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a b s t r a c t 

Clustering is one of the most commonly used techniques in data mining. Its main goal is 

to group objects into clusters so that each group contains objects that are more similar to 

each other than to objects in other clusters. The evaluation of a clustering solution is a task 

carried out through the application of validity indices. These indices measure the quality 

of the solution and can be classified as either internal that calculate the quality of the 

solution through the data of the clusters, or as external indices that measure the quality 

by means of external information such as the class. Generally, indices from the literature 

determine their optimal result through graphical representation, whose results could be 

imprecisely interpreted. The aim of this paper is to present a new external validity index 

based on the chi-squared statistical test named Chi Index, which presents accurate results 

that require no further interpretation. Chi Index was analyzed using the clustering results 

of 3 clustering methods in 47 public datasets. Results indicate a better hit rate and a lower 

percentage of error against 15 external validity indices from the literature. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Clustering is one of the many techniques in data mining. Its goal is to partition unlabelled data into clusters where

instances within the same cluster are similar and instances grouped in other clusters are dissimilar to said clusters [1] . This

technique has been applied in many fields, such as biological sciences [2] , medicine [3] , energy [4] , chemical [5] . 

There are numerous clustering methods, and in general, each method produces a different clustering solution. In certain

cases, the same method with different parameters could result in different solutions. The evaluation of the results is one of

the most important issues in cluster analysis. Measuring the quality of a clustering solution is as important as the clustering

method itself [6] . There exist clustering validity indices (CVI) that measure the quality of the solution, and these CVIs have

commonly been used in the literature [7–13] . 

These measures could be classified into either internal or external CVIs. Internal CVIs are based on how the instances

are distributed across the clusters by using the data by itself. When there is no external information, these kinds of indices

present the only option available for the evaluation of the clustering solution because they depend on certain properties

of the results, such as the compactness of the clusters or the separation between them. Compactness of clusters could be
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Fig. 1. Results of the CVIs from the literature for k = 2 to 10 number of clusters for zoo dataset whose optimal number of clusters is 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

defined as the mean distance of separation between the instances within a cluster. Separation by itself is defined as the

distance between the instances of different clusters. These indices seek a high level of compactness within each cluster and

a considerable gap between clusters [14] . 

On the other hand, external indices use external information, such as class labels, to measure the quality of a clustering

solution. These kinds of indices verify the quality of the clustering result by comparing it with the ground truth partition. In

this case, the indices know in advance the optimal number of clusters for a dataset since ground truth holds this information

[15] . This paper focuses on these external CVIs. Generally, CVIs from the literature determine their optimal result with a local

minimum, a local maximum, or by following the elbow method [16–18] , and the results could be imprecisely interpreted. 

The purpose of this paper is to present an innovative external CVI based on the chi-squared statistical test, henceforth

named Chi Index, which presents the results accurately without the need for interpretation. The effectiveness of the new

index has been compared with 15 indices from the literature using 47 public datasets and 3 clustering methods from Spark

MLlib [19] which made it possible to use this index in big data environments. 

The remainder of this paper is organized as follows. Section 2 discusses the literature of external CVIs. In Section 3 , the

proposed new index is defined. Section 4.3 presents the experimental setup, the methodology followed and the results. The

paper ends with the conclusions and suggested future work in Section 5 . 

2. External indices 

An external index evaluates a clustering result C by comparing it against the ground truth partition G . A taxonomy

of external indices could be established that depends on the criterion of how the clustering result and the ground truth

partition are compared [20] . These indices can be classified into set matching, pair-counting , and information theory . 

• Set matching is the category which assumes that the instance label of every cluster has corresponding instances in said

cluster. Indices from the literature based on set matching include those known as purity [21] , F-measure [22] , Criterion H

[23] , CSI [24] , PSI [20] , and Goodman–Kruskal [25] . 

• The criterion known as pair-counting is based on the comparison between the number of instances with the same label

and the cluster result. This category includes the Rand index [26] , the adjusted Rand index [27] , Jaccard [28] , Fowlkes–

Mallows [29] , Hubert Statistic [30] , and Minkowski score [31] . 

• Indices based on information theory , such as entropy [21] , variation of information [32] , and mutual information [33] , have

also been applied in the literature. 

A list of the equations of these indices is given in Table 1 . As mentioned above, the results that show these indices

need to be interpreted since each index indicates the optimal number following the rules of the local maximum, the local

minimum, or the “elbow method”. Figs. 1 and 2 illustrate two examples of the results for the CVIs from the literature

for zoo and gesture datasets from the UCI repository whose optimal number of clusters is 7 and 5, respectively. In Fig. 1 ,

it could be said that the CVIs follow a pattern, whereby the majority indicate point out the optimal number of clusters

to be 7 with a local maximum, although Goodman–Kruskal indicates the optimal by following the elbow method. This

figure shows that most of the CVIs also have a local maximum at 9, and this could be misleading in the cases when the

optimal number of clusters remains unknown in advance. Fig. 2 corresponds to a dataset whose optimal number of clusters

is 4; however, no index clearly shows the solution. The F-Measure, Jaccard, Fowlkes–Mallows, and Hubert indices, which

indicate the optimal number with maximum values, all have a local maximum not only at 5 but also at 8. Furthermore, the
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Table 1 

Equations of external clustering validity indices from the literature equations. 

Preliminaries 

Total elements in the dataset n 

Elements in cluster i in class j n ij 
Total elements in cluster i n i ·
Total elements in class j n · j 

Rate of the cell ij p i j = 

n i j 

n 

Rate of the row i p i · = 

n i 
n 

Rate of the colum j p j = 

n · j 

n 

Set matching 

Purity [42] P = 

∑ 

i p i (max j 
p i j 

p i 
) 

F-Measure [20] F M = 

∑ 

j p j max i (2 

p i j 
p i 

p i j 
p j 

p i j 
p i 

+ p i j 
p j 

) 

Goodman-Kruskal [12] GK = 

∑ 

i p i (1 − max j 
p i j 

p i 
) 

Criterion H [25] CH = 1 − 1 
n 

max 
∑ k 

i =1 n i j 

CSI [10] CSI = 

∑ k 
i =1 n i j + 

∑ k ′ 
i =1 n ji 

2 n 

PSI [30] PSI = 

⎧ ⎨ 

⎩ 

S−E(S) 
max (k,k ′ ) −E(S) 

