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Oscillatory Neural Networks (ONNs) are currently arousing interest in the research
community for their potential to implement very fast, ultra-low-power computing tasks
by exploiting specific emerging technologies. From the architectural point of view, ONNs
are based on the synchronization of oscillatory neurons in cognitive processing, as
occurs in the human brain. As emerging technologies, VO2 and memristive devices
show promising potential for the efficient implementation of ONNs. Abundant literature
is now becoming available pertaining to the study and building of ONNs based on VO2

devices and resistive coupling, such as memristors. One drawback of direct resistive
coupling is that physical resistances cannot be negative, but from the architectural and
computational perspective this would be a powerful advantage when interconnecting
weights in ONNs. Here we solve the problem by proposing a hardware implementation
technique based on differential oscillatory neurons for ONNs (DONNs) with VO2-based
oscillators and memristor-bridge circuits. Each differential oscillatory neuron is made of
a pair of VO2 oscillators operating in anti-phase. This way, the neurons provide a pair of
differential output signals in opposite phase. The memristor-bridge circuit is used as an
adjustable coupling function that is compatible with differential structures and capable
of providing both positive and negative weights. By combining differential oscillatory
neurons and memristor-bridge circuits, we propose the hardware implementation of
a fully connected differential ONN (DONN) and use it as an associative memory. The
standard Hebbian rule is used for training, and the weights are then mapped to the
memristor-bridge circuit through a proposed mapping rule. The paper also introduces
some functional and hardware specifications to evaluate the design. Evaluation is
performed by circuit-level electrical simulations and shows that the retrieval accuracy
of the proposed design is comparable to that of classic Hopfield Neural Networks.

Keywords: oscillatory neural networks, relaxation oscillators, coupled oscillators, vanadium dioxide, memristor,
Hopfield Neural Network, associative memory
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INTRODUCTION

Brain efficiency in cognitive processing relies on an architecture
made up of distributed processors (neurons) and memories
(synapses). Inspired by this brain architecture, novel cognitive
processing paradigms are now being developed which go beyond
the Von Neumann model. In addition to architecture, the
devices employed also play a significant role in power and area
efficiency. In this regard, emerging low power and compact
devices constitute alternative resources useful for developing
efficient cognitive processors.

Synthetic neural networks (NNs) have been under
development for more than 50 years. Different types of
NNs have been introduced, differentiated by their neuron types
and data representation. Examples include classic artificial neural
networks (ANNs) (Jain et al., 1996), spiking neural networks
(SNNs) (Paugam-Moisy and Bohte, 2012), and oscillatory neural
networks (ONNs) (Izhikevich, 1997). In classic ANNs, neurons
are the simplest biological computing units that accumulate
weighted input values prior to the application of an activation
function to obtain the output value. In these neural networks,
data representation is based on binary or real numbers. In
SNNs, which have more biological features, spiking neurons
receive and generate spikes, the spiking time or frequency of
which is exploited for processing. In ONNs, an oscillator acts
as a neuron, and the oscillator phase is the main characteristic
used for processing. Like coupled oscillators, neurons process
information by synchronizing. It has been hypothesized that
synchronization plays an important role in cognitive processing
(Gupta et al., 2016). Similarly to synapses, coupling functions
describe the connections between the oscillators (Stankovski
et al., 2015). A coupling function determines how one oscillator
will affect another.

With regard to hardware, emerging devices such as vanadium
dioxide (VO2) (Velichko et al., 2017) and memristors (Strukov
et al., 2008) make it feasible to implement oscillators and coupling
functions efficiently. VO2 devices have been exploited to design
compact nano-scale, low power oscillators (Parihar et al., 2015;
Shukla et al., 2015; Velichko et al., 2017; Raychowdhury et al.,
2019; Corti et al., 2020a). A basic VO2 oscillator circuit can be
made by a series connection of a VO2 device and a resistor or a
CMOS transistor (Corti et al., 2020b). As coupling components,
resistors and/or a capacitors are typically used to interconnect
the oscillators. Resistively and capacitively coupled oscillators
have shown their potential for processing tasks, such as image
recognition (Corti et al., 2018) or vertex coloring (Weiher
et al., 2021). For the case of a pair of VO2 oscillators, when
a pure resistor is employed for coupling them, increasing the
connectivity strength (decreasing the resistance) tends to put the
oscillator pair in phase, while for capacitively coupling, increasing
the coupling capacitance tends to put the oscillator pair in
anti-phase (Parihar et al., 2015). Although parallel resistors and
capacitors make it easier to form a different phase difference
between a coupled oscillator pair, it is not so easy to adjust the
connection strength. Moreover, a capacitor usually consumes
a large area of the hardware. For implementing adjustable
connections, the memristor is a convenient device (Li et al., 2018;
Sung et al., 2018; Camuñas-Mesa et al., 2019), as its non-volatile

resistance can be adjusted to the desired value. However, the
implementation of negative and zero weights is an issue. One
proposed method is to use an extra memristor crossbar array
to implement negative weights (Alibart et al., 2013; Molahasani
Majdabadi et al., 2020). It is also possible to achieve both in
phase and in anti-phase oscillations in a pair of coupled VO2
oscillators using a single resistor as a coupling component (Corti
et al., 2020a). In this method, a specific range of resistances
(high resistance) puts the oscillator pair in anti-phase, while low
resistances puts it in phase. Therefore, high resistance ranges
and low resistance ranges could be equivalent to using negative
and positive weights, respectively. However, this has only been
studied for small size of ONNs, and scaling up to arbitrary size
needs further research.

