
Automatic Service Agreement Negotiators in Open 
Commerce Environments

Manuel Resinas, Pablo Fernández, and Rafael Corchuelo

ABSTRACT: There is a steady shift in e‑commerce from goods to services that must be 
provisioned according to service agreements. This study focuses on software frameworks 
to develop automated negotiators in open commerce environments. Analysis of the litera‑
ture on automated negotiation and typical case studies led to a catalog of 16 objective 
requirements and a conceptual model that was used to compare 11 state‑of‑the‑art software 
frameworks. None of them was well suited for negotiating service agreements in open 
commerce environments. This motivated work on a reference architecture that provides 
the foundations to develop negotiation systems that address the previous requirements. 
A software framework was devised to validate the proposal by means of case studies. 
The study contributes to the fields of requirements engineering and software design, and 
is expected to support future efforts of practitioners and researchers because its findings 
bridge the gap among the existing automated negotiation techniques and lay the founda‑
tions for developing new software frameworks.

Key woRdS ANd phRASeS: Automated negotiation, electronic services, negotiation 
requirements, reference architecture, service agreements, services science, software 
frameworks. 

E-commerce has evolved from shopping for goods on the Internet to outsourc-
ing electronic services, such as flight reservations, payments, or executing 
business intelligence jobs on the cloud [10, 47, 56]. The focus of the present 
study is on so-called next-generation companies, which rely heavily on the 
automation of business processes that build on services outsourced around the 
world because this enables companies to be more efficient and cost-effective by 
exploiting economies of scale [4, 12, 13, 14, 15, 22, 40, 55]. For instance, Gartner 
predicts that at least 30 percent of the investment in software will go to out-
sourced services instead of product licenses by 2012, and 40 percent of capital 
expenditures will be made for outsourced infrastructure by 2011 [44].

Services science focuses on merging results in computer science, software 
engineering, and classical business sciences so that business requirements 
are better mapped onto technology [5]. The complex issues involved in this 
mapping require the simultaneous development both of business methods 
and of the technology that supports them. Fortunately, the technologies of 
service-oriented architecture (SOA) seem to be helping business analysts 

This work was funded in part by the European Commission 
(FEDER—El Fondo Europeo de Desarrollo Regional), the Spanish Ministry of Sci-
ence and Innovation, and the Andalusian government. The work by Manuel Resinas 
and Pablo Fernández was supported by grants TIN2006–00472 (Web-Factories), 
TIN2009–07366 (SETI), and P07-TIC-2533 (Isabel); the work by Rafael Corchuelo 
was supported by grants TIN2007–64119, P07-TIC-02602, P08-TIC-4100, and 
TIN2008–04718-E (IntegraWeb).



and software architects bridge the gap between the two worlds 
seamlessly [14, 42]. According to Oracle, companies that implement an SOA 
are able to reduce the costs of the integration and maintenance of projects 
by at least 30 percent [58].

However, this is not enough: It is also necessary to be effective, efficient, 
and flexible in the fast-changing conditions of the current market. 
Outsourcing is expected to evolve into dynamic outsourcing, whereby 
automated business processes can search, assess, and select the appropriate 
IT service providers and levels on demand [13, 26]. For dynamic 
outsourcing to become a reality, a number of critical issues must be 
addressed—for example, semantic discovery, service agreement negotiation, 
interoperability, monitoring, management, and governance, to name a few.

In the field of service agreement negotiation, the development of 
protocols, decision-making algorithms, and preferences and agreement 
models with desirable characteristics pose important challenges that have 
stimulated sig-nificant research efforts by the automated negotiation 
research community. However, the successful development of automated 
negotiation systems re-quires an understanding of the whole system as well 
as of the requirements of the negotiation context so that the most 
appropriate negotiation protocol, decision-making algorithms, and model 
are selected and put together in an automated negotiation system [29].

This article takes a software engineering approach in dealing with the 
latter problem. The ultimate goal is to understand the requirements of 
automated negotiation systems used to make service agreements in open 
commerce environments and to provide the foundations for developing 
such systems. The contributions in this article focus on two areas of the 
current software engineering body of knowledge [1].

The first contribution is to the field of requirements engineering. An 
exhaus-tive review of the literature together with analysis of several case 
studies led to the identification of several key requirements in the context of 
automated negotiation of service agreements in open commerce 
environments. Note that according to Bleistein et al., little attention has 
been given to compiling a catalog of requirements for e-business 
applications [9]. The present effort, then, can be seen as a materialization of 
such a catalog for service agreement negotiation systems. The key 
requirements are related to the expressiveness of service agreements, the 
heterogeneity of the parties involved in a negotiation, the lack of complete 
information about them, and the implicit dynamism of open commerce 
environments. Building on these factors, a conceptual model was 
developed based on 16 objective criteria that make it possible to compare 
current and future proposals. This analysis leads to the conclusion that the 
negotiation context, which depends on the user of the automated negotiation 
system and the parties with which the system negotiates, is likely to change 
in open commerce environments. Consequently, automated negotiation sys-
tems for such environments should be able to accommodate all these changes 
without requiring a great deal of effort.

The second contribution pertains to software design. Since there is an 
important need to embrace change, the next logical step is to analyze the 
current literature on software frameworks to develop automated negotiation 
systems. The conclusion is that neither protocol-oriented frameworks nor 



intelligence-oriented frameworks address the aforementioned key require-
ments simultaneously, which shows the conceptual complexity of putting 
together automated negotiation techniques in a unique framework [3, 6, 7, 
24, 30, 32, 35, 43, 45, 52, 54]. This motivated the effort to develop a reference 
architecture for automated negotiation systems. A reference architecture is not 
the description of a concrete system, but a reusable design that defines the 
tasks, grouped into roles, and the interactions that must be implemented in an 
automated negotiation system. It is a foundation for developing automated 
negotiation systems that facilitates their maintainability and their adaptability 
to changes in their context.

Finally, the third contribution is the software framework that has been 
developed. It demonstrates the soundness and usefulness of the reference 
architecture, and, as well, provides a reference implementation in which au-
tomated negotiation techniques (protocols, algorithms, and models) can be 
integrated. It was validated by means of several case studies.

These contributions can be used to support future efforts of practitioners 
and researchers in the automated negotiation field.

Practitioners can use the requirements and the reference architecture to 
set the basis on which new software frameworks for automated negotiation 
systems can be built. Note, too, that a number of protocols, algorithms, and 
models have already been integrated into an accompanying software toolkit. 
A practitioner for whom this toolkit is enough can deploy the framework im-
mediately. Our implementation of the software framework may be an excel-
lent starting point in developing advanced features, such as integration with 
other enterprise systems (e.g., enterprise service buses or business process 
management systems).

Researchers will obtain threefold support from the reference architecture. 
First, the requirements identified may help guide research efforts on new 
negotiation models that deal better with the problems identified regarding 
automated negotiations in open commerce environments. Second, the archi-
tecture may help researchers on automated negotiation to be aware of the 
tasks for which their negotiation model must account. More important, the 
architecture enables researchers to focus on a particular part of an automated 
negotiation system (e.g., world modeling algorithms or response generation 
algorithms). At the same time it bridges the gap between current automated 
negotiation techniques (protocols, algorithms, models), and thus eases the 
reuse of current results in this field. Finally, since there is an implemented 
software framework based on the reference architecture, a researcher who 
works on decision-making can integrate a proposal into the framework, test 
it, and compare the results. This enables comparison of several proposals 
from an empirical point of view, which has usually been a major drawback 
according to the literature surveyed.

Conceptual Model and Requirements for Automated 
Negotiation Systems

The discussion in this section details the conceptual model of an automated 
negotiation system, then analyzes the key problems a service agreement 



negotiation system must face in open commerce environments, and reports 
on 16 requirements for automated negotiation systems to deal with these 
problems. Finally, it reports on the proposals surveyed and analyzes how 
well they support these requirements.

Conceptual Model

Figure 1 sketches a conceptual map regarding negotiation systems that 
derives from the survey of the literature and analysis of several case studies. 

The user of an automated negotiation system defines preferences, namely, the 
data used to ensure that an agreement is reached according to the user’s 
needs. The user initiates the automated negotiation system to negotiate on his 
or her behalf. The automated negotiation system is also provided with party 
references. A party reference gives a means to interact with a party. The user may 
provide party references or they may come from a party as a request to start a 
negotiation.

For each party reference received, the automated negotiation system starts a 
process whose goal is to execute a negotiation with the party whose reference was 
received. a negotiation is a concrete execution of a negotiation protocol played 
by two or more parties. negotiations are configured by a protocol configuration, 
which specifies characteristics of the negotiation protocol for a particular execu-
tion. For instance, they may specify the timeout of the protocol or its security 
features.

The execution of a negotiation involves the exchange of negotiation messages, 
whose specific characteristics are determined by a negotiation protocol. Each 
negotiation message has a performative to express the intention of the sender 
about the message and a message content. Depending on the performative, nego-
tiation messages can be classified as binding negotiation messages, which involve 
a firm commitment with the other party, and nonbinding negotiation messages, 
which do not involve a firm commitment. nonbinding negotiation messages can 
be used to give additional information to the other party or to explore new 
choices without committing to them. This is very useful in dynamic contexts 
in which there are several simultaneous negotiations with different parties and 
the feasibility of committing to an agreement depends on the current state of 
the service provider’s resources.

The message content of a negotiation message is usually a proposal. However, 
other kinds of information can be exchanged, such as threats, rewards, or argu-
ments. A proposal is an offer of an agreement made by one party. It specifies the 
parties to which it pertains and a set of terms. terms designate both functional 
descriptions and nonfunctional guarantees of the service. Some examples of 
usual terms include: “the service interface is specified in the document that is 
available at http://example.org/myservice.wsdl,” “the response time is less 
than 20 ms,” or “the number of service requests is lower than 10 times per 
minute.” Additionally, proposals may also include negotiation data to express 
additional information to guide the negotiation process.

