulations performed from state 𝑠 choosing the action 𝑎:

𝑄 (𝑠, 𝑎) = 1

𝑁 (𝑠, 𝑎)

𝑁 (𝑠 )∑
𝑖=1

I𝑖 (𝑠, 𝑎)𝑧𝑖 (1)

where 𝑁 (𝑠, 𝑎) is the number of times action 𝑎 has been selected

from state 𝑠 ; 𝑁 (𝑠) is the number of times a simulation has been run

from state 𝑠 ; 𝑧𝑖 is the reward result of the 𝑖th simulation; and I𝑖 (𝑠, 𝑎)
is 1 if action 𝑎 was selected from state 𝑠 on the 𝑖th simulation run

from state 𝑠 or 0 otherwise.

A great benefit of Monte Carlo methods is that the values of

intermediate states do not have to be evaluated. Only the value of

the terminal state at the end of each simulation is required.

2.2 The Monte Carlo Tree Search method
TheMCTSmethod [14] extends theMonte Carlo principles by using

the expected reward (𝑄-values) obtained from simulations to build

an incremental and asymmetric search tree which is then used for

subsequent decisions. As shown in Figure 2, the basic algorithm

of MCTS (summarized in pseudocode in Algorithm 1) involves

iteratively building and using a search tree until some predefined

computational budget (e.g., time, memory, number of iterations) is

reached. Four steps are applied per search iteration [14]:

(1) Selection. Starting with the initial state 𝑠0, the search tree is

traversed by recursively applying a selection function from the

root node until a leaf node 𝑠𝑙 is reached. Several strategies for

selecting the nodes in the tree can be found in [12]. The most

popular one is the upper confidence bound for trees (UCT) [38]
that, using the 𝑄-values, attempts to balance exploitation (i.e.,
look in areas which appear to be promising) and exploration (i.e.,
look in areas that have not been well explored yet).

(2) Expansion. From the selected leaf state 𝑠𝑙 , one or more child

nodes are added to expand the tree according to the actions 𝐴.

(3) Simulation. A simulation is run from the new node(s) by mak-

ing random actions until a terminal state is reached. The terminal

state is evaluated, producing an outcome 𝑧 (i.e., the reward value).

https://github.com/diverso-lab/fm_montecarlo


1. The tree search is 
recursively transversed

until a leaf node is 
reached

2. One or more nodes are 
added to the search tree

3. A simulation is
run taking random

choices

4. The reward result 
of the simulation is 
backpropagated in 

the tree

BackpropagationSelection Expansion Simulation

Repeated X times

Figure 2: The MCTS approach (adapted from [14]).
Algorithm 1 General Monte Carlo Tree Search method.

1: procedureMCTS(𝑠0)
2: while within computational budget do
3: 𝑠𝑙 ← SELECTION(𝑠0) ⊲ Apply the child selection tree policy.

4: EXPANSION(𝑠𝑙 ) ⊲ Add one or more nodes to the search tree.

5: 𝑧 ← SIMULATION(𝑠𝑙 ) ⊲ Apply the default policy.

6: BACKPROPAGATION(𝑧, 𝑠𝑙 ) ⊲ Backup the reward.

7: end while
8: return BEST_ACTION(𝑠0)
9: end procedure

(4) Backpropagation. We update the statistics of each state in the

tree that was traversed during the selection step. That is, the visit

counts 𝑁 (𝑠, 𝑎) are increased, and the expected reward 𝑄 (𝑠, 𝑎) is
modified according to the outcome 𝑧 from the simulation.

As soon as the search terminates, the best action of the initial

state 𝑠0 is selected (BEST_ACTION(𝑠0)). Several criteria are described
in [15], such as choosing the action with the highest reward. In

addition to the best decision, MCTS also provides useful knowledge

in the form of statistics stored in the tree search that can be used

to make analyses, as we will show throughout the paper.

3 AUTOMATED ANALYSIS OF FEATURE
MODELS WITH MCTS

In this section we present our running example, and identify a set of

problems to be formalized and analyzed with the MCTS framework.

3.1 Preliminaries and running example
Definition 3.1 (Feature, Feature model). A feature 𝑓 is a character-

istic or end-user-visible behavior of a software system [2]. A feature
model𝑚 is a set of features 𝐹 and their relationships. Formally, a

feature model𝑚 is defined as a 4-tuple (𝐹, 𝑟,R,Π):
• 𝐹 is a finite set of features.

• 𝑟 ∈ 𝐹 is the root feature.

• R ⊆ 𝐹 × 𝐹𝑛 × 𝜆 is a decomposition relation representing the

relationship of a parent feature and its 𝑛 sub-features with a

multiplicity 𝜆, where the lower and the upper bounds are the

minimal and the maximal number of features that can be selected

in a configuration.We use the notation (𝑓 , [𝑔1, 𝑔2, . . . , 𝑔𝑛], ⟨𝑎..𝑏⟩)
to represent the elements of 𝑅 meaning that 𝑓 is the parent of

sub-features 𝑔𝑖 , 1 ≤ 𝑖 ≤ 𝑛 with a multiplicity of ⟨𝑎..𝑏⟩. We use

⟨0..1⟩ for optional features and ⟨1..1⟩ for mandatory features

when 𝑛 = 1; and ⟨1..1⟩ for alternative-groups and ⟨1..𝑛⟩ for
or-groups when 𝑛 > 1. For convenience, we will also use the

notation 𝑓 ≺ 𝑔 to represent that feature 𝑓 is the parent of feature

𝑔 regardless multiplicity; and we use the notation 𝑓 ≺≺ 𝑔 to

represent that feature 𝑓 is an ancestor of feature 𝑔.

• Π is a set of cross-tree constraints defined as arbitrary proposi-

tional formulas over the set of features 𝐹 , i.e., Π ⊆ B(𝐹 ).

Legend:

AAFMFramework

Packages Solvers System

pycosatpython-sat

pyGlucose pyPicosat

MiniSAT PicoSAT

Glucose

Linux Win

PicoSAT => pycosat ∨ pyPicosat
Glucose => python-sat ∨ pyglucose

MiniSAT => python-sat
Win => ¬ pyPicosat

PicoSAT => pycosat ∨ pyPicosat
Glucose => python-sat ∨ pyglucose

MiniSAT => python-sat
Win => ¬ pyPicosat

mandatory

optional

or group

alternative group

Figure 3: SPL for an AAFMs framework in Python.

Figure 3 shows a feature model representing a product line

for a Python framework to support AAFMs [24]. AAFMFramework

is the root of the feature model. The mandatory relation between

the root and the System feature can be described by the relation

(AAFMFramework, [System], ⟨1..1⟩), while the relations between the

AAFMFramework feature and its optional children are described by

the relations (AAFMFramework, [Packages], ⟨0..1⟩) and (AAFMFramework,

[Solvers], ⟨0..1⟩), respectively. To reason about the models and im-

plement the analysis operations, the framework can use a selection

of Solvers represented by the or-group relation (Solvers, [MiniSAT,

PicoSAT, Glucose], ⟨1..3⟩). Each solver will require one or more

Python package which offer the implementation for that solver.