Here we propose another method, in which oscillatory
neurons are made of pairs of VO2 oscillators, coupled to be
in anti-phase. This way, each neuron provides two differential
outputs in anti-phase, and these differential oscillatory neurons
are interconnected with adjustable positive- or negative-weight
memristor-bridge circuits (Adhikari et al., 2012; Shamsi et al.,
2017) to implement differential oscillatory neural networks
(DONNs). First, a differential oscillatory neuron based on VO2
devices is proposed to benefit from its differential outputs with
anti-phase signals. The oscillatory neurons’ differential output
allows the memristor-bridge circuit to implement positive,
negative, and zero weights. Differential oscillatory neurons are
then interconnected through memristor-bridge circuits to form
a Hopfield-type architecture (Hopfield, 1982) as an associative
memory. The synaptic weights are calculated using the standard
Hebbian rule and mapped to the memristors’ resistances in the
memristor-bridge circuits. Simulation results demonstrate the
pattern retrieval capability of the proposed architecture.

To the best of our knowledge, this is the first attempt to
introduce and implement differential oscillatory neural networks
(DONNs). The main contribution of this paper is the integration
of differential oscillatory neurons and memristor-bridge circuits
to implement DONNs. Our study also introduces several
criteria which can be used to evaluate and compare different
implementations of ONNs.

The rest of the paper is organized as follows. Section
“Methods” describes the architecture of DONNs, including a
brief introduction to ONNs, VO2 devices, and memristors.
Section “Differential oscillatory neural networks (DONNs)” looks
at circuit designs for DONNs. A differential oscillator neuron
is proposed and the memristor-bridge circuit is introduced as
an inter-neuron coupling function. The differential oscillatory
neurons and memristor-bridge circuits are then combined
to implement fully connected DONNs. Section “Evaluation
Method” introduces some design specifications as design criteria
for evaluating our design, and Section “Results” provides
evaluation and simulation results, followed by some conclusions.

METHODS

Oscillatory Neural Networks
An ONN is a dynamic system that comprises weakly
connected oscillatory neurons and is described through

Frontiers in Neuroscience | www.frontiersin.org 2 July 2021 | Volume 15 | Article 674567

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-674567 July 12, 2021 Time: 17:47 # 3

Shamsi et al. Hardware Implementation of Differential ONNs

Ordinary Differential Equations (ODEs) (Izhikevich, 1997;
Nakao, 2016).

ẋi = fi(xi)+

n∑
j=1

wijgij(xi, xj), i = 1, 2, ..., n (1)

where n is the number of the oscillatory neurons and xi is the
state vector of oscillatory neuron i (xi ∈ Rm, m ≥ 2), which is
a function of its phase1. Function fi(xi) describes the dynamic
behavior of the oscillatory neuron i and is usually formulated
using m-dimensional differential equations. Parameter wij is
the weight between oscillatory neurons i and j. gij(xi,xj) is the
coupling function that shows the effect of oscillatory neuron
j on oscillatory neuron i. The weights, wij, and the coupling
function, gij(xi,xj), are crucial factors in oscillatory neural
networks’ behavior.

From the hardware perspective, oscillator function fi(xi) can
be implemented using both harmonic and relaxation oscillators.
In this paper, a relaxation oscillator based on VO2 devices is
used. On the other hand, different coupling functions have
been introduced in literature, such as a sinus function in the
Kuramoto model (Acebrón et al., 2005) and a phase detector
in PLL-based oscillators (Hoppensteadt and Izhikevich, 2000).
One of the most straightforward coupling functions in terms
of implementation is diffusive coupling, where gij(xi,xj) = (xj-
xi) (Stankovski et al., 2015). The diffusive coupling function
is implemented by connecting the oscillatory neuron outputs
via resistors (memristors), creating what is known as resistively
coupled oscillatory neurons (Corti et al., 2020a). Moreover, using
a mapping method, the weights wij are mapped to resistance
values Rij. Using VO2-based oscillatory neurons and memristive
devices, all elements of an oscillatory neural network can
therefore be implemented. The following subsections summarize
the main features and models of VO2 and memristor devices.

Vanadium Dioxide (VO2) Device Model
A VO2 device2 is a two-terminal device based on a phase change
material that presents insulator-to-metal (IMT) and metal-to-
insulator transitions (MIT) (Velichko et al., 2017). The transition
is temperature-driven, caused by the joule heating in the presence
of an applied voltage. Increasing the device temperature causes a
change from a high resistance (RH) state to a low resistance (RL)
state and vice versa.

Although the temperature of the device is the main factor
that causes the transitions, device behavior is also shaped by the
applied voltage. In (Maffezzoni et al., 2015), a SPICE model for
VO2 devices is introduced where the transitions are related to
a high voltage VH and a low voltage threshold VL. When an
increasing applied voltage reaches VH , the resistance changes
from its high resistance valueRH = 1/GL to its low resistance value
RL = 1/GH . When a decreasing applied voltage drops below VL,

1Note that this mathematical phase-based representation method results in an
overall dynamical description, which ressembles that of traditional non-oscillatory
ANNs.
2Although VO2 devices are negative differential resistance (NDR) devices, they can
also be considered as volatile memristors capable of producing oscillatory circuits
(Yi et al., 2018), as done throughout the present paper.

a transition from the low resistance state to the high resistance
state occurs. The time constant of the transitions is τ. This
model is compatible with fabricated VO2 devices, making it a
reliable model for SPICE simulations. Although it is a compact
SPICE model, it makes use of a discontinuous nonlinear function,
which may yield convergence problems when simulating large
scale circuits. To prevent this problem, we introduce here an
equivalent mathematical macro model that uses a continuously
differentiable nonlinear function, as follows:

ġ =
K
τ

[
−g +

(
GH + GL

2

)
+

(
GH − GL

2

)
× S(v, g)

]
(2)

where,

S
(
v, g

)
= tanh

(
A. (VH − VL) .

