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Abstract: This work presents a data driven control strategy able to track a set point without steady-state error. The control
sequence is computed as an affine combination of past control signals, which belong to a set of trajectories stored in a process
historian database. This affine combination is computed so that the variance of the tracking error is minimised. It is shown that
offset free control, that is zero mean tracking error, is achieved under the assumption that the state is measurable, the
underlying dynamics are linear and the trajectories of the database share the same error dynamics and are in turn offset free.
The proposed strategy learns the underlying controller stored in the database while maintaining its offset free tracking capability
in spite of differences in the reference, disturbances and operating conditions. No training phase is required and newly obtained
process data can be easily taken into account. The proposed strategy, related to direct weight optimisation learning techniques,
is tested on a process control trainer.

1 Introduction
Tracking variable set points without steady-state error, even in
presence of constant disturbances, is one of the most desirable
capabilities of a feedback control system. Classical control
methods for linear systems achieve this by using integral action
controllers, as in the case of the ever popular proportional–integral
(PI) or proportional–integral–derivative control algorithms.
Generally speaking, offset-free control is a well-understood
problem, although still researched in more ambitious control
formulations [1].

In recent years, the terms data driven control have been applied
to different control strategies based on completely different
paradigms. Data driven approaches based on time-domain models
[2] and frequency-domain methods [3] have been researched, as
well as modern paradigms like behavioural [4] or big data based
control [5]. Data driven controller tuning methods which directly
synthesise a controller with an iterative procedure [6, 7] or which
obtain desirable properties as to ensure closed-loop stability [8]
have been developed. Data driven predictive control [9, 10] and
iterative learning control [11] have also been proposed.

In this class of approaches, offset free control is often achieved
by following a reference model and assuming an integrator mode
[12], controller or set point adaptation [5], reinforcement learning
[13] or exploiting the linear dependence in input–output data of
linear processes [2]. Other works in the literature focus on learning
the control law from data as in [14, 15] or on identifying the
process dynamics [16]. In [17], a data-driven control design
technique which is based on the on-line inversion of the model and
copes with MIMO non-linear system is presented. Other works, as
in [18], focus on achieving high tracking performance through
learning for unknown LTI systems subject to unknown
disturbances. Non-linear systems with output saturation are
addressed in [19]. Also recent tendencies in data driven control are
using approximate Q-learning methods [20, 21] and applying
distributed optimisation algorithms to tackle adaptative dynamic
programming problems [22].

Many of these data driven control problems often rely on
learning off-line either a model of the system or directly a control
law, in some cases because the learning/estimation algorithms are
too complex to be carried out online. Direct weight approximation
methods provide low computational burden algorithms [23–25]

carried out using affine combinations of locally weighted past data.
This class of algorithms have been used for example in lazy
learning approaches [26, 27], in which training is deferred until a
query is to be answered. Other works that have considered similar
ideas in control applications include [28], in which local weighted
projection regression is used together with partial least squares
combined with a predictive controller [29], where local learning is
used in a data driven control method that performs a model free
dynamic linearisation within the context of a an adaptive predictive
control and [30] which tackles the problem of trajectory tracking
with a hierarchical three-level controller that relies on past
memorised optimal input–output pairs that are adaptively merged
using a similarity measurement.

Following this line of research, in this work (that is an
expanded version of [31]) we present a data driven control strategy
based on a database of past state trajectories that aim to produce a
similar offset free closed-loop response in spite of different
operating conditions. The control laws used to generate the
database trajectories are assumed to be unknown, so that the
proposed strategy will learn the underlying unknown control law
that obtain similar closed-loop responses for different operating
conditions. The proposed controller computes the input signal to be
applied as an affine combination of the control signals. Zero mean
tracking error with minimum variance is achieved under the
assumption that the state is measurable, the underlying dynamics
are linear and the trajectories of the database share the same error
dynamics and are in turn offset free.

The idea of using affine combinations of stored trajectories has
been used, in a different context, by the authors in previous works
[32, 33] in which offset free tracking was not achieved except for
the ideal case of a noise and disturbance free database. With
respect to other data driven control approaches, the proposed
method does not perform an identification step, avoiding the
potential problems that can arise in this phase. Furthermore, being
related to the lazy learning techniques, no training phase is required
to learn the underlying control law in the database, thus it possible
to include new data that is made available online. The results of the
paper are illustrated by means of an application to a well-known
process control trainer [34, Chapter 4].

The paper is organised as follows. The problem formulation is
presented in Section 2. The characterisation of steady states and the
main contributions of the paper are presented in Sections 3 and 4.
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A general formulation for the proposed controller is presented in
Section 5, whereas Section 6 shows the experimental results with
the scaled laboratory process. The paper ends with the conclusions
and future works in Section 7.

2 Problem statement
In this work, we consider a system for which a model of its
dynamics is not available, but a particular state representation is
known and measurable. This implies that although we propose a
model-free approach, some knowledge of the system is needed to
define this state. In some cases, the measured state vector
corresponds to physical measurements chosen based on first
principles; while in others, for those systems in which the state is
not completely measurable, the state will be considered composed
by present and past values of the system inputs and outputs,
following a standard input–output modelling procedure and
assuming that an estimation of the order of the system and the
delays is known.

