
A first prototype of a new repository for feature model exchange
and knowledge sharing

David Romero, José Á. Galindo, Jose-Miguel Horcas and David Benavides
University of Seville

Seville, Spain
{drorganvidez,jagalindo,jhorcas,benavides}@us.es

ABSTRACT

Feature models are the “de facto” standard for variability modelling 
and are used in both academia and industry. The MODEVAR initia-
tive tries to establish a common textual feature modelling language 
that can be used by different communities and can allow informa-
tion sharing. Feature model related researches use different models 
for different purposes such as analysis, sampling, testing, debug-
ging, teaching, etc. Those models are shared in private repositories 
and there is a risk that all that knowledge is spread across different 
platforms which hinder collaboration and knowledge reuse. In this 
paper, we propose a first working version of a new feature model 
repository that allows to centralise the knowledge generated in 
the community together with advanced capabilities such as DOI 
generation, an API, analysis reports, among others. Our solution 
is a front end interface that uses the popular open science repos-
itory Zenodo as an end point to materialise the storage of all the 
information. Zenodo is enhanced with characteristics that facilitate 
the management of the models. The idea of our repository is to 
provide existing but also new features that are not present in other 
repositories (e.g., SPLOT). We propose to populate our repository 
with all the existing models of many sources including SPLOT.

CCS CONCEPTS
• Software and its engineering → Software product lines; Re-
quirements analysis; Software design engineering; Software imple-
mentation planning;␣

KEYWORDS

feature model repository, 

characteristics, variability, 

requirements

1 INTRODUCTION
Feature models are the “de facto” standard for variability modelling 
and are used in both academia and industry. Feature models were 
introduced in the FODA (Feature-Oriented Domain Analysis) tech-
nical report [20] in 1990, by the Software Engineering Institute. 
Nowadays, feature model purposes ranges between multiple activi-
ties such as analysis [7], sampling [18], testing [19], debugging [15], 
and teaching [21], among others.

Currently, feature model researchers share their models among 
their software artefacts to improve results’ replicability and fit 
open-science standards [4]. However, those models are often shared 
in private repositories and are commonly spread across different 
platforms, as for example, GitHub. Despite some feature models 
repositories exist such as SPLOT [14], ESPLA [13], or LVAT1, they 
present several drawbacks. First, there is no common template or 
software APIs to access the repositories, making difficult to search 
for, obtain metrics, download, or even automate the analyses of 
the feature models. For example, SPLOT does not provide a REST 
API service to consume the knowledge provided. In addition, the 
creation, uploading and subsequent maintenance of feature mod-
els are rigid and with limited interaction. Second, there is limited 
knowledge sharing. Concretely, since there is no common organi-
sational structure nor standard guidelines for the uploaded feature 
models, it is difficult to share knowledge in the community. To 
address this issue, the MODEVAR [1] initiative tries to establish a 
common textual feature modelling language that can be used by 
different communities and enables interoperability. However, there 
is a lack of sharing mechanisms for such feature modelling lan-
guage. Finally, existing repositories are outdated very soon because 
of their technical debt [9]. Technology used for the creation of such 
repositories has been discontinued and has not been adapted to 
the technological requirements that users demand nowadays, such 
as a responsive-web design [10], secure http protocol (https), or 
user load balancing among other modern features. Ultimately, a 
new repository can be envisioned if the community wants to easily 
share knowledge in the following years.

To ease off those limitations, we have designed FMRepo, a first 
prototype of a new repository for feature model exchange and 
knowledge sharing. FMRepo aims to integrate both the common 
variability language and feature model analysis capabilities that are 
in consonance with other MODEVAR initiatives, such as the pro-
posed universal variability language (UVL) [1], and the framework 
for automated analysis of feature models (AAFM) [6], as well as 
adhering to open science principles [16]. The main motivation of 
building up a new repository is to share feature modelling related