S ≥ E(S) , max (k, k ′ ) > 1 

0 S < E(S ) 

1 K = K ′ = 1 

Pair-counting 

Rand index [29] RI = [ 

(
n 

2 

)
− ∑ 

i 

(
n i ·
2 

)
− ∑ 

j 

(
n · j 

2 

)
+ 2 

∑ 

i j 

(
n i j 

2 

)
] / 

(
n 

2 

)

Adjusted rand index [36] ARI = 

∑ 

i j 

( 
n i j 

2 

) 
−[ 

∑ 

i 

( 
n i ·
2 

) ∑ 

j 

( 
n · j 

2 

) 
] / 

( 
n 

2 

) 

∑ 

i 

( 
n i ·
2 

) 
+ ∑ 

j 

( 
n · j 

2 

) 
] / 2 −[ 

∑ 

i 

( 
n i ·
2 

) ∑ 

j 

( 
n · j 

2 

) 
] / 

( 
n 

2 

) 

Jaccard [33] J = 

∑ 

i j 

( 
n i j 

2 

) 

∑ 

i 

( 
n i ·
2 

) 
+ ∑ 

j 

( 
n · j 

2 

) 
−∑ 

i j 

( 
n i j 

2 

) 

Fowlkes and Mallows [9] F M = 

∑ 

i j 

( 
n i j 

2 

) 
√ √ √ √ 

∑ 

i 

( 
n i ·
2 

) ∑ 

j 

( 
n · j 

2 

) 

Hubert Statistic [17] H = 

( 
n 

2 

) ∑ 

i j 

( 
n i j 

2 

) 
−∑ 

i ·

( 
n i ·
2 

) ∑ 

j 

( 
n · j 

2 

) 
√ √ √ √ 

∑ 

i 

( 
n i ·
2 

) ∑ 

j 

( 
n · j 

2 

) 
[ 

( 
n 

2 

) 
−∑ 

i 

( 
n i ·
2 

) 
][ 

( 
n 

2 

) 
−∑ 

j 

( 
n · j 

2 

) 

Minkowski Score [3] MS = 

√ √ √ √ 

∑ 

i 

( 
n i ·
2 

) 
+ ∑ 

j 

( 
n · j 

2 

) 
−2 

∑ 

i j 

( 
n i j 

2 

) 
√ √ √ √ 

∑ 

j 

( 
n · j 

2 

) 

Information Theory 

Entropy [42] E = − ∑ 

i p i ( 
∑ 

j 
p i j 

p i 
log 

p i j 

p i 
) 

Variation of Information [24] V I = − ∑ 

i p i log p i −
∑ 

j p j log p j − 2 
∑ 

i 

∑ 

j p i j log 
p i j 

p i p j 

Mutual Information [2] MI = 

∑ 

i 

∑ 

j p i j log 
p i j 

p i p j 

Table 2 

Three different distribution examples with 3 classes (A, B, C) and 3 clusters (1, 2, 3). 

(a) Contingency table where chi-squared is 

0. 

(b) Contingency table where chi-squared 

reaches its maximum value. 

(c) Contingency table in which the distribution of 

the instances could be found on a real scenario. 

Cluster A B C Cluster A B C Cluster A B C 

1 2 2 2 1 6 0 0 1 3 3 0 

2 1 1 1 2 0 0 3 2 0 3 0 

3 3 3 3 3 0 9 0 3 0 0 9 
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Fig. 2. Results of the CVIs from the literature for k = 2 to 10 number of clusters for knowledge dataset whose optimal number of clusters is 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Goodman–Kruskal index, which reaches its optimal number of clusters at the minimum value, has a low local minimum at

5 and at 8. Additionally, the Rand Index, following the elbow method, marks the optimal number at 5. In summary, CVIs

indices can be misleading due to the interpretation of its results. 

In recent years, several studies that propose new external indices for clustering validation have been published in the

literature. 

A new pair-counting index, which is based on an intuitive probabilistic approach, is employed to compare solutions that

may have a certain degree of overlap in [34] . This index was tested using four artificial datasets with 6 classes and 4 real

datasets from the UCI repository [35] . 

A new index was also presented in [36] , but in this case, it is based on Max-Min distance between data points and

prior information. This external index could be classified in the category of set matching . The performance of this index was

compared with set matching and pair-counting indices using 6 artificial datasets and two real datasets also from the UCI

repository. 

The authors of the work presented in [37] , proposed a new index based on an ensemble of supervised classifiers. We

may classify this index as a pair-counting index. Fifty real datasets from the UCI repository were used for the experiments

and the results were compared with several internal indices. 

A new pair-counting index for analytical comparisons was presented in [20] . It applies a correction for chance and nor-

malizes for each cluster separately. The experiments were carried out with artificial datasets with 3 classes and 60 0 0 in-

stances in each dataset. This new index obtained better results than other external CVIs such as purity, adjusted rand index,

and mutual information. 

In [10] , other authors suggested a new set-matching index based on the conception of a degree of freedom that measures

the decision interval between two classes. This index measures the quality of the clustering by comparing it with internal

and set matching external indices. Fourteen real datasets were used to test the performance of the index. 

Most of these clustering validation techniques are verified by comparing the clustering results with CVIs from the lit-

erature and by using synthetic datasets. This work strives to provide a reliable, and accurate CVI based on the chi-squared

statistical test as the basis for clustering analysis. 

3. Proposed external clustering validity index based on the chi-squared test 

3.1. Chi-squared 

The Pearson chi-squared statistical test is a method that determines whether there exists a significant difference between

the expected values and the observed values in a distribution between two variables [38] . The following equation is applied

to verify this correlation: 

χ2 = 

r ∑ 

i 

c ∑ 

j 

(
n i j − E i j 

)2 

E i j 

(1) 

where r is the number of rows, c is the number of columns, n ij is the observed value and E i is the expected value. E i is

given by 

E i j = 

n i · · n · j 
(2) 
n 
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Table 3 

Contingency tables of Table 2 c expressed in terms of relative frequencies. 

(a) By relative frequencies per row. (b) By relative frequencies per column. 

# A B C # A B C 

1 50% 50% 0% 100% 1 100% 50% 0% 

2 0% 100% 0% 100% 2 0% 50% 0% 

3 0% 0% 100% 100% 3 0% 0% 100% 

100% 100% 100% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where n is the total number of instances. 

The χ2 value is employed to determine the suitability of the value through the significant interval. In this way, χ2

approaches to zero when the observed value resembles the expected value. Therefore, if the observed values are similar to

the mean, χ2 indicates that there is no dependence between the two variables that are being analysed. 