Although unknown, we assume that the system is a linear
system subject to bounded state and output disturbances, hence, the
measured state satisfies the following model:

x(t + 1) = Ax(t) + Bu(t) + w(t) (1)

y(t) = Cx(t) + Du(t) + v(t) (2)

where t is the discrete time variable, x(t) ∈ ℝnx, u(t) ∈ ℝnu and
y(t) ∈ ℝny are the measured state, input and output of the system at
time step t, respectively, A ∈ ℝnx × nx, B ∈ ℝnx × nu, C ∈ ℝny × nx and
D ∈ ℝny × nu are the unknown system matrices and w(t) ∈ ℝnx and
v(t) ∈ ℝny are unknown state and output disturbances, respectively,
with non-zero mean, that is

E{w(t)} = we, E{v(t)} = ve . (3)

Note that the state and output disturbances include all the
discrepancies between measured and real states due to noises and,
to some extent, uncertainties and slight non-linearities.

The control objective is to track a reference r ∈ ℝny without
offset. The stochastic disturbances considered in (1) and (2) make
impossible to reach true offset free control. Thus, by offset free
control we mean that y is probabilistically ultimately bounded into
a set with mean equal to r [35]. Also, to ensure a well-posed
control problem, we assume the following.
 

Assumption 1: The system given by (1) and (2) is assumed to
have full state and output controllability. Furthermore, the
reference r ∈ ℝny is assumed to be reachable.

2.1 Historian database

In this work, instead of using a model to define the controller, we
present a procedure to take a decision on behalf of the information
stored in a historian database. This historian database has a large
number of past offset free state, input, output and reference
trajectories. Each trajectory stored in the database, which may be
of different length, represents the closed-loop behaviour of the
system given by (1) and (2) controlled with a different unknown
control law and constant reference. In addition, we assume that the
disturbances of each stored trajectory are characterised by a
possibly different mean value. Using this framework, the
disturbance may account for time-varying and state-dependent
perturbations.

If the measured state for each trajectory is given by x~ and its
corresponding steady-state value is denoted as x~e, we assume that
all the trajectories in the historian database satisfy the following
property:

 
Assumption 2: It is assumed that the dynamics of the

trajectories of the database satisfy

x~(t + 1) − x~e = Ac(x~(t) − x~e) + τ~(t), (4)

where Ac is a Schur stable matrix and τ~(t) a zero mean error term
with bounded covariance.

The objective of this work is to learn from the historian
database the underlying controller defined by Assumption 2, while
preserving its offset free property in the presence of different mean
perturbations. Note that using a standard function approximation
procedure to determine a function that relates state, reference and
output would yield a static controller that would not provide offset
free constant reference tracking for different mean perturbations.

There are different areas of applicability for the proposed
control scheme depending on the origin of the historian database.
The trajectories stored can be obtained from real operation (which
may include manual operation and different controllers) of the
system in the past, or from dedicated tests. In the first case, the
controller objective is to learn the underlying control law that has
provided good performance in the past, in spite of changing
operating conditions. This procedure may be of interest in complex
systems for which great amounts of data are available.

In the second case, using closed-loop testing may be a benefit,
for example when trying to control a open-loop unstable system,
because identification is avoided. In this case, because the transient
closed-loop response will depend on those of the trajectories stored
in the database, it is important to store trajectories that exhibit a
good control performance so that the controller inherits it. The
design criteria can be anything from a performance cost to transient
response measures (e.g. overshoot) that can be used to characterise
the good trajectories. In some sense, tuning is carried out using
extensive off-line experimentation, which depending on the
application, may or may be not possible or be less appropriate than
using standard identification modelling techniques. This procedure
is shown in the temperature control application example.

Besides closed-loop testing and real past behaviours, it is also
possible to include open-loop tests for stable systems in which for a
predefined input sequence, obtained for example from step tests
with filtering or lead/lag, the reference is defined for the steady
state reached. In addition, these results can be combined with
trajectories obtained from past operation or closed-loop testing.

 
Remark 1: The requirement that all the trajectories of the

database satisfy (4) could seem very restrictive but it is consistent
with the standard control practice in which the process is desired to
have the same performance in spite of the different operating
conditions. For a real process this implies that different controllers
used to generate the historian database were characterised by a
similar closed-loop dynamic behaviour (e.g. similar rise time and
overshoot). Note also that the zero mean error term is not bounded,
which provides a certain degree of robustness for closed-loop
trajectories with slightly different error dynamics. Furthermore, the
bounded covariance implies that the probability of getting high
errors is small.

2.2 Building the candidate set

The information stored in the historian database is used to generate
a set of possible candidate tuples j ∈ S. Each tuple consists of the
inputs, states, outputs and corresponding reference of a particular
trajectory and sampling time of the historian database. These tuples
will be used to define the optimisation problem that has to be
solved at each sampling time to implement the proposed controller
and is built off-line using all the trajectories available in the
database excluding those that are the first stored element of a
particular trajectory. The reason of this is that, in the proposed
strategy, for each candidate tuple, it is necessary to know the state
and input value of the previous sample time in its corresponding
trajectory.