1https://gsd.uwaterloo.ca/feature-models-in-the-wild.html

https://doi.org/10.1145/3461002.3473949
https://doi.org/10.1145/3461002.3473949
https://doi.org/10.1145/3461002.3473949
https://gsd.uwaterloo.ca/feature-models-in-the-wild.html


SPLC ’21, September 6–11, 2021, Leicester, United Kingdom David Romero et al

artefacts and enable the reproducibility of experiments with feature
models. However, there are other factors that promote the creation
of such repository:

Meet open science standards. There are numerous guidelines
within the framework of Open Science: Open Access, Open
Data, Open Reproducible Search, Open Science Evaluation,
Open Science Policies and Open Science Tools [4], to name a
few, are part of the fundamental pillars. Our repository tries
to cover all the minimum requirements to be classified in
this taxonomy and to collaborate in the community.

Teaching and education. Knowledge sharing of feature mod-
els allows the significant reduction of various academic stud-
ies in relation to this technology. Building the repository
within the scope of free and unrestricted access can promote
the use of educational and instructional content.

Knowledge aggregation. This repository tries to bring to-
gether the dispersed knowledge that exists about feature
models generated in a knowledge base that serves as support
for a more in-depth and extensive study of this technology,
saving time and effort.

In this paper, we present the design and implementation of FM-
Repo to fulfil new demands of researchers and developers. This
is a first working version of a new feature model repository that
allows to centralise the knowledge generated in the community
together with advanced capabilities that do not exist in other repos-
itories such as SPLOT [14] or the ESPLA catalog [13]. The main
contributions of FMRepo are:

• Integration of Open Science technologies. FMRepo has been
built on top of open-science technologies supported by the
European Research Council [11]. To grant access to uploaded
models in the future for the sake of replicability.

• As part of the Open Science technologies, FMRepo provides
DOI generation for featuremodels through the Zenodo repos-
itory [16]. The generation of DOI can be interesting for the
work of research articles. Researchers can upload their mod-
els to FMRepo and directly obtain a universal identifier to be
able to integrate it into their academic work. This reduces
the time and complexity of generating new knowledge using
a single tool.

• An REST API that allows a series of advantages to enable the
use of FMRepo as a base system in future projects, providing
automatic access to the feature models.

• Integration with feature model analysis technologies as a
service. This enables researchers and developers to consume
the existing models within the repository and validate their
research.

• Population of FMRepo with real-world and academic feature
models from many sources, including existing repositories
(e.g., SPLOT).

The remainder of this paper is organised as follows: Section 2
describes the necessary concepts of the technologies mentioned in
this paper; Section 3 lists the characteristics and needs that we cover
with the functionalities implemented in the repository; Section 4,
make a general summary of the main modules that make up the
architecture and the reason for its presence; Section 5, details the
main problems of the modules and the solution we have given;

and Section 6 where we explain the real reason of creating this
repository and why it would be convenient for the community to
get involved.

2 OPEN SCIENCE
Open Science [16] is a movement promoted by the OECD2 countries
and promoted by the European Commission. It advocates free access
by citizens to the results of scientific research, data, resources,
results, thoughts, as well as that the results and discoveries of
scientific research are universally accessible and unrestricted. Some
of the existent efforts to support open science are the European
OpenAIRE3 project and the Invenio4 framework to build open-
science repositories. Invenio is an open source project by CERN that
covers a repository/documentmanagement platform (InvenioRDM),
an integrated library system (InvenioILS) and a code library to
build large-scale information systems (such as InvenioRDM and
InvenioILS).

FMRepo promotes the open-science standards through the use
of Zenodo. Zenodo5 is an Open Science repository that has been
developed on top of the Invenio framework which provides persis-
tence to the data uploaded as well as offers a DOI (Digital Object
Identifier) to enable easy citation of data. Zenodo also works as a
backup of all the data uploaded.

3 REPOSITORY CHARACTERISTICS
In previous work [5], we defined 12 characteristics that a feature
model repository should have. Those characteristics were defined
observing existing repositories and were presented as user stories
following the template of of “As a [persona], I [want to], [so that].”. In
this section, we detail how FMRepo addresses those characteristics
and discuss the limitations of existing repositories like SPLOT.