3.2. Motivation 

External validity clustering indices measure the quality of the clustering result by focusing on a ground truth. Our Chi

Index may be considered a set-matching measure since it matches the clusters, and measures the similarity between the

clustering and the ground truth, which is given by the maximum value that Chi Index could reach. In addition, the Chi Index

is normalized in order to be influenced neither by the number of clusters nor the number of classes. The strategy of the Chi

Index is, in general terms, to set the instances of the same class in separate clusters in such a way that the instances which

belong to the same class are grouped together as much as possible. In addition, the Chi Index aims to define each cluster by

a single class as far as possible. Therefore, the Chi Index looks for the clustering solution that, on the one hand, separates

the classes into clusters, and, on the other hand, splits the clusters so that each one can be identified by a class. 

The chi-squared test measures the difference between the expected frequencies and the observed frequencies in a dis-

tribution. The lower the chi-squared value, the more similar the expected values are to the observed values, that is, if the

observed values of the distribution are closer to the mean, then the chi-squared value approaches zero. 

Table 2 presents 3 contingency matrices for a distribution with 3 classes (A, B, C) and 3 clusters (1, 2, 3). The values in

Table 2 a are the same for all the clusters within the classes; in this case, the chi-squared value is 0. The Chi Index seeks

exactly the opposite scenario, where the clusters are formed by only one class and where each class is only presented in

one cluster, as illustrated in Table 2 b. Table 2 c presents a distribution where cluster 1 is formed of instances of classes A

and B, cluster 2 is composed of instances of only class B, and cluster 3 is consisted of instances from class C. 

In order to ensure that each class is only presented in one cluster and each cluster has only one class, the values of the

contingency matrix have to be expressed in relative terms. To this end, the absolute frequency contingency table has to be

transformed into 2 contingency matrices, one for the relative frequencies per row, and the other for the relative frequencies

per column. Hence, in the first contingency matrix, the sum of the rows is 100%, and in the second contingency matrix, the

sum of the columns is also 100%. 

Taking Table 2 c as an example, Table 3 a and b are built transforming the absolute frequencies into relative frequencies.

As mentioned before, the tables are expressed in relative terms to the total of rows and columns. 

In this way, Table 3 a indicates that cluster 1 is evenly split between classes A and B, cluster 2 is composed of instances

from class 2, and cluster 3 has instances only from class 3. Alternatively, Table 3 b shows that the instances from class A are

only in the cluster 1, the instances from class B are evenly split between clusters 1 and 2, and the instances from class C

are only in cluster 3. 

In addition, the Chi Index has an accurate result that needs no interpretation. If we analysed the results for the Chi

Index iterating over the number of clusters k , we would obtain two curves, one for each contingency matrix. In general, the

clusters tend to become more specialized as the number of clusters increases, that is, there is a higher percentage of points

of the same class in each cluster which will increase the chi-squared value for the matrix per row. On the other hand, when

the records of each class are distributed across a greater number of clusters, then the value of the chi-square per column

will tend to decrease. Our goal is to simultaneously maximize both values by encouraging their tendency to diverge. The

first value where both series are cut off (or the distance between them is minimized as we cannot be sure wheter they will

be crossed) sets the optimal number of clusters in our proposal. Henceforth, the Chi Index identifies the optimal solution

as the minimum difference between the chi-squared values of the curves, thereby rendering it unnecessary to interpret the

result thanks to its accuracy. 

3.3. Chi Index toy example 

Fig. 3 illustrates the spatial distribution of the instances of our toy example dataset with 24 instances and 3 classes. Each

dot represents an instance and its colour defines the class to which it belongs. 

Before applying a clustering method to this dataset, the number of clusters has to be previously determined. Fig. 4 shows

the clustering solution from k = 2 to 4. It is difficult to determine which clustering solution is the best at a glance. 
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Fig. 3. Representation of the instance distribution of the toy example. 

Fig. 4. Clustering solution representation for k = 2 to 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To this end, an index that measures the quality of each clustering solution and selects the best one is required. The Chi

Index measures the quality of the clustering based on the chi-squared test. 

If we focus on the toy example, Fig. 4 a represents the clustering solution for k = 2 . This figure shows that cluster 1 has 2

instances from the red class, 8 green instances, and 6 blue instances, while cluster 2 has 6 red instances, 2 greens instances,

and none from blue class. This information is shown in a contingency table in Table 4 a, where the clusters are represented

by rows, and the classes red, green, and blue are R, G, and B respectively. This table could be analysed in two ways: by

rows, where we can conclude that cluster 1 is mainly composed of green instances, but it also has red and blue instances.

However, cluster 2 is only composed of red and green instances.; by columns, where blue instances are only in cluster 1,

red and green instances are distributed in both clusters. 

This analysis is illustrated in Table 4 d, where the relative frequency of the instances are expressed in relation to the total

of rows (left-side) and columns (right-side). 

A complete representation of each clustering solutions from k = 2 to 4 is presented in Table 4 with a pair of tables: the

contingency table with the absolute frequency, and the contingency tables with relative values by rows and by columns. 

Once we have the contingency tables with the relative values, we need to obtain the chi-square value of these tables for

each iteration. In our toy example, the Chi Index has been calculated for the clustering solutions with k = 2 to 4. The goal

is to maximize the values of the Chi Index in both tables and minimize the difference between them. Thus, the Chi Index

result will ensure that the observed and expected values differ as much as possible, thereby keeping the solution with the

highest percentage of classes in each cluster. Eqs. (3) and (4) detail how the chi square value by row and by column are

calculated respectively for k = 2 . 

χ2 
row k =2 

= 

(
13 − 88 

2 

)2 

88 
2 

+ 

(
50 − 75 

2 

)2 

75 
2 

+ 

(
37 − 37 

2 

)2 

37 
2 

+ 

(
75 − 88 

2 

)2 

88 
2 

+ 

(
25 − 75 

2 

)2 

75 
2 

+ 

(
0 − 37 

2 

)2 

37 
2 

= 89 . 01 (3) 

χ2 
column k =2 

= 

(
25 − 205 

3 

)2 

205 
3 

+ 

(
80 − 205 

3 

)2 

205 
3 

+ 

(
100 − 205 

3 

)2 

205 
3 

+ 

(
75 − 95 

3 

)2 

95 
3 

+ 

(
20 − 95 

3 

)2 

95 
3 

+ 

(
0 − 95 

3 

)2 

95 
3 

= 139 . 40 (4) 

Table 5 shows the Chi Index results for our toy example. Chi Index reaches its maximum value at k = 3 , therefore,

we may conclude that the optimal number of clusters that achieved the best clustering solution with this class is with 3

clusters. It should be highlighted that the solution is reached by taking the maximum value of all the solutions because it

is the one that achieve the largest value of chi values with both components, and also achieved the minimum difference

between them. 
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Table 4 

Toy example contingency tables in which clusters are represented by the rows, and the classes are represented by R (red), G (green), and 

B(blue). The tables on the left are the contingency tables in absolute values, while tables on the right belongs to the contingency tables 

with relative values taking as total the sum of the rows (left-side) and the sum of the columns (right-side). 