For instance, the MiniSAT solver is provided by the python-sat pack-

age, while the PicoSAT solver is offered by the pycosat or by the

pyPicosat packages. These kind of relations are represented as tex-

tual cross-tree constraints in the feature model, as for example

PicoSAT ⇒ pycosat ∨ pyPicosat. Finally, a specific version of the

framework can be deployed in Linux or Windows systems, relation

represented by the alternative-group (System, [Linux, Win], ⟨1..1⟩).

Definition 3.2 (Configuration, Partial Configuration, Valid Con-
figuration). A configuration 𝑐 of a feature model𝑚 is a subset of

its features, i.e., 𝑐 ∈ P(𝐹 ), meaning that features in 𝑐 have been

selected as part of the configuration 𝑐 . Other features in 𝐹 are consid-

ered as not selected as part of the configuration 𝑐 . A configuration

𝑐 is partial if there are features in 𝐹 that need to be still decided

in order to be selected or not selected as part of the configuration

𝑐 [7]. A configuration is valid if and only if it fulfills all the feature

dependencies of𝑚. The feature dependencies of𝑚 are given by the

set of decomposition relations R (i.e., the tree hierarchy) and the

set of cross-tree constraints Π. A partial configuration is valid if

the selected features do not neglect the dependencies of𝑚.

An example of a valid configuration of the feature model de-

picted in Figure 3 is {AAFMFramework, System, Linux, Solvers, MiniSAT,
Packages, python-sat}. An example of a valid partial configuration

is {AAFMFramework, System, Solver}.

3.2 Types of analyses with MCTS
In SPL, MCTS can be applied to find optimal decisions in problems

where decisions can be difficult to handle and take because of the

high number of potential configurations, products, and variants.

Some of the analyses that can be performed with MCTS include:

Analyses of complex systems from simple actions. There are
problems where we can easily measure the complete set of actions

within the system but we are unsure of the aggregate result. For

example, selecting a feature to be incorporated in a product is a

very simple action to model, but analyzing how that feature se-

lection contributes to the complete product is challenging due to



the existing relations in the feature model and the cross-tree con-
straints [63]. Here, MCTS can examine how each feature selection 
contributes to the complete product by modeling the feature selec-
tion optimization problem [20, 30, 74, 75] as a sequence of decision 
steps. We illustrate this type of analysis in Section 4.

Analyzing unintuitive results. There are problems where the 
current solution is not the only possible solution. For instance, 
multiple feature models can be extracted from a given set of config-
urations (this problem is known as reverse engineering of feature 
models [18, 43]). Without taking into account domain knowledge, 
features appearing in all products (i.e., the core features [9]) may 
be considered interchangeable in the resulting feature model. Here, 
MCTS can help us exploring the alternatives that we may pass 
unnoticed if we simply observe the extracted feature model. We 
show this type of analysis in Section 5.

Analyses of the uncertainty. There are problems that require 
handling uncertainty due to the impossibility of dealing with the 
complete search space. An example is the optimization of configu-
rations based on non-functional properties in large-scale feature 
models [30, 37]. Best configurations may be spread across the con-
figuration space, leading to a search-based software engineering 
technique to deal with many local optima [42]. In this case, MCTS 
is useful to incorporate probability into the analysis. MCTS helps 
us understanding the probability distribution of the best configura-
tions and analyzing how such distribution will impact the search-
based optimization, so that we can penalize the uncertainty or 
incorporate it into the search-based technique.

In addition to those analyses, in general, MCTS may be used 
for analyses that have a probabilistic interpretation [33] or where 
simulation rather than optimization is the most effective decision 
support tool [12]. As stated by Schmid [1], Monte Carlo techniques 
can be promising for sensitivity analyses, but they require a sound 
understanding of the uncertainty in the problem to be analyzed for 
achieving correct and useful results.

3.3 Mapping to MCTS conceptual framework 
In order to apply the MCTS method to the AAFMs, we need to for-
mulate the problems as a sequence of (𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛) decisions using 
the conceptual framework (𝑆, 𝑠0, 𝑡, 𝐴, 𝜃, 𝜇) introduced in Section 2.1.

Figure 4 shows a list of SPL problems that can be described as a 
sequence of decisions and mapped to the MCTS conceptual frame-

work. The most important definition is the concept of state, and 
thus, we classify the problems according to what a state represents. 
In SPLs, a state may represent a configuration of a feature model, a 
partial configuration, a final product, a feature model, an extended 
feature model, a sample of configurations, a performance model 
of a sample of configurations, a variation point and the set of its 
variants to be decided, etc. The definition of the state will depend 
on the problem’s nature. For example, in product configuration 
problems, the states will represent configurations (valid or invalid) 
of a feature model, partial configurations, or both partial and com-

plete configurations; while in problems dealing with the evolution 
of feature models, a state will represent a feature model itself. Each 
definition of state will lead to a different set of actions. States repre-
senting configurations will define actions that allow moving from 
one configuration to another (e.g., actions for selecting a feature and

A state is a feature model

Applicable problems
• Reverse engineering of feature models
• Evolution of feature models

• ...

A state is a configuration of a feature model

Applicable problems
• Finding minimum valid configurations
• Completion of partial configurations
• Localizing defective configurations
• Optimization of configurations

• ...

Others definitions of state

Examples and applicable problems
• A state is a product of an SPL (e.g., test suite priorization problem) 
• A state is a configuration + variation point (e.g., next release problem)
• A state is a (feature, attributes) pair (e.g., QAs generation problem)
• A state is a sample of configuration (e.g., feature interaction coverage)

• ...

States (S): Configurations of a feature model
(e.g., configurations, partial configurations,…)

Actions (A): Selection/Deselection of features
(e.g., select root feature, select mandatory feature, 

select optional feature, select feature alternative,…)

s0 t µs0 t µ

s0 t µs0 t µ

s0 t µs0 t µ

s0 t µs0 t µ

States (S): Feature models (e.g., feature models, 

cardinalitiy-based, extended feature models,…)

Actions (A): Creation/Modification of features, 
relations, and constraints

(e.g., add root feature, add optional feature, add mandatory 
feature, add alternative-group relation, add or-group 

relation, add feature to alternative-group, add feature to or-

group, add requires constraint, add excludes constraint,…)

s0 t µs0 t µ

s0 t µs0 t µ

θ θ

s0 t µθAS

s0 t µθAS

s0 t µθAS

s0 t µθAS

s0 t µθAS

s0 t µθAS

s0 t µθAS

s0 t µθAS

Figure 4: Mapping of SPL problems to theMCTS framework.
adding it to the configuration). States representing feature models

will define actions to modify the feature models (e.g., adding a new

mandatory or optional feature to the model). Different definitions

of states and actions will lead to a different search space.