When parties agree on a proposal, an agreement is created. An agreement is a 
document that defines a relationship between parties. Its goal is to define the 
terms that regulate the execution of a service, and it must have a specification 



of the parties involved and a collection of terms, such as those described in 
the proposal. These terms regulate how the execution of the service must be 
carried out in the context of the agreement. In addition, unlike proposals, in 
which the terms can be left open in order to be refined later, agreement terms 
must be fully specified and ambiguities must be avoided.

The execution of a negotiation requires the automated negotiation system to 
make several decisions on the creation of negotiation messages (what negotiation 
message must be sent to the other party), the commitment to binding negotiation 
messages (whether the automated negotiation system must commit to an agree-
ment and when it must do it), and the decommitment from previously created 
agreements. These decisions are supported by the information available to the 
automated negotiation system, which is the set of preferences sent by the user, 
a world model the automated negotiation system may maintain, and external 
factors that may have an influence on the decision, such as the provider’s 
capacity to accept a new agreement.

Finally, the world model maintained by the automated negotiation system may 
comprise models created about the market, other negotiating parties, or the ne-
gotiation domain. To create these models, the automated negotiation system needs 
to gather information from several sources, which include domain experts, public 
information about preferences facilitated by the other parties themselves, external 
information providers, and by means of an analysis of previous negotiations.

Figure 1. Conceptual Map of Automated Negotiation Systems



Key Problems and Requirements

Expressiveness of Service Agreements

The negotiation of a service agreement usually involves such terms as avail-
ability, response time, security, and price. The negotiating parties are able to 
make trade-offs among the terms according to their preferences. Therefore, 
for an automated negotiation system to support expressive-enough 
service agreements, it should:

1.1. Support multiterm negotiation protocols. Not all negotiation 

protocols allow for multiterm service agreements. For instance, 
most auctioning protocols, except for multiattribute auctions, 
only support the negotiation of one term, usually the price [8, 28]. 
Bargaining protocols, which involve exchanging proposals and 
counterproposals among the parties, usually support multiterm 
negotiations.

1.2. Manage expressive preferences. To enable trade-offs, preferences 
must be expressed in a formalism that captures the relationships 
between terms, for example, utility functions, combinations of at-
tributes, or fuzzy constraints [17, 19, 37].

Parties Are Heterogeneous

The best negotiation protocol, decision-making algorithm, preferences model, 
and agreement model depend on the negotiation context, which involves at 
least two stakeholders: the user of the automated negotiation systems and 
the parties with which the system negotiates [29]. The problem is that in open 
commerce environments, this negotiation context is likely to change. These 
changes derive from two sources.

First, in open commerce environments, new parties may appear unex-
pectedly, implement a variety of negotiation protocols, and have diverging 
behaviors during the negotiation. For example, some parties can concede 
more at the beginning of the negotiation, whereas others may concede only 
when the deadline is approaching and express preferences and agreements 
using different models.

Second, the requirements of the user of an automated negotiation system 
have a strong influence on the system because there is a trade-off between 
the expressiveness of the agreement and preferences models and the avail-
ability and complexity of the corresponding decision-making algorithms. 
Therefore, models and algorithms may change depending on the user’s 
needs. The problem here is that the user’s needs are subject to continuous 
adaptation and variation, adding new business rules and regulations, types 
of business-related events, operations, and so forth [41].

Automated negotiation systems in open commerce environments should 
be able to accommodate all these changes without requiring a great devel-



opment effort. Hence, it would be desirable for an automated negotiation 
system to:

2.1. Support multiple negotiation protocols. Since there is no standard 
negotiation protocol, different parties may implement different 
negotiation protocols. An automated negotiation system should 
support several negotiation protocols to avoid losing business 
opportunities.

2.2. Negotiate the negotiation protocol. Although all bargaining 
protocols involve the exchange of proposals between parties, the 
exchange may be carried out without restrictions on the content of 
the proposal and counterproposal or with restrictions on the order 
in which terms are negotiated or on the terms of the proposals [18, 
20, 31]. It is desirable for negotiation systems to be able to choose 
the most suitable negotiation protocol for each context—depend-
ing, for example, on the number of terms under negotiation or the 
negotiation deadline.

2.3. Support multiple decision-making algorithms. There are a 
variety of decision-making algorithms based on game-theoretic ap-
proaches, heuristic approaches, and evolutionary approaches [18, 
19, 21, 33, 37, 38]. Their effectiveness depends on the behavior of 
the other parties [29, 46]. An automated negotiation system should 
support several decision-making algorithms and choose the most 
appropriate one at run time.

2.4. Support multiple agreement models. Agreements can be ex-
pressed using formalisms that range from name-value pairs to 
ontologies or deontic logic [6, 18, 25]. Supporting multiple agree-
ment models enables the user to make a trade-off between the 
expressiveness it requires and the availability and complexity of 
the corresponding decision-making algorithms.

2.5. Support multiple preferences models. There are many formal-
isms to express preferences: utility functions, constraints, fuzzy 
constraints, a combination of attributes, and rules [16, 17, 18, 23, 
24, 33, 37]. Two issues must be considered before deciding which 
formalism is the most appropriate: the negotiation domain and the 
influence of the model on the decision-making algorithms with 
regard to availability and complexity.

2.6. Allow for user preferences about negotiation processes. Usu-
ally, not all parties have the same preferences about a negotiation 
process. Some parties may have a shorter deadline, may be eager 
to reach an agreement, or may be less strict about the agreements 
they accept. Furthermore, the user that sets the preferences may 
be a software system. For instance, a component may analyze the 
current state of the business processes and provide the automated 
negotiation system with the appropriate guidelines for the ne-
gotiation depending on the characteristics and the state of those 
processes (e.g., if a business task is on a slack path for a process 



workflow). This enables the integration of the automated negotia-
tion system with other parts of the IT infrastructure.

Partial Information About Parties

Having information about other parties strengthens one’s negotiating capabil-
ity or, complementarily, weakens others’ capabilities. Unfortunately, automated 
negotiation systems do not usually have complete information about the par-
ties with which they negotiate [11, 37, 59]. Therefore, it would be desirable for 
an automated negotiation system to:

3.1. Manage different types of knowledge about other parties. This 
can be either knowledge about their preferences, knowledge about 
their behavior during the negotiation (e.g., whether they tend to 
concede, their negotiation deadline), and knowledge about the 
party itself (e.g., reputation or geographical location) [39, 59].

3.2. Gather information from different sources. This includes infor-
mation provided by a domain expert. Fatarin,  Sierra, and Jen-
nings propose that a domain expert must provide a measure of 
similarity between values of terms in the negotiation domain [19]. 
There is also information gathered directly from the other party. 
For example, in WS-Agreement, parties’ templates can be used to 
learn what kind of agreements other parties are willing to accept 
[2]. Information may also be gathered from external information 
providers, such as reputation providers.

3.3. Build analysis-based models of parties. Messages exchanged with 
other parties during previous negotiations can be analyzed to learn 
about their preferences and their behavior [11, 59]. This analysis 
can be classified into on-line analysis and off-line analysis, de-
pending on whether the state of current negotiations is taken into 
account [34, 50, 59]. Some proposals use both kinds of analysis; for 
example, the one by Coehoorn and Jennings [11].

Markets Are Dynamic

The idleness of a resource results in a loss of revenue [24]. In consequence, 
providers commonly offer discount prices when their resources are likely to 
become idle. Several providers and consumers usually compete on the same 
services, which makes market conditions extremely volatile. To deal with these 
changing market conditions, an automated negotiation system should:

4.1. Support several negotiations simultaneously. This is desirable 
because it would allow the system to choose the party that offers 
the most profitable agreement.

4.2. Select decision-making algorithms dynamically. When dealing 
with simultaneous negotiations, the state of the negotiations can 



have an influence on the decision-making algorithms used. For 
instance, if the system is carrying out several simultaneous nego-
tiations and finds a very profitable agreement, it can take a tougher 
stance with the other parties. Therefore, it is desirable to be able to 
change the decision-making algorithm at run time, so that it can be 
adapted to changing contexts effectively [46].

4.3. Support decommitment. Decommitting from an agreement in-
volves revoking it and paying a decommit fee [39, 48]. In a dynam-
ic market, more profitable new offers may be found at any time. 
Hence, it is very convenient to be able to decommit from previous 
agreements. This topic is not sufficiently covered in the literature 
and requires further research before a complete framework can be 
developed.

4.4. Supervised creation of agreements. To avoid committing to agree-
ments that cannot be satisfied, the automated negotiation system 
should be supervised by external elements, such as a capacity 
estimator to determine whether an agreement can be accepted or 
not [36].

4.5. Build market models. The characteristics of the market may have 
an influence on the negotiation process [50]. Therefore, it is con-
venient for an automated negotiation system to build models of 
the market to obtain information, such as the reservation price of 
a product or the chances that new parties will be found during a 
negotiation [34].

Analysis of Current Solutions

The key problems described in the previous section provide a number of 
objective requirements that can be used to compare current state-of-the-art 
automated negotiation frameworks. Table 1 and Table 2 summarize the com-
parison: a  in a cell means that the corresponding proposal provides explicit 
support for the corresponding feature; a ~ indicates that it addresses it par-
tially; an  indicates that the feature is not supported; NA means that there 
is no information available. (Note that proposals such as those of Kowalczyk 
and of Su et al. are not taken into account because they are specific-purpose 
negotiation systems, not software frameworks [33, 53]. They are not intended 
to be the foundation for building other negotiation systems, which is the focus 
in this article.)