For each candidate, we denote as xj(0), uj(0), yj(0), wj(0) and
vj(0) the state, input, output and disturbances at the corresponding
sample time of the candidate, and xj(k), uj(k), yj(k), wj(k) and vj(k)
the corresponding values shifted k sample times (i.e. xj( − 1)
denotes the state at the sample time before the candidate's
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corresponding sample time). Moreover, for each candidate, we
denote as rj the corresponding reference of its trajectory (note that
the reference does not depend on the time because it is assumed
constant for each trajectory). The database does not store the values
of the disturbances, and hence the variables wj( ⋅ ) and vj( ⋅ ) are
unknown for the controller. Although the disturbances are not
stored in the database, their effects are indirectly stored by means
of the state and output measurements.

Sampling time index variable t refers to the sampling time of a
real trajectory, either from the historian data base or online
implementation, in particular, in the controller implementation x(t)
refers to the current state measurement. On the other hand,
sampling time index variable k refers to displacement relative to a
candidate of the set S. Note that the only values of k needed to
define the proposed controller are k = 0 and k = − 1. In the proof
of the main theorem, k = 1 is also used.

To clarify how to define the candidates from the trajectories
stored in the historian database, consider Fig. 1, which shows an
example of a one-dimensional state trajectory with five sampled
values, x~(1) to x~(5) that reach its corresponding target state x~e. 
From this trajectory, four different state candidates can be defined,
one for each state in the trajectory that has a predecessor. In the
figure, the possible candidates are denoted as xj(0) with
j ∈ a, b, c, d, e. In this particular case, xa(0) cannot be included in S
because xa( − 1) does not exists. The value of each candidate is
defined by a different sample time; that is

xa(0) = x~(1)
xb(0) = x~(2)
xc(0) = x~(3)
xd(0) = x~(4)
xe(0) = x~(5) .

(5)

The corresponding previous state of each candidate are also
defined by the states in this trajectory; that is

xa( − 1) = NA
xb( − 1) = x~(1)
xc( − 1) = x~(2)
xd( − 1) = x~(3)
xe( − 1) = x~(4) .

(6)

With this notation, the candidates satisfy

xj(k + 1) = Axj(k) + Buj(k) + wj(k)
yj(k) = Cxj(k) + Duj(k) + vj(k) . (7)

For each candidate, we denote its corresponding reference as rj
which has a constant value for the whole trajectory, thus shared
with the other candidates that are from the same trajectory. In
addition, for each candidate, we denote the constant mean

disturbance values of its corresponding trajectory as wj
e and vj

e; that
is

E{wj} = wj
e, E{vj} = vj

e . (8)

Taking into account that all the trajectories in the database
satisfy Assumption 2, the candidates also satisfy

x j(k + 1) − x j
e = Ac(x j(k) − x j

e) + τ j(k) . (9)

Assumption 2 and (9) implies a direct consequence for all the
candidates trajectories. Given 0 < pj ≤ 1 and Ω j ⊂ ℝnx + nu, there
exists N j such that for its corresponding future state and input
trajectories satisfy

Pr xj(k) − xj
e ∈ Ω j ≥ pj, ∀k ≥ N j (10)

where Ω j is a probabilistic ultimate bound ([35]) which is a
neighbourhood around the steady state xj

e whose size is related to
the covariance of τ j(k). Notice that N j depends on the initial state
of the candidate trajectory xj(0). We also remark that if the
disturbances τ j(k) are bounded, it is possible to find a deterministic
ultimate bound, that is a Ω j which satisfies (10) with probability
pj = 1 [36, Chapter 4].

 
Remark 2: The size of the candidates set influences the learning

capabilities of the proposed approach and it is also directly related
to the computational burden. On the other hand, as in other data
based and learning approaches, the dimension of the state vector
(and other variables) affects the necessary size of the set S. From a
practical point of view, this leads to use the minimum dimension
state representation necessary for the control objectives considered.

3 Steady-state characterisation
Although the proposed controller is based on state feedback, we
have considered an output reference tracking problem. In this
section, we consider the notion of steady state for the output equal
to a given reference r. This characterisation will be used on the
proof of the main result of this paper.

The pair (xe, ue), with xe ∈ ℝnx, ue ∈ ℝnu, represents a steady
state and steady control input if and only if

xe = Axe + Bue + we

r = Cxe + Due + ve .
(11)

We assume that each of the trajectories of the database has been
generated to track a particular reference and moreover, we assume
that the control input trajectory drives the output to this reference
in spite of the disturbances. Thus, similarly to (11), a pair (xj

e, uj
e),

with xj
e ∈ ℝnx, uj

e ∈ ℝnu, represents a steady state and steady
control input for the trajectory of the jth candidate if and only if

xj
e = Axj

e + Buj
e + wj

e,
rj = Cxj

e + Duj
e + vj

e,
(12)

The following assumption is a necessary controllability
condition and it is required to ensure that a steady state pair (xj

e, uj
e)

exists for a given reference r.
 
Assumption 3: Let G be defined as

G = I − A −B
C D

. (13)

It is assumed that G has full column rank.
It is possible to provide a characterisation of the pair (xj

e, uj
e),

through Theorems 1 and 2 given in the following.

Fig. 1  Example of the notation employed to describe the candidates that
conform the set S
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Theorem 1: Suppose that Assumption 3 holds, and that G is a

square matrix. Then, the pair (xj
e, uj

e) is uniquely given by a linear
expression of rj − vj

e and wj
e.

