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Implementation of model predictive control for
tracking in embedded systems using a sparse

extended ADMM algorithm
Pablo Krupa, Ignacio Alvarado, Daniel Limon, Teodoro Alamo

Abstract—This article presents a sparse, low-memory footprint
optimization algorithm for the implementation of the model
predictive control (MPC) for tracking formulation in embedded
systems. This MPC formulation has several advantages over
standard MPC formulations, such as an increased domain of
attraction and guaranteed recursive feasibility even in the event of
a sudden reference change. However, this comes at the expense of
the addition of a small amount of decision variables to the MPC’s
optimization problem that complicates the structure of its ma-
trices. We propose a sparse optimization algorithm, based on an
extension of the alternating direction method of multipliers, that
exploits the structure of this particular MPC formulation. We
describe the controller formulation and detail how its structure is
exploited by means of the aforementioned optimization algorithm.
We show closed-loop simulations comparing the proposed solver
against other solvers and approaches from the literature.

Index Terms—Model predictive control, embedded optimiza-
tion, embedded systems, extended ADMM

I. INTRODUCTION

Model Predictive Control (MPC) is an advanced control
strategy in which the control action is obtained, at each sample
time, from the solution of an optimization problem where a
prediction model is used to forecast the evolution of the system
over a finite prediction horizon. One of the main advantages of
MPC over other control strategies is that it inherently considers
and satisfies system constraints [1].

There are many different MPC formulations in the literature,
each of which is defined by an optimization problem with
different objective function and/or set of constraints [2]. In
general, the optimization problem is posed as a minimization
problem in which the objective function penalizes the distance
between the reference and the predicted system evolution over
the prediction horizon. In this paper we focus on linear MPC
controllers for tracking whose optimization problem can be
posed as a quadratic programming (QP) problem.
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Since an MPC controller requires solving an optimization
problem at each sample time, its use has historically been
confined to computationally powerful devices, such as PCs.
However, as evidenced by the references provided below, there
is a growing interest in the literature in the implementation of
these controllers in devices with very limited computational
and memory resources, known as embedded systems.

One possible approach for implementing MPC in embedded
systems is to use explicit MPC [3], in which the solution of
the MPC optimization problem is stored as a lookup table that
is computed offline. However, this lookup table can become
prohibitively large for medium to large-sized systems and/or
for MPC problems with many constraints. Some examples of
it being implemented in embedded systems are [4], [5].

Another approach comes from the recent development of
optimization solvers for QP problems that are tailored to
embedded systems. A few of the most widespread ones include
OSQP [6], qpOASES [7], CVXGEN [8], FiOrdOs [9] and
FORCES [10]. These solvers, although used to successfully
implement MPC controllers in embedded systems (see [11],
[12], [13], [14] for a few examples), are for generic QP
problems. Therefore, the development of optimization algo-
rithms tailored to the specific MPC optimization problem can
potentially provide better results. Some examples of solvers
that fall into this category include PRESAS [15], FalcOpt [16],
HPMPC [17] or µAO-MPC [18]. Other noteworthy examples
of MPC-tailored solvers implemented in embedded systems
include [19], [20], [21] for implementations in FPGAs, [22]
for microcontrollers and [23], [24], [25], [26], [27] for pro-
grammable logic controllers. Specifically, the authors proposed
in [23] and [24] a method for the embedded implementation of
MPC controllers which takes advantage of the structure of the
matrices of the QP problem. This led to the development of a
sparse optimization algorithm, based either on the FISTA [28]
or on the alternating direction method of multipliers (ADMM)
[29] algorithms.

The references on embedded MPC provided above, as well
as most publications in this field, deal with standard MPC
formulations, presenting efficient ways to solve them. In this
paper, however, we are concerned with providing an efficient
solver for a more intricate linear MPC formulation known as
MPC for tracking (MPCT) [30], which has several advantages
over standard MPC formulations that makes it especially
attractive for its implementation in embedded systems. For
instance, it offers a significantly larger domain of attraction
than standard MPC formulations with the same prediction
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horizon, which is useful in embedded systems since the use
of smaller prediction horizons reduces the computational and
memory footprint of the controller. Additionally, it provides
recursive feasibility even in the event of a sudden reference
change [31].