Protocol-Oriented Frameworks

These frameworks provide the brawn of a negotiation system because they 
deal with the negotiation protocol and low-level interoperability issues.

Some of them define a negotiation host or marketplace that acts as a me-
diator among the negotiating parties. For instance, Kim and Segev describe a 
Web services–enabled marketplace architecture, which enables the automation 



Table 1. Comparison of Automated Negotiation Frameworks (I).

Proposal (1.1) (1.2) (2.1) (2.2) (2.3) (2.4) (2.5) (2.6)

Kim and Segev [32]     	 	 	 
Rinderle and     	 	 	 
 Benyoucef [45]
Bartolini et al. [6]     	 	 	 
Silkroad [52]     	 	 	 
Ashri et al. [3]  NA   NA NA NA NA
Ludwig et al. [35]  	 	   	 	 
pANdA [24]  	 	   	 	 
dynamiCS [54]  NA     NA NA
Benyoucef and NA NA     NA NA
 Verrons [7]
Jonker et al. [30]   NA   	 	 
paurobally et al. [43] 	 	   ~  ~ 

(1.1) Support multiterm negotiation protocols 
(1.2) Manage expressive agreement preferences
(2.1) Multiple protocol support 
(2.2) Negotiability of protocols 
(2.3) Multiple decision‑making algorithms
(2.4) Support multiple agreement models
(2.5) Support multiple preference models
(2.6) Allow user preferences about negotiation process

Table 2. Comparison of Automated Negotiation Frameworks (II).

Proposal (3.1) (3.2) (3.3) (4.1) (4.2) (4.3) (4.4) (4.5)

Kim and Segev [32] 	 	 	 	 	 	 	 
Rinderle and 	 	 	 	 	 	 	 
 Benyoucef [45]
Bartolini et al. [6] 	 	 	 	 	 	 	 
Silkroad [52] 	 	 	 	 	 	 	 
Ashri et al. [3]     	 	 	 
Ludwig et al. [35]  	  	 	 	 	 
pANdA [24]   ~   	  
dynamiCS [54]  	  	  	  
Benyoucef and NA   	    
 Verrons [7]
Jonker et al. [30]   	 	 	 	 	 
paurobally et al. [43]  	  ~ 	 	 	 

(3.1) Manage different types of knowledge about parties 
(3.2) Gather information from different sources 
(3.3) Build analysis‑based models 
(4.1) Support several negotiations simultaneously 
(4.2) Select decision‑making algorithms dynamically
(4.3) Support decommitment
(4.4) Supervised creation of agreements
(4.5) Build market models



of B2B negotiations by defining executable negotiation protocols in Business 
Process Execution Language (BPEL) [32]. Rinderle and Benyoucef propose 
a service-oriented marketplace to manage negotiation protocols specified as 
state charts that are later mapped onto BPEL [45]. Similarly, Silkroad relies on 
a meta-model, the so-called roadmap, that is intended to capture the charac-
teristics of a negotiation process, and an application framework, the so-called 
skeleton, that provides several modular and configurable negotiation service 
components [52].

Other authors focus on describing the modules required to manage ne-
gotiation protocols, not marketplaces. For instance, Bartolini, Preist, and 
Jennings present a taxonomy of rules that capture a variety of negotiation 
mechanisms and a simple interaction protocol based on FIPA (Foundation 
for Intelligent Agents) specifications that is used together with the rules to 
define negotiation protocols [6]. They also define a set of roles and an OWL 
(Web Ontology Language)–based language to express negotiation proposals 
and agreements [6].

Intelligence-Oriented Frameworks

These frameworks provide the brains of a negotiation system because they 
focus on decision-making and world-modeling. Note, however, that a few of 
them also deal with protocols, with an emphasis on decoupling them from 
the intelligence algorithms used [3, 24, 54].

Ashri, Rahwan, and Luck describe an agent-oriented architecture at a very 
high level of abstraction, which means that they leave unspecified such aspects 
as the preferences and agreement model [3]. Their architecture also lacks some 
advanced features, such as the negotiability of protocols, gathering information 
from different sources, and mechanisms to deal with dynamic markets.

Ludwig et al. present a framework for service agreement negotiation in 
service grids [35]. It builds on WS-Agreement and provides a protocol service 
provider and a decision-making service provider to deal with the negotiation 
process [2]. Unfortunately, it only supports one agreement and preference 
model, and it cannot deal with partial information and dynamic markets.

PANDA is a framework that mixes utility functions and rules to carry out 
the decision-making process [24]. The decision-making component relies on 
rules, utility functions, and an object pool with several estimation libraries, the 
negotiation history, and the current offer. It cannot deal with heterogeneous 
parties because it does not allow protocols to be negotiated or multiple pref-
erence and agreement models. Nor does it deal with partial information, and 
the object pool, an important element used to build analysis-based models, is 
not implemented, but only vaguely specified. Although this framework is ap-
propriate for dynamic markets, it does not enable selection of decision-making 
algorithms at runtime; neither does it support decommitting from previous 
agreements or build market models.

DynamiCS is an actor-based framework developed by Tu et al. [54]. It 
makes a clear distinction between the negotiation protocol and the decision-
making model, and it uses a plug-in mechanism to support new protocols and 



strategies. It does not allow protocols to be negotiated or multiple agreement 
models. Furthermore, the preferences are unspecified, and it is not well suited 
to deal with partial information or cope with dynamic markets.

Benyoucef and Verrons present a framework based on the separation of 
protocols and strategies within a service-oriented architecture that facilitates 
deployment and integration with current infrastructures [7]. It does not pro-
vide data models for agreements or preferences; and it is unclear whether it 
supports multiterm negotiations or can manage different types of knowledge 
about parties. Another drawback is that the services that can be composed 
into the system are vaguely defined. In addition, it does not seem to be able to 
build models of parties or markets, and it does not provide any mechanisms to 
enable several concurrent negotiations or to decommit from an agreement.

Jonker, Robu, and Treur describe a component-based generic agent archi-
tecture for multiattribute negotiation [30]. Unlike other proposals, it provides 
advanced capabilities to deal with partial information about other parties, and 
it also copes with multiterm negotiations successfully. However, it has prob-
lems when negotiating with heterogeneous parties in dynamic environments 
because it only supports one model to express agreements and preferences. 
Whether it supports several negotiation protocols is unclear, and the frame-
work does not support mechanisms to deal with dynamic markets.

Paurobally, Tamma, and Wooldridge describe a framework for Web service 
negotiation in grids [43]. It deals with the expressiveness of service agree-
ments successfully but fails to cope with heterogeneous parties because it only 
supports a negotiation protocol and agreement model. Although it supports 
multiple preference models and intelligence algorithms, it seems that they 
are predefined and cannot be changed easily. It also has some problems when 
dealing with partial information. Regarding their support for dynamic mar-
kets, it allows agreements to be created in a supervised manner by means of 
the so-called WS-DAIOnt service. Although the framework seems to support 
several simultaneous negotiations, the authors do not delve into this issue.

Reference Architecture

The NegoFAST reference architecture provides the foundations for building 
general-purpose negotiation systems that address the requirements identified 
in the previous section. Note that a reference architecture is not the description 
of a concrete system, but a reusable design that defines the tasks automated 
negotiation systems must provide and how they are interrelated. In this sense, 
the reference architecture can be regarded as a conceptual framework that 
identifies the key tasks of an automated negotiation system rather than as the 
description of a specific automated negotiation system.

The design goal of NegoFAST is twofold. On the one hand, NegoFAST 
is designed to promote the reusability of its elements, so that they may be 
freely integrated as a whole to produce automated negotiation systems. On 
the other hand, NegoFAST is designed to be flexible enough to adapt to the 
models, algorithms, and protocols best suited for each negotiation scenario. 
To this end, NegoFAST is divided into a protocol-independent part called 



NegoFAST-Core and protocol-specific extensions. Each extension deals with 
a group of similar negotiation protocols (e.g., extensions for bargaining proto-
cols, auction protocols, or argumentation protocols). This article describes an 
extension for bargaining protocols (NegoFAST-Bargaining). NegoFAST also 
includes a data model that defines the data that are exchanged between the 
elements of the reference architecture.

NegoFAST -Core

Figure 2 depicts the NegoFAST-Core reference architecture. It is divided into 
four modules referred to as Protocol Management, Coordination, World Modeling, 
and decision-Making. Each module is composed of several roles that define a 
group of related tasks, and they are depicted as light gray boxes. The arrows 
are interactions that represent exchanges of messages between the roles. The 
environment is divided into several resources that are depicted as white boxes. 

Figure 2. NegoFAST -Core Reference Architecture



The elements external to the architecture are depicted as dark gray boxes. 
Four of them are protocol-dependent and must be refined in protocol-specific 
extensions, namely: Protocolhandler, negotiationCoordinator, ResponseGenerator, 
and negotiationContextdata. The remaining elements are protocol-independent. 
A sequence diagram of a typical interaction between the roles in NegoFAST-
Core is depicted in Figure 3.

Protocol Management Module

The Protocol Management module deals with the selection and execution of 
negotiation protocols. It is composed of two roles: Protocolnegotiator and Pro-
tocolhandler. A Protocolnegotiator interacts with the other party to select and 
configure, if necessary, the negotiation protocol to be used. Consequently, it 
should implement an interaction protocol like SNego (REQ 2.2) [60].