(1) As a researcher, I want to upload models to the repository, so
that mymodels are available for others. This is one of the most
basic characteristics, however, existing repositories do not
provide simple uploading of models and complicate this op-
eration. For instance, while SPLOT requires to uploadmodels
within a URL based on non-secure http, ESPLA requires to
create an issue or a pull request in GitHub, in order to upload
the feature model. FMRepo allows uploading feature models
through a simple web form.

(2) As a researcher, I want to syntax check my models before
uploading in the repository, so that my models are syntax er-
ror free. FMRepo will provide support for several languages
and notations, including principally the universal variabil-
ity modelling language promoted by the MODEVAR initia-
tive [1].

(3) As a researcher or user, I want to download models from the
repository, so that I can replicate experiments or use existing
models. The way models are downloaded could vary from
one by only batch downloads. For instance, SPLOT supports
downloads one by one, forcing researchers to perform hard-
manual task or to build custom scrapping scripts to download

2https://www.oecd.org/
3https://www.openaire.eu/
4https://inveniosoftware.org/
5https://zenodo.org/

https://www.oecd.org/
https://www.openaire.eu/
https://inveniosoftware.org/
https://zenodo.org/


all models at once. FMRepo will provide support for flexible
downloading of models, from individual models to set of
models.

(4) As a researcher, I want to generate a universal identifier for
my models in the repository, so that my models are citable and
easily identified. This characteristic is a new contribution of
FMRepo which provides DOI generation thanks to Zenodo.
The DOI is specific for a feature model so that it can be
integrated into the research papers.

(5) As a researcher or user, I want to manage versions of mymodels,
so that I can compare different versions. Existing repositories
store different versions of the feature models as independent
(new upload) files. While this characteristic could make the
repository more complex to maintain, our objective is to
provide version control in FMRepo.

(6) As a user, I want to search for models in the repository, so that
I can find the models I am interested in. Only ESPLA allows
searching its catalog using tags. In fact, the information
is stored in a .csv file. In contrast, our FMRepo provides
different search types based on tag, metadata (e.g., authors)
or even metrics (e.g., size of the feature model).

(7) As a user, I want to display models in the repository, so that
I can have a glance at the model in the case I want to use it.
Existing repositories like SPLOT displays the model as a tree
visualisation along with a very limited number of metrics.
The ESPLA catalog does not provide any visualisation of
the models. Our proposal, in addition to displaying a feature
model through a graphical or textual visualisation, also pro-
vides insight on feature model metrics so that users can have
a quick characterisation of the model before using.

(8) As a user or researcher, I want to know some indicators about
the models in the repository such as ratings or number of
downloads, so that I can compare models. FMRepo stores this
information as a metadata of the feature model. Other reposi-
tories like SPLOT do not provide metadata information such
as how many times a model has been downloaded or rated.

(9) As a developer or researcher, I want to have an API that can
interact with the repository, so that I can programmatically
access repository’s information. The contents of FMRepo can
be accessed programatically in the form of an API. This
allows a developer to call a method to download somemodels
with some characteristics for example a given number of
features.

(10) As a user, I want to have recommendations according to my
profile, so that I can do better model selections. Since FMRepo
stores metrics of the models according to downloads or user
ratings, a recommendation system based on user profiles
and ratings can be developed to better select models using
the previous information stored in Zenodo. However, this
seems to be a more long term feature to be considered.

(11) As a researcher, I want to create communities, so that I can
have a common space to manage my models. The underlying
Zenodo system of FMRepo allows managing multiple users
which can be grouped around a research group, university or
community. However, this characteristic has been discussed
also in depth among the authors and no consensus has been
already reached.

(12) As a user, I want to see model’s metrics, so that I can have
extra information about the models. The integration of fea-
ture model analysis technologies as a service within FMRepo
allows providing implicit information of feature models such
as the number of features, the number of relationships, struc-
tural metrics [2], or other analysis operations (e.g., dead
features, number of configurations,. . . ) [3].

