
Information and Software Technology 62 (2015) 187–197
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Automating correctness verification of artifact-centric business process
models
http://dx.doi.org/10.1016/j.infsof.2015.02.010
0950-5849/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +34 954 556 234; fax: +34 954 557 139.
E-mail addresses: dianabn@us.es (D. Borrego), gasca@us.es (R.M. Gasca),

maytegomez@us.es (M.T. Gómez-López).
Diana Borrego ⇑, Rafael M. Gasca, María Teresa Gómez-López
University of Seville, Department of Computer Languages and Systems, Av Reina Mercedes S/N, 41012 Seville, Spain

a r t i c l e i n f o
Article history:
Received 25 July 2014
Received in revised form 19 February 2015
Accepted 21 February 2015
Available online 3 March 2015

Keywords:
Artifact-centric business process model
Verification
Constraint programming
a b s t r a c t

Context: The artifact-centric methodology has emerged as a new paradigm to support business process
management over the last few years. This way, business processes are described from the point of view
of the artifacts that are manipulated during the process.
Objective: One of the research challenges in this area is the verification of the correctness of this kind of
business process models where the model is formed of various artifacts that interact among them.
Method: In this paper, we propose a fully automated approach for verifying correctness of artifact-centric
business process models, taking into account that the state (lifecycle) and the values of each artifact
(numerical data described by pre and postconditions) influence in the values and the state of the others.
The lifecycles of the artifacts and the numerical data managed are modeled by using the Constraint
Programming paradigm, an Artificial Intelligence technique.
Results: Two correctness notions for artifact-centric business process models are distinguished
(reachability and weak termination), and novel verification algorithms are developed to check them.
The algorithms are complete: neither false positives nor false negatives are generated. Moreover, the
algorithms offer precise diagnosis of the detected errors, indicating the execution causing the error where
the lifecycle gets stuck.
Conclusion: To the best of our knowledge, this paper presents the first verification approach for
artifact-centric business process models that integrates pre and postconditions, which define the
behavior of the services, and numerical data verification when the model is formed of more than one
artifact. The approach can detect errors not detectable with other approaches.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Nowadays, organizations model their operations with business
processes. Traditionally, business processes are modeled as activ-
ity-centric business process models [1] in which activities are
focused on and data just serve as inputs and outputs of some ser-
vices. They follow the imperative principles, implying that the
workflow of the activities can be defined at design time. But for
some types of problems, it is easier to represent how the data
are modified during the process execution instead of the activities
that execute the data evolution.

For this reason, the artifact-centric methodology (data-centric
approach) has emerged as a new paradigm to support business
process management, where business artifacts appeared for the
necessity of enrich the business process model with information
about data [2], providing a way for understanding the interplay
between data and process. Artifacts are business-relevant objects
that are created, evolved, and (typically) archived as they pass
through a business, combining both data aspects and process
aspects into a holistic unit [3].

Artifact-centric modeling establishes data objects (called
artifacts) and their lifecycles as focus of the business process
modeling. This type of modeling is inherently declarative: the
control flow of the business process is not explicitly modeled,
but follows from the lifecycles of the artifacts [4].

The lifecycle represents how the state of an artifact may evolve
over the time. The different activities change the state of the
artifact and the values of the data associated to each artifact; these
may be manual (i.e. carried out by a human participant of the pro-
cess) or automatic (i.e. by a web service). The evolution of the
artifacts implies a change of the state and the values of the data,
until a goal state of an artifact is reached. One of the reasons

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.02.010&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2015.02.010
mailto:dianabn@us.es
mailto:gasca@us.es
mailto:maytegomez@us.es
http://dx.doi.org/10.1016/j.infsof.2015.02.010
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

188 D. Borrego et al. / Information and Software Technology 62 (2015) 187–197
why the artifact-centric paradigm facilitates the process descrip-
tion is the capacity to model the relations between objects with
different cardinalities, not only 1-to-1 relations. This modeling
capabilities are not entirely supported in activity-centric scenarios.
For instance, BPMN 2.0 [5] (currently wide accepted activity-cen-
tric notation) allows to easily represent multi-instance activities
and pools (processes), but with some limitations: (i) relations
between different processes can only be expressed as hierarchies,
where a process can invoke multiple instances of its subprocess;
(ii) the return value of an executed sub-process instance is only
accessible when its execution finishes, not allowing the interaction
of another process during the execution; and (iii) the definition
of Data Objects, Data Inputs, Data Outputs, Sets, and Data
Associations in BPMN 2.0 allows to specify collections of elements,
but it does not permit data instance differentiation or to include
the relation between the data objects between them. Regarding
this last limitation, the proposal in [6] proposes an extension of
BPMN data objects adding annotations to manage data dependen-
cy and instance differentiation. However, these annotations are
very low level representations and no significant for business
stakeholders. Based on this idea, the work in [7] uses more
complex objects that can involve N-to-M relations, using all the
advantages of ORM to incorporate the data objects in a more
natural way into the activity-centric business processes.

When more than one artifact is involved in the process, it is
possible that a combination of services and data values violate
the policies of the business. In order to avoid this situation at
runtime, it is possible to detect some of these possible errors even
at design time. Specifically, the errors derived from an incorrect
design of the model. In spite of the unknown runtime data in the
design time phase, our proposal is able to perform a data verifica-
tion of the models by means of the use of mandatory domains of
values, which can be obtained from previous executions and/or
knowledge from experts. Making use of this information, it is
possible to determine the existence of certain errors in the
structural and data perspectives of the model before it is deployed.

The goal of this paper is to develop an approach for verifying the
correctness of artifact-centric business process models at design
time, including the state relation between the artifacts of the
model, and the data values that define the relations between them.
To develop the automatic verification, we model the services
formally using pre and postconditions over the data associated to
the artifacts’ states. To analyze the correctness of the model, it is
necessary to study when the services can be executed. A service
can be executed if the evolution of the lifecycle of the artifact
arrives at the service and its precondition is satisfied. Upon com-
pletion, the service delivers data that satisfies its postconditions.
The no satisfiability of a pre or postcondition can cause that the
lifecycle gets stuck at a service and fails.

The automatic verification is performed using Artificial
Intelligence techniques, both to compute the possible evolutions
on the lifecycles and to model the pre and postconditions of the
services as numerical constraints.

This paper is organized as follows. Section 2 presents a motivat-
ing example to illustrate the concepts of reachability and weak-
termination. Section 3 introduces artifact graphs and artifact union
graphs as a formal model for artifact-centric business process
models, and defines reachability and weak-termination on artifact
union graphs. Section 4 defines the CSP formulation of an artifact
union graph. The process of verification is explained, and two
algorithms are presented. The verification of the motivating
example is performed, and their tractability is discussed. Section 5
presents an overview of related work found in the literature. And
finally, conclusions are drawn and future work is proposed in
Section 6.
2. A motivating example

In this paper, the example presented in [8] has been enriched,
including characteristics that cannot be described using the activ-
ity-centric paradigm. The original example describes the handling
of a conference by an organizing committee. At the beginning of
the process, the establishment of the conference rate is performed,
even before the submission period is open. Then, the external
services that are needed during the conference are booked (e.g.
gala dinner, coffee breaks and proceedings), at the same time that
the sponsorship money collection is carried out and the origin of
the guest speaker is decided.

