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Resumen
El rebordeado de flancos es un proceso de conformado de chapa ampliamente

usado en industrias como la aeronáutica o la automobilistica para la fabricación de

componentes estructurales de chapa delgada. Este tipo de proceso se suele realizar

sobre metal, normalmente aplicando presion a través de una almohadilla de goma

o directamente usando una matriz y un punzón metálicos. Estos dos métodos

tienen la ventaja de ser rápidos y rentables en la fabricación de grandes lotes.

Sin embargo, son cada vez más los trabajos que estudian el uso de procesos no

convencionales, como el conformado incremental monopunto o SPIF (por sus siglas

en inglés), en aplicaciones tales como el rebordeado de agujeros, aprovechando aśı

la flexibilidad y el ahorro de utillaje que proporciona esta técnica.

En este contexto, esta tesis presenta un estudio sobre el conformado incre-

mental monopunto aplicado al rebordeado de flancos abiertos de AA2024-T3 para

geometŕıas cóncavas y convexas. Este trabajo se centra en la evaluación de la

conformabilidad en el diagrama ĺımite de conformado (FLD), teniendo en cuenta

differentes parámetros tales como el radio principal del flanco, la velocidad de

giro de la herramienta o el tamaño de la misma. Aśı mismo, se han obtenido

las ventanas de proceso para las dos geometŕıas propuestas, analizando las carac-

teŕısticas de los diferentes modos de fallo.

Además, se ha usado un modelo numérico junto con un marco teórico basados

en el criterio de plasticidad de Barlat 89 para analizar la conformabilidad de los

flancos cóncavos en el espacio de la triaxialidad, mostrando que este enfoque puede

ser más adecuado para la predicción del fallo que el basado en el analysis de

deformaciones en el FLD.

Por otro lado, se ha realizado un análisis geométrico de los flancos convexos,

evaluando los efectos de la recuperación elástica en flancos exitosos y fallidos.

Finalmente, se ha propuesto para este tipo de flancos un nuevo enfoque bas-

ado en la predicción del fallo mediante el análisis de las tensiones de compresión.

En este sentido, los resultados muestran que existe un ĺımite de compresión en

términos de tensiones a partir del cual este tipo de flancos falla por arrugamiento.
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Abstract
Flanging is a forming process widely used to increase the stiffness of sheet parts in

industrial applications such as the production of aircraft and automobile compon-

ents. Flanges are usually formed by rubber forming or using a punch and a die,

as these processes are fast and economical for producing a large number of parts.

However, there is increasing interest in the manufacturing of flanges using non-

conventional processes, such as single point incremental forming (SPIF), that allow

cost savings due to their flexibility and low tooling.

This thesis studies the manufacturing of open stretch and shrink flanges of

AA2024-T3 sheets by SPIF for a wide range of process parameters, including

the flange principal radius, spindle speed and tool diameter. In this context,

an experimental campaign was performed for each type of flange, classifying the

principal modes of failure in the sheet and assessing its formability within the

forming limit diagram (FLD).

For stretch flanging, FE modelling in combination with a theoretical framework

based on Barlat’s 89 anisotropic yield criterion was used to evaluate the formability

in the stress triaxiality space. The fracture forming limit (FFL) obtained for

proportional loading and the evolution of the flanges were compared in the average

stress triaxiality versus equivalent strain space, showing that this space might be

the most appropriate for making failure predictions in SPIF.

A geometry analysis of shrink flanges obtained by SPIF was carried out to

evaluate their formability in terms of their tendency to develop wrinkling. The

elastic recovery in successful and failed is also studied. Finally, a new approach

based on the analysis of compression stresses was proposed to predict the onset of

failure in this type of flange. In this regard, it was shown that there exists a stress

limit at which the flanges analysed fail by wrinkling.
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Chapter 1

Introduction

This chapter contains a brief introduction to the document. The first section

presents a general overview of this work. The second section outlines the main

objectives of this work. The third section contains a brief description of each

chapter.

1.1 General overview and motivation

Sheet flanging is a forming process widely used in the manufacturing industry

in which a workpiece, usually a pre-cut metal sheet blank, is subjected to the

application of loads to obtain a flanged part. Although it is possible to apply

this process to other materials such as polymers or composites, most common

applications utilize metal sheets to produce components for the aerospace and

automotive industries. Hole flanges and open flanges are, for example, common

in aircraft components for different purposes, such as providing a surface suitable

for riveted joints or contributing to increasing the stiffness of the parts.

To reduce costs, the processes selected to carry out the flanging operations are

usually hydroforming or conventional press working, which entail an initial high

investment to produce dedicated tools but maintain low cost per unit in large batch

production. However, when a small number of parts need to be manufactured,

as is the case for small batch products or prototypes, the cost per unit using

conventional processes increases notably, making the exploration of alternative

forming processes reasonable.

Single point incremental forming (SPIF) is a manufacturing process that con-
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sists of the incremental deformation of a sheet blank using a forming tool with only

one contact point transferring the force. During this process, the blank is clamped

peripherally, and the tool follows programmed trajectories usually driven by a

CNC machine. This technology reduces the use of dedicated dies commonly em-

ployed in conventional flanging and increases the flexibility in the part geometry,

which only involves changing the tool path. However, its incremental nature makes

the process very time consuming compared to conventional processes. These char-

acteristics, among others, make SPIF suitable for prototyping and small batch

production but less viable for producing a large number of parts.

The present work analyses the manufacturing of open flanges via SPIF. The

formability limits of this process in stretch and shrink flanging with different initial

geometries and process parameters are experimentally and numerically studied, as

are the deformation mechanisms involved during the flanging process.

1.2 Objectives

The main objective of the present work is to investigate the flanging process by

SPIF with the purpose of increasing the current knowledge of this technology.

Concretely, this study focuses on the analysis of stretch and shrink flanges, which

are geometries common in industrial applications. In a more practical sense, the

aim of this investigation is to help future designers make profitable decisions related

to the capabilities of the SPIF process in the manufacturing of flanged parts of

AA2024-T3. This general objective was realized through the following individual

objectives:

1. Characterization of the formability and tensile properties of AA2024-T3

sheets using Nakazima tests and tensile tests.

2. Assessment of the SPIF process windows for shrink and stretch flanging by

performing an experimental campaign involving different parameters and providing

a critical analysis based on the evaluation of principal strains.

3. Design and validation of finite element models for stretch and shrink flanging

by SPIF that reproduce the experiments performed in the experimental campaign.

4. Provision of predictions of failure for stretch and shrink flanging based on

the analysis of the stress triaxiality and compression stresses obtained from the

FE models.
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1.3 Thesis framework

This thesis is divided into six chapters, including the present introduction as

chapter 1. First, chapter 2 reviews the state of the art of SPIF and describes

the sheet flanging processes hole flanging, stretch flanging and shrink flanging.