A Protocolhandler makes the automated negotiation system independent 
of the negotiation protocol selected by adapting the negotiation protocol into 
a generic negotiation protocol implemented by the negotiationCoordinator. It 
also deals with communication errors that may occur during the negotiation 
and adapts messages to the NegoFAST data model. Adding support for a new 
negotiation protocol just involves implementing a new Protocolhandler that 
adapts it to the generic negotiation protocol and the NegoFAST data model. If 
the negotiation protocol cannot be adapted to the generic negotiation protocol, 
a new negotiationCoordinator must be implemented.

Note that a system may have several Protocolhandlers. Thus a Protocol-
negotiator must choose among them in each negotiation (REQ 2.1).

Decision-Making Module

The Decision-Making module provides mechanisms to determine the behav-
ior of the automated negotiation system during a negotiation. The module 
is composed of several ResponseGenerators, one Commithandler, and several 
Commitadvisors. Since the evaluation of a proposal is not a decision, it is not 
carried out by the decision-making module but by the PreferencesResource. A 
ResponseGenerator decides which negotiation messages must be sent. It is a 
protocol-specific role that must be detailed in protocol-specific extensions. 
There may be many ResponseGenerators in the same system to support multiple 
decision-making algorithms (REQ 2.3).

The Commithandler decides when the system must commit to an agree-
ment by sending a binding negotiation message. It also decides whether the 
system must decommit from an existing agreement (REQ 4.3). At run time, 
there must be just one Commithandler to avoid concurrency problems with 
simultaneous negotiations (e.g., two agreements accepted at the same time). 
Optionally, the Commithandler may use one or more Commitadvisors to analyze 
the feasibility of accepting an agreement. They make their analysis based on 
domain-specific knowledge. For example, a Commitadvisor may interact with 



Fi
g

u
re

 3
. N

eg
o

FA
S

T
-C

o
re

 R
ef

er
en

ce
 A

rc
hi

te
ct

u
re

 (
se

q
u

en
ce

 d
ia

g
ra

m
)



the provider’s resources to analyze whether it has enough capacity to provi-
sion a proposal (REQ 4.4).

The separation of the decision-making into these roles enhances the reus-
ability of the different decision-making algorithms and makes it easier to adapt 
the system to changes in its negotiation context (REQ 2.3).

World Modeling Module

The World Modeling module gathers, analyzes, and manages useful informa-
tion with which to make decisions during a negotiation. It is composed of an 
Inquirer, an Informant, and several WorldModellers. Inquirer and Informant enable 
polling the other parties to get information about them and the characteristics 
of the service demanded or offered. Inquirer gathers information from other 
parties by polling their Informants. The information gathered from other ne-
gotiating parties is stored in resource PartyContextdata.

An automated negotiation system may have several WorldModellers that 
can be grouped into two categories: WorldModellers developed by domain 
experts that build models of the negotiation domain (e.g., a similarity measure 
between values of terms in the negotiation domain [19]), and WorldModellers 
that gather information from ExternalInformationProviders and messages 
exchanged in negotiations (REQ 3.2) and analyze them to build models of 
parties or the market (REQ 4.5) [11, 34, 46, 50, 59]. Note that it is important 
for market modelers to have access to ExternalInformationProviders to gather 
market information, such as querying a service registry to obtain information 
about the number of prospective providers (or competitors) in the market, 
or querying several auction sites to gather information about the results of 
recent auctions to provide measures, such as recommended maximum prices 
for an auction [27, 50].

To update their models, WorldModellers can perform off-line analysis of pre-
vious interactions using the negotiationhistory or on-line analysis by means of 
a publish/subscribe mechanism provided by the environmental resources that 
notifies them when an event relevant for their models takes place (REQ 3.3).

Note that this design based on independent WorldModellers provides a 
flexible structure with which to manage different types of knowledge about 
parties easily (REQ 3.1), since each WorldModeller can focus on one type of 
knowledge about parties.

Coordination Module

The Coordination module coordinates the three levels of coordination contexts 
defined in NegoFAST-Core (system context, party context, negotiation context) 
by means of the three roles of which this module is composed.

systemCoordinator coordinates the interactions between the system and the 
user, the initialization and termination of the system, and the reception of 
party references from the user, the Protocolnegotiator, and the Protocolhandler. 
The references are sent to the PartyCoordinator to be processed. It also updates 
the systemContextdata.



PartyCoordinator manages the processing of a party reference before the 
negotiation to get information about the party via an Inquirer, decide the nego-
tiation protocol by means of a Protocolnegotiator, and delegate the negotiation 
itself to a negotiationCoordinator. It also updates the PartyContextdata.

negotiationCoordinator coordinates the execution of a negotiation by act-
ing as a bridge between the Protocolhandler and the ResponseGenerator. It 
invokes the Commithandler when an approval to send a binding negotia-
tion message is necessary. It stores the status of the negotiation in resource 
negotiationContextdata.

Environmental Resources

The environmental resources in the NegoFAST-Core reference architecture are 
data stores that can be read, modified, or both by the other roles. In addition, 
they provide a publish/subscribe mechanism to notify the roles when events 
take place. Environmental resources can be grouped into resources that are 
reinitialized in each execution of the system and resources that keep their 
information between different executions.

The former are the agreementsResource, which stores all of the agreements 
made by the system so that they can be analyzed on the fly—for example, to de-
cide whether it is convenient to decommit from an agreement. The Preferences-
Resource stores the users’ preferences and allows the other roles to evaluate 
and compare agreements and proposals. systemContextdata, PartyContextdata, 
and negotiationContextdata store information regarding the whole automated 
negotiation system (e.g., the time when the system was initialized, known 
party references), each negotiating party (e.g., the information gathered by the 
Inquirer, the negotiation protocol selected, the result of the negotiation), and 
each negotiation (e.g., its current state, the negotiation messages exchanged 
with the other parties).

The latter are the WorldModel, which stores the knowledge generated by 
the WorldModellers, and the negotiationhistory, which allows it to build models 
based on previous interactions.

NegoFAST -Bargaining

The NegoFAST-Bargaining reference architecture extends NegoFAST-Core 
to deal with the specific requirements of concurrent bargaining negotiations 
(see Figure 4). A sequence diagram of a typical interaction between the roles 
in NegoFAST-Bargaining is depicted in Figure 5.

ProtocolHandler

The Protocolhandler must adapt bargaining protocols into a generic negotiation 
protocol with the following characteristics: it is bilateral (i.e., there is only an 
initiator and a responder), it is sequential (the same party cannot send two 
negotiation messages in a row except for withdraw and cancellation messages), 



and it is proposal-based (the message content is composed of proposals only. 
In NegoFAST-Bargaining, the Protocolhandler is refined into a specific-purpose 
role called BargainingProtocolhandler.

NegotiationCoordinator

The negotiationCoordinator must be designed to support concurrent bilateral 
negotiations (REQ 4.1). To this end, it is refined into Bargaining Coordinator, 
Bilateral negotiator, and PoliciesManager. BargainingCoordinator orches-
trates the Bilateralnegotiator, the Commithandler, and the PartyCoordina-
tor, and stores the current state of the concurrent negotiations in resource 
BargainingContextdata.

Bilateralnegotiator carries out a single bilateral negotiation by orchestrat-
ing the BargainingProtocolhandler and the Performativeselector. It communi-
cates with the BargainingCoordinator to ask for approval before sending a 
binding negotiation message, and it receives negotiation policies from the 
PoliciesManager.

PoliciesManager uses the negotiation guidelines provided by the user’s 
preferences together with the current state of the negotiations to determine spe-
cific negotiation policies that will guide the behavior of the ResponseGenerator 
(i.e., whether it should concede in the next proposal and how much it should 

Figure 4. NegoFAST -Bargaining Reference Architecture



Fi
g

u
re

 5
. N

eg
o

FA
S

T
-B

a
rg

a
in

in
g

 R
ef

er
en

ce
 A

rc
hi

te
ct

u
re

 (
se

q
u

en
ce

 d
ia

g
ra

m
)



concede) during the negotiation and sends them to the Bilateralnegotiators. By 
means of the negotiation policies, the PoliciesManager may guide the behavior 
of one negotiation based on how well the other negotiations are performing 
and, hence, properly support concurrent bilateral negotiations (REQ 4.1). For 
instance, if one negotiation is performing particularly well, (i.e., the proposals 
from the other party are very appealing), the negotiation policies of the other 
concurrent negotiations can be set to make the ResponseGenerator concede 
less. These negotiation policies are also used to ensure that the conduct of 
negotiations complies with the negotiation guidelines provided in the user’s 
preferences (REQ 2.6).

Response Generator

Since negotiation messages are composed of a performative and a proposal, the 
ResponseGenerator can be refined into the Performativeselector, which selects the 
performative to be used, and the BuilderManager and ProposalBuilders, which 
create the accompanying proposal.

More specifically, the BuilderManager selects the most appropriate Proposal-
Builder to create a new proposal. Each ProposalBuilder implements a decision-
making algorithm that creates the proposals to be sent to the other party [18, 
19, 33, 37]. Therefore, an automated negotiation system may have several 
ProposalBuilders that implement different decision-making algorithms (REQ 
2.3), and the BuilderManager can choose dynamically which one should be 
used to create the proposal (REQ 4.2), for instance, using a technique like the 
one described by Ros and Sierra [46]. The BuilderManager can also configure 
the ProposalBuilder according to the aforementioned negotiation policies.

Negotiation Context Data

Environmental resource negotiationContextdata is extended by resource Bar-
gainingContextdata to store and provide information about the status of current 
bargaining negotiations.