Likewise, the authors submit the papers which are received
by the organizing committee, and are reviewed by members
of the scientific committee (reviewers) in order to select the
papers accepted for the conference. The decision about the
approval or rejection of the papers is notified to the authors.
Meanwhile, the conference registration period is open, which
will remain open until the conference ends, so that the authors
can register when they already know if their papers will be
presented at the conference. Finally, the number of conference
attendees is known, and the payment for the booked services
is performed.

Since the relations between the execution instances of the
different processes are not all 1-to-1, this presented scenario is
not modellable by means of the activity-centric paradigm due to
the limitations explained in Section 1. That is, while the tasks
performed by the organizing committee only requires an instance
of execution, several instances of the different reviewers and
submitted papers are running simultaneously.

The described process can be represented with five artifacts: (1)
the Finances artifact, involving the tasks regarding the economic
decisions, performed by the organizing committee; (2) the
Organization artifact, entailing the tasks concerning the publica-
tion of papers and registration of attendees, performed by the
program committee; (3) the Paper artifact, including the tasks
performed by the authors of the submitted papers; (4) the
Reviewer artifact, containing the tasks executed by the reviewers
of the papers; and (5), the Registration artifact, allowing the regis-
tration of attendees to the conference. The associations between
these five artifacts present different cardinalities, existing relations
1-to-1, 1-to-N and N-to-M between the artifact instances, as it is
shown in Fig. 1.

As the execution of the tasks changing the states of the artifacts
takes place, some data are consumed and produced by reading and
writing the attributes of the mentioned artifacts. Those attributes
are listed in Table 1 with their corresponding meaning. As
mentioned, the behaviors of the tasks are defined by means of
pre and postconditions over the artifacts and attributes.

Semantically ordered tasks of different and independently
modeled artifacts may be executed in any order. But other
combinations are not desirable, for instance, it makes no sense
to perform the payment of the gala dinner at the restaurant
before we know the number of conference attendees.
Therefore, the executions have to be constrained using policies
and goal states.

A policy tells us the constraints that must comply the state
changes within one artifact, or between different artifacts. These
changes can be related to the values of the attributes, to the
number of artifact instances, or because a service has been
executed over the artifact. Finally, goal states restrict final states
by reducing those combinations of artifacts’ final states that should
be considered successful.

For our motivating example, there are ten policies restricting
the inter-artifact behavior:

Fig. 1. Cardinalities between artifacts.

D. Borrego et al. / Information and Software Technology 62 (2015) 187–197 189
� P1: The payment of the booked services cannot be carried out
until the number of conference attendees is known.
� P2: The process of reception of papers starts once that the

registration fee has been established.
� P3: The registration process can start once it has been opened.
� P4: All registration processes should finished before the

registration period is closed.
� P5: Papers are received by the organizing committee once the

authors have submitted them.
� P6: The reviewers start their revisions once the organizing

committee send them the papers to review.
� P7: A paper is approved or rejected based on the decision of the

reviewers.
� P8: The selected papers are known after all reviewers inform

about their revisions.
� P9: The established registration fee should be less than or equal

to the cost of registering at the conference.
� P10: All submitted papers should be reviewed.

The objective of this paper applied to the example is to know if
the conference described by means of artifacts can be celebrated
successfully and satisfying the policies defined.
3. Computational model for representation of artifact-centric
business process models

In order to verify the artifact-centric business process models at
design time, we distinguish between two types of correctness to
check:

� Reachability. An artifact-centric business process model is
reachable if there is a possible trace of execution where every
state can be reached, so there is an evolution of the lifecycle
in which the state is visited.
� Weak-termination. It is a correctness criterion that ensures that

a goal state is always reachable from every reachable state.
Table 1
Artifacts with their corresponding attributes.

Attribute Representation

Finances artifact
regFee Conference registration fee
sponsorship External contributions to support the event
dinner Gala dinner cost
lunch Cost of each lunch served during the conference
others Budget for other expenses, such as social events
guestSpeaker Money to spend in inviting a guest speaker

Organization artifact
selectedPapers List of papers to be published

Paper artifact
oid Unique identifier of each submitted paper
approval State of the submitted paper

Reviewer artifact
papersToReview List of papers to review by each reviewer

Registration artifact
regCost Cost of registering at the conference
In order to analyze the reachability and weak-termination of
artifact-centric business process models, we propose an approach
based on the combination of graph-theory and Constraint
Programming [9].

In this section, we define the artifact graphs, including the
definition of the union of artifacts to obtain a global model. Next,
the notions of data instance subgraph and correctness for artifact
graphs are introduced. Finally, the concepts of partial and complete
instance subgraph are presented.
3.1. Definitions

In order to develop our computational model, we use the
specification defined in the framework BALSA [10] as a basis.

In order to verify the correctness of the artifact-centric model, it
is necessary to verify that each state of the artifacts’ lifecycles are
reachable. Likewise, to ensure the correctness of a model, it should
be weakly terminating, which implies that a goal state is always
reachable from every reachable state. To perform the verification
of both aspects, we represent artifacts as graphs, where the nodes
are the corresponding states and services of the artifacts, and the
lifecycle is defined by means of directed edges. This kind of
formalization is chosen due to it facilitates the modeling to
associate pre and postconditions to the services.

Definition 1 (Artifact graph). An artifact graph is a tuple
AG = hG; Data; Xi where:

� The tuple G ¼ hSt; Ser; Ei is a graph, where:

– St is a set of artifact states;
– Ser is a set of actions or services;
– E # ðSt � SerÞ [ðSer � StÞ is a set of edges which determi-
nes precedence relation;

� The tuple Data ¼ hID; At; pre; posti collects all information
regarding the data managed in the artifact, where:
– ID is the identifier of the artifact;
– At is a set of typed attributes;
– pre, post: Ser ! CðAtÞ, being CðAtÞ the set of constraints on
At, assign to each action its precondition or postcondition,
respectively;

� X is a set composed of subsets of St representing the end points
in the lifecycle of the artifact.

For the motivating example previously mentioned, Fig. 2
depicts the Finances Artifact, represented as artifact graph, where
the states are depicted as circles and the services as squares.

The auxiliary functions inedge; outedge : N ! PðEÞ, defined in [8],
are used to map each node to a set of edges. For a node n
(n 2 fSt [Serg), inedgeðnÞ is the set of edges entering n, while
outedgeðnÞ is the set of edges leaving n. Formally,
inedgeðnÞ ¼ fðx; yÞ 2 Ejy ¼ ng and outedgeðnÞ ¼ fðx; yÞ 2 Ejx ¼ ng.
We use subscripts to identify the different elements of inedgeðnÞ
and outedgeðnÞ. For example, if inedgeðnÞ ¼ fe1; e2g, then
inedge1ðnÞ ¼ e1 and inedge2ðnÞ ¼ e2.

As mentioned, an artifact evolves through the states in its
lifecycle, fulfilling some execution constraints:

� The evolution from a state stx to a state sty takes place when the
service ser connecting them is executed. That is, when the pre
and postcondition of ser are satisfied.
� If a state stx presents more than one incoming edge, i.e.
jinedgeðstxÞj > 1, the change to stx in the lifecycle takes place
when the execution of one of the services connected to stx

through one of those incoming edges is performed.

Fig. 2. Artifact finances.