 
Proof: The equality constraints (12) can be rewritten as

I − A −B
C D

xj
e

uj
e

=
wj

e

rj − vj
e

. (14)

Since it is assumed that G has full column rank, the previous
system of equations has a unique solution equal to

xj
e

uj
e

= G−1 wj
e

rj − vj
e

, (15)

and this completes the proof. □
 
Theorem 2: Suppose that Assumption 3 holds, and that the

number of columns of G is larger than the number of rows, and that
the steady-state pair (xj

e, uj
e) is defined as the solution of

min
xj

e, uj
e

1
2 ∥ xj

e ∥Q
2 + 1

2 ∥ uj
e ∥R

2

s . t .

G
xj

e

uj
e

= bj
e,

(16)

where

bj
e =

wj
e

rj − vj
e

, Q > 0 and R > 0.

Then the pair (xj
e, uj

e) is uniquely given by a linear expression of
rj − vj

e and wj
e.

 
Proof: Let zj

e be

zj
e =

xj
e

uj
e

, (17)

and 0a, b the zero matrix with a rows and b columns. It is well
known ([37, Chapter 10]) that if the block diagonal matrix

Υ =
Q 0nx, nu

0nu, nx R
(18)

is strictly definite positive and G has full rank, then the optimal
value for zj

e, defined as in (17) and solution to (16), is given by the
following system of equations:

Υ G⊤

G 0nG, nG

zj
e

βj
e =

0nz, 1

bj
e , (19)

where nz = nx + nu is Υ dimension, nG < nz is the number of rows
of G and βj

e denotes the optimal value for the dual variables of the
optimisation problem. From

Υzj
e + G⊤βj

e = 0nz, 1 (20)

we obtain

zj
e = − Υ−1G⊤βj

e . (21)

From (19) we also have

Gzj
e = bj

e . (22)

Substituting (21) into (22), we obtain the optimal value for βj
e

−GΥ−1G⊤βj
e = bj

e

βj
e = − (GΥ−1G⊤)−1bj

e . (23)

From (21) and (23) results

zj
e = Υ−1G⊤(GΥ−1G⊤)−1bj

e . (24)

We now denote

MΥ = Υ−1G⊤(GΥ−1G⊤)−1, (25)

to get

zj
e = MΥbj

e . (26)

Thus, it is shown that there is a linear relationship between vector
bj

e and vector zj
e. □

4 Offset free data driven control
In this paper, we propose to use a control law derived from the
control signals in the candidates set S. The control signal to be
applied at time t will be computed as a weighted sum of the initial
control signals of every candidate of S, that is

u(t) = ∑
j ∈ S

λjuj(0) . (27)

The following sections discuss the conditions that {λj} must meet
in order to recover the underlying closed-loop properties of the
trajectories stored in the historian database. Offset free with
minimum variance must be achieved for all possible references r
and mean disturbance values we, ve, not only those included in the
candidate's data.

At a first approximation, similar to that of [32], suppose that we
compute {λj} so that the current state, output and reference are a
combination of the candidates

x(t) = ∑
j ∈ S

λjxj(0), (28)

1 = ∑
j ∈ S

λj . (29)

y(t) = ∑
j ∈ S

λjyj(0), (30)

r = ∑
j ∈ S

λjrj . (31)

Taking into account (27) and (28) in the state equation (1)

x(t + 1) = Ax(t) + Bu(t) + w(t)
= A ∑

j ∈ S
λjxj(0) + B ∑

j ∈ S
λjuj(0) + w(t)

= ∑
j ∈ S

λj Axj(0) + Buj(0) + w(t)

= ∑
j ∈ S

λjxj(1) + ∑
j ∈ S

λj(w(t) − wj(0)) .

(32)
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We notice that approximating the next state x(t + 1) as a
combination of the next states of the candidates yields an
estimation error given by

∑
j ∈ S

λj(w(t) − wj(0)), (33)

which is not guaranteed to have zero mean. This means that if we
use a control strategy similar to that of [32], the state in t + 1 will
be a combination of the states of every trajectory in S, but it will
have an offset caused by the approximation error even if the
trajectories in the database are offset free.

To obtain an offset free control, additional constraints have to
be imposed on {λj} in order to force the controller to have memory,
in the sense that the previous state and applied control signal have
to be related with the previous ones of every trajectory in S through
the values of {λj}. The constraints

x(t − 1) = ∑
j ∈ S

λjxj( − 1), (34)

u(t − 1) = ∑
j ∈ S

λjuj( − 1), (35)

take this issue into account. The next properties demonstrate that
the estimation error of the next state obtained using a set of weights
that satisfy the above-mentioned constraints has a zero mean error
term. This property will be used to prove offset free tracking.

 
Property 1: Assuming that (27)–(29), (34) and (35) hold; then

x(t + 1) = ∑
j ∈ S

λjxj(1) + ex(t), (36)

where ex(t) is a zero mean error term.
 
Proof: From the state equation (1) shifted backwards and the

constraints (28), (34) and (35)

w(t − 1) = x(t) − Ax(t − 1) − Bu(t − 1)
= ∑

j ∈ S
λjxj(0) − A ∑

j ∈ S
λjxj( − 1)

−B ∑
j ∈ S

λjuj( − 1)

= ∑
j ∈ S

λj xj(0) − Axj( − 1) − Buj( − 1)

= ∑
j ∈ S

λjwj( − 1) .