Then, chapter 3 details the experimental procedures and methodologies used in

this study. In addition, chapter 4 describes the stretch and shrink flanging nu-

merical models and the methodology followed to obtain the principal strains in

the plane of the sheet. The analytical framework regarding the plasticity criterion

used in the finite element models is revealed in chapter 5, describing how the

FFL curves in the stress triaxiality versus equivalent strain space are obtained. In

chapter 6, the results obtained from the stretch and shrink flanging experimental

tests and the results corresponding to the numerical simulations are analysed crit-

ically. Finally, chapter 7 summarizes the main contributions of this doctoral thesis

and outlines a future work proposal.





Chapter 2

State of the art

This chapter provides a review of the literature related to incremental sheet form-

ing, especially focusing on single point incremental forming and its applications

to flanging. The first section in this chapter presents an introduction to sheet

metal forming, describing conventional sheet metal techniques and incremental

sheet metal forming processes. The second section describes the SPIF process,

focusing on the formability background and the main parameters related to this

technique. In the last section, an approach to the practical application of SPIF

is presented, focusing on industrial applications related to hole flanging and open

flanging processes.

2.1 Sheet metal forming

Sheet metal forming comprises those operations in which a sheet blank is shaped

permanently by applying a force instead of removing material. In most sheet

metal forming processes, the part is produced by direct contact of tools and dies,

although in some modern variants, this is not strictly necessary. The material is

usually under cold conditions, but sometimes, the process can be performed at in-

creased temperatures, taking advantage of the lower resistance to deformation. In

conventional sheet metal forming processes, products are usually almost finished

parts generated in a short period of time after a single press stroke, producing

little scrap. Consequently, these processes offer the potential for cost savings and

reduced energy and material consumption and are appropriate for intensive man-

ufacturing of functional parts with a wide range of dimensions from the microlevel
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to large structures (Altan and Tekkaya, 2012).

Parts produced by sheet metal forming possess high strength and relatively low

weight owing to the high moment of inertia given by their shape. This, combined

with good geometric and surface tolerances, leads to sheet metal forming products

being commonly selected to supply light structural components in aircraft and

automotive industries where the weight-strength relation is important to reduce

fuel consumption. In these industries, flanged parts are usually present in many

structural components.

The main core of this work focuses on flanging operations using non-conventional

incremental forming techniques. The next sections describe the main conventional

sheet metal forming operations related to the manufacturing of flanges and present

a historical overview of the incremental forming method and processes existing in

the literature.

2.1.1 Non-incremental processes

This section describes the main forming processes related to the manufacturing

of flanges. First, a description of the bending process is presented. Second, the

principal characteristics of the conventional flanging process are described. Finally,

the section concludes with other techniques also used in the manufacturing of

flanged parts, such as fluid forming and rubber forming.

2.1.1.1 Bending

Bending is defined as the process of forming a sheet to obtain an angled part. It

constitutes a process by itself, but sometimes, it is considered a feature present in

any manner in all sheet forming operations. Bending is one of the most common

sheet forming operations, which is easy to prove by looking at automobile parts,

structural or aesthetic profiles, appliance casings and many other products. Having

corrugations or a bent perimeter contributes to increasing the stiffness of the part

without adding weight. These characteristics are present in almost every formed

part.

Figure 2.1 shows a bent sheet and its principal features. Sheets subjected to

pure bending present tensile stress at the outer face and compression stress at the

inner face, with the neutral axis being the theoretical line that is subjected to

neither tension nor compression (Kalpakjian and Schmid, 2009).

Typical failure in bending occurs when small cracks appear at the outer face,
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Figure 2.1. Bending terminology described in Kalpakjian and Schmid (2009).

which may be only a superficial defect or the beginning of unstable fracture. An-

other relevant aspect of bending operations is the elastic recovery after bending,

which is commonly called springback. This phenomenon occurs as a consequence

of the elastic behaviour of the material and has to be taken into account to achieve

a specific final shape. Springback appears more intensively in thick sheets than in

thinner sheets and as the bending radius increases. Springback is usually mitig-

ated by bending the part in excess to achieve the desired geometry. This is known

as overbending.

Figure 2.2. Basic sheet bending processes: (a) air bending, (b) V-bending, (c) U-bending,

(d) wiping bending and (e) rotary bending (Kalpakjian and Schmid, 2009).

Figure 2.2 shows basic bending operations such as air bending, V-bending, U-



8 State of the art

bending, wiping bending and rotary bending. The use of dies in U- and V-bending

and blank holders in wiping bending has the purpose of reducing springback,

which is lower in these operations compared to air bending. Rotary bending also

contributes to reducing springback and is able to produce bending angles higher

than 90 degrees.

2.1.1.2 Flanging

Flanging is the forming operation in which the edge of a sheet part is usually folded

at 90 degrees. The main difference from a bending operation is the additional

curvature of the die on which the sheet is folded. Sometimes, bending is also

indistinctly called straight flanging when the die curvature does not exist. Figure

2.3 shows different flanging types depending on the final shape of the flange. In

the case of producing a concave or a convex radius at the part edge, the process

is called stretch flanging or shrink flanging, respectively. Additionally, when both

types are concatenated, reverse flanging is performed. A jogged flange is the

junction of two straight flanges at different levels, as shown in figure 2.3d. Finally,

a hole flange consists of reproducing the stretch flanging process on the edges of a

previous hole.

Figure 2.3. Sheet flanging types (Smith, 2009).

Most common flanging applications have the purpose of adding stiffness, in-

creasing the strength or simply giving a smooth edge to a component. The process

itself can be used as an independent operation or as a previous stage in a more

complex process, as in the case of hemming, where flanging is usually the first

stage.
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Figure 2.4. Scheme of material behaviour in (a) shrink flanging and (b) stretch flanging

AISI (1988).

In stretch flanging, the material to be formed experiences tension in the cir-

cumferential direction due to the transition of the material from the initial arc

to a larger final arc, as shown in figure 2.4a. In these cases, the stress is higher

at the flange edge, being greater in flanges with a higher ratio between the fi-

nal and initial radii, while the material does not experience any circumferential

straining. Due to these stretching conditions, the characteristic failure is tearing,

which appears at the edge of the flange wall. Actions such as reducing the flange

height or increasing the sheet thickness can be adopted to reduce tearing, although

sometimes, the only available option is splitting the flange into several parts.

In shrink flanging, the material is under compression and experiences a trans-

ition to a smaller arc, as shown in 2.4b. In this case, the effect of bending is the

opposite of that in stretch flanging. The stresses are compressive at the edge and

null near the die bending zone. Failure in shrink flanging occurs when excessive

compression occurs, producing wrinkling. This effect can be mainly avoided by

reducing the flange height. It is also related to the flange width, so it can be

reduced by splitting the flange. In the case of flanging produced by press working,

the buckling effect can also be diminished by reducing the clearance between the

forming tool and the die or ironing out the wrinkles.