Data Model

The main contribution of the NegoFAST data model is that it defines a generic 
model that specifies the main concepts of an automated negotiation system 
(preferences, agreements, proposals, negotiation messages, and information 
about parties) independently of the formalism used to express them (see Fig-
ure 6). The concepts of the generic model are parametric. Therefore, creating 
a concrete model involves binding the parameters of the generic model to the 
concrete formalism used in the concrete model. Consequently, preferences 
and agreements can be as expressive as necessary, since any formalism (utility 
functions, rules, name-value pairs, constraints, fuzzy constraints, combinations 



Fi
g

u
re

 6
. P

re
fe

re
nc

e,
 A

g
re

em
en

t,
 a

nd
 P

ro
p

o
sa

l M
o

d
el

s



of attributes) can be used provided that it complies with the following condi-
tions (REQ 1.2):

• The	formalism	must	extend	the	corresponding	generic	elements:
IStatement for formalisms used to express preferences and information
about parties, and ITerm for formalisms used to express agreements or
proposals (see Figure 6).

• For	each	pair	of	preferences	model	and	agreement	model,	an	as-
sessment mechanism (IAssessmentMechanism) must be defined that
evaluates and compares two proposals that follow the given agree-
ment model in the context of some preferences that follow the given
preferences model.

The generic model itself can be extended to support advanced features. For 
instance, terms can be extended to add compensation clauses or proposals can 
be extended to include additional negotiation data about the terms specified 
in the proposal.

The main concepts of the generic data model are the following:

• Preferences	(interface	IPreferencesDocument). These are composed
of three sets of statements (interface IStatement) about agreement-
related features of the service to be provided, the requirements on
other parties, and the negotiation guidelines that the automated
negotiation system must follow. To allow different formalisms to ex-
press preferences, they are parameterized by the type of statements,
such as utility functions, constraints, pair name-value, or rules
(REQ 2.5). Note that the preferences about the negotiation process
(the negotiation guidelines) are considered at the same level as the
preferences about the service or about the other parties. This enables
the definition of preferences that guide the behavior of the automat-
ed negotiation system, such as deadline, number of agreements to
reach, and eagerness to reach an agreement (REQ 2.6).

• Agreements	and	proposals	(interfaces	IAgreement and IProposal).
These are composed of a set of terms (REQ 1.1) and parameterized
by the type of terms they contain. Terms (interface ITerm) specify
constraints over some agreement-related features with which a
party must comply and are parameterized by the type of constraint
they enclose—for example, equality (see the concrete data model in
Figure 6), constraints over one attribute, constraints over several at-
tributes, or fuzzy constraints (REQ 2.4).

• Negotiation	messages	(interface	INegotiationMessage). These
consist of a performative—for example, propose, accept, or commit
(interface performative)—which must be refined by protocol-specific
extensions (interface Bargainingperformative), and the contents of the
message itself (interface IMessageContent), which is a tag interface that
indicates which elements may be part of a negotiation message. Ne-
gotiation messages are parameterized by the type of their contents.



• Information	about	parties	(interface	IPartyInformation). This mod-
els the public information offered by the parties about their prefer-
ences and is obtained by means of role Inquirer. Like preferences, the
party information is composed of two different sets of statements—
requirements and features—and, also like preferences, it is param-
eterized by the type of statement used to express them. For instance,
in Figure 6, a mix of weighted utility and name-value pairs is used.

Validation

To prove the soundness and usefulness of the NegoFAST reference architecture, 
the NegoFAST framework was designed and implemented to help validate 
the contributions by means of several case studies, namely:

• Computing	job	outsourcing	(Case	1). This case study is developed
in the context of a company that outsources computing power to run
computing jobs (e.g., business intelligence jobs). Its goal is to imple-
ment an automated negotiation system for a computing job submit-
ter that negotiates simultaneously with several job-hosting services
to reach an agreement on the resources and cost required to execute
one job.

• Computing	job-hosting	service	(Case	2). This case study is similar
to the previous one, but it focuses on the job-hosting service that
negotiates with several computing job submitters.

• Evolutive	equilibrium	(Case	3). The goal of this case study is to
show how to integrate the NegoFAST framework with a Java frame-
work for genetic algorithms in order to apply a known evolutive
approach to calculate the equilibrium among strategies.

• Scheduling	meetings	(Case	4). This case study focuses on the imple-
mentation of a mechanism to schedule meetings by means of the
multiagent negotiations described by Wainer, Ferreira, and Constan-
tino [57].

The goal of these case studies is threefold. First, implementing the case 
studies shows that the NegoFAST reference architecture can be translated into 
an implementation framework that can be used to effectively build automated 
negotiation systems.

Second, these case studies make it possible to check that both the refer-
ence architecture and the framework support the requirements described in 
the discussion of the background of automated negotiation systems. Table 3 
summarizes the requirements covered by the different case studies. Note that 
Requirements 2.4 and 2.5 are covered by Case 1 and Case 4 together because 
each of them implements a different agreement and preferences model. (Al-
though Requirements 3.2 and 4.5 have not been included in any of the case 
studies, the framework provides some specific market model algorithms [49].) 
Finally, no validation has been done regarding decommitment because the 



current version provides very little support for it. This topic is not sufficiently 
covered in the literature and requires further research before a complete 
framework can be developed.

Third, the careful selection of these four case studies makes it possible to 
check desirable nonfunctional properties of the framework: Case 2 (computing 
job-hosting service) was chosen to test the reusability of the framework because 
it is a similar scenario with differences regarding the decision-making roles; 
Case 3 (evolutive equilibrium) was chosen to test the ability of the framework 
to be integrated with other systems, an important feature in a realistic scenario; 
and Case 3 (evolutive equilibrium) and Case 4 (scheduling meetings) were 
chosen to test the adaptability of the framework to new scenarios.

These case studies were implemented in two stages. First, August, a proof-
of-concept implementation of the NegoFAST framework, was developed using 
Java 1.5. August provides a reference implementation of the interfaces and 
generic data model specified in the NegoFAST framework. August was used 
to implement automated negotiation systems for the case studies.

Computing Job Outsourcing (Case 1)

This case study focuses on the negotiation of an agreement between a com-
puting job submitter and several job-hosting services that need to agree on 
the job to be executed, the resources required, or scheduling requirements [2]. 
Figure 7 illustrates this scenario, and Figure 8 depicts its component diagram. 
First, the job submitter sends its preferences, which include both requirements 
about the job execution and guidelines regarding the negotiation process, to its 

Table 3. Requirements Covered by Case Studies.

Requirement Case 1 Case 2 Case 3 Case 4

(1.1) Support multiterm negotiation protocols 	 	 
(1.2) Manage expressive preferences models 	 	 
(2.1) Support multiple protocols 	 
(2.2) Negotiate negotiation protocol 	 
(2.3) Support multiple negotiation intelligent 	 	 
 algorithms
(2.4) Support multiple agreement models 	 
(2.5) Support multiple preferences models 	 
(2.6) Allow user preferences about negotiation 	 	 
 process
(3.1) Manage different types of knowledge 
 about parties
(3.2) Gather information from different sources 
(3.3) Build analysis‑based models 	
(4.1) Support several simultaneous negotiations 	 	
(4.2) Select intelligence algorithms dynamically 	
(4.3) Support decommitment 
(4.4) Supervised creation of agreements 	
(4.5) Build market models 



automated negotiation system. In this case study, four guidelines are defined 
to control the negotiation process: negotiation deadline, number of agreements 
to reach, eagerness to reach an agreement, and minimum utility threshold. 
Second, when the automated negotiation system receives references to job-
hosting services, it starts bilateral negotiations with them. When an agreement 
is reached, the automated negotiation system sends the agreement to the job 

Figure 7. Computing Job Submission Scenario

Figure 8. Automated Negotiation System for Computing Job 
Submission



submitter. Finally, the job submitter sends the job to the job-hosting service, 
which executes it following the terms established in the agreement.

The automated negotiation system of this case study uses a common for-
malism to express preferences and agreements, which is the concrete data 
model depicted in Figure 6. Preferences are expressed as a mixture of weighted 
utility functions, which comprises an expressive preference model (REQ 1.2), 
(statements of type IweightedUtility) for requirements and features, and name-
value pairs (statements of type INameValue) for guidelines. Both agreements 
and proposals are expressed as equality constraints (interface Iequals). This is 
implemented by extending ITerm with interface ITermLite, which is parameterized 
by interface Iequals. An assessment mechanism (AssessmentLite) is implemented 
to evaluate the agreements and proposals with the weighted utility functions 
defined in the preferences.

The automated negotiation system supports the multiterm negotiation 
protocol described by Faratin et al. [18] (REQ 1.1), which is a bargaining 
negotiation protocol in which both parties exchange binding proposals until 
an agreement is reached or one party decides to finish the negotiation. This 
support is implemented in the BargainingProtocolhandler. In addition, a proof-
of-concept Protocolnegotiator is implemented based on the SNego protocol 
[60] (REQ 2.2). SNego is a protocol used to choose an option between a set of 
alternatives—in the present case, to choose a negotiation protocol from a set 
of alternative negotiation protocols.

Regarding the decision-making algorithm to create proposals, two algo-
rithms are implemented (REQ 2.3). The first (InitialBuilder) creates a proposal by 
selecting the values that maximize the utility. The second (NdFBuilder) imple-
ments the decision-making algorithms proposed by Faratin et al. based on ne-
gotiation decision functions [18]. The dynamic selection of the decision-making 
algorithm is implemented in the BuilderManager, which selects InitialBuilder at 
the beginning of the negotiation. As the negotiation goes on, it starts selecting 
NdFBuilder (REQ 4.2). The BuilderManager is responsible for configuring the 
ProposalBuilders with the policies provided by the Policies Manager based on 
the user’s preferences (threshold, deadline, agreementsNumber, eagerness) 
(REQ 2.6).