(37)

From (27) and (28), as mentioned before, we obtain the estimated
value of the next time step

x(t + 1) = ∑
j ∈ S

λjxj(1) + ∑
j ∈ S

λj(w(t) − wj(0))

= ∑
j ∈ S

λjxj(1) + w(t) − ∑
j ∈ S

λjwj(0) .
(38)

Defining the prediction error as

ex(t) = x(t + 1) − ∑
j ∈ S

λjxj(1), (39)

and substituting in (38), we have

ex(t) = w(t) − ∑
j ∈ S

λjwj(0) . (40)

From (37) we obtain

−w(t − 1) + ∑
j ∈ S

λjwj( − 1) = 0. (41)

Adding this equality to (40) yields

ex(t) = w(t) − w(t − 1) − ∑
j ∈ S

λj(wj(0) − wj( − 1))

= Δw(t) − Δw(t − 1) − ∑
j ∈ S

λj(Δwj(0) − Δwj( − 1)),
(42)

where Δw( ⋅ ) = w( ⋅ ) − we and Δwj( ⋅ ) = wj( ⋅ ) − wj
e. Notice that

ex(t) is a zero mean error term because, by construction, Δwj( ⋅ )
and Δw( ⋅ ) have zero mean. □

The weights {λj} obtained can be used not only to obtain an
estimation of the future state, but also to estimate the mean value of
the current perturbations with zero mean error. This property is
proved next.

 
Property 2: Assuming that (27)–(30), (34) and (35) hold; then

we = ∑
j ∈ S

λjwj
e + ew(t), (43)

ve = ∑
j ∈ S

λjvj
e + ev(t), (44)

where ew(t) and ev(t) are zero mean error terms.
 
Proof:

x(t) = Ax(t − 1) + Bu(t − 1) + w(t)
= Ax(t − 1) + Bu(t − 1) + we + Δw(t) . (45)

Thus

we = x(t) − Ax(t − 1) − Bu(t − 1) − Δw(t)
= ∑

j ∈ S
λj(xj(0) − Axj( − 1) − Buj( − 1)) − Δw(t)

= ∑
j ∈ S

λjwj( − 1) − Δw(t)

= ∑
j ∈ S

λj(wj
e + Δwj( − 1)) − Δw(t)

= ∑
j ∈ S

λjwj
e + ∑

j ∈ S
λjΔwj( − 1) − Δw(t)

= ∑
j ∈ S

λjwj
e + ew(t),

(46)

where ew(t) is a zero mean error term. In a similar way

y(t) = Cx(t) + Du(t) + v(t)
= Cx(t) + Du(t) + ve + Δv(t) . (47)

Thus

ve = y(t) − Cx(t) − Du(t) − Δv(t)
= ∑

j ∈ S
λj(yj(0) − Cxj(0) − Duj(0)) − Δv(t)

= ∑
j ∈ S

λjvj(0) − Δv(t)

= ∑
j ∈ S

λj(vj
e + Δvj(0)) − Δv(t)

= ∑
j ∈ S

λjvj
e + ∑

j ∈ S
λjΔvj(0) − Δv(t)

= ∑
j ∈ S

λjvj
e + ev(t),

(48)

where ev(t) is a zero mean error term. □
The control objective is to drive the output to the reference r.

Taking into account Assumption 2, this implies that, for each
candidate, the state and the input have to reach the corresponding
steady-state values xj

e, uj
e. In the next result, it is proved that the
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evolution of the deviation of the state from its target state can be
estimated from the weighted evolution of the deviation of each of
the candidate trajectories from its corresponding target states with
zero mean error. This relation will be used to prove convergence
and zero mean tracking error.

 
Theorem 3: Suppose that

xe

ue
= M

we

r − ve
, (49)

xj
e

uj
e

= M
wj

e

rj − vj
e

, (50)

and that (27)–(31), (34) and (35) holds; then

x(t + 1) − xe = ∑
j ∈ S

λj(xj(1) − xj
e) + η(t), (51)

where η(t) is a zero mean error term.
 
Proof: From property 2 it holds that

xe

ue
= M

we

r − ve

= M
∑
j ∈ S

λjwj
e + ew(t)

∑
j ∈ S

λjrj − ∑
j ∈ S

λjvj
e − ev(t)

= ∑
j ∈ S

λjM
wj

e

rj − vj
e

+ M
ew(t)

−ev(t)

= ∑
j ∈ S

λj
xj

e

uj
e

+ M
ew(t)

−ev(t)
.

(52)

From the previous equation

xe = ∑
j ∈ S

λjxj
e + es(t), (53)

where es(t) is a zero mean error term. From property 1 and
subtracting (53) to (36) we finally obtain

x(t + 1) − xe = ∑
j ∈ S

λj(xj(1) − xj
e) + ex(t) − es(t)

= ∑
j ∈ S

λj(xj(1) − xj
e) + η(t),

(54)

where η(t) = ex(t) − es(t). □
Theorem 3 and the stability of the error dynamics of all the

candidates [that is a direct consequence of Assumption 2.] will be
used in the following to prove the main result of the paper. Since
the disturbances w(t) and v(t) are random variables with non-zero
mean, offset free tracking will be attained if we can prove that the
closed-loop trajectory converges to a neighbourhood of xe.

 
Theorem 4: Under the assumptions of Theorem 3, there exist

γ ∈ (0, 1) such that

∥ x(t + 1) − xe ∥P ≤ ∥ ψ(t) ∥P + γ ∥ x(t) − xe ∥P , (55)

where ψ(t) is a zero mean error term, which implies that the state
converges to a neighbourhood of xe.