190 D. Borrego et al. / Information and Software Technology 62 (2015) 187–197
� If a state stx presents more than one outgoing edge, i.e.
joutedgeðstxÞj > 1, the evolution of the lifecycle can continue
only through one of those outgoing edges, specifically the one
connecting to the service that will be executed next.
� If a service ser presents more than one incoming edge, i.e.
jinedgeðserÞj > 1; ser can be executed only when all the states
connected to ser through one of those incoming edges have
been reached, and when the precondition of ser is satisfied.
� If a service ser presents more than one outgoing edge, i.e.
joutedgeðserÞj > 1, when the execution of ser is finished, and
its postcondition is satisfied, all the states connected to ser
through those outgoing edges are activated.

The constraints that should be satisfied during the execution of
the services (that is, preconditions, postconditions and some
policies) are linear or polynomial equations or inequations over
artifact instances and the attributes in At.

Let at 2 At be an attribute, let id be an artifact identifier, let
int val be an integer value, let nat val be a natural value, and let
float val be a float value. The set of constraints on At and ID, is
generated by the following grammar in BNF:

Constraint ::¼ Constraint BOOL OP Constraint

jAtomic Constraintj:Constraint

jConstraint ! Constraint

BOOL OP ::¼ ^ j_
Atomic Constraint ::¼ Function RELATIONAL OP Function

Function ::¼ Function ARITHMETIC OP Function

j# id

jAGGREGATION OP Set

jid:atjint valjnat valjfloat val

Set ::¼ SET OP id:atjid:at

RELATIONAL OP ::¼ < j 6 j ¼¼ j > jP
ARITHMETIC OP ::¼ þ j � j�

AGGREGATION OP ::¼ CardjMinjMaxjAvgjR
SET OP ::¼

[
j
\

This grammar allows constraints that are conjunctions,
disjunctions (BOOL OP) and/or implications (!) of equations or
inequations (RELATIONAL OP) containing certain operators:

� #: is the operator that represents the instance count. That is,
#id is the number of executed instances of the artifact whose
identifier is id.
� ARITHMETIC OP: arithmetic operators.
� AGGREGATION OP: operators over sets of attributes. Specifically,

the cardinality (Card), minimum (Min), maximum (Min),
average (Avg) and sum (R).
� SET OP: union (
S

) and intersection (
T

) of sets of attributes.

In order to verify the correctness of a complete artifact-centric
business process model, the global model needs to be considered,
taking into account all the artifacts composing it at the same time.
To this end, we need to define the global model as the union of all
artifacts. This union is established by the policies, which limit the
coordinated execution of artifacts lifecycles, avoiding the appear-
ance of independent executions which lead to undesired situations,
such as incorrect goal states.

Two types of policies can be distinguished: (1) the Structural
Policies (cf. Definition 2) expressing constraints on the relation
between states and/or services of different artifacts; and (2) Data
Policies (cf. Definition 3) expressing invariant conditions over the
data (i.e. attributes) managed by the different artifacts in the
complete model.

Definition 2 (Structural Policy). A Structural Policy is a graph,
represented by the tuple SP ¼ hSt; Ser; Ei.
Definition 3 (Data Policy). A Data Policy DP is a set of constraints
on the attributes in At, so DP # CðAtÞ.

Regarding the ten aforementioned policies for the motivating
example described in Section 2:

� Policies from P1 to P8 are structural policies, which result in
edges between services and/or states from different artifacts.
� Policies P9 and P10 are data policies, which can be formalized

by means of the invariants that should be satisfied at all times
during the execution of the artifacts:
DP :fFinances:regFee�#Registration

6

X

i

Registrationi:regCost;Cardð
[

i

Revieweri:papersToReviewÞ

¼¼#Paperg

In this way, the global model can be formalized as the union of
artifact graphs and policies, giving rise to a new artifact graph.

Definition 4 (Artifact union graph). Let fA1; . . . ;Ang be artifacts
with dependencies between them, and let fSP1; . . . ; SPmg and
fDP1; . . . ;DPpg be structural and data policies expressing those
dependencies. An artifact-centric model is defined as the union of
artifacts and policies, called artifact union graph, fð

Sn
i¼1AiÞ[

ð
Sm

j¼1SPjÞ [ð
Sp

k¼1DPkÞg ¼ hG;Data; Inv ;Xi, being G ¼ hSt; Ser; Ei
and Data ¼ hAt; pre; posti, where:

� St ¼ ð
Sn

i¼1StiÞ [ð
Sm

j¼1StjÞ, i.e. the states of the artifact union
graph are the union of the states of all artifacts and structural
policies;

D. Borrego et al. / Information and Software Technology 62 (2015) 187–197 191
� Ser ¼ ð
Sn

i¼1SeriÞ [ð
Sm

j¼1SerjÞ, i.e. the services of the artifact union
graph are the union of the services of all artifacts and structural
policies;
� E ¼ ð

Sn
i¼1EiÞ [ð

Sm
j¼1EjÞ, i.e. the edges of the artifact union graph

are the union of the edges of all artifacts and structural policies;
� At ¼

Sn
i¼1Ati, i.e. the attributes of the artifact union graph are the

union of the attributes of all artifacts;
� pre ¼

Sn
i¼1prei, i.e. the preconditions of the artifact union graph

are the union of the preconditions of all artifacts;
� post ¼

Sn
i¼1posti, i.e. the postconditions of the artifact union

graph are the union of the postconditions of all artifacts;
� Inv ¼

Sp
k¼1DPk, i.e. the invariants of the artifact union graph are

the union of the constraints defined in the data policies;
� and, for the goal states in X, they are obtained as the composi-

tion of states in fX1; . . . ;Xng which still are final states in the
artifact union, i.e. being X0i # Xi j 8st 2 X0i : outedgeðstÞ ¼ 0, then
X ¼ fX01 � . . .�X0ng.

For our motivating example, the artifact union graph of the arti-
facts Finances, Organization, Paper, Reviewer and Registration, pre-
sented in Section 2, is shown in Fig. 3. The edges and states drawn
with broken lines are the representation of the structural policies
(P1 to P8).

For the services in the artifact union graph shown in Fig. 3, the
pre and postconditions are listed in Table 2.1

For a global artifact-centric business process model to be veri-
fied as correct, all the artifacts composing it, including all policies
defining dependencies between them, should be verified as correct.

3.2. Analysis of the verification of the correctness

As mentioned, the verification of the correctness of artifact-cen-
tric business process models at design time implies to check two
different aspects: (1) the reachability of each state in an artifact
union lifecycle; and (2) the weak-termination of the global model.

The reachability of each state depends on the pre and postcon-
ditions of the services executed before it in a partial execution of
the business process in which the state is reached. And the
weak-termination of a global model implies the verification of
complete executions traversing trough each state, checking the
satisfiability of the pre and postconditions of the services executed
in them. To define it formally, we adapt the notion of partial
instance subgraph and complete instance subgraph, introduced
in [8], which refers to a particular instance of a workflow graph
used for the analysis of the business process correctness. In this
paper, it is a subset of states and services that are visited in a par-
ticular execution of an artifact union graph. In the case of the par-
tial instance subgraph, it is obtained by traversing the graph from
the initial state, using the following rules: (1) if one incoming edge
of a state is visited, then the state is visited too; (2) if all incoming
edges of a service are visited, then the service is visited too; and (3)
if a service is visited, all its outgoing edges are visited too.

In the case of the complete instance subgraph, it is obtained by
traversing the graph from the initial node using the rules for partial
instance subgraphs plus the next rule: (4) if a state is visited, then
one and only one of their outgoing edges is visited too.