Table 5 

Chi index solutions for k = 2 to 4. 

k χ2 
row χ2 

column 
χ2 

row max 
χ2 

column max 
Chi Index (k ) 

2 89.01 139.40 200 300 0.890 

3 277.50 299.38 600 600 0.925 

4 304.05 237.21 800 600 0.760 

 

 

3.4. Chi Index definition 

The Chi Index is defined as: 

chi index (k ) = row norm 

(k ) + col norm 

(k ) − | row norm 

(k ) − col norm 

(k ) | (5)

where 

row norm 

(k ) = 

χ2 
row 

(k ) 

χ2 
row 

(6)

max 
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col norm 

(k ) = 

χ2 
column 

(k ) 

χ2 
column max 

(7) 

χ2 
row 

(k ) = 

r ∑ 

i 

c ∑ 

j 

(
n i j 

n i ·
− N · j 

r 

)2 

N · j 

r 

(8) 

χ2 
column (k ) = 

r ∑ 

i 

c ∑ 

j 

(
n i j 

n · j 
− N i ·

c 

)2 

N i ·
c 

(9) 

N i · = 

c ∑ 

j 

n i j 

n · j 

(10) 

N · j = 

r ∑ 

i 

n i j 

n i ·
(11) 

and n ij is the number of elements from the cluster i in the class j, n i · is the total number of elements in cluster i, n · j 

corresponds to the total number of elements in class j , and n is the total of elements in the dataset. 

χ2 
row max 

= 

{
100 · r · (r − 1) r ≤ c 
100 · r · (c − 1) r > c 

(12) 

χ2 
column max 

= 

{
100 · c · (r − 1) r ≤ c 
100 · c · (c − 1) r > c 

(13) 

where r and c are the number of rows and columns respectively. 

Chi index takes a value in [0, 2], where 0 is given by the worst clustering solution, and 2 is the best value that Chi Index

can achieve. Hence, the optimal k is given by: 

k ∗ = argmax 
k 

chi index (k ) (14) 

4. Experimental results 

This section describes the experimental study carried out with the aim of testing the proposed Chi Index over a variety

of artificial datasets, and 47 public datasets in terms of certain benchmark evaluation criteria. 

This section is composed of Section 4.1 that includes the experiments with the synthetic datasets. Section 4.2 de-

fines the experimental design. Section 4.3 presents the results of the experiments carried out with the public datasets.

Section 4.3.1 includes a statistical analysis to test the effectiveness of our proposed index for the public datasets. Finally, a

discussion of the results is included in Section 4.3.2 . 

4.1. Chi Index validation 

This section includes experimental results for artificial datasets to evaluate the behaviour of Chi Index on diverse cluster-

ing solutions based on the work published in [20] . In this case, clustering solutions are generated and compared with the

ground truth ( G ). The results include the 15 CVIs from the state-of-art ( Section 2 ) and our proposed Chi Index. Figs. 5–8 are

composed of four subfigures: 

• Subfigure (a) is a graphic representation of the generated clustering solutions (S1, S2, S3, ...) with G . 

• Subfigures (b,c,d) are plots of the CVI results for each of the solutions. The y-axis represents the similarity in percentage,

while the x-axis depends on a particular feature of each dataset. Detailed explanations are presented in their respective

paragraphs. 

The similarity is defined as the affinity measured with the percentage of a clustering solution S k compared with the

ground truth G . It is expressed in relative terms to the best solution that could be found in the interval of the study. Its

value lies in the range [0,1], whereby 0 indicates the worst result, and 1 indicates the solution that perfectly fits G . 

Fig. 5 shows the results for clustering solutions with random partitions. The generated solutions go from 1 class up to

10. Fig. 5 a shows the representation of G and the different clustering solutions from 1 class (S1) up to 5 classes (S5). In

Figs. 5 b–d, it is worth noting that the Chi Index, entropy, mutual information, adjusted rand index, Hubert, and PSI had its
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Fig. 5. Results for random generated clustering solution from k = 1 to 10 number of clusters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

values at zero. Mutual Information index ( Fig. 5 d) and the Rand Index ( Fig. 5 c), could imply that the optimal number is 3

because their curves converge. In addition, PSI had a higher value at 3, that may indicate that is the better solution, but it

was with a value under 0.1. 

Fig. 6 shows the results for clustering solutions where the instances of the first cluster are increased in each dataset until

completion. In Fig. 6 a, S1 has the same distribution as G , and hence this is the best solution for all the indices. Figs. 6 b–d

show the distribution of the CVIs in these datasets. The x -axis represents the percentage of the instances of the first cluster,

which ranges from 33% to 100%. It can be observed that all the indices presents a similar behaviour. Their best values are

in the dataset that is equal to G and these values decrease until the last dataset whose all instances belong to cluster 1. We

find that the Chi Index marks its optimal solution in S 1 in a similar way than the rest of the indices, but Chi Index descends

more linear than the rest of its competitors. 

Fig. 7 shows the results for the solutions where the central cluster (in blue) is increased. Fig. 7 a shows how the central

cluster is increased on each solution where S 1 is identical to G . The results are similar to the previous ones. Figs. 7 b–d

show that the indices behave similarly, since the best solution is S 1, and these indices decrease until the central cluster

fills the whole dataset. This result arises from the fact that our index is comparing the distribution of the points across

the clusters and, when the dataset is composed of only 1 cluster, the index reaches the lowest value compared with the

remaining solutions. We had a comparable situation for the indices of Mutual Information and Entropy ( Fig. 7 b), Variation

of information ( Fig. 7 c), PSI, and Minkowski ( Fig. 7 d). It also should be highlighted that Chi Index reached similar results

than PSI in this clustering solution. 

Fig. 8 displays the results of the indices for solutions where the number of incorrect instance labels regularly increases.