2.1.1.3 Fluid forming

Fluid forming is a process based on the use of pressurized liquid media to execute

forming operations. In this section, only fluid forming using rubber pads will be

described due to the use of this process as an alternative to conventional flanging

by press working (Asnafi, 1999).
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Figure 2.5. Scheme of a fluid forming process: (a) prior to the forming operation and (a)

after forming (Asnafi, 1999).

Figure 2.5 depicts a fluid forming scheme corresponding to a flanging operation

prior to and after the forming process. On the left part of the drawing, the elements

of the die, sheet, pads and forming oil are arranged in ascending order. When the

oil pressure is increased, the flexible pads progressively fill the lower cavity, and

the sheet clamped between the die and blank holder is pressed against the die,

acquiring its shape. The main advantage of this process is the absence of an

upper die, which allows a sensible cost reduction in low batch production and the

capability to produce complex shapes. However, additional effort is needed to

design the process variables to predict the behaviour of the flexible pad and avoid

unwanted results in the final part.

2.1.1.4 Rubber forming

The principle of rubber forming is similar to that of fluid forming except that in

this case, hydrostatic pressure is applied using a deforming elastomer. The sheet

is forced against a female die or wrapped over a punch (male die), acquiring the

shape of the non-rubber part, as shown in figure 2.6. The rubber forming process

has a low tooling-manufacturing cost because only one die is metallic. As in fluid

forming, this feature increases the flexibility and reduces costs in the production

of a low number of units, such as in the aircraft industry, where this technique

is widely employed to produce flanges (Chen et al., 2015a). Nevertheless, the

flexibility of this process is faced with the complexity of involving a non-linear

approach due to the rubber medium and the complexity of avoiding instabilities

during sheet deformation. Furthermore, as in any flanging operation, the height of
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the flange is a key factor determining whether the process will be successful, and

the bending die radius has to be large to avoid fractures in the bending region.

Figure 2.6. Scheme of a rubber forming process: (a) prior to the forming operation and

(b) after forming (Venkatesh and Goh, 1986).

2.1.2 Incremental sheet forming (ISF)

Incremental sheet forming techniques include those methods that allow progressive

deformation of a workpiece, producing localized permanent strains, and satisfy the

requirement of having a small contact area between the tool and the surface to

be formed. Over the years, ISF has been in the background of forming processes

mostly due to the use of more common processes such as stamping or deep drawing.

However, in recent decades, incremental processes have gained attention due to

an increasing interest in more flexible technologies and tool cost savings. This has

also been intensified by the evolution of CAD/CAM technologies, which have been

decisive in the development of incremental techniques. To better understand ISF

processes, the most important techniques will be covered.

2.1.2.1 Spinning

Many research papers have reviewed the recent history of modern incremental

sheet forming processes, e.g., Hagan and Jeswiet (2003) or Jeswiet et al. (2005),

and they all agree that before the second half of the 20th century, these processes

were more an art than a science. Spinning is considered to be the precursor of
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what today is known as incremental sheet forming, and until the 1950s, skilful

human operators were required to carry out the process manually.

Figure 2.7. Spinning variants: (a) conventional spinning by Wong et al. (2003), (b) shear

forming and (c) flow forming (Kalpakjian and Schmid, 2009).

Spinning is commonly described as the process of forming a rotary sheet metal

blank with the help of a tool that presses the sheet usually against a mandrel.

Although the general concept is clear, the term spinning is commonly used to

refer to a group of incremental processes: conventional spinning, shear forming

and flow forming. In spinning, the supplied material is a flat sheet, and the

thickness remains constant during the process, as shown in figure 2.7a. In a shear

forming process, the raw material can be a preformed sheet that is ironed against

the mandrel, reducing the initial thickness, as depicted in figure 2.7b. Finally, in

flow forming, also called cylindrical flow forming, the process starts from a cup or

bush of metal that is ironed against the mandrel, as in shear forming, as shown in

figure 2.7c.

2.1.2.2 Two point incremental forming (TPIF)

The typical spinning parts used to be axisymmetric, and a mandrel was needed

to wrap the sheet blank around. Works by Kitazawa et al. (1996, 1997 and 1997)

showed that controlling the deformation in symmetric spinning without a mandrel

was possible and contributed to the first step toward asymmetric forming. These

advances, together with computer-aided machines and the development of CAD

software, definitely made asymmetric incremental sheet forming (AISF) possible.

The AISF technique was first patented by Leszak (1967) and is characterized by

the absence of dedicated dies and tools always in contact with the part. The first

method of AISF was developed by Powell and Andrew (1992) and was then called
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the backward bulge method by Matsubara (1994). Figure 2.8 shows the scheme of

the backward bulge method first presented by Matsubara, in which the sheet is

only pressed by the forming tool on one side at a time, with the inner part of the

sheet being free except for the region in contact with a fixed support post.

Figure 2.8. Backward bulge method: (a) prior to the forming process and (b) during the

process (Matsubara, 1994).

In similar studies, Jeswiet et al. (2005) applied CNC technology to create asym-

metric geometries. Two point incremental forming (TPIF) was a consequence

of the development of asymmetric forming processes, CNC-driven machines and

computer-aided technologies. This process has the same elements as the backward

bulge method but adds a CNC-driven tool.

Figure 2.9. Asymmetric incremental forming methods: (a) TPIF with a specific die, (b)

TPIF with a partial die and (c) SPIF (Shankar et al., 2005).

In TPIF, the metal blank is held between the blank holder and a fixed support,

while the forming tool shapes the sheet metal. The vertical die can be a specific

support, and therefore, the tool has to keep pressing the blank against the die.

When the die is only partial, the sheet does not always have to be in contact with

the tool on the two sides. See figure 2.9a and b.
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2.1.2.3 Single point incremental forming (SPIF)

Single point incremental forming was developed as a variant of TPIF in which the

support opposite to the face in contact with the tool was removed. The idea of

forming without a die was already included in the patent of Leszak (1967), but

the absence of the technology needed to accomplish this process delayed the first

studies about this method until the work of Jeswiet and Hagan (2002), who first

applied this technique.

The SPIF process is, in many aspects, very similar to the ISF processes already

described. A blank is used to clamp a sheet at its perimeter, while a single tool

describes programmed trajectories and deforms the material, obtaining a final

tridimensional part. Laboratory examples of this process can be seen in figure

2.10, which contains different pictures of a common experimental set-up for SPIF

configurations.