Finally, the decision to commit to an agreement is made by Commit handler 
based on decision points. When a decision point takes place, some binding 
negotiation messages are approved and the others are rejected. In the imple-
mentation, decision points take place when either the number of binding 
negotiation messages waiting for approval exceeds a certain threshold or the 
negotiation deadline is close. This Commithandler also works as a coordina-
tion mechanism for the several simultaneous negotiations to ensure that the 
number of agreements reached complies with the preferences given by the 
user (REQ 4.1).

Computing Job-Hosting Service (Case 2)

To illustrate the reusability of the elements of the NegoFAST framework, the 
automated negotiation system described above was taken as a starting point 



for analyzing the additional development that involves changing it to negotiate 
on behalf of the job-hosting service instead of the computing job submitter. 
In particular, the decision-making model was changed to a new one inspired 
by Nash’s bargaining solution, which has no restrictions on the number of 
agreements that can be reached, provided that the hosting service has enough 
resources to execute it [38].

Since this decision-making model is based on the same formalism to express 
preferences and agreements as the one in the previous case study (REQ 1.2), 
the concrete model to express them can be reused. Similarly, the implementa-
tion of the BargainingProtocolhandler (REQ 1.1) and the Protocolnegotiator (REQ 
2.2) can be reused as well because the same negotiation protocols can be used 
in this case study. Finally, the implementation of the PoliciesManager can also 
be reused because the same policies are valid for the new decision-making 
model (REQ 2.6), except for policy agreementsNumber, which is ignored by 
the Commithandler.

In contrast, new implementations of the decision-making roles must 
be provided. Namely, a new ProposalBuilder (class NashInspiredBuilder) 
to implement an algorithm inspired on the Nash bargaining solution that 
concedes in each proposal by trying to maximize the product of both utility 
functions; a new BuilderManager (class SimpleBuilderManager) to use the 
Nash-inspired builder instead of the negotiation decision functions builder; 
and a new Commithandler (class ServerCommitHandler) so as not to impose 
any restrictions on the number of agreements that can be reached. Further-
more, this Server Commit Handler uses a Commitadvisor to evaluate whether 
the job-hosting service can accept an agreement given the currently available 
resources (REQ 4.4).

Finally, note that the NashInspiredBuilder requires building an analysis-
based model (REQ 3.3) to estimate the utility function of the other party. This 
is implemented by means of a WorldModeller (UtilityFunctionEstimator) that 
uses the on-line learning mechanism described by Ros and Sierra to deduce 
the importance the other party gives to the negotiation terms based on the 
idea that the most important attributes for the other party are those with less 
variations between proposals [46].

Evolutive Equilibrium (Case 3)

Informally, a set of decision-making strategies are in equilibrium if each party 
has chosen a strategy and neither party can benefit by changing its strategy 
while the other players keep theirs unchanged. One approach to calculate 
equilibrium strategies is provided by the so-called evolutionarily stable strate-
gies of Smith and Price [51]. In the present case study, the focus of interest is 
on building a system that applies a known evolutive approach to calculate the 
equilibrium among decision-making strategies based on negotiation decision 
functions [18, 21].

To this end, the NegoFAST framework is used to build a lightweight auto-
mated negotiation system that represents the individuals of both populations 
(consumer and provider) during the execution of the genetic algorithm and 



integrate it with JGAP, a Java framework to implement genetic algorithms (see 
Figure 9). The integration is carried out by developing a component (ANSFit-
nessFunction) that acts as a user of the NegoFAST framework. In each iteration 
of the algorithm, this component receives an individual’s chromosome, which 
encodes the decision-making strategy, from the genetic algorithm system and 
maps it onto the preferences of each negotiator. After the negotiations, it com-
putes the fitness function of each individual as the average utility obtained by 
the individual in the negotiations with the individuals of the other population. 
As iterations proceed, the decision-making strategies of all consumers and 
providers will converge to evolutionarily stable strategies.

Since a lightweight automated negotiation system that uses negotiation 
decision functions is needed, a simplified version of the automated negotiation 
system described in the first case study (REQ 1.1, REQ 1.2, REQ 2.6) is used. 
Specifically, the Protocolnegotiator and the multiple decision-making algorithms 
are removed (i.e., just the NDFBuilder is retained), and the Commithandler is 
simplified to commit to any agreement with a utility higher than the utility of 
the potential response. Finally, a new implementation of the BuilderManager 
is required to select the NDFBuilder in all cases.

Scheduling Meetings (Case 4)

This case study focuses on the implementation of a mechanism to schedule 
meetings by means of the multiagent negotiations described by Wainer et al. 
[57]. This case study can be used as an example of a significantly different 
formalism to express agreements and preferences, as well as a negotiation 
protocol (see Figure 10). Specifically, preferences and features are expressed 
as TimeSlotpreferences, a domain-specific preference in which a value is as-
signed to a specific time slot (REQ 2.5). Preferences guidelines are expressed 
as name-value pairs. However, in this case study, guidelines specify the type 
of negotiation the negotiator will carry out.

Proposals are expressed as a mixture of equality constraints to specify the 
length of a meeting and the beginning and ending of the time window in which 

Figure 9. Integration of NegoFAST with JGAP



Fi
g

u
re

 1
0

. P
re

fe
re

nc
e 

a
nd

 P
ro

p
o

sa
l M

o
d

el
s 

o
f 

Ca
se

 4
 (

sc
he

d
u

lin
g

 m
ee

ti
ng

s)



it must take place, and a domain-specific term to specify a set of alternative 
time intervals for the meeting (TermAltIntervals) (REQ 2.4).

Meetingprotocolhandler implements the negotiation protocol described by 
Wainer et al. [57] (REQ 2.1). In this case, the Protocolhandler has to coordinate 
the submission and reception of proposals to and from participants.

Regarding the decision-making algorithm to create proposals, three algo-
rithms are implemented (REQ 2.3) based on those described by Wainer et al. 
[57], namely: laconic, egotistic, and deceiving. The BuilderManager selects one 
of them based on the guidelines provided by the user’s preferences. In addi-
tion, two WorldModellers have been developed to control the time slots sent 
to the other parties or suggested by them.

Conclusions

The present article focuses on the problem of building automated service 
agreement negotiation systems in open commerce environments. Services sci-
ence brings together current work in computer science, software engineering, 
and more classical business-supporting sciences, such as operations research, 
management, or business strategy, to develop the skills required in a services-
led economy. Not only is it important to be able to map business requirements 
onto IT capabilities, but it is also necessary to be effective, efficient, and flexible 
in the current market conditions, which are changing fast and are paving the 
way for dynamic outsourcing.

A number of key problems regarding dynamic outsourcing have been iden-
tified, namely: service agreement expressiveness, party heterogeneousness, 
partial information, and dynamic markets. From these problems, 16 well-
founded requirements were elicited based on either an exhaustive review of 
the literature or case studies. These requirements were used as a conceptual 
model to analyze and assess current state-of-the-art proposals on automated 
negotiation frameworks. The conclusion is that none of the current protocol- 
or intelligence-oriented frameworks is complete with regard to the require-
ments. Furthermore, in open and dynamic environments, the negotiation 
context, which consists of the parties with which the system negotiates and 
the requirements of the user of the automated negotiation system, is likely to 
change. Consequently, automated negotiation systems should be able to ac-
commodate all of these changes without requiring a great developmental effort. 
This requires that the automated negotiation system be carefully designed to 
ensure its maintainability and adaptability to changes in its context.

These conditions were the motivation for working on the NegoFAST 
reference architecture, which provides the foundations for building gen-
eral-purpose negotiation systems that address these requirements. How 
NegoFAST supports these requirements is detailed above in the discussion of 
the reference architecture and is summarized in Table 4. Note that it not only 
integrates NegoFAST features from other frameworks, but it includes some 
unique features: the generic data model that enables the support of multiple 
preferences (REQ 2.4) and agreement models (REQ 2.5), the world model 
component, specially the design based on WorldModellers (REQ 3.3 and 4.5), 



Ta
b

le
 4

. H
o

w
 N

eg
o

FA
ST

 D
ea

ls
 w

it
h 

R
eq

u
ir

em
en

ts
 I

d
en

ti
fi

ed
.