As seen in Fig. 8 a, S 1 is also identical to G , and it can be observed that on each iteration some of the instances are incorrectly

labelled and then this continues until all the instances are incorrectly labelled. Figs. 8 b–d show that the Chi Index behaves

in a similar way to the rest of the indices during the different datasets. The curves of the indices generally decreases from

1 until 0 in the dataset whose label are 100% incorrect labelled. As it can be seen, the Chi Index and PSI has a near linear

since they begin in 1 and decrease to 0. In the case of the F-Measure, the purity, the CSI, and the CH, they start in 1 but

they finish at 0.4. The rest of the indices also obtain a similarity of zero in the last dataset but do not describe a near linear

behaviour. 
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Fig. 6. Results for generated clustering solution where the first cluster increases in each dataset until it fills the whole dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Experimental design 

To generate the clustering solutions, 3 clustering methods from Spark MLlib [19] were applied: k-means, bisecting k-

means, and Gaussian mixture. 

Each dataset, described in Section 4.2.1 , was executed with each of these 3 clustering methods. In addition, these clus-

tering methods require the number of clusters ( k ) into which the dataset is going to be partitioned. The k value was set in

the range of [ D k − 10 , D k + 10] , where D k is the correct number of clusters of each dataset and k > 1. The number of classes

of the datasets was considered as the optimal number of clusters in the same way as carried out in [6,10,20,34,37,39] . With

this configuration, we obtained a total of 2820 clustering solutions to test the CVIs. Each clustering solution was compared

with the ground truth partition and was then evaluated by the 15 external CVIs described in Section 2 . Our new proposed

index was also applied in order to compare the results. 

4.2.1. Datasets 

Table 6 presents the datasets used for the experiments and provides the following attributes for each dataset: name;

number of classes to be used as the optimal number of clusters; number of features; and the number of instances. All

these datasets were downloaded from the UCI machine-learning repository [35] . Note that due to the size of some of the

datasets, such as airlines, higgs, poker , and susy , this could be considered big data. It should be borne in mind that all these

datasets included the class information but were not involved in the clustering process. Class information was used in only

the clustering analysis stage. 

4.2.2. Validity index effectiveness 

The effectiveness of a CVI measures its capacity to achieve the most coinciding matches while taking a benchmark from

different clustering solutions into account. A clustering algorithm and different datasets with a ground truth solution are

required in this process. The first step involces applying the clustering algorithm to the datasets and obtaining the multiple

solutions. The second step evaluates the solutions with the CVIs. The third step compares the CVI results and selects the

one with the highest score. 
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Fig. 7. Results for generated clustering solution where the central clusters are increasing step by step until the dataset is completed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The effectiveness of a CVI depends on how often it takes the correct clustering result in accordance with the chosen

criterion. Therefore, the effectiveness is given by counting how many times the index has hit the correct number of clusters.

The benchmark employed to make the comparison between the indices includes the following values: 

• Average number of hits: this value is given by the mean of the number of times that the index correctly predicted the

optimal number of clusters per dataset. 

• Average squared error: this is calculated as the average of the squared distances between the prediction of the index I i
and the correct number n i : 

Error = 

∑ 

i ∈ n 
d ( I i , n i ) 

2 

n 

(15)

where n is the total number of datasets. 

4.2.3. Statistical test 

Finally, a statistical framework was applied to test the performance of the indices for the public datasets. The non-

parametric Friedman test and Holm post-hoc procedure were chosen to statistically validate the significant differences in the

mean ranks of the corresponding p-values reached. This statistical analysis was carried out using the open-source platform

StatService [40] . 

The Friedman test is a non-parametric statistical test that evaluates the differences between more than two related

sample means [41] . In our case, the related samples were the CVIs to be compared. The lower the p -value, the better the

position in the ranking in the Friedman test. 

Average ranks for each index provide an objective comparison. The Friedman test could check whether the average ranks

were significantly different from the mean rank expected under the null hypothesis. After checking that the measured av-

erage ranks are significantly different with an α = 0 . 05 , and provided that the Friedman test rejected the null hypothesis,

then a post-hoc test could proceed to evaluate the relative performance of the studied CVIs against a control index (that
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Fig. 8. Results for generated clustering solution where the number of incorrectly labelled objects increase proportionally between the clusters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with the best average rank) thereby avoiding any family-wise errors. This task will be carried out with the Holm step-down

procedure by testing hypotheses sequentially ordered in terms of their significance [42] . 

4.3. Experimental results 

This section presents the results obtained with the public datasets. Fig. 9 a shows the average number of hits for each

CVI in ascending order. It should be highlighted that the Chi Index achieves the highest rate of hits (58%) with a significant

margin with its competitors. Indices from the literature had similar rates of hits, ranging from 43% in the case of the F-

Measure to 36% for Mutual Information. 

On the other hand, Fig. 9 b presents the average squared error per index. It is worth noting that the Chi Index obtained the

lowest percentage of error. This means that the Chi Index hits the optimal number of clusters most of the times and,when

it is in error, it is still not far from the solution. 

Fig. 10 presents the heatmaps of the distances to the optimal number of clusters of each CVI (rows) for each dataset

(columns) represented by the numbers given in Table 6 . In these figures, hits are highlighted in green and the farthest

results from the solution are graded from white to red. Fig. 10 a–c correspond to the results for the k-means, the bisecting

k-means and Gaussian mixture methods, respectively. 

As can be observed, the Chi Index had a higher rate of green cells than the rest of the CVIs. Although in certain datasets

no CVI hit the correct number of clusters, in these cases, the Chi Index remained closer to the solution than its competitors.

Fig. 11 illustrates the results of Chi Index for two datasets, zoo and knowledge , whose optimal number of clusters are

7 and 4, respectively. Fig. 11 a shows how both curves are crossed at k = 7 . Moreover, Fig. 11 b presents the results for the

dataset that has 4 clusters. As can be observed, the curves for the Chi Index by rows and by columns are cut off between

k = 4 and k = 5 . These results need no interpretation because the solution is given directly by the index. 

4.3.1. Statistical analysis 

The Friedman test rankings for every CVI are shown in Table 7 a. The ranking was carried out with the results shown

in Fig. 10 . As previously indicated, the best result for a ranking was 1 and the worst was the last position. As the ranking

shows, the Chi Index was in the first position with 6.415. The next index in the ranking was the PSI with a difference of more
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Fig. 9. Benchmark results for the public datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

than 1 point with respect to the Chi Index. From this index onwards there are only 0.5 points of difference, and hence, we

may conclude that there is a dissimilarity between chi and the indices from the literature. The lowest value for the ranking

was 6.415, and the rest ranged from 7.109 to 9.517. Such high values were presented because there were numerous ties in

the results, and, in these cases, Friedman establishes the average of the sum of the ranking values of all the competitors.