Some of the definitions in the framework (𝑆, 𝑠0, 𝑡, 𝐴, 𝜃, 𝜇) can
be shared across several problems, while others will be specific

of a particular situation or problem instance. On the one hand,

the set of actions and the transition function are normally reused

across different problems that share the same definition of state. For

example, the actions for selecting a feature in problemswhere a state

represents a configuration. On the other hand, the initial state 𝑠0, the

terminal condition 𝑡 , and the reward function 𝜇 are problem specific

or even different for a specific instance of a particular problem. For

example, the initial state is different in each problem instance of

the completion of partial configurations being the initial state a

different input partial configuration. The terminal state can also be

instance-specific, such as in the problem of the feature interaction

coverage, where a state represents a set of configurations and a

terminal condition can be a sampling of configurations satisfying

the 𝑡-wise coverage for a specific feature [57].

In the following, we detail how to model different types of SPL

problems using the MCTS conceptual framework and analyze them.

4 CONFIGURATION BASED ANALYSIS
One of the most important and widely studied types of problems

in AAFMs deal with feature model configurations. Example of

these problems are the optimization of configurations according

to non-functional properties [30, 63, 75], the completion of partial

configurations [71], the localization of defective configurations in

SPL testing [10, 11, 28, 31], or the diagnosis of configurations [21,

71], among other many problems. In order to analyze this kind of

problems with MTCS, we first model the concepts that are shared

among these problems. That is the definition of the set of states 𝑆 ,

the set of actions 𝐴, and the state transition function 𝜃 .

The set of states 𝑺 is the set of all possible configurations of

the feature model. Depending on the definitions of the actions, 𝑆

may consider either valid/invalid configurations or both.

The set of actions 𝑨. There are multiple possibilities to define

the set of valid actions that can be performed over a given config-

uration. An action is valid if it can be applied to a state under a

certain condition of applicability (CA). The most basic action is to

select a random feature of 𝐹 (see the formalization of the action 𝑎0
in Appendix A). This action is independent of the relations defined



in the feature model (Definition 3.1), and thus it can be used for any 
other definition of feature model as long as it is based on a set of 
features. However, this action leads to an intractable search space 
with all possible valid and invalid configurations (i.e., 𝑆  =  P(𝐹 )) 
where most of the states represent invalid configurations. Note 
that the search space is bigger than 2𝐹 

because we can reach the 
same configuration through a different sequence of actions. A more 
convenient definition for the actions is considering the relations of 
the feature model, reducing the resulting search space. Following 
our Definition 3.1 for feature models, we define the following set 
of actions 𝐴 = {𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5} (see formalization of the actions 
in Appendix A): select root feature (𝑎1), select mandatory feature 
(𝑎2), select optional feature (𝑎3), select feature alternative (𝑎4), and 
select feature selection (𝑎5).

Note that the configuration is always built from scratch step by 
step. In each execution of the MCTS method, a unique feature will be 
selected following the tree hierarchy structure of the feature model. 
This way, we do not need to define actions for de-selecting a feature 
and avoid cycles in the tree search space. The successive application 
of the actions 𝐴 assures the validity of the (partial) configurations 
according to the tree hierarchy structure of the feature model, but 
not for cross-tree constraints. We can define a generic condition of 
applicability for all actions so that an action can only be applied if 
the resulting partial configuration does not violate any relation nor 
constraints in the model (e.g., checking it with a SAT solver).

The state transition function 𝜽 : 𝑺 ×𝑨 → 𝑺 defines the result 
of applying an action 𝑎 ∈ 𝐴 to the given configuration 𝑐 . Starting 
from the initial empty configuration 𝑐 0 and iteratively applying the 
state transition function with all possible applicable actions, we 
could build the whole search space. However, this is an intractable 
task, and the Monte Carlo methods, and in particular MCTS, will ex-
plore the search space resulting of applying the transition function 
only to the most promising pairs of (𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛).

The initial state, the terminal condition, and the reward function 
are specific for each problem. In the following, we show how to 
model three concrete problems where a state represents a configura-
tion by providing complete definitions of the concepts (𝑆, 𝑠0, 𝑡, 𝐴, 𝜃, 𝜇).

4.1 Localizing defective configurations
A common problem in software testing and maintenance is to iden-
tify the configurations that lead to a given defect or some other un-
desired program behavior [10, 28, 31]. Continuing with our running 
example, let us suppose we want to identify those valid configura-
tions in our feature model (Figure 3) that present anomalies when 
they are deployed. Anomalies in the Python framework for AAFMs 
may happen due to incompatible versions of packages, deprecated 
libraries, or some other errors. Despite those defective configu-
rations can be found with a search-based software engineering 
technique [42], localizing the feature that causes the configuration 
to fail is not an easy task due to the complex relations between the 
features, requiring complex analysis for the complete configuration. 
Moreover, Python packages are often updated and may cause break-
ing changes. Kästner et al. [11] define a  breaking change as any 
change in a package that would cause a fault in a dependent pack-
age if it were to adopt that change blindly. Thus, in order to provide 
a robust Python Framework for AAFMs, apart from identifying the 
defective configurations, we need to identify those features that
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Figure 5: Step-wise decisions for defective configurations.
cause the defects. Using a step-wise decisions approach, we can

infer which feature(s) is causing the configuration to fail.

Modeling the problem. We model this problem in the MCTS

conceptual framework (𝑆, 𝑠0, 𝑡, 𝐴, 𝑓 , 𝜇) as follows:
• 𝑆 = P(𝐹 ): the set of all possible configurations of the feature
model, including partial and complete configurations.

• 𝑠0 = ∅: the initial state is the empty configuration where no

feature has been already selected.

• The terminal condition 𝑡 determines that a configuration is ter-

minal if it is a valid complete configuration or no more valid

actions can be applied to the configuration:

𝑡 (𝑠) =
{
𝑇𝑟𝑢𝑒, if 𝑖𝑠_𝑣𝑎𝑙𝑖𝑑 (𝑠) ∨ 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒_𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑠) = ∅,
𝐹𝑎𝑙𝑠𝑒, otherwise

The is_valid(s) operation [9] is performed with a SAT solver.

• The set of valid actions 𝐴 = {𝑎1, . . . , 𝑎5} defined in Appendix A.

• The state transition function 𝜃 : 𝑆 × 𝐴 → 𝑆 is given by the

definitions of the actions and their conditions of applicability.

• The reward function 𝜇 for a terminal configuration:

𝜇 (𝑠) =
{
𝑒𝑟𝑟𝑜𝑟𝑠 (𝑠), if 𝑖𝑠_𝑣𝑎𝑙𝑖𝑑 (𝑠) ∧ 𝑒𝑟𝑟𝑜𝑟𝑠 (𝑠) > 0

−1, otherwise

where 𝑒𝑟𝑟𝑜𝑟 (𝑠) is a function that counts the number of errors that

the configuration presents when it is deployed. In our running

example, this value corresponds with the number of Python

packages selected that raise errors when installing them. The

reward value of partial and invalid configurations, as well as for

those valid configurations that do not contain errors is -1.

Algorithm 2 Generic algorithm to solve a problem with MCTS.

1: procedure FindSolution(𝑠0)
2: 𝑠𝑡𝑎𝑡𝑒 ← 𝑠0
3: while not 𝑖𝑠_𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 (𝑠𝑡𝑎𝑡𝑒) do
4: 𝑠𝑡𝑎𝑡𝑒 ← 𝑀𝐶𝑇𝑆 (𝑠𝑡𝑎𝑡𝑒) ⊲ Run the MCTS (Algorithm 1).