(
v− VL

VH − VL
−

g − GL

GH − GL

))
(3)

Variables g and v are the conductance and voltage of the VO2
device, respectively. Parameter A is a large constant value, and
the other parameters are the main parameters of a VO2 device.
Parameter K is a fitting parameter to match this mathematical
model with the original SPICE model. A basic circuit of a
VO2-based oscillator was simulated to compare the proposed
mathematical model with the Maffezzoni SPICE model (see
Figure 1A). The differential equation of the circuit is given by:

v̇ = 1
C .
(
−
(
Gs + g

)
v+ Gs.Vdd

)
ġ = G(g, v)

(4)

where G(g,v) is given by the right-hand expression in
Eq. (2). Figure 1B shows the simulation results of the
proposed mathematical model matching very well with
Maffezzoni’s SPICE model.

Memristor Model
A memristor is a two-terminal resistive device whose resistance
is adjustable. It is typically used as an analog memory that can
be both non-volatile or volatile (Ohno et al., 2011; van den Hurk
et al., 2014; La Barbera et al., 2015; Wang et al., 2017; Ascoli et al.,
2021). In addition, the adjustability of non-volatile memristors
and their nanoscale size make them attractive candidates to
implement massive adjustable synaptic circuits, especially with
crossbar structures.

In some models, the memristor behavior is described by
using one positive and one negative threshold voltages (−|
Vn| and Vp) (Ascoli et al., 2013; Krestinskaya et al., 2020). In
memristors with counterclockwise switching, when the applied
memristor voltage is larger than the positive threshold voltage
Vp, the resistance of the memristor decreases. On the contrary,
in memristors with clockwise switching, applying a voltage larger
than Vp causes an increase in resistance, while the resistance
decreases when the applied voltage is less than −| Vn| (Min and
Cho, 2021).With an applied voltage between −| Vn| and Vp, the
resistance remains constant.

The operational phases of a memristor are usually known as
programming and operating phases (Shamsi et al., 2018). In the
programming phase, the amplitude of each positive (negative)

Frontiers in Neuroscience | www.frontiersin.org 3 July 2021 | Volume 15 | Article 674567

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-674567 July 12, 2021 Time: 17:47 # 4

Shamsi et al. Hardware Implementation of Differential ONNs

FIGURE 1 | (A) A basic oscillator circuit. (B) Simulation of the basic oscillator with Maffezzoni’s SPICE model and the proposed mathematical model. The simulation
parameters are VH = 2, VL = 1, RL = 1 k�, RH = 100 k�, τ = 30 ns, and K = 6.

voltage pulse, applied across the memristor, is set to some pre-
defined value larger than the modulus of the memristor threshold
voltage Vp (| Vn |). Depending on the number, polarity, height
and width of the pulses, the resistance is adjusted. On the other
hand, in the operating phase, the maximum and minimum peaks
of the pulses are within the intervals between the upper and
lower threshold voltages, so there is no resistance change. This
paper focuses on the operating phase of the memristor as a
non-volatile synaptic circuit. We thus consider a memristor as a
constant resistor, and weights are mapped to the resistance values.
Consequently, throughout this paper we consider that memristor
terminal voltages never exceed the threshold voltages.

Resistance range and threshold voltages are closely related
to the materials used in memristor fabrication (Hadiyawarman
et al., 2018), which therefore constitute important factors for
memristor-based circuit designs. In this paper, the threshold
voltages and the resistance ranges are assumed to meet the needs
of our design. Specifically, we assume that maximum voltages
across the memristors are never larger than the high threshold
voltage VH of the VO2 devices. Also, some relations for defining
a valid range of resistances are introduced in subsection “Circuit
Design Method.”

Differential Oscillatory Neural Networks
(DONNs)
In this study, differential oscillatory neurons and memristor-
bridge circuits are combined to implement a fully connected
DONN, similar to a classic (non-oscillatory) Hopfield neural
network. The proposed neural network circuit, shown in
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c d
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FIGURE 2 | Hardware architecture of the fully connected DONN. Differential
neurons are implemented with a pair of VO2 oscillators, oscillating in
anti-phase. Synapses are implemented using memristor-bridge circuits.

Figure 2, is used as an associative memory. The following
subsections describe the differential oscillatory neurons and
memristor-bridge circuits used as the basic blocks of the DONN.

Differential Oscillatory Neuron Circuit
Figure 3A shows the circuit of the proposed differential
oscillatory neuron which generates two anti-phase signals. It
comprises two single-ended oscillators connected to each other
through a capacitor. The coupling capacitor forces the single-
ended oscillators to be in anti-phase, in which they produce
differential signals. To get anti-phase waveforms, the coupling
capacitor Cc should be much lower than C (Cc < < C)
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FIGURE 3 | (A) Proposed differential oscillatory neuron (Cp = Cn = C). (B) Simulation of the differential oscillatory neuron with power-on delay initialization; The
positive and negative voltage sources were applied at t = 2.5 µs and t = 3 µs, respectively. Bottom figure shows the current through the capacitors.