Therefore, for the dataset where all the indices hit the optimal number, Friedman set the ranking at 8. 

The statistic for Friedman was 54.694, distributed according to a chi-squared distribution with 15 degrees of freedom.

The p-value for Friedman was 0.0 0 0, which is lower than 0.05. Therefore, significant differences do exist and it rejected the

null hypothesis that they all behaved in a similar way with a level of significance of α = 0 . 05 . 

A post-hoc test has been performed in pairs to verify that our proposed Chi Index is significantly different from the other

indices. 

Table 7 b shows the p-values, z-value and αHolm 

, using the Chi Index as the control method since it obtained the best

ranking. As can be observed, the null hypothesis is rejected for all the competitors’ CVIs where the p − v alue remains lower

than the αHolm 

. The null hypothesis was rejected by all the competitors but PSI, whose p-value (0.219) was higher than

its αHolm 

(0.050). Therefore, it may be concluded that the Chi Index generated the best results since it obtained the best

average ranking, and that it was significantly different to all the competitors ’CVIs but PSI. 

4.3.2. Discussion 

The results of the experimental analysis for the public datasets from the UCI repository show that our proposed external

index improves the rate of hits by almost 16% ( Fig. 9 a) with respect to the CVIs from the literature but just 2% from PSI.

In addition, in the case of not being able to hit the correct number of clusters, our index obtained a rate of 3 points lower

than the CVIs from the literature ( Fig. 9 b). Chi Index obtained similar rates of hits than PSI, but in case of error, its error is

much lower. Our proposed index improves the results based on Friedman’s test ( Table 7 a). 

According to the heatmaps from Fig. 10 , it can be stated that the Chi Index produced promising results since it hit the

optimal number of clusters for most of the datasets and on the according when it failed, its error was not far from the
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Fig. 10. Heatmaps of the distances to the optimal number of clusters of each CVI (rows) for each dataset (columns) represented by the number given in 

Table 6 . 

Fig. 11. Representation of the Chi Index for k = 2 to 10 for two real datasets. 

 

 

 

 

 

 

 

 

optimal. It is also interesting to note that there were several datasets in which none of the indices hit the optimal number

of clusters. However, in numerous of datasets, it was only the Chi Index which hit the optimal number of clusters. 

If we analyse the rate of hits and errors per clustering method, then the Chi Index obtained the best values. For k-means,

the Chi Index and the PSI attained 60% hits, and 3.49 and 3.98 points of error respectively. The third in the ranking was

the CH index with 49% hits and 5.68 points of error. Bisecting k-means results show that the Chi Index had the highest rate

of hits with 64%, while the second mark was obtained by several indices with 49%. The Chi Index had 3.11 points of error

and the next in the ranking was the Rand index with 4.32. Finally, the Gaussian mixture had similar results. The PSI index

had 53% hits and 8.00 points of error, and in the second position was the Chi Index with 51% hits and 3.53 points of error.

K-means and bisecting k-means obtained similar results while Gaussian mixture solutions obtained a lower rate of hits and

a higher error. 
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Table 6 

Dataset description. 

# Dataset Classes Features Instances 

1 airlines 2 7 539,383 

2 bankmarketing 2 16 45,228 

3 banknote 2 4 1372 

4 biodeg 2 41 1055 

5 breast cancer wisconsin 2 9 699 

6 breast-tissue 6 9 106 

7 car 4 6 1728 

8 cloud 4 10 1024 

9 column_2C 2 6 310 

10 column_3C 3 6 310 

11 diabetes 2 20 768 

12 ecoli 8 7 336 

13 electricity 2 8 45,312 

14 faults 2 27 1941 

15 forest type mapping 4 27 523 

16 gesture phase dataset 5 32 9873 

17 glass 6 9 214 

18 haberman 2 3 306 

19 higgs 2 28 11,0 0 0,0 0 0 

20 iris 3 4 150 

21 kddcup99 2 41 494,020 

22 knowledge 4 5 403 

23 leaf 36 14 340 

24 letter 26 16 20,0 0 0 

25 movement 15 90 360 

26 optdigits 10 64 5620 

27 ozone 2 72 2534 

28 pendigits 10 16 10,992 

29 poker 10 10 829,202 

30 relax 2 13 182 

31 satimage 7 36 6435 

32 seeds 3 7 210 

33 segment 7 19 2310 

34 spambase 2 57 4601 

35 spectrometer 4 100 531 

36 susy 2 12 5,0 0 0,0 0 0 

37 urban land cover 9 147 675 

38 vehicle 4 18 846 

39 vowel 11 10 990 

40 waveform-1 3 21 50 0 0 

41 waveform-2 3 40 50 0 0 

42 wholesale 2 7 440 

43 wine 3 13 178 

44 wine quality red 6 11 1599 

45 wine quality white 7 11 4898 

46 yeast 10 8 1484 

47 zoo 7 17 101 

 

 

 

 

 

 

It is also interesting to note that the Chi Index illustrates the optimal clustering solution in an easy and concise way.

Some of the solutions of indices in the literature need to be interpreted by following the elbow method or looking for a

minimum or a maximum. The Chi Index points out the optimal solution in the intersection of the described curves. 

5. Conclusions 

In this paper, an innovative external CVI implemented in Spark has been proposed for its application in datasets re-

gardless of their size. The proposed Chi Index is based on the chi-squared statistic test. In addition, we have shown the

differences between our proposal and the indices from the literature. 

The experimental study indicates that our external index is very competitive. Its effectiveness in public datasets with dif-

ferent sizes has been tested while varying the number of clusters, features, and the number of instances. The main achieve-

ments include the following: 

• An external CVI based on the chi-squared statistic test is given. 

• Our index allowed us to estimate the optimal number of clusters based on the class of the dataset. 

• Chi-index results are clear to read and require no further interpretation. 

• The proposed index is equipped to work with datasets that may be considered as Big Data. 



16 J.M. Luna-Romera, M. Martínez-Ballesteros and J. García-Gutiérrez et al. / Information Sciences 487 (2019) 1–17 

Table 7 

Statistical results. 

(a) Sorted mean ranking for Friedman’s test. (b) Post-hoc analysis using Holm procedure and the Chi Index as the control index. 