4 ARCHITECTURE OVERVIEW
This section presents the architecture of FMRepo as well as the
underline technology to provide support for knowledge sharing
and feature models exchange. Figure 1 shows an overview of the
architecture divided in twomain parts: the interface (top of Figure 1)
and the three main modules (bottom of Figure 1).

Figure 1: FMRepo architecture.

4.1 FMRepo interface
The interface and communication between the different compo-
nents and the user have been developed using the Laravel framework.
Laravel6 is a PHP framework based on the MVC [12] architecture.
It provides various convenience utilities such as a template engine,
a dependency manager for PHP to include third-party libraries in
your own project and a command interface program that allows
you to create predefined software artefacts. This allows the repos-
itory to be instantiated on any web server with a minimum of
configuration.

Laravel serves as the entry point for the web application and
the REST API consumption managing both modules equally but
independently so they can be used separately. Also, Laravel allows
us to modularize [8] new functionality without needing to refactor
code.

FM web application. To interact with repository tools, we
provide a web interface making the system more accessible
without relying on a command interface. In addition, the
frontend allows several technologies to be brought together
through a control panel common to all users. Figure 2 illus-
trates the web interface with a list of models uploaded to the
repository, maintaining synchronicity with Zenodo. Feature
models are uploaded using a web form as shown in Figure 3.

6https://laravel.com/

https://laravel.com/


Figure 2: Listing of models in FMRepo.

Figure 3: Uploading model in FMRepo.

FM REST API. FMRepo has a RESTful service to provide dif-
ferent operations such as consulting a feature model, updat-
ing an associated file, or reporting metrics. The usefulness
of this module is to provide access and development to new
tools created in the Software Product Line framework. The
repository REST API is versioned, which allows to increase
its functionality with new features that will be included in
the system in the future.

4.2 FMRepo modules
This section presents the threemainmodules of the architecture: the
Open Science module; the Automated Analysis of Feature Models
(AAFM) module, and the Database module.

4.2.1 Open Science using Zenodo API. To facilitate the integra-
tion of the Zenodo API with the repository, we have designed an
API wrapper. The API wrapper is a software artefact that works
as an interface to abstract the implementation details of the service,
in this case, the Zenodo API. This allows the API to be used as
if it was an internal repository service. The Zenodo API can be
extended to other APIs to include more Open Science projects.

4.2.2 Automated Analysis of FeatureModels (AAFM). Most repos-
itories work only as static storage. We have designed the architec-
ture so that feature models are post-processed thanks to an internal
connection with a Docker instance. The AAFM is running on this

machine, which receives the user’s feature models and performs
various analysis operations or extracts metrics.

Instead of using just one machine, we have decided to repli-
cate the AAFM module on multiple machines. Therefore, a Load
Balancer distributes the work in N instances to alleviate the work-
load. The purpose of this module is not only to work with Docker
and AAFM machines running on them, but future feature model
processing technologies, such as benchmarking, can be integrated.
The Service Point is in charge of providing support for integrat-
ing new software that can run in parallel.

4.2.3 Storage and database. The main storage is delegated to
the Zenodo system. To avoid over-consuming the API, all feature
models are stored locally once Zenodo has returned a positive
response to the upload. The architecture supports different types
of databases. Laravel has an object-relational mapping capable
of switching between different database technologys. We take
advantage of this feature to demand different services. For example,
the metadata information is stored in a non-SQL database, in our
case MongoDB, due to the non-relational nature of this information.
However, the different internal transactions, such as the upload of
feature models or the results generated from the AAFM are stored
in a SQL database.

5 IMPLEMENTATION DETAILS
In this section, we briefly describe the implementation details of
the different modules of the FMRepo architecture.

5.1 Zenodo as abstraction layer
The original way of working with Zenodo is through a deposition.
A deposition is made up of a series of metadata and attachments. To
facilitate the implementation of Zenodo in the use of FMRepo, we
have decided place it as an abstraction layer. The important thing
about deposition is that they generate a unique and permanent DOI.
For practical purposes, all feature models of a user are uploaded to
the same Zenodo account to group them for later usage.