Figure 2.10. Two examples of laboratory experiments performed by SPIF: (a) man-

ufacturing of an aluminium pyramid by SPIF (Jong-Jin and Yung-Ho, 2003) and (b)

polycarbonate truncated cone from a lower view.

The simple idea of removing the die is attractive because it can be accomplished

in any factory with a CNC milling machine, making sheet forming accessible to

different levels of manufacturing. Using this method, it is possible to achieve

complex surfaces using standard equipment while providing a solution to adapt

the production to very different shapes. An example of the achievable geometries

is given in figure 2.11, which demonstrates the viability of the process in producing

different shapes. Furthermore, this method makes it feasible to produce custom

manufactured parts, such as the car hood shown in figure 2.12 or small batch
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productions.

Figure 2.11. Different shapes used to demonstrate the viability of the process Jeswiet

et al. (2005).

Figure 2.12. Honda S800 hood made by Amino in a small series (Maki, 2006).
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The next sections more deeply explore the different attributes of single point

incremental forming, describing the different process parameters involved in the

process, reviewing the principal approaches regarding the mechanism that confers

one of its main advantages, the increased formability, and analysing the geometric

accuracy.

2.2 Fundamentals of single point incremental form-

ing

The simplest SPIF configuration consists of a sheet clamped at its perimeter, which

is incrementally deformed using a tool that describes programmed trajectories

with the purpose of achieving a desired geometry. Based on this definition, many

factors that are involved in the process should be considered since they determine

the result of this forming process, such as the process parameters themselves, the

characteristics attributable to the deformation mechanics and formability in SPIF

and the geometric accuracy of the resulting parts. These factors will be described

in this section with the purpose of serving as a theoretical basis for the following

chapters.

2.2.1 Process parameters

The properties of the resulting part are determined by the selection of a wide

variety of process parameters related to the incremental process. A simple clas-

sification of these parameters divides them into qualitative parameters, e.g., the

selected sheet material, the shape of the tool or the toolpath strategy, and quant-

itative parameters, such as the feed rate or the step down increment of the tool.

In this regard, this section presents the different options and values of the most

relevant parameters in the SPIF literature.

2.2.1.1 Material and thickness

The ductility and high formability at room temperature have led to metals being

widely used in incremental forming. Many studies focus on copper, magnesium,

steel and titanium, but aluminium alloys are by large the most studied material

in SPIF (McAnulty et al., 2016), although polymers such as PVC, PC and PE (Le

et al., 2008),(Martins et al., 2009) and other composite materials such as sandwich

panels (Jackson et al., 2008) have also been studied.
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The thickness of the sheet material is also an important parameter because

it affects the formability and the forces required in the forming process. Sheet

thicknesses in the range of 0.3-2 mm are common for metals, while higher values

up to 3 mm have been studied for polymers (Silva et al., 2010). Microincremental

forming has also been performed with sheet thicknesses below 0.1 mm.

2.2.1.2 Tool parameters

The forming tools are usually made of hard steel, and their shape is typically

selected among the three types shown in figure 2.13. The simplest tool is a hemi-

spherical tool (figure 2.13a) made in a single part (Hagan and Jeswiet, 2003).

Another typical tool shape variant (figure 2.13b) consists of a rolling ball embed-

ded in a socket that moves freely during the forming process with the purpose of

reducing friction between the tool and sheet (Shim and Park, 2001); (Lu et al.,

2014). Additionally, other tool shapes have been used as the SPIF process has

been developed, obtaining different advantages, such as the flat-ended tool (figure

2.13c) or the tools proposed by Allwood and Shouler (2007) in the process called

”paddle forming”.

Figure 2.13. Main types of tools used in SPIF: (a) hemispherical tool, (b) rolling ball

tool, and (c) flat-ended tool (McAnulty et al., 2016).

In the case of the rolling ball tool, the moving part is the ball itself, and

no spindle speed is applied, with the relative displacement between the ball and

the tool subject to the tribological conditions. In contrast, for the rest of the

tool types, a spindle speed is usually applied in the range of 0 to 25000 rpm,

although it can also be set as ”free rotation”. The rotation direction can be set

clockwise or counter-clockwise. In general, little difference has been found at high

spindle speeds (Obikawa et al., 2009), with effects only on the surface finish and

forces (Durante et al., 2011). With respect to the geometry, not only is the shape

relevant, but also, the dimensions of the tool influence the result of the SPIF
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process. Usually, tool radii are in the range of 4-20 mm. Lower tool radii reduce

the contact area with the sheet, concentrating the zone of deformation, while large

tool radii have the inverse effect.

2.2.1.3 Lubrication

The use of a lubricant reduces the forces involved in the process as well as the

temperature of the surfaces that are in contact during the SPIF process. As

mentioned, it is usual to employ a different lubricant depending on the sheet

material to be formed. Therefore, the use of grease (Duflou et al. (2007b), Jackson

and Allwood (2009), Kopac and Kampus (2005)) or oil (Bambach et al. (2009), Li

et al. (2015), Park and Kim (2003), Takano et al. (2008), Verbert et al. (2008)) is

the most common option for metals, while some authors use a water soap emulsion

in incremental forming of polymers (Franzen et al. (2009), Marques et al. (2012),

Silva et al. (2010)). Furthermore, solid powders such as graphite and MoS2 powder

have also been employed in studies carried out by Fan et al. (2009), Husmann and

Magnus (2016) and Zhang et al. (2010).

2.2.1.4 Trajectories

The path strategy, step down and feed rate are process parameters specified in the

CNC program that define the translation of the tool.

Regarding the toolpath, there are three basic strategies (Jeswiet et al., 2005).

The simplest and most common strategy, shown in figure 2.14a, is to apply a

toolpath defined by fixed ∆z increments between consecutive discrete contours.

This technique can be modified by defining different ∆z as a function of the slope

of the forming geometry. It should be noted that a higher step down ∆z reduces

the surface quality. The position of the z movement can be designed to occur at

different locations each time with the purpose of avoiding undesired marks in the

final part, which can be observed in figure 2.15. At the same time, the direction of

the path can be modified to alternate in subsequent contours to reduce a possible

twisting effect in the part.

Another option is to use helical trajectories (see figure 2.14b) where the z

increment is progressively applied. This strategy avoids the force peak derived

from punctual ∆z decrements and step down marks (Hirt et al., 2004) and (Filice

et al., 2002). More sophisticated strategies are based on intermediate forms that

apply the process in two different stages (figure 2.14c), with the first stage similar

to a roughing step with higher ∆z decrements and a subsequent finishing pass
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performed using the contour strategy with low step down or a helical toolpath,

also reducing the excessive strains in areas with high slope (Young and Jeswiet,

2004).