CVI Ranking CVI p z αHolm 

Chi Index 6.415 CSI 0.0 0 0 0 5.490 0.0033 

PSI 7.109 Variation of Information 0.0 0 0 0 4.792 0.0036 

CH 8.151 Purity 0.0 0 0 0 4.543 0.0038 

Adjusted Rand Index 8.383 Mutual Information 0.0 0 0 0 4.493 0.0042 

F-Measure 8.415 Entropy 0.0 0 0 0 4.462 0.0045 

Rand Index 8.489 Jaccard 0.0 0 0 0 4.219 0.0050 

Minkowski 8.545 

Hubert 8.640 Fowlkes–Mallows 0.0 0 0 0 4.187 0.0056 

Goodman-Kruskal 8.753 Goodman–Kruskal 0.0 0 0 0 4.137 0.0063 

Fowlkes-Mallows 8.781 Hubert 0.0 0 01 3.938 0.0071 

Jaccard 8.799 Minkowski 0.0 0 02 3.770 0.083 

Entropy 8.936 Rand Index 0.0 0 02 3.670 0.0100 

Mutual Information 8.954 F-Measure 0.0 0 04 3.539 0.0125 

Purity 8.982 Adjusted Rand Index 0.0 0 05 3.486 0.0167 

Variation of Information 9.123 CH 0.0021 3.486 0.0250 

CSI 9.517 PSI 0.2197 1.227 0.0500 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• The size of the dataset does not directly influence the effectiveness of the index. 

• The software of this contribution can be found as a spark-package at http://spark-packages.org/package/josemarialuna/

ExternalValidity . 

• The source code of the Chi Index and the other indices from the literature can be found at https://github.com/

josemarialuna/ExternalValidity . 

We are currently applying this Chi Index in a clustering analysis with employment data and promising results have been

attained. The Chi Index is also being applied on electrical data in collaboration with a Spanish electricity company. As future

work, it would be interesting to extend the application of the index to include multi-label datasets. 

Acknowledgment 

This work has been supported by the Spanish Ministry of Economy and Competitiveness under projects TIN2014-55894-

C2-R and TIN2017-88209-C2-2-R. J.M. Luna-Romera holds a FPI scholarship from the Spanish Ministry of Economy and Com-

petitiveness. 

References 

[1] A.K. Jain , Data clustering: 50 years beyond K-means, Pattern Recognit. Lett. 31 (8) (2010) 651–666 . 

[2] M. Castro-Franco , M. Córdoba , M. Balzarini , J. Costa , A pedometric technique to delimitate soil-specific zones at field scale, Geoderma 322 (2018)
101–111 . 

[3] R. Davoodi , M. Moradi , Mortality prediction in intensive care units (ICUs) using a deep rule-based fuzzy classifier, J. Biomed. Inform. 79 (2018) 48–59 .

[4] R. Pérez-Chacón , J.M. Luna-Romera , A. Troncoso , F. Martínez-Álvarez , J.C. Riquelme , Big data analytics for discovering electricity consumption patterns
in smart cities, Energies 11 (3) (2018) . 

[5] B. Zhao , J. Wang , Unification of particle velocity distribution functions in gas-solid flow, Chem. Eng. Sci. 177 (2018) 333–339 . 
[6] J. Rojas-Thomas , M. Santos , M. Mora , New internal index for clustering validation based on graphs, Expert Syst. Appl. 86 (2017) 334–349 . 

[7] J. Handl , J. Knowles , D.B. Kell , Computational cluster validation in post-genomic data analysis, Bioinformatics 21 (15) (2005) 3201–3212 . 
[8] M. Halkidi , Y. Batistakis , M. Vazirgiannis , On clustering validation techniques, J. Intell. Inf. Syst. 17 (2) (2001) 107–145 . 

[9] J. Wu , H. Xiong , J. Chen , Adapting the right measures for K-means clustering, in: Proceedings of the Fifteenth ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, in: KDD, ACM, New York, NY, USA, 2009, pp. 877–886 . 
[10] C. Liu , W. Wang , M. Konan , S. Wang , L. Huang , Y. Tang , X. Zhang , A new validity index of feature subset for evaluating the dimensionality reduction

algorithms, Knowl. Based Syst. 121 (2017) 83–98 . 
[11] S. Jabbar , A .A . Minhas , A . Paul , S. Rho , Multilayer cluster designing algorithm for lifetime improvement of wireless sensor networks, J. Supercomput.

70 (1) (2014) 104–132 . 
[12] R. Tibshirani , G. Walther , Cluster validation by prediction strength, J. Comput. Graph. Stat. 14 (3) (2005) 511–528 . 

[13] A . Paul , A . Ahmad , M.M. Rathore , S. Jabbar , Smartbuddy: defining human behaviors using big data analytics in social internet of things, IEEE Wirel.

Commun. 23 (5) (2016) 68–74 . 
[14] V. Berikov , I. Pestunov , Ensemble clustering based on weighted co-association matrices: error bound and convergence properties, Pattern Recognit. 63

(2017) 427–436 . 
[15] Y. Lei , J.C. Bezdek , S. Romano , N.X. Vinh , J. Chan , J. Bailey , Ground truth bias in external cluster validity indices, Pattern Recognit. 65 (2017) 58–70 . 

[16] E. López-Rubio , E.J. Palomo , F. Ortega-Zamorano , Unsupervised learning by cluster quality optimization, Inf. Sci. 436–437 (2018) 31–55 . 
[17] H. Yahyaoui , H.S. Own , Unsupervised clustering of service performance behaviors, Inf. Sci. 422 (2018) 558–571 . 

[18] Y. Zhang , J. Madziuk , C.H. Quek , B.W. Goh , Curvature-based method for determining the number of clusters, Inf. Sci. 415–416 (2017) 414–428 . 

[19] A. Spark, Clustering - Spark 2.2.0 Documentation, 2018 . https://spark.apache.org/docs/2.2.0/ml-clustering.html , [Online; accessed 6-april-2018]. 
[20] M. Rezaei , P. Fränti , Set matching measures for external cluster validity, IEEE Trans. Knowl. Data Eng. 28 (8) (2016) 2173–2186 . 

[21] Y. Zhao , G. Karypis , Criterion functions for document clustering: experiments and analysis, Technical Report, University of Minnesota, Department of
Computer Science, Minneapolis, 2001 . 