The correctness of a partial or complete instance subgraph
implies the satisfiability of the pre and postconditions of the visit-
ed services. Therefore, to check the reachability of a state st, it is
necessary to find a valuation of attributes satisfying those pre
and postconditions for a partial instance subgraph reaching st.
Likewise, for a global model to be weak-terminating, it is necessary
1 Only the services with pre and/or postconditions different to true are shown.
to check complete instance subgraphs visiting each possible state
in the artifact union graph, finding a valuation of attributes which
satisfies the pre and postconditions of the visited services. To
define it formally, we adapt the definition of data instance sub-
graph from [8] in order to include the valuation of attributes to
the instance subgraph (partial or complete).

Definition 5 (Data instance subgraph). A data instance subgraph of
an artifact union graph hG; Data; Inv; Xi is a tuple
hG0; Data0; Inv 0; X0; mi where

� hG 0; Data 0; Inv 0; X 0i is an instance subgraph with St0#St;Ser0#
Ser; E0 # E; At0 # At; pre0 # pre; post0 # post; Inv 0 # Inv ;X0 # X, and
� m is an assignment of values to attributes in At0, so that each attri-

bute at 2 At0 is instantiated with a value mðatÞ. Those values
should satisfy the pre and postconditions in pre0 and post0 respec-
tively (i.e. the pre and postconditions of the services in Ser0).

Only considering the reading/writing of attributes by services,
we can identify two types of error that can occur in an instance
subgraph:

� Data is missing if is read by a service, but not written in any
preceding service in the instance subgraph.
� Data is conflicting when an attribute is written in services

which can be executed in parallel in an instance subgraph. In
that case, the last executed service overwrites the value previ-
ously written by the other service.

The detection of these types of errors should be carried out in a
similar way as it was performed in [8].

However, taking into account the pre and postconditions
defining the behavior of the services, other types of errors can
occur, such as the pre and/or postcondition of a service cannot
be satisfied for any valuation of attributes, not being possible to
reach the subsequent states. To formalize these errors, we define
the reachability and weak-termination of a global model
(Definitions 8 and 9) by introducing first the notions of reachable
and weak-terminable states in Definitions 6 and 7.

Definition 6 (Reachable state). A state st is reachable if exists a
partial instance subgraph including st whose valuation of attri-
butes satisfies all pre and postconditions of the visited services.
Definition 7 (Weak-terminable state). A state st is weak-ter-
minable if exists a complete data instance subgraph including st
whose valuation of attributes satisfies all pre and postconditions
of the visited services.

Definition 8 (Reachable artifact union graph). An artifact union
graph is reachable if every state is reachable.

Definition 9 (Weak-terminable artifact union graph). An artifact
union graph is weak-terminable if every state is weak-terminable.

4. Automatic verification of artifact-centric business process
models

In this section, the automatic verification of the reachability and
weak-termination of artifact-centric business process models is
detailed in a formal way. We propose the combination of
Constraint Programming and made-to-measure algorithms to find
the correctness of the global model following the definitions of the
previous section. Algorithms for the verification of the reachability
and weak-termination are introduced.

Fig. 3. Artifact union graph.

192 D. Borrego et al. / Information and Software Technology 62 (2015) 187–197
4.1. Modeling constraint satisfaction problems to verify the correctness

Constraint programming is based on the algorithmic resolution of
Constraint Satisfaction Problems (CSP), and is an Artificial Intelligence
technique which provides us a way to model the artifact union graph.
A CSP [9] consists of the triple hV ;D;Ci, where V is a set of n variables
v1;v2; . . . ;vn whose values are taken from finite domains
Dv1;Dv2; . . . ;Dvn respectively, and C is a set of constraints on their val-
ues. The constraint ck ðxk1; . . . ; xknÞ is a predicate that is defined on the
Cartesian product Dk1 � � � � � Dkj. This predicate is true iff the value
assignment of these variables satisfies the constraint ck.

In order to model the problem as a CSP, we should distinguish
between the modeling of the structure or topology of the artifact
union graph, and the modeling of the data perspective including
the data managed by the services in their pre and postconditions.
First, we detail the structural formulation of the artifact union
graphs, which is based on the formulation presented in [8], which
was adapted from [11].

In the modeling of the structure of the artifact union graph, we
need to model complete and partial instance subgraphs. To this
end, a variable of the CSP is defined to represent each state, each
service and each edge in the artifact union graph. The domain of
these variables is f0 . . . 1g, taking the variable the value 1 if the ele-
ment (state, service or edge) is part of the instance subgraph, and 0
otherwise.

Definition 10 (Structural CSP formulation). For an artifact union
graph AUG ¼ hG; Data; Inv ; Xi, the Structural CSP formulation
assigns the value 1 to the end node subject to the following
constraints at each state and service in the artifact graph. For each
state, service and edge x of AUG, so x 2 fSt [Ser [Eg, a variable in
the CSP v_x is created. The constraints are:

Table 2
Services with pre and postconditions.

Service Precondition and postcondition

B post: regFee � 0:2 6 ðdinner þ 3 � lunchÞ ^
ðdinner þ 3 � lunchÞ 6 0:7 � regFee ^
regFee � 0:05 6 others ^ others 6 0:25 � regFee

IGS pre: sponsorship > 5000
post: guestSpeaker P 0:4 � sponsorship ^

guestSpeaker 6 sponsorship

NGS pre: sponsorship 6 5000
post: guestSpeaker P 0:2 � sponsorship ^

guestSpeaker 6 sponsorship

P pre: #Registration > 0 ^ 3 � lunchþ dinner þ others < regFee
post: #Registration � regFeeþ sponsorship P

#Registration � ðdinner þ 3 � lunchþ othersÞ þ guestSpeaker

CR post: CardðselectedPapersÞ � 1:8 P #Registration ^
CardðselectedPapersÞ � 0:5 6 #Registration

R pre: CardðpapersToReviewÞP 4
RA post: approval ¼¼ 1
RR post: approval ¼¼ 0

D. Borrego et al. / Information and Software Technology 62 (2015) 187–197 193
C1 For n 2 St, being jinedgeðnÞj ¼ k:
Pk

i¼1v_inedgei(n) � v_n ¼¼0

C2 For n 2 St, being joutedgeðnÞj ¼ k:
Pk

i¼1v_outedgei(n) � v_n 60

C3 For n 2 Ser, being jinedgeðnÞj ¼ k:
Pk

i¼1v_inedgei(n) � k� v_n ¼¼0

C4 For n 2 Ser, being joutedgeðnÞj ¼ k:
Pk

i¼1 v_outedge i (n) 6k�v_n

In detail, these constraints allow the transformation of the
structural part of instance subgraphs as follows:

� The constraint C1 allows a state n to be visited (i.e. v_n ¼ 1) if
one and only one incoming edge of n has been visited.
� Likewise, the constraint C2 allows one and only one outgoing

edge of the state n is visited if n has been visited too. To model
both partial and complete instance subgraphs, this constraint

permits
Pk

i¼1 v_outedge (n) � v_n to be less than or equal
to zero in order to allow that a partial instance subgraph stops

at n (i.e.
Pk

i¼1 v_outedge(n) ¼¼ 0 and v_n¼¼ 1).
� The constraint C3 forces all the incoming edges of n to be visited

to allow the visit of the service n.
� In addition, for C4, if a service n is visited, between 1 and k of its

outgoing edges can be visited too. For the example in Fig. 3, we
do not need the state without sponsors to be visited when we are
checking the reachability of unbooked. Therefore, we allow only
one outgoing edge of the service establish conference rate to be
visited, so that we do not force without sponsors to be visited too.