However, these advantages come at the cost of a slightly
more complicated QP problem due to the inclusion of addi-
tional decision variables. In this paper we propose a sparse
solver for MPCT based on the extended ADMM (EADMM)
algorithm [32]. The use of this algorithm leads to sparse
matrices whose simple structure can be efficiently exploited to
attain a computationally and memory efficient implementation
following a similar approach to the one used in [23], but for
a more intricate MPC formulation. In particular, we avoid
representing the sparse matrices using the typical sparse-
matrix representations (e.g., compressed sparse column).

We showcase the benefits of the proposed solver by com-
paring it to other ADMM-based approaches to control a
simulated ball and plate system. Additionally, the results of
its implementation in a Rapsberry Pi to control a two-wheeled
inverted pendulum robot have been reported in [33], providing
further evidence of its good performance.

The proposed solver is part of the Matlab toolbox “SPCIES:
Suite of Predictive Controllers for Industrial Embedded Sys-
tems” [34], available at https://github.com/GepocUS/Spcies.

The remainder of this paper is structured as follows. Section
II describes the problem formulation and control objective.
The MPC for tracking formulation is described in Section
III. The extended ADMM algorithm is detailed in Section
IV. Section V describes how the MPCT optimization problem
is recast into a problem solvable by the EADMM algorithm.
Section VI shows the numerical results. Finally, conclusions
are drawn in Section VII.

Notation: Given two vectors x, y ∈ IRn, x ≤ (≥) y denotes
componentwise inequalities and 〈x, y〉 is their standard inner
product. For a vector x ∈ IRn and a positive definite matrix
A ∈ IRn×n, ‖x‖ .

=
√
〈x, x〉, ‖x‖A

.
=
√
〈x,Ax〉 is its

weighted Euclidean norm, and ‖x‖∞
.
= maxi=1...n |x(i)|,

where x(i) is the i-th element of x, is its `∞-norm. For a
symmetric matrix A, ‖A‖ denotes its spectral norm. Given
scalars and/or matrices M1,M2, . . . ,MN (not necessarily of
the same dimensions), we denote by diag(M1,M2, . . . ,MN )
the block diagonal matrix formed by the diagonal concatena-
tion of M1 to MN . Given a matrix A ∈ IRn×m, Ai,j denotes
its (i, j)-th element, A> its transposed and A−1 its inverse
(if it is non-singular). (x1, x2, . . . , xN ) is a column vector
formed by the concatenation of column vectors x1 to xN .
Given two integers i and j with j ≥ i, Zji denotes the set of
integer numbers from i to j, i.e. Zji

.
= {i, i+ 1, . . . , j − 1, j}.

Definition 1. A function f : IRn → IR is said to be µ-strongly
convex, for some scalar µ > 0, if f(x)− µ

2 ‖x‖
2 is convex.

II. PROBLEM FORMULATION

We consider a controllable system described by a discrete
linear time-invariant state-space model

xk+1 = Axk +Buk, (1)

where xk ∈ IRn and uk ∈ IRm are the state and input of
the system at sample time k, respectively. Additionally, we
consider that the system is subject to the box constraints

x ≤ xk ≤ x, (2a)
u ≤ uk ≤ u. (2b)

The control objective is to steer the system to the given
reference (xr, ur) while satisfying the system constraints (2).
This will only be possible if the reference is an admissible
steady state of the system, which we formally define as
follows.

Definition 2. An ordered pair (xa, ua) ∈ IRn × IRm is said
to be an admissible steady state of system (1) subject to (2) if

(i) xa = Axa +Bua, i.e., it is a steady state of system (1),
(ii) x ≤ xa ≤ x,

(iii) u ≤ ua ≤ u.

If the given reference is not an admissible steady state of
system (1) subject to (2), then we wish to steer the system to
the closest admissible steady state, for some given criterion of
closeness.

III. MODEL PREDICTIVE CONTROL FOR TRACKING

The MPCT formulation [30] differs from other standard
MPC formulations in the inclusion of a pair of decision
variables (xs, us) known as the artificial reference. The cost
function penalizes, on one hand, the difference between the
predicted states and control actions with this artificial refer-
ence, and on the other, the discrepancy between the artificial
reference and the reference (xr, ur) given by the user. In
particular, this paper focuses on the MPCT formulation shown
below, which uses a terminal equality constraint.