FMRepo communicates with Zenodo by using its REST API,
which allows the comsumption of depositions and their attachments.
Some of the end points that we have defined to consume the Zenodo
API are:

• GET /api/deposit/depositions. List all depositions for the cur-
rently authenticated user.

• GET /api/deposit/depositions/:id/files. List all deposition files
for a given deposition.

• POST /api/deposit/depositions. Create a new deposition re-
source.

• POST /api/deposit/depositions/:id/files. Upload a new file.
• POST /api/deposit/depositions/:id/actions/publish. Publish a
deposition.

However, the Zenodo REST API needs authentication to be used.
To simplify user experience, FMRepo has an internal token store
that is automatically used to avoid excessive consumption of. Zen-
odo REST API.



5.2 Running FM analysis
Another utility provided by FMRepo is the possibility of analysing 
feature models uploaded directly from the web application. This 
completely eliminates the need to install AAFM software on the 
user’s machine. Currently we are relying on the Python framework 
for automated analysis [6] presented in MODEVAR [1]. The AAFM 
tool runs in parallel on a machine instantiated by Docker7 for 
security reasons [17]. We have decided to rely on a Docker instance 
to avoid the execution of malicious code. This instance is capable 
of analysing feature models from various web clients, allowing 
FMRepo to be running on several servers and increasing the demand 
for resources. FMRepo acts as an intermediary between the Docker 
machine and the uploaded feature models so that end users never 
have access to the internal servers.

We have also designed a load balancer that allows having mul-
tiple instances of Docker running. Using a priority algorithm, the 
repository decides which instance has the lowest workload and 
chooses a candidate throughout the execution cycle.

To execute any analysis over a feature model, most AAFM tools 
require access to files in a certain manner. To solve this, FMRepo 
promotes the use of the same hierarchical file structure for each 
upload that are willing to provide AAFM support. This, also gives 
us the possibility to add metadata or relevant information. Then a 
packaging process is carried out following this structure:

• The /model directory stores the original file in XML (or
similar) format of the feature model.

• The /metadata directory stores the original file in JSON (or
similar) format of the feature model metadata.

• The feature.json file (optional) describes the feature model
using the visual editor of the graphical interface instead of
uploading an XML file.

5.3 FMRepo API
To allow future expansions of the system, we implemented an REST
API. FMRepoworks as a RESTful service for themain functionalities.
When a user logs in as a developer, the system provides them with
a unique access token. This token allows consuming the API. Our
API is versioned and the documentation can be consulted.

We were inspired by the structure of Zenodo, facilitating thus,
the usage of the platform to users that had previously worked with
it. The main actions that can be performed with the API are:

• GET /api/v1/models. List all models for the currently authen-
ticated user.

• GET /api/v1/models/:model/files. List all files for a givenmodel.
• GET /api/v1/models/:model/structure. Retrieves the original
structure of the uploaded model and its metadata.

• POST /api/v1/models. Create a new feature model.

6 CONCLUSION AND VISION
We believe that FMRepo is a starting point to create a more active
community in the exchange of knowledge. This new repository is
more aligned with current software technologies and in line with
the MODEVAR initiatives. FMRepo also integrates automated anal-
ysis being able to use the technology that runs in the background

7https://www.docker.com/

and encouraging its use if more advanced operations are desired.
The repository attempts to promote the community’s use of Open
Science and its relevance to research. The architecture of the repos-
itory is modular, which will allow to extend the functionality in a
simple and collaborative way in the future.

Our vision of the repository is to provide a useful tool for the
study of feature models in terms of meta-management, analysis
and sharing. We appeal to all researchers and encourage the use
of this repository. We believe that community support will favour
the development, expansion and support of future characteristics.
To avoid an outdated, abandoned and deprecated repository, we
urge the community to upload their own feature models that cover
all possible scenarios and study their performance as an analysis
tool. We believe that this will encourage the use of the repository,
becoming a product built on the Open Science guidelines.