Figure 2.14. Different toolpath strategies in SPIF: (a) constant ∆z (Jeswiet, 2004), (b)

spiral toolpath strategy (Filice et al., 2002) and (c) two-stage forming of a hemisphere

Kitazawa and Nakane (1997).

Figure 2.15. Inner surface of a cone formed by SPIF: (a) using constant ∆z and (b) with

a spiral toolpath strategy Skjoedt et al. (2007).

With respect to the size of the step down ∆z, values in the range of 0.2 to 0.6

mm are the most employed in the literature. Outside this range, some authors have

studied higher values, up to 2 mm, and values below 2 µm in microincremental

forming (McAnulty et al., 2016). The strategy followed may use constant step

down, where a single value of ∆z is set for the entire process (Attanasio et al.

(2006), Attanasio et al. (2008)); constant scallop height, where the parameter that

determines the z movement is an established maximum scallop, as defined in figure

2.16b-c (Callegari et al., 2006); or a constant angular increment, as depicted in
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figure 2.16d (Fiorentino et al., 2009). These three toolpath strategies and a detail

of the scallop height are shown in figure 2.16.

Figure 2.16. Step down strategies in incremental forming: (a) constant ∆z, (b) and (c)

constant scallop height and (d) constant θ (Callegari et al., 2006), (Fiorentino et al.,

2009).

The last parameter related to the CNC trajectories is the feed rate, which

is the name given to the linear speed of the tool usually measured in mm/min.

The effect of this parameter seems to be quite small based on the number of

publications on this topic. For example, the small effects of the feed rate on

formability were shown by Pereira Bastos et al. (2016) at different rates from 1500

to 12000 mm/min for four different materials. Consequently, the feed rate is set

as high as can be afforded by the different elements involved in the SPIF process

to decrease the production time. However, it should be taken into account that

for very high speeds, the lubrication and stiffness of the different elements may be

redesigned.

2.2.2 Formability in SPIF

Formability is the term used to define the degree of deformation that a material

can be subjected to during a forming process. Over the years, the extent of

this deformation has been graphically evaluated in conventional sheet forming

processes via the evaluation of the major and minor strains (ε1 and ε2) in the

forming limit diagram (FLD). The FLD was initially developed by Keeler and

Backofen (1963) in the biaxial region and then extended to the tension-compression

region by Goodwin (1968). Figure 2.17a schematically shows the fracture forming

limit (FFL) originally proposed by Atkins (1996), which represents the initiation

of fracture in a sheet. The forming limit curve (FLC) defines strains at which
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necking occurs in a sheet forming process.

The straining of sheet metal induces an increase in the number of dislocations

and their interaction, which leads to fracture (Pohland et al., 1985). In the FLD,

the FFL represents the fracture locus in mode I for strain ratios β = ε2/ε1 between

-0.5 and 1. This curve has a theoretical slope of -1 and, therefore, defines a region

of constant through-thickness strains in the FLD. In addition to the theoretical

definition of the FFL, the nature of the process influences the maximum strain

achievable. For example, in forming processes that principally involve compres-

sion, e.g., rolling, the damage mechanism is slowed down, obtaining large strain

levels. This phenomenon is a consequence of void squeezing caused by compress-

ive hydrostatic stress Emmens (2011). In contrast, this compression effect is not

present in other processes, such as conventional stamping or deep drawing. In

these processes, necking appears at strains below the FFL (at the FLC), trigger-

ing fracture prematurely.

The FLC usually has the v-shape shown in figure 2.17a. It represents the

limit at which necking occurs for ductile materials and is usually below the FFL.

The region between the FLC and the FFL is unstable, and any strain point in

the middle is achievable without triggering fracture. Nevertheless, tensile fracture

may precede necking under specific forming conditions, and in that case, the FFL

instead of the FLC applies, as reported by Embury and Duncan (1981). The

studies performed by Vallellano et al. (2008) and by López-Fernández et al. (2019)

also showed that for AA2024-T3 sheets, the FFL can be very close to the FLC,

even acquiring a v-shape as shown in figure 2.17b.

The most common method to obtain the FLC consists of performing drawing

tests using a hemispherical punch and evaluating the strains at necking (Nakazima

tests). Although the use of the FLC is widely accepted in conventional sheet

forming, it is effective only if four hypotheses are fulfilled: (1) proportional loading,

(2) absence of bending, (3) negligible through-thickness shear and (4) plane stress

(Emmens and Van den Boogaard, 2009). These conditions are not met in ISF,

where strains above the FLC are stably obtained. Numerous studies on ISF and

specifically on SPIF demonstrate that there exists an increase in formability and

necking stabilization compared to conventional processes. For example, Iseki et al.

(1993) used aluminium, and more recently, Centeno et al. (2017) used AISI304.

The reason is well discussed in many research papers that attempt to explain

this phenomenon, focusing on the understanding of the deformation mechanism

in ISF processes. The next sections review the main theories about the increased
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Figure 2.17. Representation of the FLD containing the FLC and FFL: (a) for a ductile

material (Emmens and Van den Boogaard, 2009) and (b) for a low ductility material

(Vallellano et al., 2008).

formability in SPIF and how the different parameters affect this forming process.

2.2.2.1 Shear

The contribution of shear stress to stabilizing necking can be directly deduced from

the von Mises yield criterion. The effect of additional shear stress in an in-plane

stress state modifies the yield locus as shown in figure 2.18a. If a sheet metal is

subjected to shear stress, then the material flows at curve C before reaching the

yield stress represented by curve A. This causes localization of strains. However,

strain localization reduces the shear stress and enlarges the yield locus from curve

C to a point between curve C and curve A. As a consequence, more straining can

be added before unstable strain localization (necking) occurs. Larger straining

will cause shear stress to appear, and the cycle starts again. This phenomenon of

strain localization followed by stabilization repeats until the in-plane stresses are

sufficient to cause fracture in addition to the effect of shear (Emmens and Van den

Boogaard, 2009). The effect of shear stress on both the yield stress and necking

limit is presented in 2.18b.
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Figure 2.18. (a) Schematic representation of shear in the von Mises yield locus and

(b) effects of shear on both the yield stress and necking limit (Emmens and Van den

Boogaard, 2009).

Many authors have studied the necking stabilization caused by shear stress in

ISF. Some of them pointed to out-of-plane shear, schematically represented in fig-

ure 2.19a), as being responsible for necking stabilization (Sawada, 1999). However,

as shown by (Jackson and Allwood, 2009), this was more based on intuition than

experimentation.

Allwood and Shouler (2007) used finite element analysis to simulate a process

called ”paddle forming”. They showed the existence of through-thickness shear in

the tool direction and concluded that it increases the effective stress and enhances

the formability. Similar results were obtained by Jackson et al. (2008) and Jackson

and Allwood (2009) in the SPIF of sandwich panels and copper sheets, respectively.