5: end while
6: return 𝑠𝑡𝑎𝑡𝑒
7: end procedure

Solving the problemand analyzing results. We can solve this

problem by consecutively applying MCTS from the initial empty

configuration (Algorithm 3). Each execution of the MCTS method

(line 3) will decide and add the most promising feature to the cur-

rent configuration following the four steps of the MCTS method

presented in Section 2.2. The most promising feature is the next

feature in the tree hierarchy of the feature model (according to

actions𝐴) that moves the configuration closer to the complete valid



Algorithm 3 Finding defective configurations with MCTS.

1: procedure FindDefectiveConfiguration(𝑠𝑡𝑎𝑡𝑒)
2: while 𝑟𝑒𝑤𝑎𝑟𝑑 (𝑠𝑡𝑎𝑡𝑒) ≤ 0 and 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑠𝑡𝑎𝑡𝑒) ≠ ∅ do
3: 𝑠𝑡𝑎𝑡𝑒 ← 𝑀𝐶𝑇𝑆 (𝑠𝑡𝑎𝑡𝑒) ⊲ Run the MCTS (Algorithm 1).

4: end while
5: if 𝑟𝑒𝑤𝑎𝑟𝑑 (𝑠𝑡𝑎𝑡𝑒) > 0 then ⊲ Defective configuration found!

6: return 𝑠𝑡𝑎𝑡𝑒
7: else
8: return 𝐹𝑎𝑙𝑠𝑒
9: end if
10: end procedure

configuration with more number of errors. We modify the stopping

condition of the generic Algorithm 2 so that the search will run

until a configuration with errors is found or no valid actions can

be applied to the current configuration (line 2 in Algorithm 3). The

execution of the algorithm is illustrated step by step in Figure 5. We

use a data visualization technique called heat maps [41, 72, 73]. A
heat map encodes quantitative values as colors (like in the weather

maps), so that it compacts large amounts of information (our 𝑄-

values) to bring out coherent patterns in the data (optimal feature

selections over the feature model). As shown in Figure 5, we use

a grey-scale heat map for each algorithm step representing the

contribution of each feature selection, where darker colors mean a

higher probability of finding a defective configuration if that fea-

ture is selected. Given the empty configuration as initial state, in

the first step, the only action available is to add the root feature

AAFMFramework (Step 1 in Figure 5). In Step 2, three possible features

can be added to the configuration according to the set of actions

𝐴. To make a choice, MCTS performs a number of simulations

(e.g., 100) that consist in completing the configuration with random

selections (always following the set of actions 𝐴), evaluating the

number of errors for the complete configuration achieved in each

simulation, and gathering the statistical outcomes of the simula-

tions as explained in Section 2.1 — i.e., the𝑄-values. Figure 5 shows

normalized 𝑄-values in range [0, 1], being 1 the most promising

feature decision. In Step 3, the pyPicosat package is selected as part

of the configuration, while, in Step 4, any possible decision will lead

to defective configuration (i.e., all candidate features are 𝑄-values
1). This suggests that the previous choice (pyPicosat) is the fea-

ture provoking the failure. The algorithm will continue completing

the configuration with a valid selection of features (e.g., selecting
mandatories features), but MCTS has only needed four steps to

discover the problematic feature. The algorithm finishes when it

find a valid defective configuration, as for example the final state

found: {AAFMFramework, Solvers, System, Linux, Packages, pyPicosat,

PicoSAT}. As Figure 6 shows, when deploying that configuration

in Python some errors raise: the package pyPicosat cannot be cor-

rectly installed in Linux. In fact, following this procedure, we found

that deploying any configuration containing the pyPicosat feature

in the Linux system, leads to failures, so we may decide to update

the constraint (Win ∨ Linux ⇒ ¬ pyPicosat) converting it into a

dead feature [9].

Using the knowledge gathered by MCTS in the tree search, we

can infer two interesting results: (1) which features are more proba-

ble to be the cause provoking the defect in the configuration; and (2)

which features are contributing more to the solution obtained, so

that we may find additional defective configurations by following

the sequence of feature selections done by MCTS to find the current

Figure 6: Deploying a defective configuration.

configuration. In the following section, we show how we can solve

another problem where a state represents a configuration by only

modifying the reward function and reusing the other definitions.

4.2 Finding minimum valid configurations
In our running example, a requirement for the development of the

AAFMs framework in Python is to depend on the smallest number of

third-party packages as possible. Thus, we are interested in finding

a valid configuration with the minimum number of features.

Modeling the problem. We reuse the definitions of (𝑆, 𝑠0, 𝑡, 𝐴, 𝜃 )
of the previous problem and modifying the reward function 𝜇.

The reward function 𝜇 counts the difference between the number

of features in the feature model (|𝐹 |) and the number of features in

the configuration represented by the state 𝑠 .

𝜇 (𝑠) =
{
|𝐹 | − |𝑠 |, if 𝑖𝑠_𝑣𝑎𝑙𝑖𝑑 (𝑠)
−1, otherwise

Solving the problem and analyzing results. We use generic

Algorithm 2 where the terminal condition checks if the current

state is a complete valid configuration. Figure 7 shows the num-

ber of decisions (features) taken by MCTS to find minimum valid

configurations starting from the empty configuration. We run 30

executions for each number of iterations (simulations). Using the

complete version of the AAFMs Python framework (see Section 6),

we can observe as the number of decisions decreases as long as we

increase the number of simulations, improving the solutions found.

In this problem, the tree search built by MCTS contains statisti-

cal information regarding decisions to select the minimum set of

features to form a valid configuration. Figure 8 shows the resulting

heat map with the accumulated 𝑄-values when we use a partial

configuration as initial states (as we will show in the following

section). 𝑄-values capture the expected reward of a decision if we

decide to make such choice. When using the empty configuration as

initial state, higher𝑄-values indicate which feature may be selected

to obtain a minimum valid configuration, and features in darker

colors will approximate to the core features. In addition, the heat

map shows the feature pyPicosat in blank, indicating that it has

never been considered in a decision. Effectively, the constraint we

updated (Win ∨ Linux⇒ ¬ pyPicosat) prevents that feature from

being part of any configuration, indicating that it is a dead feature.

4.3 Completion of partial configurations
The previous problem of finding minimum valid configurations can

be seen as a specialization of the problem of completing partial con-

figurations [71]. The completion of partial configuration problem
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Figure 8: Heat map for completion of partial configurations.

consists of finding the set of non-selected features necessary for

getting a complete valid configuration. While in a complete con-

figuration each feature is decided to be either present or absent in

the resulting configuration, in partial configurations, some features

are undecided (see Definition 3.2). In our case study, let us suppose

we have decided to use the Glucose solver in our AAFMs frame-

work. We are interested in finding the minimum valid complete

configuration with such user’s requirement.

Modeling the problem. We modify the initial state 𝑠0, while

leaving the other definitions (𝑆, 𝑡, 𝐴, 𝜃, 𝜇) as in the previous problem.