ACKNOWLEDGEMENTS
This work was supported by the Project (RTI2018-101204-B-C22, OPHELIA),
funded by: FEDER/Ministry of Science and Innovation - State Research
Agency; the TASOVA network (MCIU-AEI TIN2017-90644-REDT); and the
Junta de Andalucia COPERNICA project; and the Spanish Government
under Juan de la Cierva—Formación 2019 grant.

REFERENCES
[1] Mathieu Acher, Philippe Collet, David Benavides, and Rick Rabiser. 2020.

Third International Workshop on Languages for Modelling Variability (MODE-
VAR@SPLC 2020). 1–1. https://doi.org/10.1145/3382025.3414948

[2] Ebrahim Bagheri and Dragan Gasevic. 2011. Assessing the maintainability of
software product line feature models using structural metrics. Software Quality
Journal 19, 3 (2011), 579–612. https://doi.org/10.1007/s11219-010-9127-2

[3] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. 2010. Automated
analysis of feature models 20 years later: A literature review. Information Systems
35 (09 2010), 615–636. https://doi.org/10.1016/j.is.2010.01.001

[4] Isabel Bernal. 2018. Open Science: Principios, políticas, componentes, buenas
prácticas. (11 2018). https://doi.org/10.20350/12794

[5] José A. Galindo and David Benavides. 2019. Towards a New Repository for
Feature Model Exchange. In Proceedings of the 23rd International Systems and
Software Product Line Conference - Volume B (Paris, France) (SPLC ’19). Association
for Computing Machinery, New York, NY, USA, 170–173. https://doi.org/10.
1145/3307630.3342405

[6] José A. Galindo and David Benavides. 2020. A Python framework for the auto-
mated analysis of feature models: A first step to integrate community efforts.
In SPLC ’20: 24th ACM International Systems and Software Product Line Con-
ference, Montreal, Quebec, Canada, October 19-23, 2020, Volume B. ACM, 52–55.
https://doi.org/10.1145/3382026.3425773

[7] José Angel Galindo, David Benavides, Pablo Trinidad, Antonio Manuel Gutiérrez-
Fernández, and Antonio Ruiz-Cortés. 2019. Automated analysis of feature mod-
els: Quo vadis? Computing 101, 5 (2019), 387–433. https://doi.org/10.1007/
s00607-018-0646-1

[8] Jesse Griffin. 2021. Modularizing Laravel. 237–284. https://doi.org/10.1007/
978-1-4842-6023-4_8

[9] José-Miguel Horcas, Mónica Pinto, and Lidia Fuentes. 2019. Software product
line engineering: a practical experience. In Proceedings of the 23rd International
Systems and Software Product Line Conference, SPLC 2019, Volume A, Paris, France,
September 9-13, 2019. ACM, 25:1–25:13. https://doi.org/10.1145/3336294.3336304

[10] Jason C. Hung and Chun-Chia Wang. 2021. Exploring the website object layout
of responsive web design: results of eye tracking evaluations. J. Supercomput. 77,
1 (2021), 343–365. https://doi.org/10.1007/s11227-020-03283-1

[11] Sameeksha Katoch, Kowshik Thopalli, Jayaraman J. Thiagarajan, Pavan K. Turaga,
and Andreas Spanias. 2019. Invenio: Discovering Hidden Relationships Between
Tasks/Domains Using Structured Meta Learning. CoRR abs/1911.10600 (2019).
arXiv:1911.10600 http://arxiv.org/abs/1911.10600

[12] Glenn E Krasner, Stephen T Pope, et al. 1988. A description of the model-view-
controller user interface paradigm in the smalltalk-80 system. Journal of object
oriented programming 1, 3 (1988), 26–49.