[22] B. Larsen , C. Aone , Fast and effective text mining using linear-time document clustering, in: Proceedings of the Fifth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, in: KDD, ACM, New York, NY, USA, 1999, pp. 16–22 . 

http://spark-packages.org/package/josemarialuna/ExternalValidity
https://www.github.com/josemarialuna/ExternalValidity
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0001
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0001
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0002
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0002
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0002
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0002
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0002
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0003
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0003
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0003
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0004
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0004
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0004
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0004
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0004
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0004
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0005
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0005
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0005
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0006
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0006
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0006
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0006
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0007
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0007
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0007
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0007
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0008
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0008
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0008
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0008
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0009
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0009
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0009
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0009
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0010
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0010
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0010
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0010
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0010
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0010
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0010
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0010
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0011
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0011
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0011
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0011
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0011
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0012
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0012
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0012
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0013
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0013
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0013
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0013
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0013
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0014
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0014
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0014
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0015
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0015
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0015
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0015
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0015
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0015
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0015
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0016
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0016
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0016
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0016
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0017
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0017
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0017
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0018
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0018
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0018
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0018
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0018
https://www.spark.apache.org/docs/2.2.0/ml-clustering.html
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0020
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0020
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0020
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0021
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0021
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0021
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0022
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0022
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0022


J.M. Luna-Romera, M. Martínez-Ballesteros and J. García-Gutiérrez et al. / Information Sciences 487 (2019) 1–17 17 

 

 

 

 

 

 

 

 

[23] M. Meil ̆a , D. Heckerman , An experimental comparison of model-based clustering methods, Mach. Learn. 42 (1) (2001) 9–29 . 
[24] P. Fränti , M. Rezaei , Q. Zhao , Centroid index: cluster level similarity measure, Pattern Recognit. 47 (9) (2014) 3034–3045 . 

[25] L.A. Goodman , W.H. Kruskal , Measures of Association for Cross Classifications, Springer New York, New York, NY, 1971, pp. 2–34 . 
[26] W.M. Rand , Objective criteria for the evaluation of clustering methods, J. Am. Stat. Assoc. 66 (336) (1971) 846–850 . 

[27] N.X. Vinh , J. Epps , J. Bailey , Information theoretic measures for clusterings comparison: is a correction for chance necessary? in: Proceedings of the
Twenty Sixth Annual International Conference on Machine Learning, in: ICML, ACM, New York, NY, USA, 2009, pp. 1073–1080 . 

[28] R. Sokal , P. Sneath , Principles of Numerical Taxonomy, Books in biology, W. H. Freeman, 1963 . 

[29] E.B. Fowlkes , C.L. Mallows , A method for comparing two hierarchical clusterings, J. Am. Stat. Assoc. 78 (383) (1983) 553–569 . 
[30] L. Hubert , P. Arabie , Comparing partitions, J. Classif. 2 (1) (1985) 193–218 . 

[31] A. Ben-Hur , I. Guyon , Detecting stable clusters using principal component analysis, in: M.J. Brownstein, A.B. Khodursky (Eds.), Functional Genomics:
Methods and Protocols, Humana Press, Totowa, NJ, 2003, pp. 159–182 . 

[32] M. Meil ̆a , Comparing clusterings by the variation of information, in: B. Schölkopf, M.K. Warmuth (Eds.), Learning Theory and Kernel Machines, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2003, pp. 173–187 . 

[33] A. Banerjee , I.S. Dhillon , J. Ghosh , S. Sra , Clustering on the unit hypersphere using von Mises-Fisher distributions, J. Mach. Learn. Res. 6 (2005)
1345–1382 . 

[34] D. Campo , G. Stegmayer , D. Milone , A new index for clustering validation with overlapped clusters, Expert Syst. Appl. 64 (2016) 549–556 . 

[35] D. Dheeru, E. Karra Taniskidou, UCI machine learning repository, 2017 . http://archive.ics.uci.edu/ml/citation _ policy.html . 
[36] A.K. Alok , S. Saha , A. Ekbal , A min-max distance based external cluster validity index: MMI, in: Proceedings of the Twelfth International Conference

on Hybrid Intelligent Systems (HIS), 2012, pp. 354–359 . 
[37] J. Rodríguez , M. Medina-Pérez , A. Gutierrez-Rodríguez , R. Monroy , H. Terashima-Marín , Cluster validation using an ensemble of supervised classifiers,

Knowl. Based Syst. 145 (2018) 1–14 . 
[38] P.E. Greenwood , M.S. Nikulin , A guide to chi-squared testing, Wiley-Interscience, New York, NY, 1996 . 

[39] M.A. Wani , R. Riyaz , A new cluster validity index using maximum cluster spread based compactness measure, Int. J. Intell. Comput. Cybern. 9 (2)

(2016) 179–204 . 
[40] J.A. Parejo , J. Garcia , A. Ruiz-Cortes , J.C. Riquelme , Statservice: Herramienta de análisis estadístico como soporte para la investigación con metaheurís-

ticas, Actas del VIII Congreso Expañol sobre Metaheurísticas, Algoritmos Evolutivos y Bio-inspirados, 2012 . 
[41] S. Garcia , J. Luengo , F. Herrera , Data Preprocessing in Data Mining, Springer Publishing Company, Incorporated, 2014 . 

[42] S. Holm , A simple sequentially rejective multiple test procedure, Scand. J. Stat. 6 (2) (1979) 65–70 . 

http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0023
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0023
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0023
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0024
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0024
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0024
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0024
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0025
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0025
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0025
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0026
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0026
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0027
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0027
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0027
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0027
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0028
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0028
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0028
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0029
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0029
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0029
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0030
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0030
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0030
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0031
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0031
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0031
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0032
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0032
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0033
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0033
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0033
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0033
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0033
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0034
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0034
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0034
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0034
http://archive.ics.uci.edu/ml/citation_policy.html
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0036
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0036
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0036
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0036
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0037
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0037
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0037
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0037
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0037
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0037
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0038
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0038
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0038
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0039
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0039
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0039
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0040
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0040
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0040
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0040
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0040
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0041
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0041
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0041
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0041
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0042
http://refhub.elsevier.com/S0020-0255(19)30155-0/sbref0042

	External clustering validity index based on chi-squared statistical test
	1 Introduction
	2 External indices
	3 Proposed external clustering validity index based on the chi-squared test
	3.1 Chi-squared
	3.2 Motivation
	3.3 Chi Index toy example
	3.4 Chi Index definition

	4 Experimental results
	4.1 Chi Index validation
	4.2 Experimental design
	4.2.1 Datasets
	4.2.2 Validity index effectiveness
	4.2.3 Statistical test

	4.3 Experimental results
	4.3.1 Statistical analysis
	4.3.2 Discussion


	5 Conclusions
	Acknowledgment
	References