In order to provide a valid initial state 𝑠0 to the MCTS method so

that 𝑠0 does not violate the tree hierarchy of the feature model and

allows applying our actions 𝐴 = {𝑎1, . . . , 𝑎5}, we pre-process the
initial configuration provided by the user by recursively selecting

all parents for the features already selected. If the resulting partial

configuration does not violate the tree hierarchy nor cross-tree

constraints, we can use it as initial state for MCTS. In other case,

the partial selection made by the user is not valid.

Solving the problem and analyzing results. We use the fea-

tures {AAFMFramework, Solver, Glucose} as initial configuration and

execute Algorithm 2 where the terminal condition checks if the

current state is a valid complete configuration, as in the previous

problem. Figure 8 shows the resulting heat map for completing the

partial configuration given as initial state by the user with the min-

imum valid selections. Features in darker colors indicate selections

to be first made in order to get closer to a complete configuration,

as for example the Packages and the System features. The Packages

features appears with a higher normalized 𝑄-value, indicating that

MCTS has first explored that feature (in contrast to the mandatory

feature System). That is because a complete configuration needs to

include both features, satisfying the cross-tree constraints (i.e., the
Glucose solver is implemented by the python-sat or the pyglucose

package), so that the Packages feature must be selected. To sat-

isfy the constraint, the python-sat or the pyglucose package must

be selected. They appear with a higher normalized 𝑄-value than

the other alternative packages. Note that how other features like

pycosat (0.08) or the solver MiniSAT (0.02) are not strictly necessary

to complete the configuration, but has been marked as possible

candidates. Remember that MCTS is based on simulations and

probabilities and those feature selections have also been explored

resulting in valid configurations.

5 FURTHER ANALYSES
Analyses with MCTS can also be performed over other concepts

beyond the configuration space of an SPL, such as feature models,

extended feature models, variation points and variants, or products.

This section shows how to model and analyze a problem where the

concept of state can represent a feature model. Examples of these

problems are the reverse engineering of feature models [4, 43], the

extraction of feature models from propositional formulas [19], or

the evolution of feature models [44]. Here, we illustrate the reverse

engineering of feature models problem [4, 43].

5.1 Reverse engineering of feature models
A well-known problem in SPLs is to synthesize a feature model

from a set of configurations automatically. Given a set of feature

combinations present in an SPL (i.e., a set of configurations), the goal
is to extract a feature model that represents all the configurations.

Formally, let be 𝐶𝑖 the set of configurations given as input. 𝐹𝑖 is

the set of features present in 𝐶𝑖 . The problem is to build a feature

model𝑚 with features in 𝐹𝑖 so that 𝐶𝑖 ⊆ 𝐶𝑚 where 𝐶𝑚 is the set

of valid configurations of the feature model𝑚.

Modeling the problem. We formulate the problem with the

following definitions of (𝑆, 𝑠0, 𝑡, 𝐴, 𝜃, 𝜇):
The set of states 𝑺 is the set of all feature models that can be

built with any combination of the input features 𝐹𝑖 following the

Definition 3.1 of feature model. Thus, 𝑆 = {𝑚 |𝑚 = (𝐹, 𝑟,R,Π)}
where 𝐹 ∈ P(𝐹𝑖 ) and Π ⊂ {𝑓 ⇒ 𝑔, 𝑓 ⇒ ¬𝑔|𝑓 , 𝑔 ∈ 𝐹𝑖 }2, 𝑟 is the
root of the feature model, and the set of relations R is the same as

in Definition 3.1 (i.e., optional, mandatory, alternative, and or).

The initial state 𝒔0 is the empty feature model, with no features.

The terminal condition 𝒕 determines that a feature model is

terminal if it contains all features given as input (i.e., 𝐹 = 𝐹𝑖 ).

The set of actions 𝑨 includes 9 actions (𝐴 = {𝑏1, . . . , 𝑏9}) to be
performed over a feature model (see formalization of the actions

in Appendix A): add the root feature (𝑏1), add an optional feature

(𝑏2), add a mandatory feature (𝑏3), add an or-group relation (𝑏4),

add an alternative-group relation (𝑏5), add a feature to an existing

or-group (𝑏6), add a feature to an existing alternative-group (𝑏7),

add a “requires” constraint (𝑏8), and add a “excludes” constraint

(𝑏9). Each action is also applicable under a certain condition of

applicability (CA). An invariant condition of applicability that holds

for all actions is that the features to be added are not already in the

feature model (i.e., ∃𝑓 ∈ 𝐹𝑖 , 𝑓 ∉ 𝐹 ).

The state transition function 𝜽 defines the result of applying

an action 𝑎 ∈ 𝐴 to the given feature model𝑚.

2
To simplify the problem we consider here only “requires” and “excludes” constraints.



Extracted feature model

•Total steps: 8
•Configurations: 191
•Input configurations: 110
•Captured configurations (Relaxed value): 60
•Deficit of configurations (deficit value): 50
•Irrelevant configurations (surplus value): 131 
•Total time: 228.31 s

Step 4: 231 decisions
1. (System, [Win,Linux], <1..2>) 1.00
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Figure 9: Step-wise decisions for reverse engineering of feature models.

The reward function 𝝁 : for a terminal feature model is a

combination of two objective functions extracted from [43]:

𝑅(𝑠) = 𝑅𝑒𝑙𝑎𝑥𝑒𝑑 (𝑠) −𝑀𝑖𝑛𝐷𝑖 𝑓 𝑓 (𝑠)
where 𝑅𝑒𝑙𝑎𝑥𝑒𝑑 (𝑠) expresses the concern of capturing primarily

the configurations provided as input. Its value is the number of

configurations in 𝐶𝑖 that are valid according to the feature model

𝑚 represented by this state. We want to maximize the 𝑅𝑒𝑙𝑎𝑥𝑒𝑑 (𝑠)
value.𝑀𝑖𝑛𝐷𝑖 𝑓 𝑓 (𝑠) is a minimal difference function expressing the

concern of obtaining a closer fit to the configurations provided 𝐶𝑖
while other configurations are not relevant. Its value is the sum of

the number of configurations in 𝐶𝑖 that are not contained in the

configurations 𝐶𝑚 of the feature model (also called deficit value),
and the number of configurations in 𝐶𝑚 that are not contained in

the required input configurations 𝐶𝑖 (also called surplus value). So
𝑀𝑖𝑛𝐷𝑖 𝑓 𝑓 (𝑠) = 𝑑𝑒 𝑓 𝑖𝑐𝑖𝑡 (𝑠) + 𝑠𝑢𝑟𝑝𝑙𝑢𝑠 (𝑠), value to be minimized.

Solving the problem and analyzing results. We use as input

the set of 110 configurations of our running example (excerpt shown

in Figure 3). We can use the same generic Algorithm 2 to solve this

problem. Starting from the empty (void) feature model (i.e., ini-
tial state), MCTS will incorporate in each decision step a feature

or a cross-tree constraint to the feature model until all features

contained in the given configurations are present in the feature

model. Figure 9 shows the first four decision steps made by MCTS

and the final extracted feature model. The resulting feature model

looks similar to the expected one (Figure 3) with some significant

differences. It leads to a total of 191 configurations, 60 of which

correspond with the 110 configurations provided as input, present-

ing a deficit of 50 configurations (almost half of the configurations).