(Parihar et al., 2015). However, when Cc > > C the outputs tend
to be in phase. In addition, when Cc = C the output signals do not
increase monotonically causing distorted output signals (Parihar
et al., 2015). The following equations describe the dynamics of the
differential oscillatory neuron.

v̇p = 1
C+CC

[
−
(
Gs + gp

)
vp + CC.v̇n + Gs.Vdd

]
v̇n = 1

C+CC

[
−
(
Gs + gn

)
vn + CC.v̇p + Gs.Vdd

]
ġp = G

(
gp, vp

)
ġn = G

(
gn, vn

)
(5)

where indexes p and n indicate the corresponding branch p and
n, respectively.

The starting point for exploiting a DONN is the initialization
phase, in which an input pattern is applied to the DONN. The
power-on delay method can be used to initialize the differential
oscillatory neuron (Corti et al., 2020b). In this method, the power
supplies of the single-ended oscillator branches are applied in a
power-on sequence with a specific delay. Given an input value,
the power supply is applied to one of the branches first, and then,

after a given time, to the second branch. For binary values, the
delay time should be half of the oscillators’ period. For instance,
when the binary value is 1, the power supply is applied to the
positive branch first, and then, after one half period, to the
negative branch. Figure 3B shows the simulation results of a
differential oscillatory neuron for which the period is 1 µs and the
delay between the applied power supplies is 0.5 µs. The output
voltages are anti-phase shown in the middle of Figure 3B.

In our design, parameters C, CC, Rs, and Vdd were calculated
using relations that satisfy the operating conditions of the DONN
circuit (see subsection “Circuit Design Method”). Some relations
are necessary to ensure the VO2 devices are biased in their
negative resistance region to guarantee the respective branches
perform as oscillators. Using these relations, parameters Rs
and Vdd are calculated. Other relations are used to calculate
parameters Cc and C. Details of the operating conditions are
provided in subsection “Circuit Design Method.”

Synaptic Memristive-Bridge Circuit
As an analogy of the Wheatstone bridge, the memristor-bridge is
introduced to implement a synaptic circuit capable of providing
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FIGURE 4 | (A) Memristor-bridge circuit. (B) Equivalent circuit of two differential oscillatory neurons coupled through one memristor-bridge circuit.

positive, negative, and zero weights (Figure 4A; Adhikari et al.,
2012). Being a four-terminal circuit makes it appropriate for
differential structures. However, it is also used in single-ended
neural networks (Jackson et al., 2016; Shamsi et al., 2017).
Figure 4B shows the equivalent circuit with two differential
oscillatory neurons coupled by the memristor-bridge circuit. The
following conditions are required to implement a symmetric
coupling function.

gd
ij =

1
R1
=

1
R4

(6)

gc
ij =

1
R2
=

1
R3

(7)

where superscript d stands for “direct” path (positive with
positive or negative with negative), while superscript c stands
for “crossed” path (positive with negative, and vice versa).
Conductance gd

ij is located between the positive branches
(negative branches), tending to put positive branches (negative
branches) in phase. When the positive branches (negative
branches) are in phase, then the two differential oscillatory
neurons are considered in phase. On the other hand, conductance
gc

ij is located between a positive and a negative branch, thus
tending to put them in phase while the positive branches
(negative branches) are anti-phase. When the positive branches
(negative branches) are anti-phase, then the two differential
oscillators are considered as anti-phase. Considering the values
of gd

ij and gc
ij, differential oscillatory neurons tend to be in phase

(anti-phase) when gd
ij > gc

ij (gd
ij < gc

ij). In this regard, it is possible
to implement a coupling circuit with a positive (if gd

ij > gc
ij),

negative (if gd
ij < gc

ij), or zero (if gd
ij = gc

ij ) weight.
It also worth mentioning that the maximum voltage across

a memristor is kept less than VH . Suppose that a memristor is
connected to the output nodes of two VO2 devices from two
distinct differential oscillatory neurons. Therefore, the maximum
voltage across the memristor will be | VH−VL|. However, during
the initialization Vdd is applied with a delay to a branch that
may increase the voltage of one terminal of the memristor up
to VH , while the voltage of the other terminal is around zero.
Thus, the maximum voltage across a memristor will in general
be less than VH .

The following subsection reviews the standard Hebbian rule
used to calculate the synaptic weights. A mapping method is also
introduced to map the synaptic weights to the conductance values
gd

ij and gc
ij .

Training and mapping rules
A training rule is used to store patterns in neural networks,
adjusting the synaptic weights accordingly. Once the weights
are known, we propose a mapping rule to obtain the physical
resistances for the memristor-bridge synapses. To store patterns
in the DONN, we use the Hebbian rule to calculate the weights.

wij =
1
L

P∑
k=1

bki b
k
j i, j ∈ {1, 2, 3, . . . , L} (8)

where P is the number of stored patterns and L is the number of
pixels in each pattern (which is equal to the number of neurons
in the DONN). Elements bi and bj of all stored patterns are used
to calculate the weight wij.

We propose here the following rules to map the sign and value
of the above weights to the memristors’ resistances. Weights wij
are mapped to the gij values using the following relation.

Mapvalue : gij =


g0

1+β×P×
∣∣∣∣ 1
wij

∣∣∣∣
norm

,wij 6= 0

g0
1+β×P , wij = 0

(9)

where g0 is the maximum conductance (inverse the minimum
resistance) of the memristors. Parameter β is a small positive
value (e.g., 0.2) that controls the mapping range for conductance
gij. A larger value for β provides a larger range for conductance
gij. Value

∣∣1/wij
∣∣
norm is the Min-Max normalization of |1/wij|.

In order to obtain the Min-Max normalization, the following
relation is used. ∣∣∣∣ 1

wij

∣∣∣∣
norm
=

∣∣∣ 1
wij

∣∣∣−min

max−min
(10)

where min and max are the minimum and maximum values of
|1/wij| among all non-zero weights, respectively. The following
mapping rule was also used to map the weight signs to resistance
values gd

ij and gc
ij.