R
eq

u
ir

em
en

t 
N

eg
o

FA
ST

(1
.1

) S
up

po
rt 

m
ul

tit
er

m
 n

eg
ot

ia
tio

n 
pr

ot
oc

ol
s 

A
gr

ee
m

en
t a

nd
 p

ro
po

sa
l m

od
el

s 
w

ith
 m

ul
tip

le
 te

rm
s

(1
.2

) M
an

ag
e 

ex
pr

es
siv

e 
pr

ef
er

en
ce

s 
G

en
er

ic
 p

re
fe

re
nc

es
 m

od
el

 a
llo

w
s 

fo
rm

al
ism

s 
as

 e
xp

re
ss

iv
e 

as
 n

ec
es

sa
ry

(2
.1

) S
up

po
rt 

m
ul

tip
le

 n
eg

ot
ia

tio
n 

pr
ot

oc
ol

s 
Su

pp
or

te
d 

by
 d

iff
er

en
t p

ro
to

co
lh

an
dl

er
s 

an
d 

N
eg

oF
A

ST
 e

xt
en

sio
ns

(2
.2

) N
eg

ot
ia

te
 n

eg
ot

ia
tio

n 
pr

ot
oc

ol
 

pr
ot

oc
ol

N
eg

ot
ia

to
r

(2
.3

) S
up

po
rt 

m
ul

tip
le

 n
eg

ot
ia

tio
n 

de
ci

sio
n‑

m
ak

in
g 

al
go

rit
hm

s 
d

iff
er

en
t p

ro
po

sa
lB

ui
ld

er
s 

se
le

ct
ed

 b
y 

Bu
ild

er
M

an
ag

er
(2

.4
) S

up
po

rt 
m

ul
tip

le
 a

gr
ee

m
en

t m
od

el
s 

G
en

er
ic

 a
gr

ee
m

en
t m

od
el

 in
de

pe
nd

en
t o

f f
or

m
al

ism
(2

.5
) S

up
po

rt 
m

ul
tip

le
 p

re
fe

re
nc

es
 m

od
el

s 
G

en
er

ic
 a

gr
ee

m
en

t m
od

el
 in

de
pe

nd
en

t o
f f

or
m

al
ism

(2
.6

) A
llo

w
 u

se
r p

re
fe

re
nc

es
 a

bo
ut

 n
eg

ot
ia

tio
n 

pr
oc

es
s 

N
eg

ot
ia

tio
n 

gu
id

el
in

es
 a

s 
fir

st‑
le

ve
l p

re
fe

re
nc

es
 a

nd
 p

ol
ic

ie
sM

an
ag

er
 to

 e
nf

or
ce

 th
em

(3
.1

) M
an

ag
e 

di
ffe

re
nt

 ty
pe

s 
of

 k
no

w
le

dg
e 

ab
ou

t p
ar

tie
s 

In
de

pe
nd

en
t w

or
ld

M
od

el
le

rs
 th

at
 fo

cu
s 

on
 o

ne
 ty

pe
 o

f k
no

w
le

dg
e 

ab
ou

t p
ar

tie
s

(3
.2

) G
at

he
r i

nf
or

m
at

io
n 

fro
m

 d
iff

er
en

t s
ou

rc
es

 
U

se
 o

f I
nq

ui
re

r, 
In

fo
rm

an
t, 

an
d 

w
or

ld
M

od
el

le
rs

(3
.3

) B
ui

ld
 a

na
ly

sis
‑b

as
ed

 m
od

el
s 

w
or

ld
M

od
el

le
rs

 th
at

 a
na

ly
ze

 e
nv

iro
nm

en
ta

l r
es

ou
rc

es
(4

.1
) S

up
po

rt 
se

ve
ra

l n
eg

ot
ia

tio
ns

 s
im

ul
ta

ne
ou

sly
 

Bi
la

te
ra

lN
eg

ot
ia

to
rs

, B
ar

ga
in

in
gC

oo
rd

in
at

or
, a

nd
 p

ol
ic

ie
sM

an
ag

er
(4

.2
) S

el
ec

t d
ec

isi
on

‑m
ak

in
g 

al
go

rit
hm

s 
dy

na
m

ic
al

ly
 

Bu
ild

er
M

an
ag

er
 s

el
ec

ts 
pr

op
os

al
Bu

ild
er

s 
dy

na
m

ic
al

ly
(4

.3
) S

up
po

rt 
de

co
m

m
itm

en
t 

In
iti

al
 s

up
po

rt 
in

 C
om

m
ith

an
dl

er
(4

.4
) S

up
er

vi
se

d 
cr

ea
tio

n 
of

 a
gr

ee
m

en
ts 

C
om

m
itA

dv
iso

rs
 p

ro
vi

de
 d

om
ai

n‑
sp

ec
ifi

c 
ad

vi
ce

 to
 C

om
m

ith
an

dl
er

(4
.5

) B
ui

ld
 m

ar
ke

t m
od

el
s 

w
or

ld
M

od
el

le
rs

 w
ith

 a
cc

es
s 

to
 e

xt
er

na
lIn

fo
rm

at
io

n 
pr

ov
id

er
s



and the use of a Protocolnegotiator (REQ 2.2). Certain other features are less 
than common in current state-of-the-art negotiation frameworks, such as the 
ability to express user preferences about the negotiation process (REQ 2.6), 
support for several simultaneous negotiations (REQ 4.1), and the dynamic 
selection of decision-making algorithms (REQ 4.2). The only requirement that 
is not fully supported by NegoFAST is decommitment. In the current version 
of NegoFAST, the decommitment support is naive. The main reason is that 
decommitment is still a novel topic that deserves further research before being 
integrated into a framework.

On the basis of the NegoFAST reference architecture, a software framework 
has been designed and implemented, and it was used in this study to imple-
ment automated negotiation systems for several case studies that cover most 
of the aforementioned requirements. These case studies have also made it 
possible to check desirable nonfunctional properties of the framework, such 
as reusability, integrability, and adaptability.

The contributions made by this article will help practitioners since those 
contributions set the requirements and foundations to implement automated 
negotiation systems. They also will enable researchers to focus on a particular 
part of an automated negotiation system (e.g., world modeling algorithms 
or response generation algorithms), while the reference architecture bridges 
the gap between the current automated negotiation techniques (protocols, 
algorithms, models), and, hence, eases the reuse of current results in this field. 
The implementation of the software framework provides a harness in which 
automated negotiation techniques can be tested from an empirical point of 
view. For instance, researchers who work on decision-making algorithms to 
create agreement proposals to schedule meetings can proceed as follows: First, 
they can test their algorithms by integrating them as new ProposalBuilders in 
the system detailed in the discussion of scheduling meetings, without having 
to reimplement the whole automated negotiation system again. Second, they 
can compare their algorithms with others that have already been integrated 
into the framework (e.g., the laconic, egotistic, and deceiving algorithms). 
Third, they can analyze how well the algorithms perform in coordination with 
several different complementary models (e.g., how well they perform using 
different world-modeling algorithms).

ReFeReNCeS

1. Abran, A.; Moore, J.W.; Bourque, P.; and Dupuis, R. Guide to the software 
Engineering Body of Knowledge. Los Alamitos, CA: IEEE Computer Society 
Press, 2004.

2. Andrieux, A.; Czajkowski, K.; Dan, A.; Keahey, K.; Ludwig, H.; Nakata, 
T.; Pruyne, J.; Rofrano, J.; Tuecke, S.; and Xu, M. WS-Agreement recommen-
dation. March 2007, www.gridforum.org/documents/GFD.107.pdf.

3. Ashri, R.; Rahwan, I.; and Luck, M. Architectures for negotiating agents. 
In V. Marík, J.P. Müller, and M. Pechoucek, M. (eds.), Multi-agent systems 
and applications III: 3rd International Central and Eastern European Conference 
on Multi-agent systems. Heidelberg: Springer, 2003, pp. 136–146.



4. Bardhan, I.R.; Whitaker, J.; and Mithas, S. Antecedents of business
process outsourcing in manufacturing plants. In R.H. Sprague (ed.), 39th 
annual hawaii International Conference on system sciences. Los Alamitos, CA: 
IEEE Computer Society, 2006, pp. 68–69.

5. Bardhan, I.; Demirkan, H.; Kannan, P.K.; Kauffman, R.J.; and
Sougstad, R. An interdisciplinary perspective on IT services management 
and services science. Journal of Management Information systems, 26, 4 (spring 
2010), 13–65.

6. Bartolini, C.; Preist, C.; and Jennings, N.R. A software framework for
automated negotiation. In R. Choren, A. García, C. Lucena, and A. Ramon-
ovsky (eds.), software Engineering for Multi-agent systems III. Berlin: Spring-
er Verlag, 2005, pp. 213–235.

7. Benyoucef, M., and Verrons, M.-H. Configurable e-negotiation systems
for large scale and transparent decision making. Group decision and negotia-
tion, 17, 3 (May 2008), 211–224.

8. Bichler, M. An experimental analysis of multi-attribute auctions. decision
support systems, 29, 3 (October 2000), 249–268.

9. Bleistein, S.J.; Cox, K.; Verner, J.M.; and Phalp, K. Requirements engi-
neering for e-business advantage. Requirements Engineering Journal, 11, 1 
(December 2005), 4–16.
10. Christensen, C.M., and Raynor, M.E. how to avoid Commoditization. Bos-
ton: Harvard Business School Press, 2003.
11. Coehoorn, R.M., and Jennings, N.R. Learning on opponents preferences
to make effective multi-issue negotiation trade-offs. In M. Janssen, H.G. Sol,
and R.W. Wagenaar (eds.), sixth International Conference on Electronic Com-
merce. New York: ACM Press, October 2004, pp. 59–68.
12. Dai, Q., and Kauffman, R.J. Business models for Internet-based B2B
electronic markets. International Journal of Electronic Commerce, 6, 4 (summer
2002), 41–73.
13. Dan, A.; Davis, D.; Kearney, R.; Keller, A.; King, R.P.; Kuebler, D.; Lud-
wig, H.; Polan, M.; Spreitzer, M.; and Youssef, A. Web services on demand:
WSLA-driven automated management. IBM systems Journal, 43, 1 (January
2004), 136–158.
14. Demirkan, H.; Kauffman, R.J.; Vayghan, J.A.; Fill, H.-G.; Karagiannis, D.;
and Maglio, P.P. Service-oriented technology and management. Electronic
Commerce Research and applications, 7, 4 (winter 2008), 356–376.
15. Dobardziev, A. Outcome-based pricing: Incentivising innovation-led
IT services. Ovum Knowledge Center, June 2008, http://store.ovum.com/
Product.asp?pid=38842&etr=infaus.
16. Dujmovic, J.J. A method for evaluation and selection of complex hard-
ware and software systems. In 22nd International Conference for the Resource
Management and Performance Evaluation of Enterprise Cs. Turnersville, NJ:
Computer Measurement Group, 1996, pp. 368–378.
17. Elfatatry, A., and Layzell, P.J. A negotiation description language. soft-
ware, Practice and Experience, 35, 4 (April 2005), 323–343.
18. Faratin, P.; Sierra, C.; and Jennings, N.R. Negotiation decision functions
for autonomous agents. International Journal of Robotics and autonomous sys-
tems, 24, 3–4 (1998), 159–182.