Such deficit may be corrected with a couple of manual changes

over the resulting feature model. In each step, MCTS has run 1000

simulations, meaning that to make a decision, it has completed up

to 1000 random feature models, enumerating their configurations

with a SAT solver, and calculating the reward value for each model.

The most interesting result obtained from MCTS is the informa-

tion gathered in its tree search over the process. In this case, the

tree search contains statistical information about how promising is

to add a specific feature, relation, or constraints. As illustrated in

Figure 9, for each step, we show the best three possible decisions

(with normalized𝑄-values), highlighting the choice selected. For ex-

ample, step 1 adds the root feature, where the three most promising

options (from 13 candidates) are to use AAFMFramework, Packages, or

System as root. In the following step, or-group relations are added

with features Packages and System as children, but the tree search

offers information about how promising other alternatives are out

of a total of 156 possibilities. This can be seen as user-assistant to

make better decisions, offering to the user alternatives so that she

does not have to blindly rely on the result of a black box tool. MCTS

can be integrated as part of a recommender system [51, 56, 61] to

assist the user.

Monte Carlo Conceptual Framework for SPLE
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Figure 10: Monte Carlo conceptual framework architecture.

6 PROOF OF CONCEPTS
This section illustrates the applicability of our proposal by providing

an implementation of the MCTS conceptual framework
3
built on

top of the Python framework for AAFMs proposed in [24].

Figure 10 overviews the core architecture which defines the two

main interfaces (State and Action) to be implemented in order to

model and solve a problem with Monte Carlo methods — i.e., the
(𝑆, 𝑠0, 𝑡, 𝐴, 𝜃, 𝜇) modeling concepts. The State interface specifies

the necessary methods to explore the whole search space, so that

from a given initial state 𝑠0 we can reach all states in 𝑆 . The State in-
terface has to be implemented only once defining the state transition

function 𝜃 (find_successors() and find_random_successor()),
the is_terminal() condition 𝑡 , and the reward() function 𝜇. The

Action interface is defined for each applicable actions. Different

Monte Carlo algorithms can be then applied. Each Monte Carlo

algorithm can be configured with a stopping condition such as a

time, memory, or iteration constraint, and with a selection criteria

for the best action decision. For instance, to select the child with

the highest reward, the most visited child, the child with both the

highest visit count and the highest reward, or the child which max-

imizes a lower confidence bound [15]. At the time of writing this

paper, the following Monte Carlo algorithms are available:

• UCT Algorithm. An implementation of MCTS that builds a

search tree and uses the upper confidence bound for trees (UCT) [38]
selection strategy. This strategy favors actions with a higher 𝑄-

value but allows at the same time to explore those actions that

have not yet been sufficiently explored.

• Greedy MCTS. A best-first strategy that favors exploitation

against exploration.

• flat Monte Carlo. A basic Monte Carlo method with random

action selection and no tree growth.

To show the applicability of our Monte Carlo methods, we apply

them for finding defective configurations in two real-world SPLs:

the JHipster Web development stack [31], and the complete version

of the Python framework for AAFMs [24]. On the one hand, we

choose the jHipster SPL because its configuration space (26,256

configurations) has been fully evaluated in [31] (having 9,376 de-

fective configurations, i.e., 35.70%) and can be used to verify the

results obtained with our methods. On the other hand, the complete

AAFMFramework product line presented in Section 3.1 has 53 features,

3
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Figure 11: Finding defective configurations in jHipster.
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Figure 12: Finding defective configurations in the complete
configuration space of the AAFM Python framework.
26 relations, and 10 cross-tree constraints, leading to a total of

3.1264 · 109 configurations. It serves as a large-scale configuration
space where we have already identified the specific features that

cause the defective configurations using the MCTS method as we

did in Section 4.1. The experiments were performed on a desktop

computer with Intel Core i9-9900K CPU @ 3.60GHz x 8, 32 GB of

memory, Linux Mint 20.1 Cinnamon, and Python 3.9.1.

The results are summarized in Figure 11 and Figure 12 for the

jHipster SPL and the AAFMs Python framework, respectively. We

compare the three implemented Monte Carlo algorithms for dif-

ferent numbers of simulations wrt. a uniform random sampling

strategy [32]. We present the number of configurations found with

defects (a), the number of configurations evaluated (b), the effi-

ciency as the percentage of defective configurations found wrt. the
configurations evaluated (c), and the execution time (d). A first

observation is a higher fluctuation in the MCTS (especially in the

UCT Algorithm) because of the balance between exploitation and

exploration [29, 38]. This helps MCTS to get out of local optima

when those solutions have been sufficiently explored, but demon-

strates the evidence of Lopez-Herrejón [42] about techniques that

rely on randomness, which are very sensitive to the various inputs

and parameters, meaning that slightly changing a value (the num-

ber of simulations in this case) can totally change how you would

infer the results. The number of solutions found (a) and evaluated

(b) by MCTS will depend on the distribution of the configuration

space [33]. In jHipster, defective configurations are localized in

regions, making MCTS focuses on that area (same configurations

may be found more than once, but are evaluated once) until the

region is sufficiently explored (requiring MCTS more simulations).

On the contrary, in the AAFM Python framework, defective config-

urations are scattered through the configuration space, and MCTS

will evaluate and find more with the same number of simulations.

A second observation is the efficiency of the Monte Carlo meth-

ods (c), being superior on average the UCT Algorithm (68% in jHip-

ster and 98% in the AAFM Python framework) than the random

sampling (36% and 77%, respectively), when comparing the amount

of defective configurations found wrt. the configurations evaluated.
This result is not surprising due to MCTS is a selective sampling

approach, but it shows that MCTS can also be used as a search-

based optimization technique in SPL as a complement of existing

approaches (e.g., genetic algorithms [42]). Finally, regarding the

performance (d), Monte Carlo algorithms accomplish better results

the longer they keep running. They are appropriate for problems

that do not require achieving immediate results but require taking

optimum decisions in the medium and long term.

7 RELATEDWORK
Over the last decade, MCTS has been adopted as part of the solution

to many problems in a variety of domains beyond AI games [65].

For instance, MCTS has achieved great success with complex real-

world problems, such as combinatorial optimization to evaluate sys-

tem vulnerabilities [68], constraint satisfaction problems (CSP) [6],

boolean satisfiability [60], model checking [59], scheduling prob-

lems [50], and feature selection problems in the field of machine

learning [17], among others [12]. However, MCTS has not been

already applied in the context of the AAFMs [25]. To the best of

our knowledge, Monte Carlo methods have been mainly applied in

SPL from an economic point of view [13, 27, 52]. For instance, to

analyze the return on investment expectations of an SPL [52] and

understanding the effort required for building reusable assets [13],

to compare costs and benefits of different test strategies [27], or to

estimate the payoff of an SPL [34]. Also, Monte Carlo simulations

have been used for validation when there is a lack of available

data [1], as for example, to check the stability of solutions in SPL

optimization [37, 45]. Regarding MCTS, our work is the first study

that proposes applying it in SPLs.