Mapsign :


αgd

ij = gc
ij = gij, wij < 0

gd
ij = αgc

ij = gij, wij > 0
αgd

ij = αgc
ij = gij, wij = 0

(11)

where α > 1 is a constant value.
The design parameters of the memristor-bridge are wij, α,

β, and g0. Parameter g0 will be obtained based on correctly
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FIGURE 5 | Simplification of the DONN. (A) The DONN from the viewpoint of one of the differential oscillatory neurons connected to the other (N−1) ones. (B) The
circuit as simplified by ignoring the current iCC, and assuming that the oscillatory neurons are either in phase or in anti-phase. (C) Replacement of the (N−1)
oscillatory neurons with voltage sources. (D) Norton equivalent of the simplified circuit.

functioning hardware, as explained next in subsection “Circuit
Design Method.” Section “Results” then illustrates how the
DONN performance depends on parameters α and β .

Circuit Design Method
As a starting point, design relations are extracted to calculate
circuit parameters by analyzing the fully connected DONN
circuit (Figure 2). Figure 5A shows the circuit from the viewpoint
of a single differential oscillatory neuron coupled to other (N−1)
differential oscillatory neurons. The dynamics of the former
differential oscillatory neuron is described by:

v̇pi =
1

C+CC

[
−

(
Gs + gpi

)
vpi + CC.v̇ni + Gs.Vdd

]
+

N∑
j=1

ipij

v̇ni =
1

C+CC

[
−
(
Gs + gni

)
vni + CC.v̇pi + Gs.Vdd

]
+

N∑
j=1

inij

ġpi = G
(
gpi , vpi

)
ġni = G

(
gni , vni

)
(12)

Where ipij and inij are the currents from oscillatory neuron j to the
positive and negative branch of oscillatory neuron i, respectively:

ipij = gd
ij(v

p
j − vpi )+ gc

ij(v
n
j − vpi )

inij = gc
ij(v

p
j − vni )+ gd

ij(v
n
j − vni )

(13)

In order to guarantee that each VO2 device branch operates as
an oscillator, the following condition is imposed:
• Each VO2 device operates in its negative resistance region:

VMax > VH and Vmin < VL, where VMax (Vmin) is the maximum
(minimum) output voltage if IMT (MIT) does not occur in the
VO2 device.

This condition guarantees that the voltage of the oscillators
do not reach stable points, resulting in permanent oscillation

(Raychowdhury et al., 2019). The DONN circuit is analyzed next
to extract relations for VMax and Vmin. For the analysis, and
to simplify the circuit, some assumptions are considered. First,
we consider a single point for analysis where the voltage of
the positive branch of a differential oscillatory neuron is either
at its maximum or minimum value. Regarding the assumption
C >> CC, the share of current iCC in the total current iC is
considered negligible. For instance, the current of capacitor C
(in positive and negative branches) and CC are shown at the
bottom of Figure 3B. When the voltage of the positive branch is
at its maximum value, immediately before the jump, the current
through capacitors Cp and CC are 71 and 7.5 µA, respectively.
Also, when the voltage of positive branch is at its minimum value,
immediately before the jump, the current through capacitors
Cp and CC are 686 and 76 µA, respectively. Thus we omit
capacitor Cc. It is also assumed that the differential oscillatory
neurons with respect to each other are either in phase or in anti-
phase. When two differential oscillatory neurons are in phase,
the voltage of their positive branches (negative branches) is
equal. Therefore, the current through the memristors between
the positive branches (negative branches) is zero. Similarly, when
in anti-phase, the current through the memristors between a
positive and a negative branch is zero, as well. In this regard, the
circuit is simplified, as shown in Figure 5B. The simplified circuit
is a single-ended oscillator connected to the other (N−1) single-
ended oscillators. We are also able to replace the (N−1) single-
ended oscillators with (N−1) voltage sources, which generate
the same signals than the respective single-ended oscillators
(Figure 5C). The circuit is now simple enough to be analyzed
easily. The Norton equivalent circuit is shown in Figure 5D.
We use next some worst-case operating conditions to extract
design relations. In other words, relations are extracted for the
most difficult operating conditions to ensure that the calculated
parameters are valid for all conditions.
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Consequently, parameters GH , GL, VH , and VL are used
in the analysis so that the worst-case conditions are satisfied.
In this regard, the maximum (minimum) voltage at node
X in Figure 5D is obtained for the charging (discharging)
period. Then, parameters GH , GL, VH , and VL are used to find
the minimum (maximum) voltage of the charged (discharged)
capacitor after the charging (discharging) period, which should
be larger (smaller) than VH (VL). It worth mentioning that IMT
(MIT) in VO2 devices occurs before reaching the maximum
(minimum) voltage of the capacitor/VO2 devices, consequently
causing permanent oscillation.

Vp
Max =

GsVdd + g (N − 1)VL(
Gs + GL + (N − 1) g

) > VH (14)

Vp
min =

GsVdd + g (N − 1)VH(
Gs + GH + (N − 1) g

) < VL (15)

These relations are used to calculate the values for GS and g0. In
this regard, we first use relations with N = 1 to find a range for Gs
and a value in this range is selected for Gs. Afterward, using the
same equations with the selected value of Gs and the number of
differential oscillatory neurons N, a range for g is obtained. The
maximum value of this range is used as g0. Finally, we substitute
all parameters in the equations to verify whether the selected
values are valid. Otherwise, the same procedure is repeated with
a new value for Gs.