For a given prediction horizon N , the MPCT control law
for a given state x and reference (xr, ur) is derived from the
solution of the following convex optimization problem

min
x,u,
xs,us

N−1∑
i=0

(
‖xi−xs‖2Q+‖ui−us‖2R

)
+‖xs−xr‖2T+‖us−ur‖2S

(3a)
s.t. x0 = x (3b)

xi+1 = Axi +Bui, i ∈ ZN−10 (3c)

x ≤ xi ≤ x, i ∈ ZN−11 (3d)

u ≤ ui ≤ u, i ∈ ZN−10 (3e)
xs = Axs +Bus (3f)
x+ εx ≤ xs ≤ x− εx (3g)
u+ εu ≤ us ≤ u− εu (3h)
xN = xs, (3i)

where the decision variables are the predicted states and inputs
x = (x0, . . . , xN ), u = (u0, . . . , uN−1) and the artificial
reference (xs, us); the positive definite matrices Q ∈ IRn×n

R ∈ IRm×m, T ∈ IRn×n and S ∈ IRm×m are the cost
function matrices; and εx ∈ IRn, εu ∈ IRm are arbitrarily
small positive vectors which are added to avoid a possible
loss of controllability when the constraints are active at the
equilibrium point [31].
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One of the properties of the MPCT formulation (3) is that it
will steer the closed-loop system to the admissible steady state
(xa, ua) that minimizes the cost ‖xa − xr‖2T + ‖ua − ur‖2S
[30], [31]. Additionally, as previously mentioned in the in-
troduction, this formulation provides significantly larger do-
mains of attraction than other standard MPC formulations, and
guarantees recursive feasibility even in the event of a sudden
reference change.

IV. EXTENDED ADMM

This section introduces the extended ADMM algorithm [32],
which, as its name suggests, is an extension of the ADMM
algorithm [29] to optimization problems with more than two
separable functions in the objective function. In particular, we
focus on the following class of optimization problem.

Let θi : IRni → IR for i ∈ Z3
1 be convex functions,

Zi ⊆ IRni for i ∈ Z3
1 be closed convex sets, Ci ∈ IRmz×ni

for i ∈ Z3
1 and b ∈ IRmz . Consider the optimization problem

min
z1,z2,z3

3∑
i=1

θi(zi) (4a)

s.t.

3∑
i=1

Cizi = b (4b)

zi ∈ Zi, i ∈ Z3
1. (4c)

and let its augmented Lagrangian Lρ(z1, z2, z3, λ) be given by

Lρ(·) =

3∑
i=1

θi(zi) + 〈λ,
3∑
i=1

Cizi−b〉+
ρ

2

∥∥∥∥∥
3∑
i=1

Cizi−b

∥∥∥∥∥
2

,

(5)
where λ ∈ IRmz are the dual variables and ρ > 0 is
the penalty parameter. We denote a solution point of (4) by
(z∗1 , z

∗
2 , z
∗
3 , λ
∗), assuming that one exists.

Algorithm 1 shows the implementation of the extended
ADMM algorithm for a given exit tolerance ε > 0 and initial
points (z02 , z

0
3 , λ

0). The superscript k indicates the value of the
variable at iteration k. We note that step 9 uses the `∞-norm,
although any other norm can be used. Algorithm 1 returns
an ε-suboptimal solution (z̃∗1 , z̃

∗
2 , z̃
∗
3 , λ̃
∗) of problem (4). As

shown in [35], the EADMM algorithm is not necessarily
convergent under the typical assumptions of the classical
ADMM algorithm. However, multiple results have shown its
convergence under additional assumptions [32], [36], [37] or
by adding additional steps [38], [39]. In particular, [32] proved
its convergence under the following assumption, as stated in
the following theorem.

Assumption 1 ([32], Assumption 3.1). Functions θ1 and θ2
are convex; function θ3 is µ3-strongly convex for some µ3 > 0;
and C1 and C2 are full column rank.

Theorem 1 (Convergence of EADMM; [32], Theorem 3.1).
Suppose that Assumption 1 holds and that the penalty pa-
rameter ρ ∈

(
0, 6µ3

17‖C>
3 C3‖

)
. Then, the sequence of points

(zk1 , z
k
2 , z

k
3 ) generated by Algorithm 1 converges to a point

in the optimal set of problem (4) as k →∞.