Several work have incorporated randomness into AAFMs. Czar-

necki et al. [18] introduced the concept of probabilistic feature mod-
els (PFM) to automate the choice propagation of features according

to the constraints, and apply an entropy measure to guide the con-

figuration process. Martinez et al [46] also estimate the feature

probabilities to provide feedback to the user. Both works [18, 46]

rely on historical data to extract probabilities. Heradio et al. [33]

propose statistical analysis to reason on variability models. They

can extract probability distributions from the whole configuration



Table 1: Comparison of the MCTS conceptual framework 
and Genetic Algorithms as search-based techniques for SPL.

Monte Carlo Tree Search Genetic Algorithms
States. They represent the possible status of the

problem (e.g., valid/invalid and partial/complete

configurations, or feature models). They do not re-

quire a special encoding.

Population (chromosomes). Set of candidate so-
lutions. They represent complete configurations

or feature models which need to be encoded (e.g.,
as binary strings) and decoded to be evaluated.

Initial state. It is a unique well defined state

(e.g., empty or partial configuration, void feature

model) that will transition to a terminal one.

Initial population. It is randomly initialized

with a number of (normally valid) completed con-

figurations (or feature models).

Terminal condition. It is determined by the sta-

tus of the current configuration or feature model

(e.g., a complete configuration or feature model).

Stopping condition. It is always a predefined

computational budget (e.g., number of genera-

tions, time) or a specific fitness value achieved.

Actions. They define the set of successors for a

given state (e.g., a configuration with more fea-

tures selected, or a feature model with an addi-

tional cross-tree constraint).

Mutation and crossover operators. They de-

fine modifications or combinations, to the candi-

date solutions (e.g., selecting/deselecting a feature,
making mandatory an optional feature).

State transition function. It applies the possi-

ble valid actions to the current state. Actions can

be exhaustive applied (during expansion), or ran-

domly (e.g., during simulation). Only the current

state is considered at a given time.

Evolution of the population. It requires to

evaluate (using the fitness function) each indi-

vidual solution in the population. Mutation and

crossover operators are then applied with a given

probability to the selected candidate solutions.

Reward function. It is only applied to final solu-

tions, while intermediate states do not need to be

evaluated. The utility valuesmay be arbitrary (e.g.,
positive values for accumulated reward, negative

values for cost incurred).

Fitness function. It is evaluated for each candi-

date solution of the whole population. It values

is defined in order to be maximized or minimized.

Additional constraints of the problem are encoded

in the fitness function by penalizing solutions.

Results. A unique optimal solution and statistics

about each decision step (i.e., the tree search).
Results. A set of optimal solutions (e.g., a pareto
front in case of multi-objective optimization).

space to make different analysis, including a uniform random sam-

pling technique [32], but their analyses require building a BDD of

the feature model, and this task is intractable for very large-scale

models like the Linux one [64], being even a specific challenge for

this purpose [70]. MCTS can work directly with the feature model

or some other knowledge compilation technique [70] (e.g., BDD) as
long as it can be modeled using the concepts (𝑆, 𝑠0, 𝑡, 𝐴, 𝜃, 𝜇). One of
the applications most widespread of incorporating probability into

AAFMs has been to assist the user by means of recommendation

systems and interactive configuration processes [46, 51, 55, 56, 61].

For instance, Pereira et al. [55, 56] propose different algorithms [56]

for recommender systems in SPL configuration, as well as, the

visualization mechanisms [55] to aid the user. Nöhrer [51] investi-

gates the ordering of the decisions in the decision-making process.

Rodas-Silva et al. [61] proposes a recommender system to select

implementation components of an SPL based on users’ rating of

such components. However, those works are based on historical

data from previous users’ configurations, while MCTS does not

require domain knowledge, but MCTS can benefit from it to im-

prove, for example, the reward function. Moreover, they mainly

focus on the configuration space, while MCTS can also be applied

to other analyses, such as in the reverse engineering of feature

models problem.

Finally, search-based software engineering techniques [42], es-

pecially genetic algorithms and meta-heuristics [30, 63, 75] have

achieved great success in the AAFMs area for several problems

where both configurations and feature models are the main con-

cepts, such as the feature selection optimization [20, 30, 75], or

the reverse engineering of feature models [3–5, 40, 43]. Despite

MCTS and genetic algorithms share some similarities when applied

for search-based optimization, they have important differences as

Table 1 details. A quantitative comparison of both techniques is out

of the scope of this paper and is in our planning agenda.

8 CONCLUSIONS AND FUTUREWORK
We have presented a conceptual framework that enables the use of

Monte Carlo methods on the AAFMs, and we have mapped different

problems that can be analyzed with the MCTSmethod. Monte Carlo

methods incorporate probability into analysis to solve problems that

are difficult to handle using deterministic approaches [39] due to the

large search space. Especially, MCTS can provide existing analyses

with some decision-making capacity, working directly with the

feature models, and modeling the problem as a sequence of decision

steps with very little domain-specific knowledge. The selective

sampling approach of MCTS may provide insights into how other

analysis methods could be hybridized and potentially improved.

With this contribution, we envision that different problems and

analyses can be addressed using Monte Carlo methods, becoming

part of the SPL researcher’s toolkit when analyzing feature models

and their configurations. This new approach can be of big value to

advance the state of the art of the AAFMs a step forward.

As part of our ongoing work, we plan to model other problems

subject to be analyzed with Monte Carlo methods. Moreover, a

quantitative comparison with existing search-based optimization

techniques [42] (e.g., genetic algorithms) is also on our agenda.

Finally, we also plan to improve our MCTS conceptual framework

by developing other variants of theMCTSmethod [12]. For instance,

the independent nature of each simulation in MCTS means that the

algorithm is a good target for parallelization [16, 66], so that we

can improve its performance; or to explore the use of importance

splitting to guide the search checking rare properties [36].
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A FORMALIZATION OF THE ACTIONS 𝐴
A.1 Actions for feature model configurations
𝑎0 : SelectRandomFeature. This action adds a random feature 𝑓 ∈ 𝐹 to the configuration 𝑐 .

CA: 𝑓 is not already part of the configuration 𝑐 , that is, 𝑓 ∉ 𝑐 .
𝑎1 : SelectRootFeature. It adds the root 𝑟 ∈ 𝐹 of the feature model𝑚 to the configuration 𝑐 .

CA: The configuration is empty: 𝑐 = ∅.
𝑎2 : SelectMandatoryFeature. It adds a mandatory feature 𝑓 ∈ 𝐹 to the configuration 𝑐 .

CA: There is a mandatory relation between a feature 𝑔 already present in the configuration 𝑐

and feature 𝑓 . Formally, 𝑓 ∉ 𝑐 ∧ ∃𝑔 ∈ 𝑐, ∃𝑟 ∈ R |𝑟 = (𝑔, [𝑓 ], ⟨1..1⟩) .
𝑎3 : SelectOptionalFeature. It adds an optional feature 𝑓 ∈ 𝐹 to the configuration 𝑐 .