The latter publication established that in terms of deformation mechanisms, SPIF

and TPIF must be considered separately. Malhotra et al. (2012) also supported

these through-thickness shear theories, adding that local bending, especially the

strains at the outer face of the sheet, should be taken into account and proposed

his ”noodle theory”. This theory affirms that different passes of the tool create

successive regions of local stable deformation before fracture occurs.

Additionally, some of the authors supporting the through-thickness shear the-

ory also found relations between shear and the stress triaxiality. Lu et al. (2014)

claimed that the through-thickness shear caused by friction has contrary effects.

It acts as a stabilizer of necking but also increases the stress triaxiality.
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Figure 2.19. (a) Representation of in-plane and out-of-plane shear and (b) scheme of

localized shear induced by the tool in SPIF.

2.2.2.2 Bending

The effect of bending is also claimed by many authors to be responsible for the

increased formability in ISF. In SPIF, the material is subjected to bending due to

the tool radius as well as stretching, and this mechanism is supposed to act as a

necking stabilizer.

Figure 2.20a shows a schematic representation of the through-thickness strain

present in bending processes with different degrees of stretching. Additionally,

the relation between stress (σ) and strain (e) in the centre fibre is presented in

figure 2.20b. In a pure bending process, whose strain distribution is represented

in figure 2.20a number 1, the outer fibre of the sheet experiences tensile strains

of eb ' t/2R, where eb is the strain at the outer fibre in a pure bending process

of constant radius. The centre fibre is subjected to zero strain (e = 0), and the

compression strain at the inner fibre is t/2R. This stress-strain state is represented

by number 1 in figure 2.20b, where σ and e are zero. If stretching is added, as

in figure 2.20a number 2, e and σ increase, inducing localized deformations. This

creates the situation of stable elongation represented by the segment between 1

and 3 in figure 2.20b. However, for e > e∗b , the process becomes unstable, and

e increases indefinitely, as no more stress is needed to increase the strain at the

centre fibre. Based on this hypothesis, the length of the auto-stabilizing regime

depends on both the sheet thickness and the die radius, and it is limited by the

expression eb = t/2R. Consequently, the process can be repeated only if, at every

pass of the tool, the strain increments are in segment 1-3.
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The effect of bending under tension was examined by Emmens and Van den

Boogaard (2008), who concluded that in ISF, only the material under bending, i.e.,

the region of the sheet in contact with the forming tool, is subjected to deformation.

They showed that large stable deformations can be achieved if low amounts of

bending are added to the stretching process, with little effect on the material

hardening due to the cyclic character of the process. A detailed analysis of the

effect of bending on the appearance of necking and fracture in the stretch-bending

process was performed by Morales-Palma et al. (2009, 2013). Additional research

on bending and strain hardening was performed by Fang et al. (2014). This study

analysed the strains in the vicinity of the contact area and concluded that the

deformation affects the regions surrounding this zone. Based on stress triaxiality

evaluations, they also determined that fracture occurs at the outer face of the

sheet in the zone where the contact region ends.

Figure 2.20. (a) Schematic representation of the strain distribution along the sheet thick-

ness under different stretch-bending conditions: (1) pure bending and (2)-(4) gradual

increments of stretching. (b) Relation between tension and elongation of the centre fibre

under different stretch-bending conditions (adapted from Emmens and Van den Boogaard

(2009)).

In addition to the bending-under-tension theory, some researchers claim that

localized bending around the forming tool produces contact compressive stresses,

reduces the yield stress and increases the formability (e.g., Emmens and Van den

Boogaard (2009), Silva et al. (2008) and Martins et al. (2008)). This is deduced

from the von Mises yield criterion because the contact stress reduces the yield

stress in the biaxial region, as depicted by the B curve presented in figure 2.18a.

Regarding this theory, (Silva et al., 2008) and (Silva et al., 2009) presented an

analytical model for SPIF based on membrane analysis, contrasted using exper-
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imental and numerical results that pointed to stretching rather than shearing as

the dominant deformation mode.

Along this line, numerous research papers have attributed the increased form-

ability in SPIF to the postponement or suppression of necking. For example,

Silva et al. (2011) studied the sheet thickness, tool diameter and failure mode and

concluded that, for small tool diameters, fracture occurs by direct ductile frac-

ture, while for larger diameters, necking is only postponed. Madeira et al. (2015)

confirmed this behaviour, supporting dynamic bending as the cause of necking

stabilization, and proposed that the strains at failure should be obtained through

thickness measurements along the cracks. They observed that even for large tool

radii, in the presence of necking, the fracture strains were located at the FFL.

More recently, Centeno et al. (2014) performed a formability analysis on AISI304

sheets and compared stretch-bending with SPIF. The formability limits obtained

were above the FLC and showed that the formability increase was much larger in

SPIF than in the S-B tests. For this reason, the enhanced formability cannot be

explained only by the bending effect. They also found that the fracture points in

the S-B tests were in the scatter band of the FFL obtained by Nakazima tests,

while the fracture points in SPIF were actually above the FFL. The authors also

hypothesized that triaxiality could be related to the observed increased formability.

2.2.2.3 Stress triaxiality

Many authors have discussed the role of stress triaxiality in the increased form-

ability. Apart from the strain intensity, it is probably the most important factor

upon which the initiation of ductile fracture depends. The reason is that triaxi-

ality is directly related to void growth, conditioning ductile fracture, as noted

by McClintock (1968) in a publication that analysed cylindrical and spherical

voids subjected to different loads. Rice and Tracey (1969) also analysed this phe-

nomenon and suggested that increasing stress triaxiality results in an exponential

decrease in fracture ductility, i.e., in formability. From this perspective, Bao and

Wierzbicki (2004) linked the triaxiality level to the mechanism leading to fracture

in ductile materials. Using experimental and numerical results, they affirmed that

in processes involving negative stress triaxiality, ductile fracture is governed by

the shear mode, while for high positive triaxiality levels, void growth drives the

failure mode, and between these triaxiality extremes, both shear and void growth

are present, as shown in figure 2.21 (Bao and Wierzbicki (2004), Wierzbicki et al.

(2005)).
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Figure 2.21. Dependence of equivalent fracture strain on average stress triaxiality (Bao

and Wierzbicki, 2004).

Consequently, as in SPIF, the dominant mode that leads to fracture is mode

I (Martins et al., 2014), and knowing the relation between triaxiality and void

growth, some authors have tried to explain the increased formability from the

triaxiality perspective. For example, Malhotra et al. (2012) showed that the hy-

drostatic pressure is negative at the inner face and positive at the outer face and

suggested that not only shear but also local bending explains the increased form-

ability in SPIF. Similar results were obtained by Mart́ınez-Donaire et al. (2019),

who monitored the stress triaxiality evolution for both faces of the sheet in hole

flanging by SPIF, showing that higher values correspond to the outer face. They

concluded that the levels of triaxiality in SPIF are on average lower than those in

conventional processes. This contributes to decreasing the level of damage in the

material and, consequently, to increasing its formability.