Algorithm 1: Extended ADMM
Require : z02 , z03 , λ0, ρ > 0, ε > 0

1 k ← 0
2 repeat
3 zk+1

1 ← arg min
z1

{
Lρ(z1, zk2 , zk3 , λk) | z1∈Z1

}
4 zk+1

2 ← arg min
z2

{
Lρ(zk+1

1 , z2, z
k
3 , λ

k) | z2∈Z2

}
5 zk+1

3 ← arg min
z3

{
Lρ(zk+1

1 , zk+1
2 , z3, λ

k) | z3∈Z3

}
6 Γ←

3∑
i=1

Ciz
k+1
i − b

7 λk+1 ← λk + ρΓ
8 k ← k + 1

9 until ‖Γ‖∞≤ε, ‖zk2−zk−12 ‖∞≤ε, ‖zk3−zk−13 ‖∞≤ε
Output: z̃∗1 ← zk1 , z̃∗2 ← zk2 , z̃∗3 ← zk3 , λ̃∗ ← λk

Remark 1. The exit condition given in step 9 of Algorithm 1
serves as an indicator of the (sub-)optimality of the current
iterate [32, §5].

V. SOLVING MPCT USING EXTENDED ADMM

This section describes how problem (3) is solved using
Algorithm 1. The objective is to develop a memory and com-
putationally efficient algorithm so that it can be implemented
in an embedded system. To this end, we recast problem (3)
so that steps 3, 4 and 5 are easy to solve following a similar
approach to the one taken in [23]. Algorithm 2 shows the
particularization of Algorithm 1 that results from this effort.

A. Recasting the MPCT problem

Let us define x̃i
.
= xi−xs and ũi

.
= ui−us. Then, we can

rewrite (3) as

min
x̃,ũ,x,
u,xs,us

N∑
i=0

(
‖x̃i‖2Q + ‖ũi‖2R

)
+ ‖xs − xr‖2T + ‖us − ur‖2S

(6a)
s.t. x0 = x (6b)

x̃i+1 = Ax̃i +Bũi, i ∈ ZN−10 (6c)

x ≤ xi ≤ x, i ∈ ZN−11 (6d)

u ≤ ui ≤ u, i ∈ ZN−10 (6e)
x+ εx ≤ xN ≤ x− εx (6f)
u+ εu ≤ uN ≤ u− εu (6g)
xs = Axs +Bus (6h)

x̃i + xs − xi = 0, i ∈ ZN0 (6i)

ũi + us − ui = 0, i ∈ ZN0 (6j)
xN = xs (6k)
uN = us, (6l)

where the decision variables are x̃ = (x̃0, . . . , x̃N ),
ũ = (ũ0, . . . , ũN ), x = (x0, . . . , xN ), u = (u0, . . . , uN ),
xs and us. Equality constraints (6i) and (6j) impose the
congruence of the decision variables with the original
problem. We note that inequalities (3g) and (3h) are omitted
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because they are already imposed by (6f) and (6g) alongside
the inclusion of (6k) and (6l).

Note that the summations in the cost function (6a) now
include i = N . However, this does not change the solution of
the optimization problem due to the inclusion of (6k) and (6l).

We can now obtain a problem of form (4) by taking

z1 = (x0, u0, x1, u1, . . . , xN−1, uN−1, xN , uN ), (7a)
z2 = (xs, us), (7b)
z3 = (x̃0, ũ0, x̃1, ũ1, . . . , x̃N−1, ũN−1, x̃N , ũN ), (7c)

which leads to θ1(z1) = 0,

θ2(z2) =
1

2
z>2 diag(T, S)z2 − (Txr, Sur)

>z2,

θ3(z3) =
1

2
z>3 diag(Q,R,Q,R, . . . , Q,R)z3,

C1 =


[In 0n,m] 0 0
−In+m 0 0

0
. . . 0

0 0 −In+m
0 0 −In+m

 , C2 =


0

In+m
...

In+m
In+m

 ,

C3 =


0 . . . 0

In+m 0 0

0
. . . 0

0 0 In+m
0 . . . 0

 , b =


x
0
...
0
0

 .