C1, C2, C3 and C4 allow the modeling of the structural part of
instance subgraphs. However, to obtain the complete model as a
CSP, we need to include constraints to model the management of
data in the pre and postconditions of the services activated in a
particular instance subgraph. That is, the Data CSP formulation.
To this end, the pre and postconditions of the visited services (that
is, whose variable is equal to 1) should participate in the CSP,
together with the constraints in Inv defining the invariants.

Regarding the translation of these constraints (Inv ; pre and post)
into constraints of the Data CSP formulation, some rules need to be
considered:

� Each attribute at in the artifact union graph gives rise to a vari-
able v_at within the CSP, whose domain is obtained from previ-
ous executions and/or knowledge from experts.
� The #id function included in the grammar, which represents

the instances count for the artifact id, cannot be directly trans-
lated into a constraint with the same meaning, since in design
time it is not possible to perform a counting of running
instances. Therefore, this function is transformed into a variable
representing the possible amount of instances, whose domain
can also be obtained from previous executions and/or knowl-
edge from experts. For instance, for the motivating example,
the function #Registration that appears in the data policies
and some pre and postconditions gives rise to the variable
registration instances, whose domain is {75. . .170} (collected
from previous editions of the conference).
� The operators considered in RELATIONAL_OP, ARITHMETIC_OP,

BOOL_OP and SET_OP in the aforementioned grammar can be
directly translated into their equivalent CSP operators, available
at any CSP solver.
� Regarding the operators in AGGREGATION_OP, they cannot be

directly translated into CSP operators, since the runtime values
of the variables are not available at design time. Therefore, they
need to be adapted so that they can be useful for a verification
based on the domains of the variables. In detail:
– Min, Max, Avg: The operators MinðxÞ;MaxðxÞ and AvgðxÞ are

used in order to establish the lower bound, upper bound
and average value for the attribute x respectively. To be
included in the CSP, they must be translated into the variable
v x, to study during the propagation phase of the CSP that the-
se values can be taking in any instance, implying the verifica-
tion of the model. At design time, it is only possible to ensure
that the corresponding domain includes values to satisfy
them. For instance, the constraint MinðregCostÞP 250 would
be translated into v regCost P 250, so that the instantiated
values of regCost always fulfill the established lower bound.

– Card: The case of the Card operator is similar to the #id func-
tion, since in design time it is not possible to measure the
cardinality (size) of sets. Therefore, analogously, the
CardðxÞ operator is transformed into a variable x card repre-
senting the possible size of x, whose domain can be also
obtained from previous executions and/or knowledge from
experts.

– R: The translation of constraints that include the summation
operator depends on the parameter to sum, entailing two
different translations:

⁄ In the case that the summation operator works on a

simple attribute from different artifact instances,
becoming a set, the summation is translated into the
multiplication of the number of instances by the instanti-
ated value of the corresponding variable. For instance,
the expression RRegistration:regCost is translated into
registration instances � v regCost.
⁄ In a similar way, in the case that the summation operator

works on a multiple attribute (for instance, a list), the
summation is translated into the multiplication of
the cardinality of the multiple attribute by the value of
the corresponding variable representing its content.
Following these rules, all the constraints in Inv are translated
and included into the CSP formulation, and for each service n in
the artifact union graph, after translating the preðnÞ and postðnÞ,
the next constraint is also included:

C5 For n 2 Ser : v n ¼¼ 1! ðpreðnÞ ^ postðnÞÞ

That is, if the service n is part of the instance subgraph, then its pre
and postcondition should be satisfied. We need the conjunction
stipulating that n ¼¼ 1 to ensure that the pre and postcondition
are only enforced if n is activated, so n is in the instance subgraph.

Note that the pre and postcondition constraints hold for each
service in a data instance subgraph. This way, the constraints can
be easily encoded in a CSP model. However, this encoding compli-
cates finding a solution to the CSP model, since the postcondition

194 D. Borrego et al. / Information and Software Technology 62 (2015) 187–197
of a service might conflict with the postcondition of an earlier
executed service, if both services reference the same variable in
the CSP. For instance, an artifact union graph can contain two
services A and B that both write integer variable i, where the post-
condition of A is i < 10 and the postcondition of B is i > 10. A data
instance subgraph containing A and B can assign only one value to
i, so either the postcondition of A or of B is violated. Therefore the
postconditions of A and B conflict. To resolve conflicts, the variables
and constraints of the CSP model should be converted into Static
Single Assignment (SSA) form, as it was detailed in [8].
4.2. Algorithm for reachability verification

To verify the reachability of the states in an artifact union graph,
and provide proper feedback in case of incorrectness, we
developed an algorithm (Fig. 4) that verifies whether each state
is reachable (cf. Definition 6). For each state st, the algorithm tries
to find a data instance subgraph that activates st and whose
valuation satisfies the pre and postcondition of the services
preceding st. The data instance subgraph that is searched for is a
solution to the combined Structural and Data CSP formulation
defined in Section 4.1 plus additional constraints encoding that st
is activated and the service or services after st are not activated,
so that the data instance subgraph stops at st.

The algorithm begins with the Structural CSP formulation of the
artifact union graph (line 4 in Fig. 4), which states the structural
constraints for data instance subgraphs. This Structural CSP
formulation is combined with the Data CSP formulation of the
artifact union graph (line 5), which states the pre and postcondi-
tions for the services in data instance subgraphs, together with
the invariants from the policies. This combined Structural and
Data CSP model is used in the sequel of the algorithm for every
data instance subgraph. Next, the algorithm performs a loop to
check if all the states are reachable (line 6). The state being
processed in the loop is stored in the variable current (line 7). To
test whether state current is reachable, the CSP model is extended
with constraints that are satisfiable if the data instance subgraph
activates current and stops at it (line 8). If no solution exists, there
is no such data instance subgraph for current, so current is not
reachable (line 10). If all states are reachable, the artifact union
graph is reachable (line 17).
1: procedure Reachability-Verification(G, Data, Inv, Ω)
2: error = false
3: unmarked = G.St
4: structCSP = make Structural CSP formulation for (G.St,G.Ser, G.E)
5: CSP = structCSP + Data CSP formulation for (Data, Inv)
6: while unmarked �= ∅ ∧ error = false do
7: current = a state from unmarked

8: CSP ′ = CSP && current = 1 &&
k∑

i=1
v outedge(current) = 0

9: sol = solve CSP ′

10: if sol is null then // CSP ′ is unsatisfiable
11: Print ”State current is not reachable”
12: error = true
13: end if
14: unmarked = unmarked \ { current }
15: end while
16: if error = false then
17: Print ”The artifact union graph is reachable”
18: end if
19: end procedure

Fig. 4. Algorithm for reachability verification.
4.3. Algorithm for weak-termination verification

In order to check the weak-termination of an artifact union graph,
we develop an algorithm (Fig. 5) that verifies whether each state in
the artifact union graph is weak-terminable (cf. Definition 7). If a
state st is not weak-terminable, the algorithm provides a counter
example in the form of a data instance subgraph that activates st,
reaches a goal state, and whose valuation violates some of the pre
and postconditions of the activated services. If every state is
weak-terminable, the artifact union graph is weak-terminable by
definition.