2.2.3 Failure prediction in SPIF

As shown in the previous sections, the debate about the mechanism that causes the

increased formability in SPIF is not closed at all. Based on the most recent studies,

shear is the less supported mechanism, while bending and triaxiality effects can

be considered predominant. In addition to the increasing knowledge about the

deformation mechanics, failure prediction is also under study because, in the most

practical sense, designers need to know the formability limits beforehand. In this
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regard, failure prediction is approached basically from two different sides that are,

to some extent, related to each other.

The most common experimental approach is based on modification of the well-

known forming limit diagrams (FLDs) using fracture information obtained from

SPIF experiments. Specifically, the SPIF formability limits of a sheet material

are obtained by carrying out different SPIF tests with the purpose of obtaining

fracture strains for different global relations of β = ε2/ε1. In this regard, a new

methodology was proposed by Isik et al. (2014) that determines the FFL directly by

means of SPIF experiments instead of measuring the gauge length in conventional

Nakazima tests assuming vertical strain paths from the FLC to the FFL. The

geometries employed to perform this analysis are truncated cones for the plane

strain region and truncated pyramids for the biaxial zone. Both geometries have

variable drawing angles, as depicted in figure 2.22, because they ensure controlled

proportional strain paths up to the point of fracture.

Isik et al. (2014) also proposed a methodology to define the formability limits

in the in-plane shear domain, i.e., the shear fracture forming limit (SFFL). The

procedure is based on the realization of two tests, the twin bridge shear test pro-

posed by Brosius et al. (2011) and plane shear test (figure 2.22). This ensures

almost straight strain paths and the evaluation of the strains at fracture by means

of thickness measurements. Later, Soeiro et al. (2015) proposed a simpler method

to obtain the SFFL based on a new geometry produced by SPIF. The test consists

of the manufacturing of a truncated lobe conical shape with a variable drawing

angle (see figure 2.22) whose strain pairs at fracture determine the shear frac-

ture limit. The main advantage of this geometry is that fracture occurs in the

absence of necking; therefore, it is not necessary to perform additional thickness

measurements.

A second approach to obtain the FFL was developed from the triaxiality point

of view (Martins et al., 2014). In a research paper, the authors reviewed the

relation between the -1 slope and damage mechanics through the non-coupled

damage criterion based only on void growth of McClintock (1968), also referred

to as the Ayada criterion (Ayada et al., 1987). This insight establishes that the

stress triaxiality ratio η = σm/σ̄ can be introduced into a modified version of the

effective strain fracture criterion, obtaining equation 2.1, which can be developed

and expressed as a function of the Lankford coefficient r and the strain pairs at

fracture, as shown in equation 2.2.
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Figure 2.22. Schematic representation of the different tests proposed as a function of the

strain paths obtained.

Dcrit =

∫ ε̄f

0

σm
σ̄
dε̄ (2.1)

Dcrit =
(1 + r)

3
(ε1f + ε2f ) (2.2)

Equation 2.2 can be used to represent the FFL in the FLD as a line of slope

-1. This agrees with the metal forming approach, which assumes that fracture

occurs at a specific thickness reduction. This relation was suggested by Isik et al.

(2014) for obtaining reliable FFL curves by using only one fracture point obtained

in SPIF.

Based on the damage mechanics and triaxiality approach, some authors used

SPIF FE simulations to understand the increased formability and make adjus-

ted failure predictions. Centeno et al. (2017) presented an experimental study of

the strain evolution of truncated conical parts and developed an FE model that

was used to make failure predictions using the McClintock damage criterion. The
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results showed increased formability with respect to the FFL obtained by Na-

kazima tests. Furthermore, the FE model was used successfully to make fracture

predictions based on the evaluation of the accumulated damage Dcrit based on

dilatational void growth.

More recently, Mart́ınez-Donaire et al. (2019) also showed increased formability

in hole flanging by SPIF and performed a numerical FE analysis of the stress

triaxiality evaluated at fracture. The results were analysed in the average stress

triaxiality η̄ versus equivalent plastic strain ε̄ space (see figure 2.23), showing that

the stress triaxiality involved in hole flanging by SPIF is much lower than the

values obtained in Nakazima tests for a similar amount of straining. Based on

the authors’ description, the fracture limits in SPIF are not comparable in terms

of stress triaxiality to the FFL obtained conventionally. They suggested that

performing fracture predictions in the η̄ − ε̄ space should be considered.

Figure 2.23. Analysis of formability in terms of the average stress triaxiality vs. equival-

ent plastic strain of the fracture point at the outer face for hole flanging performed by

SPIF (Mart́ınez-Donaire et al., 2019).
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2.2.4 Geometric accuracy

Currently, the industrial manufacturing of SPIF products is still a challenge mainly

due to limitations in geometric accuracy. Simply comparing the geometric spe-

cifications in the sheet metal industry, typically close to ±0.2 mm over the hole

surface of a part, with the geometric tolerances in ISF of over ±2 mm reported by

Allwood et al. (2005) gives an idea of the magnitude of the challenge. In a review

on the applications of ISF, the authors analysed the process windows of SPIF re-

garding, among other aspects, the geometric tolerances and feature definition for

a wide range of products. They considered different parts and industrial sectors

(from a car body panel to a barometric unit for aerospace), showing that 40%

of the products could feasibly be produced by ISF according to feature definition

criteria. The quantity was reduced to 7% when considering geometric tolerances,

and only 3.5% were suitable according to both specifications.

In a further publication, Allwood et al. (2010) classified the geometric accur-

acy into three groups: the clamped accuracy when the part is still fixed in the

blank holder, unclamped accuracy when it has been released and final accuracy

when the part has been cut from the unwanted material. They focused on the

unclamped accuracy and pointed to residual stress as the factor that most affects

deviations due to the unclamped and final accuracy. In this regard, they found

a way to improve the geometric accuracy consisting of starting the process from

shapes partially pre-cut in their contour, as shown in figure 2.24, but with poor

results. The use of a backing plate that firmly clamped the sheet during the

forming process yielded better results. Micari et al. (2007) also made an accuracy

categorization based on three defects depicted in figure 2.25: a bending effect close

to the undeformed part of the sheet, a sheet springback produced after the tool

retraction and a pillow effect in the base. The techniques widely used to measure

these geometric deviations are 3D scanning (Ham and Jeswiet (2008), Li et al.

(2015)) or measurement systems based on coordinates (Silva and Martins (2013a),

Lu et al. (2016)).