The values for C and CC are other design parameters that need
to be considered. It is worth mentioning that a large coupling
capacitance value provides strong coupling. On the other hand, a
large value for the Cc/C ratio causes degradation of the waveform
shapes, resulting in deviations from ideal anti-phase waveforms
for differential oscillatory neurons (Parihar et al., 2015). Strong
coupling therefore has to be traded off against ideal anti-phase
waveforms. In this paper, the following relation between C and
CC is used.

Cc ≈ 0.1× C (16)

Also, the oscillator period relation is used to calculate C and CC
(Corti et al., 2020a).

T = C∗ ×
[(

1
GL + Gs

)
ln
(
Vmax − VL

Vmax − VH

)
+

(
1

GH + Gs

)
ln
(
Vmin − VL

Vmin − VH

)]
(17)

where Vmax =
GsVdd
GL+Gs

and Vmin =
GsVdd
GH+Gs

. Parameter C∗ is the
capacitance at the output nodes of the differential oscillatory
neurons and is approximately considered as C∗ ≈ C + Cc. In
the relations mentioned earlier, the input parameters were Vdd
(voltage supply of the circuit), VH (high threshold voltage of the
VO2 device), VL (low threshold voltage of the VO2 device), GH
(high conductance value of the VO2 device in the metallic state),
GL (low conductance value of the VO2 device in the insulator
state), and N (the number of neurons in the neural network).

Functional

Retrieval Rate

Synchronization level

Stability rate

Convergence cycle

Hardware

Area overhead

Power consumption

Frequency

FIGURE 6 | Functional and hardware specifications for evaluating the design.

Evaluation Method
Figure 6 shows the specifications used to evaluate our design.
These specifications are classified into two categories: functional
and hardware specifications. The functional specifications are
defined as follows:
• Retrieval rate is defined as a value in the range of [0 1]

that shows the ratio of correct retrieved patterns to all applied
patterns:

RET =
# correct retrived patterns

# all patterns
(18)

• Synchronization level is defined to measure how many
differential oscillatory neurons (neurons3) are synchronized
either in phase or in anti-phase. For an input pattern p, the
synchronization level is a value in the range of [0 1] that is
related to the average deviations between synchronized signals in
a period c:

SYNp (c) =<
1
N

N∑
i=1

m(PTi (c)− PTref (c)) > (19)

The SYNp(c) value shows the synchronization level at cycle c,
which is related to the time difference between the peak time
of signal i at cycle c, PTi(c), and the peak time of the reference
signal PTref (c) (the signal of positive branches vpi are used for
calculations). Function m = m(1t) maps a time difference 1t to
a value between 0 to 1 (see Figure 7). It is worth mentioning that
time difference 1t is equivalent to phase difference. According to
function m(), synchronization level SYNp(c) is maximum when
the neurons are either in phase (1t = 0 or 1t = ± T) or in
anti-phase (1t = ± T/2). When the neurons are not exactly in
phase or in anti-phase, a value less than 1 is assigned depending
on the phase difference. For instance, the worst case in terms of
synchronization corresponds to the phase difference T/4.
• Stability rate is defined as a value in the range of [0 1] which is

the number of applied patterns resulting in stable outputs divided
by all applied patterns:

STB =
# patterns resulting in a stable output

# all patterns
(20)

3In the following, the word “neuron” is used for “differential oscillatory neurons.”
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FIGURE 7 | Function m = m(1t) used to map a time difference to a value between 0 and 1.

Output stability for an applied pattern is defined based on the
average SYNp(c) for all signals in the last few cycles. When this
average value is larger than 0.9, the output is considered as
a stable output.
• Convergence cycle is defined as the number of cycles 9

required to converge to a pattern:

CON = 9 (21)

where,
SYNp (9) > 0.9 ×Max∀c>9{SYNp (c)} (22)

When the output converges to a pattern, the synchronization
level is larger than 90% of the maximum synchronization level
in subsequent cycles.

In addition to the functional specifications, some hardware
specifications are also considered to evaluate the design, such as
power consumption per neuron, frequency, and area overhead.

RESULTS

This section describes the evaluation of the design. A DONN
with 15 neurons is first simulated to show how DONNs work4.
A comprehensive evaluation is then provided to show the
performance of DONNs.

Operation of a DONN
A DONN with N = 15 neurons (differential oscillatory neurons)
was designed to illustrate the concepts underlying the functional
specifications and operation of the DONN.

The design relations Eqs. (14)-(17) and the input parameters
(the number of neurons N, oscillation frequency f, supply voltage
Vdd, and VO2 parameters) were used to calculate the circuit
parameters. First, Eqs. (14)-(15) were used to calculate values
for g0 and Gs. The values for C and CC were then computed
using relations Eqs. (16)-(17). After that, the synaptic weights
were calculated with the standard Hebbian rule to store the three
patterns shown in Figure 8A. Each pattern has 15 pixels and each
pixel value at any time is represented by the phase of one of the
15 neurons (each made of two physical VO2 oscillators in anti-
phase) with respect to the reference neuron. The rules in Eqs.

4A presentation with a general overview of DONN is provided in the
Supplementary Material section.

(9) and (11) were then used to map the weights to the physical
synaptic resistance with α = 1.8 and β = 0.2. A summary of the
parameters for this design is shown in Table 1.