Matrices C1, C2 and C3 contain the equality constraints
(6b), (6i), (6j), (6k) and (6l). Specifically, the first n rows
impose constraint (6b), the last n + m rows impose the
constraints (6k) and (6l), and the rest of the rows impose the
constraints (6i) and (6j). Set Z1 is the set of vectors z1 (7a)
for which the box constraints (6d)-(6g) are satisfied; set Z2 is
the set of vectors z2 (7b) that satisfy the equality constraint
(6h); and set Z3 is the set of vectors z3 (7c) that satisfy the
equality constraints (6c).

We note that our selection of zi and Ci for i ∈ Z3
1

results in an optimization problem that satisfies Assumption 1.
Therefore, under a proper selection of ρ, the iterates of the
EADMM algorithm will converge to the optimal solution of
the MPCT controller. In practice, the parameter ρ may be
selected outside the range shown in Theorem 1 in order to
improve the convergence rate of the algorithm [32]. In this
case, the convergence will not be guaranteed and will have to
be extensively checked with simulations.

B. Particularizing EADMM to the MPCT problem

By taking zi and Ci for i ∈ Z3
1 as shown in Section V-A, we

can particularize Algorithm 1 to the MPCT problem, resulting
in Algorithm 2. This algorithm requires solving three QP
problems (which we label P1, P2 and P3 in the following)
with explicit solutions at each iteration. The control action to
be applied to the system are the elements u0 of the variable
z̃∗1 (7a) returned by Algorithm 2.

Step 3 minimizes the Lagrangian (5) over z1, resulting in
the following box-constrained QP problem,

P1(zk2 , z
k
3 , λ

k) : min
z1

1

2
z>1 H1z1 + q>1 z1 (P1)

s.t. z1 ≤ z1 ≤ z1,

where H1 = ρC>1 C1,

q1 = ρC>1 C2z
k
2 + ρC>1 C3z

k
3 + C>1 λ

k − ρC>1 b,
z1 = (−Mn, u, x, . . . , u, x+ εx, u+ εu),

z1 = (Mn, u, x, . . . , u, x− εx, u− εu),

and Mn ∈ IRn > 0 has arbitrarily large components.
Due to the structure of C1, matrix H1 is a positive definite

diagonal matrix. As such, each element j ∈ Z(N+1)(n+m)
1 of

the optimal solution of P1, denoted by (z∗1)j , can be explicitly
computed as,

(z∗1)j = max

{
min

{
−(q1)j
(H1)j,j

, (z1)j

}
, (z1)j

}
. (8)

Remark 2. In this article we consider box constraints (2) so
that zk+1

1 is very simple to update, as shown in (8). However,
the use of more generic constraints y ≤ Cx+Du ≤ y would
also be possible. In this case, (8) would result in N + 1
decoupled inequality-constrained QPs, which would have to
be solved at each iteration of the algorithm, but that, given
their small scale, may be solved rather cheaply using interior
point or active set methods.

Step 4 minimizes the Lagrangian (5) over z2 = (xs, us),
resulting in the following equality-constrained QP problem,

P2(zk+1
1 , zk3 , λ

k) : min
z2

1

2
z>2 H2z2 + q>2 z2 (P2)

s.t. G2z2 = b2,

where H2 = diag(T, S) + ρC>2 C2, G2 = [(A − In) B],
b2 = 0 and

q2 = −(Txr, Sur)+ρC
>
2 C1z

k+1
1 +ρC>2 C3z

k
3+C>2 λ

k−ρC>2 b.

This problem has an explicit solution derived from the follow-
ing proposition [40, §10.1.1].

Proposition 1. Consider an optimization problem
min
z

(1/2)z>Hz + q>z, s.t. Gz = b, where H is positive
definite. A vector z∗ is an optimal solution of this problem if
and only if there exists a vector µ such that,

Gz∗ = b

Hz∗ + q +G>µ = 0,

which using simple algebra and defining WH
.
= GH−1G>,

leads to

WHµ = −(GH−1q + b) (9a)

z∗ = −H−1(G>µ+ q). (9b)

The optimal solution z∗2 of problem (P2) can be obtained
by substituting (9a) into (9b), which leads to the expression

z∗2 = M2q2, (10)
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where M2 = H−12 G>2 (G2H
−1
2 G>2 )−1G2H

−1
2 − H−12 ∈

IR(n+m)×(n+m). This matrix, which has a relatively small
dimension, is computed offline and stored in the embedded
system. Vector b2 does not appear in the above expression
because it is equal to zero.