[13] JabierMartinez,Wesley K. G. Assunção, and Tewfik Ziadi. 2017. ESPLA: A Catalog
of Extractive SPL Adoption Case Studies. In Proceedings of the 21st International
Systems and Software Product Line Conference, SPLC 2017, Volume B, Sevilla, Spain,
September 25-29, 2017. ACM, 38–41. https://doi.org/10.1145/3109729.3109748

https://www.docker.com/
https://doi.org/10.1145/3382025.3414948
https://doi.org/10.1007/s11219-010-9127-2
https://doi.org/10.1016/j.is.2010.01.001
https://doi.org/10.20350/12794
https://doi.org/10.1145/3307630.3342405
https://doi.org/10.1145/3307630.3342405
https://doi.org/10.1145/3382026.3425773
https://doi.org/10.1007/s00607-018-0646-1
https://doi.org/10.1007/s00607-018-0646-1
https://doi.org/10.1007/978-1-4842-6023-4_8
https://doi.org/10.1007/978-1-4842-6023-4_8
https://doi.org/10.1145/3336294.3336304
https://doi.org/10.1007/s11227-020-03283-1
http://arxiv.org/abs/1911.10600
http://arxiv.org/abs/1911.10600
https://doi.org/10.1145/3109729.3109748


[14] Marcílio Mendonça, Moises Branco, and Donald Cowan. 2009. S.P.L.O.T. -
Software product lines online tools. Proceedings of the Conference on Object-
Oriented Programming Systems, Languages, and Applications, OOPSLA, 761–762.
https://doi.org/10.1145/1639950.1640002

[15] Mahdi Noorian, Alireza Ensan, Ebrahim Bagheri, Harold Boley, and Yevgen
Biletskiy. 2011. Feature model debugging based on description logic reasoning.
Collection / Collection : NRC Publications Archive / Archives des publications
du CNRC.

[16] Rahul Ramachandran, Kaylin Bugbee, and Kevin Murphy. 2021. From Open Data
to Open Science. Earth and Space Science 8 (05 2021). https://doi.org/10.1029/
2020EA001562

[17] Edwin Sarmiento. 2020. Docker Images and Containers. 69–98. https://doi.org/
10.1007/978-1-4842-5826-2_5

[18] Sergio Segura, David Benavides, Antonio Ruiz-Cortés, and Pablo Trinidad. 2007.
Automated Merging of Feature Models Using Graph Transformations. 489–505.
https://doi.org/10.1007/978-3-540-88643-3_15

[19] Sergio Segura, Ana B. Sánchez, and Antonio Ruiz-Cortés. 2014. Automated Vari-
ability Analysis and Testing of an E-Commerce Site. An Experience Report. ASE
2014 - Proceedings of the 29th ACM/IEEE International Conference on Automated
Software Engineering. https://doi.org/10.1145/2642937.2642939

[20] Periklis Sochos, Ilka Philippow, and Matthias Riebisch. 2004. Feature-Oriented
Development of Software Product Lines: Mapping Feature Models to the Ar-
chitecture. In Object-Oriented and Internet-Based Technologies, Mathias Weske
and Peter Liggesmeyer (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
138–152.

[21] Geoffrey I. Webb andMark Kuzmycz. 1995. Feature Based Modelling: A methodol-
ogy for producing coherent, consistent, dynamically changing models of agents’
competencies. User Modeling and User-Adapted Interaction 5, 2 (01 Jun 1995),
117–150. https://doi.org/10.1007/BF01099758

https://doi.org/10.1145/1639950.1640002
https://doi.org/10.1029/2020EA001562
https://doi.org/10.1029/2020EA001562
https://doi.org/10.1007/978-1-4842-5826-2_5
https://doi.org/10.1007/978-1-4842-5826-2_5
https://doi.org/10.1007/978-3-540-88643-3_15
https://doi.org/10.1145/2642937.2642939
https://doi.org/10.1007/BF01099758

	Abstract
	1 Introduction
	2 Open Science
	3 Repository characteristics
	4 Architecture overview
	4.1 FMRepo interface
	4.2 FMRepo modules

	5 Implementation details
	5.1 Zenodo as abstraction layer
	5.2 Running FM analysis
	5.3 FMRepo API

	6 Conclusion and vision
	References