Figure 8B shows simulation results for an applied input
pattern. The voltage of the positive branches can be seen in the
top sub-figure. Input patterns are applied by setting a specific
initial phase for each neuron. The initial phases of the neurons
were set by powering up first the positive branch and then the
negative branch of each neuron associated to the white pixels.
In contrast, for black pixels, the positive branch was powered
up after the negative branch. On the other hand, in order to
extract the value of pixel i (or neuron i) for a specific cycle, the
time difference between the voltage peak of the positive branch
in neuron i with respect to a reference voltage peak (e.g., the
voltage of the positive branch in neuron 1) is measured. For each
neuron, if the time difference is zero (half of the period), then a
white (black) pixel value is assigned. In Figure 8B (bottom figure)
the 1st cycle pattern (which is not among the stored patterns in
Figure 8A) is shown. It can be seen that it resembles the input
pattern. The same figure also shows the synchronization level
during the convergence period. The minimum synchronization
level corresponded to a moment in which the deviation between
the signals was maximum. The maximum synchronization level
occurred when the neurons were either in phase or in anti-phase.
The convergence cycle for this pattern was 15 cycles.

Figure 8C shows another simulation of unstable neural
network behavior in which the mapping parameter α was a
large value (α = 106). For this value, gc

ij (gd
ij ) was a negligible

value for positive (negative) weights (see the mapping rule). For
zero weights, gc

ij and gd
ij were negligible values in comparison

to g0 and memristors can be considered as open circuits. The
simulation results show that the output was unstable for the
input pattern (Figure 8C). The synchronization level changed
periodically, and the evolution of the pattern shows that the
retrieved pattern periodically changed from one pattern (pattern
0) to another (pattern 2).

Performance of DONNs
The DONN was evaluated with different numbers of neurons
N using random orthogonal or semi-orthogonal patterns. The
hamming distance between orthogonal patterns is exactly half
the length of the patterns (number of neurons), while, for
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FIGURE 8 | Simulation results of a DONN with 15 neurons. (A) Three patterns were stored in the DONN. (B) Simulation results for an input pattern with α = 1.8. The
top figure shows the voltage of the positive branches of the differential oscillatory neurons. The bottom figure shows the input pattern, the 1st cycle pattern, the
synchronization level and the evolution of the retrieved pattern. According to the definition of convergence cycle in Section “Evaluation method,” the ONN requires15
cycles to retrieve the stored pattern. (C) A simulation result with a large value for mapping parameter α (α = 106), showing unstable DONN behavior. Although the
output converged to a stored pattern, it periodically changed from one pattern to another.

semi-orthogonal patterns it is close to half of the length of the
patterns but different. Figure 9A shows three samples for 4×4
randomly generated patterns. The ratio of black and white pixels
in each pattern was 50%. Approximately 10% of noise was added
to the patterns to generate the test patterns. The number of test
patterns was 1.5N . The applied noise changed the color of a noisy
pixel from black to white or from white to black. The values for
the frequency, supply voltage, and VO2 device parameters are
taken from Table 1. The circuit parameters were calculated in the
same way as in the previous case study, and mapping parameter α

was selected based on the following Figure-of-Merit for the neural
network performance.

FoM =< RET > × < SYN > × < STB >

× < 1− |CON|norm > (23)

where |CON|norm is Min-Max normalization of convergence
cycles CON, which is calculated using a relation similar to Eq.
(10). Parameter SYN is the average of SYNp(c) for all signals of
all applied patterns in the last few cycles. Figure 9B shows the
DONN specifications for different values of α, which were used
to calculate the FoM shown in Figure 9C. The simulation was
carried out for DONNs with different numbers of neurons N,
and each point in the figure represents the average of 5 separate
simulation results. The number of stored patterns for N = 6, 8
was two, while three patterns were stored for the DONNs with
N = 12, 14, 16. The results show that the performance of the
neural network was related to the mapping value α. When value
α was 1, performance was zero because all weights were zero
(considering Eq. 11, gij

d = gij
c for all signs), and the neurons did

not affect each other. In this case, the neuron outputs did not
change, the output pattern was the same as the input pattern,

and the retrieval rate was consequently zero. By increasing
the value of parameter α, positive and negative weights were
formed, and performance increased. For larger values, however,
the network was unstable for some patterns (Figure 8C), and its
performance decreased accordingly. With a given performance
value, a proper value for parameter α could be selected using
Figure 9C. The results of the evaluation of the simulations are
shown in Figure 10. Functional specifications versus the number
of neurons are shown in Figure 10A. The retrieval rate of the
proposed design was compared with the classic HNN, showing
comparable accuracy. The stability and synchronization levels
show that the output was stable, and that the neurons were
synchronized properly. Figure 10B represents the convergence
cycles, i.e., the average number of cycles required for the

TABLE 1 | Design parameters.

Parameter Value

Number of neurons N 15

Frequency f = 1/T 1 MHz

Supply voltage Vdd 2.5 V

VO2 parameters VH 2 V

VL 1 V

RH = 1/GL 100 k�

RL = 1/GH 1 k�

Series resistance Rs = 1/Gs 6 k�

Minimum memristor resistance r0 = 1/g0 221 k�

Mapping parameters α 1.8

β 0.2

Coupling capacitor CC 11 pF

Parallel capacitor C 108 pF
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FIGURE 9 | Dependence of the DONN performance on mapping parameter α. (A) Three sample patterns generated randomly for a DONN with N = 16 neurons.
(B) DONN specifications versus parameter α. (C) Dependence of FoM on mapping parameter α. The dotted lines are the simulation results for the different number
of neurons. The solid fitted curves show how the FoM value changed with the value of parameter α.