 
Proof: Under the assumptions of Theorem 3 we have that

x(t + 1) − xe = ∑
j ∈ S

λj(xj(1) − xj
e) + η(t) . (56)

From Assumption 2 we also have

xj(k + 1) − xj
e = Ac(xj(k) − xj

e) + τ j(k), (57)

where Ac is Schur stable and τ j(t) has zero mean. Therefore, each
trajectory satisfies

xj(1) − xj
e = Ac(xj(0) − xj

e) + τ j(0) . (58)

Substituting (58) into equation (56)

x(t + 1) − xe = η(t) + ∑
j ∈ S

λj(Ac(xj(0) − xj
e) + τ j(0)), (59)

We now denote ξ(t) the aggregation of all the error terms. That is

ξ(t) = η(t) + ∑
j ∈ S

λj(τ j(0)) . (60)

With this notation

x(t + 1) − xe = ξ(t) + Ac ∑
j ∈ S

λj(xj(0) − xj
e) . (61)

Since x(t) = ∑
j ∈ S

λjxj(0) and taking into account (53), we obtain

x(t + 1) − xe = ξ(t) + Ac ∑
j ∈ S

λj(xj(0) − xj
e)

= ξ(t) + Ac(x(t) − xe) + Aces(t) .
(62)

Aggregating again the error terms in ψ(t) = ξ(t) + Aces(t), we have

x(t + 1) − xe = ψ(t) + Ac(x(t) − xe), (63)

where ψ(t) is a zero mean error term. This is enough to ensure the
existence of a probabilistic ultimate bound set [35]. Consider now
the weighted norm ∥ x(t + 1) − xe ∥P. The triangle inequality
yields

∥ x(t + 1) − xe ∥P = ∥ ψ(t) + Ac(x(t) − xe) ∥P

≤ ∥ ψ(t) ∥P + ∥ Ac(x(t) − xe) ∥P .
(64)

Since Ac is assumed to be Schur stable, there is P > 0 and
γ ∈ (0, 1) such that

Ac⊤PAc < γP, (65)

Taking into account this into (64)

∥ x(t + 1) − xe ∥P ≤ ∥ ψ(t) ∥P + γ ∥ x(t) − xe ∥P . (66)

This means that the trajectory converges to a neighbourhood of xe.
□

Notice that the distance to the desired steady state xe decreases
at each sample time provided that

∥ ψ(t) ∥P < (1 − γ) ∥ x(t) − xe ∥P . (67)

From here we infer that the size of the set in which x(t) is
ultimately bounded can be characterised by an upper bound on
∥ ψ(t) ∥P.

5 Controller formulation
In this section, a general formulation for the proposed strategy and
an implementation procedure (see Algorithm 1 in Fig. 2) are
presented. Furthermore, we focus on some details of the algorithm
that provide a simplification in its implementation and a relaxation
on some theoretical assumptions made in Sections 3 and 4.
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The objective of the proposed controller is to minimise at each
sampling time the the variance of the tracking error which
following the results of the previous section can be defined as

∑
j ∈ S

λj
2E∥ ej(0) ∥2 . (68)

where the ej(0) represents the part of the error term ψ(t) related to
the tracking error in the stored trajectory j. It can be difficult to
obtain the expectation E∥ ej(0) ∥2, but if we assume an upper
bound

E∥ ej(0) ∥2 ≤ σ j, ∀ j ∈ S, (69)

then the optimisation problem to solve is to minimise

∑
j ∈ S

σ j
2λj

2, (70)

subject to the equality constraints presented in the previous section.
Furthermore, if it is considered that the values for σ j are all equal to
an unknown value σ, the optimisation problem can be rewritten as

λj*(t) = arg min
λj

∑
j ∈ S

λj
2

(71a)

s . t . ∑
j ∈ S

λjxj(0) = x(t) (71b)

∑
j ∈ S

λjxj( − 1) = x(t − 1) (71c)

∑
j ∈ S

λjuj( − 1) = u(t − 1) (71d)

∑
j ∈ S

λjyj(0) = y(t) (71e)

∑
j ∈ S

λjrj = r (71f)

∑
j ∈ S

λj = 1 (71g)

Using the solution obtained with the previous problem, the control
signal to be applied is

u(t) = ∑
j ∈ S

λj*(t)uj(0) (72)

where λj*(t) are obtained every sampling time from the solution of
(71a) taking into account the current values of x(t), x(t − 1),
u(t − 1) and y(t). This control law can be obtained using a simple
explicit equation and will result in an offset free tracking trajectory
as shown in the previous section.

5.1 Reducing the candidate set

Given a database, a set S of candidate trajectories that includes all
the information available can be obtained. In general, the

cardinality of this set can be very high if the database is large (note
that for each trajectory a number of candidates can be obtained
with different initial states along such trajectory). In this section,
we propose to use, at each sampling time t, not all the candidates
available, but a reduced subset denoted S^(t). In particular, we
propose to use only the nc candidates closer, in a sense, to the
current state of the system. The cardinality of S^(t) becomes a
tuning parameter that provides a tradeoff between the amount of
information used, the computational burden and the estimation
error due to non-linearities. In practice, there are several reasons
that justify using local information including the high
computational burden with a large database and the low
information value between trajectories or data repetition. In
addition, using local information reduces the estimation error
produced when the proposed approach is applied to a non-linear
system. Using local information is akin to carrying out a
linearisation in the current state [32, 38].