Step 5 minimizes the Lagrangian (5) over z3, resulting in
the following equality-constrained QP problem,

P3(zk+1
1 , zk+1

2 , λk) : min
z3

1

2
z>3 H3z3 + q>3 z3 (P3)

s.t. G3z3 = b3,

where H3 = diag(Q,R,Q,R, . . . , Q,R) + ρC>3 C3, b3 = 0,

q3 = ρC>3 C1z
k+1
1 + ρC>3 C2z

k+1
2 + C>3 λ

k − ρC>3 b,

G3 =


A B −In 0 · · · · · · 0 0
0 0 A B −In · · · 0 0

0 0 0
. . . . . . . . . 0 0

0 0 0 0 A B −In 0

 .
This problem can be sparsely solved using the following
approach. Let WH3

.
= G3H

−1
3 G>3 . Due to the sparse structure

of G3 and the fact that H3 is a block diagonal matrix, we have
that the Cholesky factorization of WH3

, that is, the upper-
triangular matrix WH3,c that satisfies WH3

= W>H3,c
WH3,c,

has the following structure,

WH3,c =


β1 α1 .. .. 0 0
.. β2 α2 .. .. 0
.. .. .. .. .. ..
0 .. .. .. βN−1 αN−1

0 0 .. .. .. βN

 , (11)

where we define the sets of matrices A = {α1, . . . , αN−1},
αi ∈ IRn×n; and B = {β1, . . . , βN}, βi ∈ IRn×n. Note that
the amount of memory required to store the sets of matrices
A and B grows linearly with the prediction horizon N .

Then, (9a) can be solved by consecutively solving the
following two systems of equations that use the auxiliary
vector µ̂,

W>H3,cµ̂ = −G3H
−1
3 q3 (12a)

WH3,cµ = µ̂, (12b)

which are easy to solve due to WH3,c being upper-triangular.
In fact, these two systems of equations can be computed
sparsely by exploiting the structures of WH3,c, G3 and H−13

[41, §6]. Finally, the optimal solution z∗3 of P3 can be obtained
as in (9b),

z∗3 = −H−13 (G>3 µ+ q3), (13)

which, once again, can be computed sparsely by exploiting
the structures of G3 and H−13 .

Remark 3. Because of the controllability of the system, the
fact that ρ > 0 and the positive definite nature of matrices Q,
R, T and S, it is easy to verify that matrices G2H

−1
2 G>2 and

G3H
−1
3 G>3 are guaranteed to be nonsingular.

Remark 4. It has been shown that the performance of ADMM
can be significantly improved by having different values of ρ
for different constraints [6, §5.2], i.e., by considering ρ as a

Algorithm 2: Extended ADMM for MPCT
Require : z02 , z03 , λ0, ρ > 0, ε > 0

1 k ← 0
2 repeat
3 Obtain zk+1

1 by solving P1(zk2 , z
k
3 , λ

k) using (8)
4 Obtain zk+1

2 by solving P2(zk+1
1 , zk3 , λ

k) using (10)
5 Obtain zk+1

3 by solving P3(zk+1
1 , zk+1

2 , λk) using
(12) and (13).

6 Γ←
3∑
i=1

Ciz
k+1
i − b

7 λk+1 ← λk + ρΓ
8 k ← k + 1

9 until ‖Γ‖∞ ≤ ε, ‖zk2−zk−12 ‖∞ ≤ ε, ‖zk3−zk−13 ‖∞ ≤ ε
Output: z̃∗1 ← zk1 , z̃∗2 ← zk2 , z̃∗3 ← zk3 , λ̃∗ ← λk

diagonal positive definite matrix. In particular, we find that,
for our problem, the convergence improves significantly if the
equality constraints (6b), (6k), (6l), (6j) for i = N , and (6i)
for i = 0 and i = N , are penalized more than the others.
As in many operator splitting methods, the selection of ρ is
a mostly open problem which has a significant impact on the
performance of the algorithm [42, §4]. We find, however, that
penalizing the above constraints 10 times more than the others
is a good starting point.

Remark 5. The theoretical upper bound for ρ provided in
Theorem 1 is easily computable in this case. Indeed, we
have that C>3 C3 is the identity matrix, and therefore its
spectral norm ‖C>3 C3‖ = 1. Furthermore, µ3 is the minimum
eigenvalue of diag(Q,R), which is simple to compute.