FIGURE 10 | Simulation results of DONNs with different number of neurons. (A) Functional specifications of the design including the stability rate, synchronization
level, and retrieval rate for both DONN and HNN. (B) Average of the convergence cycles for a pattern retrieval. (C) Power consumption per differential oscillatory
neuron, which was constant with the number of neurons. (D) Frequency of the oscillatory neurons. (E) Number of components required to implement a fully
connected DONN.

retrieval of patterns. Figure 10C shows power consumption per
neuron, which remains constant with the number of neurons,
and was about 735 µW or, equivalently, 0.77 pJ/cycle. The
frequency of around 950 kHz shown in Figure 10D was around
the expected value (1 MHz). The number of components,
as an indication of area overhead is given in Figure 10E.

The number of memristors scales quadratically with the
number of neurons.

#M = 2N(N − 1) (24)

However, the number of the other components scales linearly
with the number of neurons.
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TABLE 2 | Comparison of memristor-based DONNs with non-oscillatory HNNs.

Metrics The proposed memristive
DONN

Mixed-signal Memristive HNN (Sequential
operation) (Cai et al., 2020)

Analog Memristive HNN (Hu
et al., 2015)

Frequency 1 MHz (oscillators frequency) 500 MHz (clock for the digital part) N.A (pure analog HNN)

Convergence time (Number of
neurons)

28.6 cycles: 28.6 µs with
1 MHz (N = 6-16)

6.6 µs (N = 60) 35 µs (N = 3)

Power consumption per neuron 735 µW (Vdd = 2.5 v) 182 µW 80000 µW

circuit complexity (N is the
number neurons)

#Memristor = 2N(N−1)
#Capacitor = 3N
#Resistor = 2N #VO2 = 2N

# Memristor = N2 #Register = N bit #Analog buffer = N
#Multiplexer = N bit #Amplifier = 1 #Comparator = 2
#D-FF = 2 #Pass transistor = 2

#Memristor = N(N−1)
#Resistor = 5N #Amplifier = N #
Analog buffer = N #Inverter = N

Table 2 provides a comparison between the proposed
memristive DONN and classic non-oscillatory HNNs. The
metrics in the table directly affect the main characteristics of
the system which are throughput (convergence time), energy
efficiency (power consumption per neuron), and area overhead
(hardware complexity). Frequency is applicable for oscillatory
neural networks and digital systems, which is 1MHz in the
proposed DONN and 500 MHz in the digital hardware
introduced in Cai et al. (2020). As a metric for throughput,
convergence time is the required time to retrieve a pattern after
applying an input. However, this convergence time is highly
related to the pattern size (number of neurons in the neural
network). The convergence time reported in Cai et al. (2020)
is 6.6 µs where the network consists of 60 neurons. In (Hu
et al., 2015), it takes 35 µs to retrieve a pattern in an HNN
with 3 neurons. In the proposed DONN, the average convergence
time is 28.6 cycles, being directly related to the frequency of
the neurons. Here, in our simulations, it takes 28.6 µs on
average to retrieve a pattern with the frequency being 1 MHz.
By increasing the frequency, retrieval time is decreased. For
instance, if the frequency would be 500 MHz, the convergence
time would be 28.6/500 = 0.027 µs. In the proposed DONN,
the power consumption per neuron is 735 µW. One way to
improve power consumption is decreasing the voltage of the
power supply Vdd and VH , which is possible by reducing the
size of the VO2 devices (Corti et al., 2021). Hardware complexity
is another metric to show area overhead, which is provided by
counting the number of components. In (Hu et al., 2015), the
minimum number of memristors was used, which is half of
our design. However, considering other components, DONNs
require only basic components (two VO2 devices, two resistors,
and three capacitors per neuron) which make them potentially
compact blocks. On the other hand, classic non-oscillatory HNNs
use larger blocks such as amplifiers (8 transistors) and buffers
(4 transistors).

One of the main challenges in using emerging devices is
cycle-to-cycle and device-to-device variability. Process variations
are caused by the immature fabrication technology of these
devices (Niu et al., 2010; Maffezzoni et al., 2015; Chaudhuri
and Chakrabarty, 2018; Zhu et al., 2020). Although an accurate
control of the fabrication process reduces variability, unavoidable
variations degrade the performance. Considering Eq. (1), the
behavior of oscillators relies on the coupling functionwij.gij(xi,xj),
as well as the oscillator function fi(xi). Therefore, the effect
of mismatches can be considered for coupling circuits and

differential oscillatory neuron circuits, separately. In this regard,
we have done preliminary statistical simulations including
perturbations in the memristance values and the VO2 device
parameters. Simulation results show that the FoM is larger than
90% when the mismatch relative sigma σ of the memristance
is less than 20%. However, the operation of the DONN fails
when σ ≥ 20%. On the other hand, mismatches in the threshold
voltages of the VO2 devices (VH and VL) are much more
critical. In order to have a proper operation of DONNs,
absolute sigma should be in the range of 5-10 mV (relative
sigma σ < 0.5%). Consequently, device manufacturers should
be aware that when VO2 devices are massively fabricated
on a chip, mismatches should have such low sigmas for the
threshold voltages.

CONCLUSION

A fully connected DONN hardware implementation is proposed
comprising VO2-based differential oscillatory neurons and
memristor-bridge circuits. From the architectural viewpoint, it
is like a counterpart of the traditional non-oscillatory Hopfield
neural network, used as an associative memory and, as such,
the standard Hebbian rule is used to train it. With regard
to hardware, two emerging devices are used for the hardware
implementation. VO2 devices are used to implement the
differential oscillatory neurons, and a memristor-bridge circuit
with adjustable resistance is used to implement the coupling
functions. Finally, the design of the hardware neural network
is explained and evaluated using criteria that show the proper
operation of the resulting DONNs in terms of synchronization,
stability, and pattern retrieval.
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