In order to reduce the candidate set, a selection criteria has to be
specified. We propose to use a distance function that evaluates the
trajectories stored in the database with respect to the current
situation taking into account not only the current state, but also the
current output, the reference and the past state and input; that is, all
the information used to define the optimisation problem of the
proposed controller. This information is condensed in the following
vectors:

z(t) =

r(t)
y(t)
x(t)

x(t − 1)
u(t − 1)

zj =

rj

yj(0)
xj(0)

xj( − 1)
uj( − 1)

(73)

with j ∈ S. At each sampling time, the nc candidates from S that
yield the lowest value of a given weighted distance function are
selected. This distance function can be defined as

d(z(t), zj) = ∥ z(t) − zj ∥α , (74)

where α is the weight matrix that is tuned to normalise and
prioritise each entry of the deviation vector.

Problem (71) can be posed as a quadratic programming problem
subject to equality constraints:

λ*(t) = arg min
λ

λ⊤λ

s . t . Hλ = b,
(75)

where λ is a vector that includes the nc weights, matrix H ∈ ℝnh × nc

depends on the reduced candidate set S^ and vector b ∈ ℝnh depends
on the current sample time data z(t). The number of equality
constraints is nh = 2 ⋅ nx + nu + 2 ⋅ ny + 1, which in general is much
lower than the number of candidates of the reduced set nc (see
subsection 10.1.1. in [37]). The solution to this optimisation
problem is well known and given by

λ*(t) = H⊤(HH⊤)−1b . (76)

Note that this solution has to be calculated at each sampling time,
because matrix H changes with the candidates selected and vector
b depends on the current measurements. Note however that the
most time consuming calculation is the inversion of matrix HH⊤,
whose dimension is nh. This implies that the proposed procedure
avoids the use of iterative optimisation algorithms and can be
implemented on a wide range of applications. In the next section,
we apply this procedure to a scaled laboratory process with fast
dynamics.

Fig. 2  Algorithm 1: reducing the candidates set implies that at each
sampling time, the procedure given in this algorithm has to be implemented
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6 Application to the feedback process trainer
37-100
The proposed controller has been tested on the Feedback Process
Trainer 37-100 (see Fig. 3), a renewed version of the Feedback
PT-326 [34]. In this equipment, an axial fan is used to circulate air
through a heating element inside a propylene tube. The heating
element can be controlled using a voltage input and the air
temperature is measured at the end of the tube by a bead thermistor.
The system exhibits air and tube thermal time constants. The
dynamic characteristics of the system can be changed by manually
changing the fan speed using a potentiometer. The controlled
variable in these experiments is the voltage output of the bead
thermistor, whereas the manipulated variable is the voltage input
that controls the heating element.

Although an scaled laboratory process, this equipment is a
challenging test bed for data driven algorithms or other complex

control methods because of its fast dynamics, that require sampling
times of a few hundredths of a second. A sampling time of 0.07 s
has been used through all the experiments shown in this section.
The delay is neglected because it is lower than the sample time,
thus no delay compensation has been taken into account.

Following the nomenclature, the input u is the voltage that
controls the heating element, that is u(t) = V(t) ∈ [0, 10] V, and the
output y is the temperature measured by the sensor represented in a
voltage, that is y(t) = VT(t) ∈ [0, 10] V. As it is well known that the
process control trainer can be characterised by a first-order model,
in this experiments the state is equal to the output, so x(t) = y(t).

A total of 300 8 min trajectories have been generated with the
fan speed potentiometer set to 50%. Each trajectory is defined by a
random initial set point and a step set point change of random
amplitude, computed in a way such that the initial and final set
point values differ between 1 and 8 V. For each trajectory, four
different PI controllers have been tested (each one for 2 min,
changing from the initial set point value to the step value and back
again to the initial value). Table 1 shows the parameters for each PI
controller while Fig. 4 shows the behaviour of the transient
response for each PI controller with four different closed-loop
tracking experiments. The database comprises a total of 300 2 min
closed-loop offset free trajectories which results in 51400 different
candidates in S. It is noteworthy that the database took 40 h to be
generated, thus the ambient temperature changed quite a bit during
the morning and night hours. This implies that the process
dynamics are not constant through the database leading to different
perturbations mean values for each trajectory.

Following the procedure presented in Algorithm 1 (Fig. 2), the
distance function (74), with α = I has been used to select the
nc = 6000 nearest points to the current state in the database. It is
noteworthy that the solution of (71) and the control law (72) can be
computed within the sampling time of 0.07 s in Matlab with a Intel
Core-i3 running Windows.

Fig. 5 shows the results of a set point tracking experiment with
two reference changes using the proposed approach. The controller
achieves offset free tracking in each set point value (plotted in red),
despite the obvious noise and disturbances. It can be seen how the
controller adjusts continually, in a clear trend, the control effort to
keep the controlled variable near the set point. The reason of this
trend is the heating of the propylene tube, much slower than the
heating of the air, but nonetheless able to affect the controlled
variable.