Remark 6. The computation of q1, q2, q3, z∗3 (13) and
the right-hand-side of (12a) are not performed using the
matrix multiplications shown in their expressions. Instead, the
particular structure of the matrices allows for a matrix-free
computation of the vectors. This is also true for the forward
and backward substitutions performed to solve (12). That is,
we do not store all the non-zero elements of the matrices along
with arrays indicating their position. Only ρ and the matrices
αi, βi, (ρQ)−1, (ρR)−1, T , S, A and B are stored.

Remark 7. We note that the number of iterations of Algorithm
2 can be reduced by the application of a warmstart procedure.
This paper omits discussion on this topic because it focuses on
the algorithm itself. See [41, §7] for a warmstart procedure
that follows the prediction-correction warmstart from [43].

VI. NUMERICAL RESULTS

The approach we present in this article for solving the
MPCT formulation (3) decouples the decision variables into
three separate optimization problems in order to attain a simple
structure that can be efficiently exploited using an approach
similar to the one presented in [23]. However, there are other
ways to solve (3). In this section we compare the performance
of Algorithm 2 with some direct alternatives by applying
them to the ball and plate system described in [44, §V.A].
This system consists of a plate that pivots around its center
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point and whose inclination can be manipulated by changing
the angle of its two perpendicular axes. The system has 8
states and 2 control inputs, and its control objective is to steer
the ball to a given position on the plate. The control input
u = (u(1), u(2)) ∈ IR2 is the angle acceleration of each of the
axes of the plate, which we constrain to |u(i)| ≤ 0.2, i ∈ Z2

1 .
We start the system with the ball placed in the central point
of the plate and set the reference to the point (1.5, 1.4). For
a more in-depth explanation of the system we refer the reader
to [44] and [45].

We perform closed-loop tests of the above setup using:

• Algorithm 2 taking z02 = 0, z03 = 0, λ0 = 0, and ρ = 40
for the constraints listed in Remark 4 and ρ = 2 for the
rest. We set the exit tolerance to ε = 10−4.

• The OSQP solver (version 0.6.0) [6]. Problem (3) can
be directly cast as a QP problem by taking the decision
variables as

z = (x0, u0, x1, u1, . . . , xN−1, uN−1, xs, us).

In this case, the Hessian is no longer block diagonal,
which means we cannot use the approach from [23].
However, the QP problem is still sparse (both the Hes-
sian and the matrix that defines the equality constraints
are sparse). Therefore, a sparse solver for general QP
problems should solve it efficiently. A good choice in
our case is OSQP, since it is a well known QP solver
based on ADMM. We use its default options with a few
exceptions: the exit tolerances are all set to 10−4 and
the warmstart procedure is disabled to better compare its
ADMM algorithm with the other alternatives we list.

• Extended state space: we recover a block diagonal Hes-
sian by extending the state space with the artificial refer-
ence. That is, by defining x̂i = (xi, xs) and ûi = (ui, us),
i ∈ ZN−10 , problem (3) can be rewritten so that the
resulting QP has a block diagonal Hessian at the ex-
pense of increasing the number of decision variables and
constraints, including additional constraints that ensure
that xs and us are the same in all the prediction steps.
We solve the resulting QP problem using the sparse
ADMM-based solver from [23], where the matrices are
stored using standard sparse-matrix representations. We
take ρ = 1 and the exit tolerance as ε = 10−4.

• Standard MPC: the ADMM-based solver presented in
[23] for the standard MPC formulation shown in equation
(9) of [23]. This comparison is of interest because, in
terms of iteration complexity, the proposed solver is very
similar to the ADMM-based solver from [23], in that
each iteration of the algorithm requires (i) solving a
system of equations (12) and (ii) computing (8). The
main difference between the two is that Algorithm 2
also requires the evaluation of (10) at each iteration,
which is computationally cheap in comparison to the
other steps. Therefore, the comparison with [23] serves
as an indication of the “price-to-pay” for the inclusion
of the artificial reference. We take ρ = 1 and the exit
tolerance as ε = 10−4.

Remark 8. There are many possible efficient alternatives for
solving (3) other than the ADMM-based approaches discussed
here, including interior point methods [46], active set methods
[47], and even other non-ADMM Lagrangian methods [48].
However, we restrict our comparison here to the use of
ADMM-based approaches since our objective is to evaluate
if the use of the EADMM algorithm is worthwhile when
compared to similar alternatives, and not to determine if it
outclasses other optimization methods.