First, the Structural and Data CSP formulation is created (line 4
and line 5) as defined in Section 4.1. As in algorithm Reachability-
Verification, each data instance subgraph is a solution to this CSP
model extended with additional constraints. Next, the algorithm
performs a loop that processes each activity of the input artifact
union graph (line 6). Variable current stores the state processed
in the loop. The algorithm extends for current the CSP model with
a constraint that states that the data instance subgraph activates
current (line 9), and then, for each goal state in X, the CSP model
is also extended to encode the reach of a goal state (line 11). If a
solution to this extended CSP model exists (line 14) then there is
a data instance subgraph that activates current, reaches a goal
state, and whose valuation satisfies all pre and postconditions of
the activated services. Therefore, current is weak-terminable (line
15). Otherwise, current is not weak-terminable (line 18), so that
the variable error is set to true and the next state is processed.
If every state is weak-terminable, the artifact union graph is
weak-terminable (line 25).
4.4. Using the verification algorithms for the analysis of the motivating
example

Once an artifact-centric business process model is formalized
using artifact union graphs, it can be analyzed with our proposed
methodology. This section presents the results of applying the
algorithms to verify reachability and weak-termination of the
motivating example in Fig. 3. This artifact union graph has no
missing and no conflicting data.

As mentioned in Section 4.1, the variables in the Data CSP
formulation derive from the attributes and instances count that
appears in the policies, pre and postconditions. Table 3 shows
those variables with their corresponding type and domain. For
the variables of type List of Integer, the established domain refers
to the elements contained in the list. It is possible to notice the dec-
laration of the variables paper_instances and registration_instances,
due to the functions #Paper and #Registration that appear in the
data policies and the pre and postconditions of some services
respectively.

First, the artifact-centric business process model is verified for
reachability by applying the algorithm Reachability-Verification.
The algorithm determines that the artifact union graph is reach-
able, since for each state st, it is always possible to find at least
one data instance subgraph that visits st. The algorithm also
includes that the valuation of the variables is within the
determined finite domains (listed in Table 3), such that the pre
and postcondition of the services preceding st are satisfied.

Then, we verify the weak-termination by applying the algo-
rithm presented in Fig. 5,, to the artifact union graph in Fig. 3.
The algorithm finds no error, so that every state st is weak-
terminable. That is, it is possible to find at least one data instance
subgraph that visits st and reach a goal state, with a valuation of
the variables satisfying the pre and postconditions of the visited
services.

However, some changes in the motivating example can lead us to
a no reachable and/or weak-terminable model. For instance, if the
domains of the variables regFee and lunch are changed to
f200 . . . 250g and f25 . . . 30g respectively, and the postcondition of

1: procedure Weak-Termination-Verification(G, Data, Inv, Ω)
2: error = false
3: unmarked = G.St
4: structCSP = make Structural CSP formulation for (G.St,G.Ser, G.E)
5: CSP = structCSP + Data CSP formulation for (Data, Inv)
6: while unmarked �= ∅ do
7: current = a state from unmarked
8: for each goal state gs in Ω do
9: CSP ′ = CSP && current = 1

10: for each state st in gs do
11: CSP ′ = CSP ′ && st = 1
12: end for
13: sol = solve CSP ′

14: if sol is not null then // CSP ′ is satisfiable
15: Print ”State current is weak-terminable”
16: break
17: else
18: Print ”State current is not weak-terminable”
19: error = true
20: end if
21: end for
22: unmarked = unmarked \ { current }
23: end while
24: if error = false then
25: Print ”The artifact union graph is weak-terminable”
26: end if
27: end procedure

Fig. 5. Algorithm for weak-termination verification.

Table 3
Variables and domains in the Data CSP formulation of the example.

Variable Type Domain

regFee Integer {200. . .390}
sponsorship Integer {0. . .15,000}
dinner Integer {60. . .100}
lunch Integer {10. . .30}
others Integer {30. . .185}
guestSpeaker Integer {0. . .10,000}
selectedPapers List of integer {1. . .150}
paper_instances Integer {50. . .150}
oid Integer {1. . .150}
approval Integer {0. . .1}
papersToReview List of integer {1. . .150}
registration_instances Integer {75. . .170}
regCost Integer {200. . .390}

D. Borrego et al. / Information and Software Technology 62 (2015) 187–197 195
the service book is set to fregFee � 0:2 6 ðdinner þ 3 � lunchÞ ^
ðdinner þ 3 � lunchÞ 6 0:4 � regFee ^ regFee � 0:05 6 others ^ others
6 0:25 � regFeeg, the artifact union graph is not reachable (since the
state booked is not reachable), and either is weak-terminable (due to
the state unbooked is not weak-terminable). The cause is that is not
possible to find a valuation of variables so that the postcondition
of the service book is satisfied.2
3

4.5. Tractability

Regarding the tractability of our approach, since the verification
of artifact-centric business process models has been mapped onto a
CSP, the verification time is linked to the complexity of the resolu-
tion of the CSP, as it was discussed in [12]. This has been analyzed in
great depth over recent decades [13], and depends on two para-
meters: the width of the graph and the order parameter. On one
hand, the width of the graph represents the relation between the
constraints, where the tractability in CSPs is due to the structure
of the constraint network, where the tree-structured CSPs have
polynomial complexity (linear with respect to the number of vari-
ables, and quadratic with respect to the cardinal of the domain of
the variables). On the other hand, the order parameter, defined as
the ratio of the number of forbidden valuations of variables to the
total number of possible combinations, determines the partition
of the problems space into under-constrained, over-constrained
and just-constrained problems. In the first two cases, the problems
are scalable, but in just-constrained problems, a significant increase
of solving cost could occur and the scalability would not be possible
[14].

For these reasons, no affirmation about the efficiency or scal-
ability in a generic way can be given by our proposal, since our
approach permits any number of constraints defined with numer-
ical variables, and therefore the evaluation time will depend on the
specific problem.

In our approach, for both presented algorithms, the execution
time depends on the CSP characteristics: (i) it only requires finding
2 In order to show the steps for the verification of the example, a video of our tool is
available at: http://estigia.lsi.us.es/diana/Artifact-centric_BP_model_verifier.mp4.
a solution; (ii) the constraints are limited by the aforementioned
grammar, where the only possible polynomial constraints are the
included by means of the preconditions, postconditions and data
policies, since the CSP structure only contains linear constraints
[15,9]; and (iii) the short number of handled variables. Therefore,
as mentioned, the scalability of our approach could be affected
by a large increase in the number of constraints and/or variables
wrt the number of states. However, this is not usual in real life arti-
fact-centric business processes [16]. Furthermore, owing to the
search methods used by CSP solvers, and to the constraints limited
by the grammar previously mentioned, the increase in the number
of constraints and/or variables could not affect the execution time.
Specifically, the default method used by CSP solver is dynamic and
based on the first-fail principle [17,18], which orders the variables
by increasing set cardinality, breaking ties by choosing the variable
with the smallest domain size, and reducing the average depth of
branches in the search tree. Therefore, in theory, the time it would
take to verify even large artifact-centric business process models
with the presented algorithms is expected to be acceptable.

As a concrete example, the verification of the reachability of the
motivating example3 takes less than 4 s.4 Since both algorithms for
checking reachability and weak-termination have a similar structure
(a while-loop which processes every state by solving a CSP model for
the state) they are equally tractable.
5. Related work

Most of the previous works in the literature do not take into
account numerical data verification in the artifact oriented model,
or they study the data-aware verification in the activity-centric
business process model. In the following paragraphs we analyze
these two types of approaches.