To demonstrate the disturbance rejection properties of the
controller, three different experiments have been considered. First,
a constant error of amplitude 2 V is added artificially to the
temperature measure after 3 min. Fig. 6 shows the trajectory of the
measured temperature and how it converges again to the reference
value because the proposed controller successfully rejects the
disturbance. Note that the input has to modify its steady-state value
to compensate for the effect of the additive disturbance.

Second, the fan speed potentiometer has been increased from
50%, the value used to generate the database trajectories, to 80%.
As a result of the increased fan speed, the temperature drops and
the controller is forced to raise the voltage applied to the heater.
After the disturbance is rejected, the fan speed is changed back to
its previous value, which is again another disturbance that it is also
effectively rejected. Fig. 7 shows the experimental results. It is
noteworthy that the changes induced in the system by increasing
the fan speed are more severe than the additive measurement
disturbance included in the previous simulation. Despite this
disturbance, the non-linearity of the system and the variations in
the ambient temperature, the controller is able to track set point
changes and reject disturbances.

Finally, an even more difficult case is shown in Fig. 8 where the
fan speed was reduced from 50 to 30%. This case is more difficult

Fig. 3  Feedback Process Trainer 37-100 unit used in this work
 

Table 1 Parameters for PI controllers of the database
PI1 PI2 PI3 PI4

Kp 1 1 1 1
Ki 1.5 1.07 0.64 0.21

 

Fig. 4  Tracking experiments in closed loop with the PI controllers that
generate the database

 

Fig. 5  Tracking test results on the Feedback Process Trainer 37-100
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than the previous one because in addition to the changes in the
process dynamics, the dead-time is increased. Nevertheless, as
shown in Fig. 8, the controller is able to track the set-point with
minimal steady-state error while compensating the slow drifts in
the temperature.

In order to study the effect of the number of candidates nc on
the closed-loop performance, we will compare the tracking error of
a set of controllers with nc taking values

nc = {1000, 1500, 2000, 2500, 3000}. For each controller, 15
closed-loop tracking experiments with length 60 s (857 samples)
have been carried out with different reference values, in particular,
five experiments with reference r = 3.5, five with reference r = 5

and another five with reference r = 7. For each experiment the
mean value of the squared error is computed for 172 samples once
the closed-loop system has converged to its corresponding
reference.

Fig. 9 shows the steady-state error for the 75 experiments as
magenta dots. Furthermore, the average of the steady-state error for
the five closed-loop experiments with the same constant reference
signal and nc is computed. The blue dashed-dotted line shows this
result for reference r = 3.5, the red dashed line represents the
average of the experiments with r = 5 and the green dotted one is
with r = 7. The average of the 15 experiments with the same nc is
represented with the black solid line. We can observe that the
steady-state error for all the experiments is always upper-bounded
by 2.5 ⋅ 10−2. Moreover, the steady-state error decreases when nc is
increased which is the expected behaviour.

It is important to remark that reducing too much the number of
candidates has a negative impact on the performance of the
controller. In those cases, the controller is forced to extrapolate,
which results in worse control. Fig. 10 shows a tracking
experiment where only the 50 closest candidates are considered. In
this experiment, the average tracking error is quite large (almost
0.4 V with a standard deviation of 0.36), but as shown in Table 2,
these numbers drop as expected if the experiment is repeated with
an increasingly higher number of candidates (note that these
experiments are different from that of Fig. 9 as they contain several
set point changes, hence the greater average error and standard
deviation). 

Finally, it is demonstrated that the proposed strategy
performance is strongly dependent on the database trajectories
considered. Fig. 11 shows the output of the data-based controller in
closed-loop using two different databases for the same reference

Fig. 6  Disturbance rejection test with the Feedback Process Trainer
37-100: Artificial additive disturbance

 

Fig. 7  Disturbance rejection test the Feedback Process Trainer 37-100:
Fan speed increased

 

Fig. 8  Disturbance rejection test the Feedback Process Trainer 37-100:
Fan speed decreased

 

Fig. 9  Average steady-state error against the number of candidates nc for
different value of the reference

 

Fig. 10  Tracking experiment with a low number of candidates (nc = 50)
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signal (dashed red). In the first case, a more oscillating PI
controller with parameters Kp = 1 and Ki = 1.5 is used to obtain
the database. On the other hand, a PI controller less aggressive with
parameters Kp = 1 and Ki = 0.21 generates the second database.
Note that the closed-loop trajectory of the data-based controller
reaches the reference independently of the database used, however
its behaviour in the transient response is inherited from the
database trajectories.

7 Conclusion
This paper has presented an efficient strategy to solve a tracking
control problem that it is tailored for systems with an unknown
model function. It solves the problem using past closed-loop offset
free trajectories and control actions stored in a database while
minimising the variance of the tracking error. Moreover, the
optimisation problem can be solved efficiently which fits with fast
dynamic process control problems. The proposed strategy has
obtained offset free tracking with a real scaled laboratory process
with fast dynamics and these results show its effectiveness, even
with non-linear systems.

The proposed strategy will be improved in future works taking
into account issues such as periodic changing set-points, large
process delays, extension to non-linear systems (either general or
with some predefined structure as in Volterra or Hammerstein–
Wiener models), online maintenance of the database (in which
overparameterisation versus data reusability should have to be
considered, specially when few data are available) and how to
design appropriate open-loop tests to be included in the database
instead of or mixed with proper closed-loop tests.
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