For the MPCT formulation we take N = 30,

Q = diag(10, 0.05, 0.05, 0.05, 10, 0.05, 0.05, 0.05),

R = diag(0.5, 0.5), S = diag(0.3, 0.3),

T = diag(600, 50, 50, 50, 600, 50, 50, 50).

For the MPC formulation from [23] we take the same N , Q,
R and T shown above. The tests are run on a Linux laptop
(Intel i5 processor) using Matlab MEX files compiled with the
gcc compiler using the O3 flag. With the obvious exception of
OSQP, all solvers where generated using version v0.1.5 of
the SPCIES toolbox [34]. The penalty parameters were hand
tuned to achieve a good performance of the solvers.

Figure 1 shows the results of the tests. Figures 1a and 1b
show the trajectory of the position of the ball in each axis and
the control inputs, respectively, using the MPCT controller.
The trajectories are only shown once because the results using
each of the MPCT solvers are indistinguishable to the naked
eye. The trajectories for the standard MPC formulation are
not shown because we are only interested in its computational
results. They are very similar to the ones obtained with MPCT.
Figures 1c and 1d show the computation time and the number
of iterations of each solver, respectively.

The advantage of the proposed approach can be seen in
its iteration complexity. The average computation times (in
milliseconds) per iteration of the results shown in Figure 1 are
0.0071 for the proposed solver, 0.0062 for the solver from [23]
applied to the standard MPC formulation, 0.0193 for OSQP
and 0.0279 for the extended state space approach. That is,
compared to the solver from [23], the addition of the artificial
reference only increases the computation time per iteration by
15.1% (in this particular example).

However, we find that, in general, the EADMM algorithm
takes more iterations to converge than the other solvers. Even
so, it can still outperform other sparse solvers due to its low
iteration complexity, especially if applied to larger systems
and/or with large prediction horizons, where the advantage
of not storing all the non-zero elements of the matrices
and of performing the matrix-vector operations by direct
identification of the structures becomes more prevalent. For
smaller systems and short prediction horizons, the advantages
of the small memory footprint and the iteration complexity
may not outweigh the higher typical number of iterations. In
any case, the use of one approach or another would have to be
determined in a case by case basis. For instance, in the results
shown in Figure 1 the proposed solver outperforms OSQP and
the sparse solver based on extending the state space, in spite
of it requiring more iterations.
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Fig. 1: Ball and plate system closed-loop tests.
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Fig. 2: Convergence of the SPCIES solvers.

Typically, the number of iterations of first order methods
can become large if there are active constraints in the optimal
solution. As shown in Figure 1b, this was not the case
during the first few sample times, in spite of the control
actions reaching their upper bound. However, this phenomenon
may occur if there are additional active constraints along the
prediction horizon (particularly so if there are active state
constraints). This is true for the proposed solver as well as
for any other ADMM-based approach.

Figure 2 shows the convergence of the decision variables of
the solvers obtained from the SPCIES toolbox to the optimal
solution of their QP problems during the first sample time of
the results shown in Figure 1. For Algorithm 2, decision vari-
able zk1 is used to compute the distance. The optimal solutions
of the QP problems are obtained using the quadprog solver
from Matlab. The results show that the convergence of the
EADMM algorithm is non-monotone and slower than the ones
obtained using ADMM. Non-monotonicity is a phenomenon
found in some classes of first order methods [49].

Further evidence of the good performance of the proposed
solver can be found in [50, §5.8] and in [33], which shows
its implementation in a Raspberry Pi to control a real two-
wheeled inverted pendulum robot in real-time.

VII. CONCLUSIONS

This article presents a sparse solver for the linear MPC
for tracking formulation based on the extended ADMM al-
gorithm. We show how the use of this method, along with
an appropriate selection of decision variables, leads to an
efficient solver with simple matrix structures that can be
exploited to attain a small iteration complexity and memory
footprint. This statement is supported by numerical results
comparing the proposed solver to other ADMM-based ap-
proaches, which suggest that, from a computational point of
view, the proposed approach can provide better results. The
solver is available in the SPCIES toolbox for Matlab [34] at
https://github.com/GepocUS/Spcies.
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