Regarding the verification of activity-centric business process
models, citation [19] considers verification of semantic business
processes, in which activities are annotated with pre and postcon-
ditions. They detect conflicts between preconditions and postcon-
ditions of parallel activities and next study the reachability and
executability of the activities, but only if the activities are conflict
free. In their contribution, pre and postconditions are considered as
CNF formulas with only boolean variables. Therefore, the approach
in [19] cannot diagnose the correctness of workflows whose activ-
ities count on pre and postconditions involving other kinds of data.
This is performed in contribution [8], where an approach to verify
workflow models that integrates both process and numerical data
The XML file containing the motivating example detailed in this paper is available
at: http://estigia.lsi.us.es/diana/ExampleConference.xml.

4 The test case is measured using a Windows 7 machine, with an Intel Core I7
processor, 3.4 GHz and 8.0 GB RAM.

http://estigia.lsi.us.es/diana/Artifact-centric_BP_model_verifier.mp4
http://estigia.lsi.us.es/diana/ExampleConference.xml

Table 4
Related works regarding verification at design time.

Source Closed problem Problem approach Solving method

[21] Static verification of
properties

Rules in LTL.
Declarative
specification

Logic and model
checking

[22] Verification of feedback-
free business artifacts

Temporal
properties LTL-FO

Specific decision
procedure for
satisfaction of LTL-FO
properties

[23] Verification of properties of
models

GSM models Simbolic model
checking. GSM
Checker

[24] Verification of GSM models Finite abstractions Model checking
[25] Generate complaint and

operational process model.
Diagnosis of non-compliant
BP model

Policies and
compliance rules.
Petri Nets

Tool Wendy and the
Petri net synthesis
tool Petrify

[26] Conformance between
process models and data
objects

Definition of weak
conformance

Conformance
checking

[31] Verification of artifact
behaviors

Artifact Behavior
Specification
Language (ABSL)

Computational Tree
Logic

196 D. Borrego et al. / Information and Software Technology 62 (2015) 187–197
verification is presented. In [12], a runtime compliance and diagno-
sis of data is proposed. The compliance and diagnosis are per-
formed according to the constrains that represent the possible
correct values, but supposing that the model is correct.

On the other hand, as regards the verification of artifact-centric
business process models, contribution [20] performs a formal ana-
lysis of artifact-centric business processes by identifying certain
properties and verifying their fulfillment, such as persistence (once
an artifact is created, does it persist or can it disappear?) and
uniqueness (can an artifact appear in more than one places at
once?).

Citation [21] provides a static verification of whether all runs of
an artifact system satisfy desirable correctness properties,
expressed as rules in linear-time temporal logic. The services are
specified in a declarative manner, including their pre and postcon-
ditions. However, they fail in the presence of even very simple data
dependencies or arithmetic, both crucial to real-life business pro-
cesses. This problem is addressed and solved in [22], where data
dependencies (integrity constraints on the database) and arith-
metic operations performed by services are considered.

To verify the behavior of an artifact system, contribution [23]
transforms the GSM model into a finite-state machine and system-
atically examines all possible behaviors of the new model against
specifications. It presents a novel methodology to verify the behav-
ior of artifacts in terms of their possible sequences of B-steps.
Likewise, the approach in [24] observes two deficiencies in the
GSM approach, and resolves them. They also observe that GSM
programs generate infinite models, so that they isolate a large class
of amenable systems, which admit finite abstractions and are
therefore verifiable through model checking.

The field of compliance for artifact-centric processes has been
addressed in [25]. They extend the artifact-centric framework by
including the modeling of compliance rules, and obtain a model
that is compliance by design. This way, the runtime verification
of compliance is not required.

The contribution [26] checks for conformance between process
models and data objects at design time. They propose a notion of
weak conformance, which is used to verify that the correct execu-
tion of a process model corresponds to a correct evolution of states
of the data objects.

These most relevant contributions in verification of artifact-
centric business process models at design time are collected in
Table 4.
Finally, regarding the modeling of the approach, several works
in the literature use Petri-net-based models [27–30]. Petri nets
are mainly aimed to control problems about the structural
perspective of the processes (such as concurrency problems or
deadlocks), resource availability, or loss of data. Therefore, the role
played by the transitions is very important. In the case of the
verification of artifact-centric process models presented in this
paper: (1) data is never lost, (2) the resources assignment is not
taken into account, (3) the errors in the structural perspective
are not considered, and thus (4) transitions are not relevant.
Consequently, a more general modeling has been developed, based
on graph theory, which is aware of the proper characteristics of
the models under study: pre and postconditions in the services,
structural and data policies, and different cardinalities between
artifacts.

In short, most of the previous approaches in the literature per-
form verification of artifact-centric business process models
through model checking or the static confirmation of whether all
runs of an artifact system satisfy desirable properties expressed
in (an extension of) linear-time temporal logic. On the contrary,
the approach in this paper exhaustively verifies the correctness
(reachability and weak-termination) of all states in an artifact-
centric system at design time, without needing to define any extra
specification. Likewise, the models considered in the approach in
the literature either do not define any kind of pre and postcondi-
tions of the services or the pre and postconditions and only defined
through data objects or by existential first-order sentences. To the
best of our knowledge, this paper presents the first verification
approach for artifact-centric business process models at design
time that integrates pre and postconditions defining the behavior
of the services and numerical data verification when the model is
formed by more than one artifact, handling 1-to-N and N-to-M
associations between artifacts. The approach can detect errors
not detectable with other approaches.

6. Conclusions

To ensure the correctness of artifact-centric business process
models, their verification is of utmost importance in order to avoid
errors at latter phases of the business process management (i.e. at
runtime). To that end, we have proposed artifact union graphs as a
formalization of artifact-centric business process models together
with two correctness notions, reachability and weak-termination,
that can be verified for artifact union graphs. Artifact union graphs
model artifact-centric business process models with more than one
artifact, handling 1-to-N and N-to-M associations between arti-
facts. This analysis includes structural and data dependencies, with
pre and postconditions defining the behavior of the services, and
considering the valuations of the managed numerical data.

Our proposal consists of various phases: (a) preprocessing is
applied to detect basic data anomalies; (b) the artifact union graph
is translated into a CSP formulation in order to automatize the
verification, avoiding its manual performance which is time-
consuming and error-prone; (c) the CSP formulation models the
lifecycle of the artifacts with pre and postconditions of the services
and the numerical data managed, analyzing the possible interac-
tion among the different artifacts; and (d) in case of an error,
feedback is provided by determining the states which are nor
reachable and/or weak-terminable. The approach is complete, so
it always generates accurate feedback in case of an error.

As future work, we plan to offer additional feedback in case of a
violation, making easier the job of fixing the problem causing the
error. Likewise, we would also like to extend the verification by
checking the reachability of the services. This way, services which
can never be executed would be detected, avoiding the existing of
dead services in the lifecycle.

D. Borrego et al. / Information and Software Technology 62 (2015) 187–197 197
Acknowledgements

This work has been partially funded by the Spanish Ministry of
Science and Education (under Grant TIN2009-13714), and by
FEDER (under the ERDF Program).

References

[1] M. Weske, Business Process Management: Concepts, Languages, Architectures,
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

[2] A. Nigam, N.S. Caswell, Business artifacts: an approach to operational
specification, IBM Syst. J. 42 (2003) 428–445.

[3] D. Cohn, R. Hull, Business artifacts: a data-centric approach to modeling
business operations and processes, IEEE Data Eng. Bull. 32 (2009) 3–9.

[4] R. Eshuis, R. Hull, Y. Sun, R. Vaculín, Splitting gsm schemas: a framework for
outsourcing of declarative artifact systems, in: Business Process Management
(BPM 2013), Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2013,
pp. 259–274.