CA: There is an optional relation between a feature 𝑔 already present in the configuration 𝑐

and feature 𝑓 . That is, 𝑓 ∉ 𝑐 ∧ ∃𝑔 ∈ 𝑐, ∃𝑟 ∈ R |𝑟 = (𝑔, [𝑓 ], ⟨0..1⟩) .
𝑎4 : SelectFeatureAlternative. It adds a feature 𝑓𝑖 ∈ 𝐹 , which belongs to an alternative-group,

to the configuration 𝑐 .
CA: There is an alternative relation between a feature 𝑔 already present in the configuration

𝑐 and feature 𝑓𝑖 , and there is not any other child of 𝑔 already selected in 𝑐 . That is, 𝑓𝑖 ∉

𝑐 ∧ ∃𝑔 ∈ 𝑐, ∃𝑟 ∈ R |𝑟 = (𝑔, [𝑓1, . . . , 𝑓𝑖 , . . . , 𝑓𝑛 ], ⟨0..1⟩) ∧ 𝑓𝑗 ∉ 𝑐, ∀𝑗 ≠ 𝑖 .

𝑎5 : SelectFeatureSelection. It adds a feature 𝑓𝑖 ∈ 𝐹 of an or-group to the configuration 𝑐 .
CA: There is an or-group relation between a feature 𝑔 already present in the configuration 𝑐

and feature 𝑓𝑖 . That is, 𝑓𝑖 ∉ 𝑐 ∧ ∃𝑔 ∈ 𝑐, ∃𝑟 ∈ R |𝑟 = (𝑔, [𝑓1, . . . , 𝑓𝑖 , . . . , 𝑓𝑛 ], ⟨0..1⟩) .
This action allows selecting more than one child in an or-group.

A.2 Actions for reverse engineering
𝑏1 : AddRootFeature. This action adds a feature 𝑓 ∈ 𝐹𝑖 as the root 𝑟 of the feature model𝑚.

CA: The feature model𝑚 is empty: 𝐹 = ∅.
𝑏2 : AddOptionalFeature. This action adds a new feature 𝑓 ∈ 𝐹𝑖 to the feature model𝑚 with

the optional relation (𝑔, [𝑓 ], ⟨0..1⟩) where 𝑔 ∈ 𝐹 is a feature already present in𝑚.

CA: The feature model𝑚 contains at least one feature: 𝐹 ≠ ∅.
𝑏3 : AddMandatoryFeature. This action adds a new feature 𝑓 ∈ 𝐹𝑖 to the feature model𝑚 with

the mandatory relation (𝑔, [𝑓 ], ⟨1..1⟩) where 𝑔 ∈ 𝐹 is a feature already present in𝑚.

CA: The feature model𝑚 contains at least one feature: 𝐹 ≠ ∅.
𝑏4 : AddOrGroupRelation. This action adds a new or-group relation (𝑔, [𝑓1, 𝑓2 ], ⟨1..2⟩) with

two features 𝑓1, 𝑓2 ∈ 𝐹𝑖 as children of an existing non-group feature 𝑔 ∈ 𝐹 in the model𝑚.

CA: There is a feature 𝑔 in 𝑚 that is not the parent of an alternative-group nor or-group

relation already created in𝑚. That is, ∃𝑔 ∈ 𝐹, �𝑟 ∈ R |𝑟 = (𝑔, [𝑔1, . . . , 𝑔𝑛 ], ⟨1..1⟩) ∨𝑟 =

(𝑔, [𝑔1, . . . , 𝑔𝑛 ], ⟨1..𝑛⟩) where 𝑛 ≥ 2 and 𝑔𝑖 are the children of 𝑔.

𝑏5 : AddAlternativeGroupRelation. It adds a new alternative-group relation (𝑔, [𝑓1, 𝑓2 ], ⟨1..1⟩)
with two features 𝑓1, 𝑓2 ∈ 𝐹𝑖 as children of an existing non-group feature 𝑔 ∈ 𝐹 in𝑚.

CA: Same condition as for action 𝑏4 .
𝑏6 : AddFeatureToOrGroup. This action adds a new feature 𝑓 ∈ 𝐹𝑖 to an existing or-group

relation 𝑟 in the feature model𝑚 and updates the upper cardinality of 𝑟 increased by 1.

CA: There is an or-group relation in the model𝑚: ∃𝑟 ∈ R |𝑟 = (𝑔, [𝑔1, . . . , 𝑔𝑛 ], ⟨1..𝑛⟩) ,
𝑛 ≥ 2 and 𝑔𝑖 are the children of 𝑔.

𝑏7 : AddFeatureToAlternativeGroup. It adds a feature 𝑓 ∈ 𝐹𝑖 to an existing alternative-group

relation 𝑟 in the feature model𝑚.

CA: There is an alternative-group relation in𝑚: ∃𝑟 ∈ R |𝑟 = (𝑔, [𝑔1, . . . , 𝑔𝑛 ], ⟨1..1⟩) , 𝑛 ≥
2 and 𝑔𝑖 are the children of 𝑔.

𝑏8 : AddRequiresConstraint. It adds a new “requires” constraint (𝑓 ⇒ 𝑔) involving two existing

features 𝑓 , 𝑔 ∈ 𝐹 in the model𝑚.

CA: Three conditions apply: (1) there are at least two features in𝑚 without considering the

root feature 𝑟 — i.e., |𝐹 | ≥ 3; (2) both features 𝑓 , 𝑔 ∈ 𝐹 cannot be related between them

with a parent-child relation — i.e., ∃𝑓 , 𝑔 ∈ 𝐹 |¬(𝑓 ≺ 𝑔 ∨ 𝑔 ≺ 𝑓 ) ; and (3) there is not an

“excludes” constraint between both features (i.e., 𝑓 ⇒ ¬𝑔 or 𝑔 ⇒ ¬𝑓 ), nor a “requires”

constraint such that 𝑓 ⇒ 𝑔 already created in𝑚.

𝑏9 : AddExcludesConstraint. It adds a new “excludes” constraint (𝑓 ⇒ ¬𝑔) involving two exist-

ing features 𝑓 , 𝑔 ∈ 𝐹 in𝑚.

CA: Three conditions apply: (1) there are at least two features in𝑚 without considering the

root feature 𝑟 — i.e., |𝐹 | ≥ 3; (2) both features 𝑓 , 𝑔 ∈ 𝐹 cannot be related between them

with a parent-child relation — i.e., ∃𝑓 , 𝑔 ∈ 𝐹 |¬(𝑓 ≺ 𝑔 ∨ 𝑔 ≺ 𝑓 ) ; and (3) there is not an

“excludes” constraint between both features (i.e., 𝑓 ⇒ ¬𝑔 or 𝑔 ⇒ ¬𝑓 ), nor a “requires”

constraints such that 𝑓 ⇒ 𝑔 or 𝑔⇒ 𝑓 already created in𝑚.
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