19. Faratin, P.; Sierra, C.; and Jennings, N.R. Using similarity criteria to
make trade-offs in automated negotiations. artificial Intelligence, 142, 2 (De-
cember 2002), 205–237.
20. Fatima, S.S.; Wooldridge, M.; and Jennings, N.R. An agenda-based
framework for multi-issue negotiation. artificial Intelligence, 152, 1 (January
2004), 1–45.
21. Fatima, S.S.; Wooldridge, M.; and Jennings, N.R. A comparative study of
game theoretic and evolutionary models of bargaining for software agents.
artificial Intelligence Review, 23, 2 (April 2005), 187–205.
22. Friedman, T. the World Is Flat: a Brief history of the twenty-first Century.
New York: Farrar, Straus, & Giroux, 2005.
23. Frølund, S., and Koistinen, J. Quality-of-service specification in distrib-
uted object systems. distributed systems Engineering, 5, 4 (December 1998),
179–202.
24. Gimpel, H.; Ludwig, H.; Dan, A.; and Kearney, B. PANDA: Specifying
policies for automated negotiations of service contracts. In M.E. Orlowska,
S. Weerawarana, M.P. Papazoglou, and J. Yang (eds.), First International Con-
ference on service-oriented Computing (ICsoC 2003). Berlin: Springer-Verlag,
2003, pp. 287–302.
25. Governatori, G. Representing business contracts in RuleML. International
Journal Cooperative Information systems, 14, 2–3 (June 2005), 181–216.
26. Grefen, P.W.P.J.; Ludwig, H.; Dan, A.; and Angelov, S. An analysis of
Web services support for dynamic business process outsourcing. Information
& software technology, 48, 11 (November 2006), 1115–1134.
27. Gregg, D.G., and Walczak, S. Auction advisor: An agent-based online-
auction decision support system. decision support systems, 41, 2 (January
2006), 449–471.
28. He, M.; Jennings, N.R.; and Leung, H.-F. On agent-mediated electronic
commerce. IEEE transactions on Knowledge and data Engineering, 15, 4 (July/
August 2003), 985–1003.
29. Jennings, N.R.; Faratin, P.; Lomuscio, A.R.; Parsons, S.; Wooldridge, M.;
and Sierra, C. Automated negotiation: Prospects, methods and challenges.
Group decision and negotiation, 10, 2 (March 2001), 199–215.
30. Jonker, C.; Robu, V.; and Treur, J. An agent architecture for multi-attri-
bute negotiation using incomplete preference information. autonomous
agents and Multi-agent systems, 15, 2 (October 2007), 221–252.
31. Karp, A.H. Rules of engagement for automated negotiation. In B. Bena-
tallah and C. Godart (eds.), First IEEE International Workshop on Electronic
Contracting. Los Alamitos, CA: IEEE Computer Society, July 2004, pp. 32–39.
32. Kim, J.B., and Segev, A. A Web services-enabled marketplace architec-
ture for negotiation process management. decision support systems, 40, 1
(July 2005), 71–87.
33. Kowalczyk, R. Fuzzy e-negotiation agents. soft Computing, 6, 5 (August
2002), 337–347.
34. Li, C.; Giampapa, J.; and Sycara, K. Bilateral negotiation decisions with
uncertain dynamic outside options. IEEE transactions on systems, Man, and
Cybernetics, Part C: applications and Reviews, 36, 1 (2006), 31–44.
35. Ludwig, A.; Braun, P.; Kowalczyk, R.; and Franczyk, B. A framework
for automated negotiation of service level agreements in services grids.



In C. Bussler and A. Haller (eds.), Business Process Management Workshops. 
Berlin: Springer Verlag, 2005, pp. 89–101.
36. Ludwig, H.; Dan, A.; and Kearney, R. Cremona: An architecture and
library for creation and monitoring of WS-Agreement. In M. Aiello, M.
Aoyama, F. Curbera, and M.P. Papazoglou (eds.), second International Con-
ference on service-oriented Computing (ICsoC 2004). New York: ACM Press,
November 2004, pp. 65–74.
37. Luo, X.; Jennings, N.R.; Shadbolt, N.; Leung, H.-F.; and Lee, J.H. A fuzzy
constraint based model for bilateral, multi-issue negotiations in semi-com-
petitive environments. artificial Intelligence, 148, 1–2 (August 2003), 53–102.
38. Nash, J.F. The bargaining problem. Econometrica, 18, 2 (April 1950),
155–162.
39. Nguyen, T.D., and Jennings, N.R. Managing commitments in multiple
concurrent negotiations. Electronic Commerce Research and applications, 4, 4
(winter 2005), 362–376.
40. Ordanini, A. What drives market transactions in B2B exchanges? Com-
munications of the aCM, 49, 4 (April 2006), 89–93.
41. Papazoglou, M.P. The challenges of service evolution. In Z. Bellahsene
and M. Léonard (eds.), 20th International Conference on advanced Information
systems Engineering (CaisE 2008). Berlin: Springer, June 2008, pp. 1–15.
42. Papazoglou, M.P., and van den Heuvel, W.-J. Service oriented architec-
tures: Approaches, technologies and research issues. International Journal on
Very large data Bases, 16, 3 (July 2007), 389–415.
43. Paurobally, S.; Tamma, V.; and Wooldridge, M. A framework for Web
service negotiation. aCM transactions on autonomous and adaptive systems,
2, 4 (November 2007), 14.
44. Plummer, D.C.; Smulders, C.; Fiering, L.; Natis, Y.V.; Mingay, S.; Driver,
M.; Fenn, J.; McLellan, L.; and Wilson, D. Gartner’s top predictions for IT
organizations and users, 2008 and beyond. Stamford, CT: Gartner, 2008,
www.gartner.com/it/page.jsp?id=593207.
45. Rinderle, S., and Benyoucef, M. Towards the automation of e-negotiation
processes based on Web services. In A.H.H. Ngu, M. Kitsuregawa, E.J.
Neuhold, J.-Y. Chung, and Q.Z. Sheng (eds.), 6th International Conference
on Web Information systems Engineering. Berlin: Springer Verlag, 2005, pp.
443–453.
46. Ros, R., and Sierra, C. A negotiation meta strategy combining trade-off
and concession moves. autonomous agents and Multi-agent systems, 12, 2
(March 2006), 163–181.
47. Rust, R.T., and Kannan, P.K. E-service: A new paradigm for business in
the electronic environment. Communications of the aCM, 46, 6 (June 2003),
36–42.
48. Sandholm, T.W., and Lesser, V.R. Leveled commitment contracts and
strategic breach. Games and Economic Behavior, 35, 1–2 (April 2001), 212–270.
49. Sim, K.M., and Choi, C.Y. Agents that react to changing market situa-
tions. IEEE transactions on systems, Man and Cybernetics, Part B, 33, 2 (April
2003), 188–201.
50. Sim, K.M., and Wang, S.Y. Flexible negotiation agent with relaxed deci-
sion rules. IEEE transactions on systems, Man and Cybernetics, Part B, 34, 3
(June 2004), 1602–1608.



51. Smith, J.M., and Price, G.R. The logic of animal conflict. nature, 246 (No-
vember 1973), 15–18.
52. Ströbel, M. Design of roles and protocols for electronic negotiations.
Electronic Commerce Research, 1, 3 (July 2001), 335–353.
53. Su, S.Y.W.; Huang, C.; Hammer, J.; Huang, Y.; Li, H.; Wang, L.; Liu, Y.;
Pluempitiwiriyawej, C.; Lee, M.; and Lam, H. An Internet-based negotiation
server for e-commerce. International Journal on Very large data Bases, 10, 1
(August 2001), 72–90.
54. Tu, M. T.; Seebode, C.; Griffel, F.; and Lamersdorf, W. DynamiCS: An
actor-based framework for negotiating mobile agents. Electronic Commerce
Research, 1, 1–2 (February 2001), 101–117.
55. Umar, A. IT Infrastructure to enable next generation enterprises. Informa-
tion systems Frontiers, 7, 3 (July 2005), 217–256.
56. Vargo, S.L., and Lusch, R.F. Evolving to a new dominant logic for mar-
keting. Journal of Marketing, 68, 1 (January 2004), 1–17.
57. Wainer, J.; Ferreira, P.R.; and Constantino, E.R. Scheduling meetings
through multi-agent negotiations. decision support systems, 44, 1 (Novem-
ber 2007), 285–297.
58. Wall, Q. Rethinking SOA governance. Oracle Inc., 2008, http://quinton
wall.com/wp-content/uploads/2008/08/rethinking-soa-governance.pdf.
59. Zeng, D., and Sycara, K. Bayesian learning in negotiation. International
Journal human-Computer studies, 48, 1 (January 1998), 125–141.
60. Zhu, L.; Leach, P.; Jaganathan, K.; and Ingersoll, W. The simple and
protected generic security service application program interface (GSS-API) 
negotiation mechanism (RFC 4178). Network Working Group, October 
2005, http://tools.ietf.org/html/rfc4178.

MANUEL RESINAS (resinas@us.es) is a lecturer on software engineering at the Uni-
versity of Seville, Spain, where he received his Ph.D. in 2008. His research interests 
include automated negotiation and automated analysis of service agreements and their 
relationship with business processes.

PABLO FERNÁNDEZ (pablofm@us.es) is a lecturer on software engineering at the 
University of Seville, where he is working toward his Ph.D. His research interests 
focus on automated trading.

RAFAEL CORCHUELO (corchu@us.es) is a reader in software engineering in the 
Department of Computer Languages and Systems of the University of Seville, where 
he received his Ph.D. He has been the leader of the university’s Research Group on 
Distributed Systems since 1997. His research interests focus on the integration of Web 
data islands; previously, he worked on multiparty interaction and fairness issues.