[5] OMG, Object Management Group, Business Process Model and Notation
(BPMN) Version 2.0, OMG Standard, 2011.

[6] A. Meyer, L. Pufahl, D. Fahland, M. Weske, Modeling and enacting complex data
dependencies in business processes, in: Proceedings of the 11th International
Conference on Business Process Management, Springer-Verlag, 2013, pp. 171–
186.

[7] M.T. Gómez-López, D. Borrego, R.M. Gasca, Data state description for the
migration to activity-centric business process model maintaining legacy
databases, in: Business Information Systems, Springer, 2014, pp. 86–97.

[8] D. Borrego, R. Eshuis, M.T. Gómez-López, R.M. Gasca, Diagnosing correctness of
semantic workflow models, Data Knowl. Eng. 87 (2013) 167–184.

[9] F. Rossi, P. van Beek, T. Walsh (Eds.), Handbook of Constraint Programming,
Elsevier, 2006.

[10] R. Hull, Artifact-centric business process models: brief survey of research
results and challenges, in: Proceedings of the OTM 2008 Confederated
International Conferences, CoopIS, DOA, GADA, IS, and ODBASE 2008. Part II
On the Move to Meaningful Internet Systems, OTM ’08, Springer-Verlag, Berlin,
Heidelberg, 2008, pp. 1152–1163.

[11] R. Eshuis, A. Kumar, An integer programming based approach for verification
and diagnosis of workflows, Data Knowl. Eng. 69 (2010) 816–835.

[12] M.T. Gómez-López, R.M. Gasca, J.M. Pérez-Álvarez, Compliance validation and
diagnosis of business data constraints in business processes at runtime, Inf.
Syst. 48 (2015) 26–43.

[13] P. Cheeseman, B. Kanefsky, W.M. Taylor, Where the really hard problems are,
in: Proceedings of the 12th International Joint Conference on Artificial
Intelligence, IJCAI’91, vol. 1, Morgan Kaufman Publishers Inc.,, San Francisco,
CA, USA, 1991, pp. 331–337.

[14] K. Apt, Principles of Constraint Programming, Cambridge University Press,
New York, NY, USA, 2003.
[15] A. Bulatov, P. Jeavons, A. Krokhin, Classifying the complexity of constraints
using finite algebras, SIAM J. Comput. 34 (2005) 720–742.

[16] M. Chinosi, A. Trombetta, Bpmn: an introduction to the standard, Comput.
Stand. Interf. 34 (2012) 124–134.

[17] R.M. Haralick, G.L. Elliott, Increasing tree search efficiency for constraint
satisfaction problems, in: Proceedings of the 6th International Joint Conference
on Artificial Intelligence, IJCAI’79, 1, Morgan Kaufman Publishers Inc., San
Francisco, CA, USA, 1979, pp. 356–364.

[18] P. Van Hentenryck, Constraint Satisfaction in Logic Programming, MIT Press,
1989.

[19] I. Weber, J. Hoffmann, J. Mendling, Beyond soundness: on the verification of
semantic business process models, Distrib. Parallel Databases 27 (2010) 271–
343.

[20] C.E. Gerede, K. Bhattacharya, J. Su, Static analysis of business artifact-centric
operational models, in: Proceedings of the IEEE International Conference on
Service-Oriented Computing and Applications, SOCA ’07, IEEE Computer
Society, Washington, DC, USA, 2007, pp. 133–140.

[21] A. Deutsch, R. Hull, F. Patrizi, V. Vianu, Automatic verification of data-centric
business processes, in: Proceedings of the 12th International Conference on
Database Theory, ICDT ’09, ACM, New York, NY, USA, 2009, pp. 252–267.

[22] E. Damaggio, A. Deutsch, V. Vianu, Artifact systems with data dependencies
and arithmetic, ACM Trans. Database Syst. 37 (2012) 1–36.

[23] P. Gonzalez, A. Griesmayer, A. Lomuscio, Verifying gsm-based business
artifacts, in: ICWS, IEEE, 2012, pp. 25–32.

[24] F. Belardinelli, A. Lomuscio, F. Patrizi, Verification of gsm-based artifact-centric
systems through finite abstraction, in: Proceedings of the 10th International
Conference on Service-Oriented Computing, ICSOC’12, Springer-Verlag, Berlin,
Heidelberg, 2012, pp. 17–31.

[25] N. Lohmann, Compliance by design for artifact-centric business processes,
Inform. Syst. 38 (2013) 606–618.

[26] A. Meyer, A. Polyvyanyy, M. Weske, Weak conformance of process models with
respect to data objects, in: Central-European Workshop on Services and their
Composition (ZEUS), 2012, pp. 74–80.

[27] W.M.P. van der Aalst, The application of petri nets to workflow management, J.
Circ. Syst. Comput. 8 (1998) 21–66.

[28] W.M.P. van der Aalst, Workflow verification: finding control-flow errors using
petri-net-based techniques, in: Business Process Management, Models,
Techniques, and Empirical Studies, Springer-Verlag, London, UK, 2000, pp.
161–183.

[29] A. Awad, G. Decker, N. Lohmann, Diagnosing and repairing data anomalies in
process models, in: Business Process Management Workshops, Lecture Notes
in Business Information Processing, vol. 43, Springer, 2009, pp. 5–16.

[30] D. Fahland, M. Leoni, B. Dongen, W. Aalst, Conformance Checking of Interacting
Processes with Overlapping Instances, in: Business Process Management (BPM
2011), Lecture Notes in Computer Science, vol. 6896, Springer-Verlag, Berlin,
2011, pp. 345–361.

[31] C.E. Gerede, J. Su, Specification and verification of artifact behaviors in business
process models, in: International Conference on Service Oriented Computing,
ICSOC’07, 2007, pp. 181–192.

http://refhub.elsevier.com/S0950-5849(15)00046-4/h0005
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0005
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0005
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0010
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0010
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0015
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0015
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0020
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0020
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0020
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0020
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0020
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0040
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0040
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0045
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0045
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0045
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0045
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0045
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0050
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0050
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0050
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0050
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0050
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0050
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0055
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0055
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0060
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0060
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0060
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0065
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0065
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0065
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0065
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0065
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0070
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0070
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0070
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0075
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0075
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0080
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0080
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0085
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0085
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0085
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0085
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0085
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0090
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0090
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0090
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0095
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0095
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0095
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0100
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0100
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0100
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0100
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0100
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0105
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0105
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0105
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0105
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0110
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0110
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0115
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0115
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0115
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0120
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0120
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0120
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0120
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0120
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0125
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0125
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0135
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0135
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0140
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0140
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0140
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0140
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0140
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0145
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0145
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0145
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0145
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0150
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0150
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0150
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0150
http://refhub.elsevier.com/S0950-5849(15)00046-4/h0150

	Automating correctness verification of artifact-centric business process models
	1 Introduction
	2 A motivating example
	3 Computational model for representation of artifact-centric business process models
	3.1 Definitions
	3.2 Analysis of the verification of the correctness

	4 Automatic verification of artifact-centric business process models
	4.1 Modeling constraint satisfaction problems to verify the correctness
	4.2 Algorithm for reachability verification
	4.3 Algorithm for weak-termination verification
	4.4 Using the verification algorithms for the analysis of the motivating example
	4.5 Tractability

	5 Related work
	6 Conclusions
	Acknowledgements
	References