Many efforts have been made to predict the shape of parts manufactured by

incremental processes. Ambrogio et al. (2004), Ambrogio et al. (2007) and Han

et al. (2013) performed experimental research on determining the influence of

process parameters in ISF and used FE simulations to perform shape predictions

and springback analyses. Finite element simulations were also used by Guzmán

et al. (2012) to study the geometric accuracy. They found that the general elastic

recovery of the part causes large shape deviations. In contrast, small deviations



32 State of the art

Figure 2.24. Pre-cut SPIF parts produced by Allwood et al. (2010) as a strategy to avoid

residual stress and improve the geometric accuracy.

Figure 2.25. Categorization of SPIF accuracy defects as described by Micari et al. (2007).

were found due to localized bending caused by the tool radius.

The geometric inaccuracies found in incremental processes are counteracted

by the use of different strategies presented in the literature. Some efforts have fo-

cused on the investigation of toolpath strategies to prevent shape deviations either

through optimization of trajectories in a single pass or by performing multiple-pass

strategies. For example, an over-depth forming tool was proposed by Ambrogio

et al. (2007) after studying the relation between the z-increment size and spring-

back in conical parts. Ambrogio et al. (2013) proposed a method based on modi-

fying the toolpath strategy to improve the thickness distribution along the profile

of the final part. Some authors observed that reducing the scallop height (Attana-

sio et al., 2008) and variable z-increment (Attanasio et al. (2008) and Wang and

Duncan (2011)) can be implemented in a toolpath optimization process to improve

the geometric accuracy and quality. Optimization algorithms were used by Wang

and Duncan (2011) and Malhotra et al. (2010), whose studies were based on feed-

back between a CAD program and measurements obtained from the part. Regard-

ing multiple-pass strategies, Duflou et al. (2007a) analysed simple and double-pass

strategies, performing a pre-shape pass followed by a finishing pass to improve the

geometric accuracy. An industrial application of multi-pass strategies was suc-
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cessfully applied by Bambach et al. (2009) to manufacture a car fender in a cyclic

process based on stress relief and forming steps.

Finally, additional research has also been carried out on modifying the process

itself by introducing additional tools or dies. For example, Attanasio et al. (2008)

and Franzen et al. (2009) used extra dies to optimise the toolpath with the purpose

of improving the dimensional accuracy and surface quality in TPIF.

2.3 Sheet flanging by SPIF

The application of SPIF to produce flanged parts is a relatively new process under

development over the last decade. In this period, the interest of the scientific

community in flanging by SPIF increased, with the aim of benefiting from the

advantages of incremental deformation.

A priori, SPIF can be applied to produce the principal types of flanges previ-

ously shown in figure 2.3. Nevertheless, most investigations focus on hole flanging,

and much fewer studies are found on stretch flanging or shrink flanging.

This section aims to summarize the main contributions related to these three

types of geometries available in the literature. To contextualize flanging by SPIF,

conventional flange forming processes such as rubber forming or press working are

also analysed.

2.3.1 Hole flanging

The hole flanging process by SPIF transforms a previously holed sheet into a

flanged part. This operation is carried out incrementally using a forming tool that

follows pre-established trajectories, typically on a non-dedicated CNC machine.

Pioneering research in this field was presented by Cui and Gao (2010). They

analysed three different strategies based on multi-stage forming and discussed the

effects by comparing the results in terms of the maximum flange height achievable,

forming limit ratio and uniformity of the wall thickness. Figure 2.26 shows the

different results obtained from three forming strategies performed on a pre-cut

hole. In strategy a), the wall angle is kept constant and equal to 90◦; in strategy

b), θ increases with each step up to 90◦, and strategy c) combines a) and b). In

this analysis, strategy a) achieved a higher limiting forming ratio (LFRmax) and

a more uniform thickness distribution.
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Figure 2.26. Different strategies analysed by Cui and Gao (2010) and obtained results in

terms of thickness distribution and neck height.

Later, in 2012, Centeno et al. (2012b) published a reference study on hole

flanging that analysed the relation of the hole flanging ratio, the strain evolution

and the mode of failure. The authors manufactured conical (figure 2.27a) and

cylindrical (figure 2.27b) hole flanges using multi-stage strategies to experimentally

evaluate the strains in the FLD. It was concluded that the pre-cut hole diameter

does not influence the formability of the process for the hole flanges that fractured

at the edge. In contrast, for large pre-cut holes, the strains achieved at the edge

were responsible for failure by fracture, as is typical in conical parts without pre-

cut holes.
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Figure 2.27. Results obtained by Centeno et al. (2012b) from different hole flanging

experiments using SPIF multi-stage strategies applied to (a) conical hole flanges and (b)

cylindrical hole flanges.

Figure 2.28. Results from conventional and incremental hole flanging for two different

materials presented by Silva et al. (2013b): (a) aluminium with a higher limiting forming

ratio achieved in SPIF compared to the conventional process and (b) titanium, with the

opposite effect.

Additionally, based on multi-stage strategies, the works of Silva et al. (2013b)

and Montanari et al. (2013) provided interesting contributions to the understand-

ing of the plastic flow and modes of failure in the hole flanging process by SPIF

of aluminium sheets. Silva et al. (2013b) showed that the limiting forming ratio

is not always higher in incremental forming compared to the conventional hole

flanging process, an affirmation that is contrary to the information found in the
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literature. They found that under specific operating conditions, higher formability

can be observed in conventional hole flanging for some materials, such as the ti-

tanium they analysed. Cristino et al. (2014) analysed the fracture mechanism and

crack initiation in hole flanging by SPIF and proposed a new technique to evalu-

ate the critical values of fracture toughness using different damage laws based on

accumulated damage criteria.

From a technological point of view, Bambach et al. (2014) made two important

contributions to the incremental flanging process. The first was the use of a

localised backing plate acting in the vicinity of the forming tool, which enabled

a reduction of unwanted deformations and therefore undesired deviations in the

final geometry. The other contribution was the design of a forming set-up that

allowed high-speed operations to be performed to reduce one of the drawbacks

of incremental forming, the high time consumption. The set-up and tool designs

are shown in figure 2.29a-b. Along this line, another experimental configuration

shown in figure 2.29c-d was proposed by Cao et al. (2016). They designed a new

flanging tool with the purpose of avoiding excessive sheet thinning and favouring

a more homogeneous thickness distribution. These new designs showed a more

uniform thickness distribution than the usual hemispherical SPIF forming tool.

Figure 2.29. Different incremental hole flanging technological contributions: (a) and (b)

principle and alternative tool designs and experimental set-up proposed by Bambach

et al. (2014) and (c) and (d) forming tool and experimental set-up proposed by Cao et al.

(2016).

Studies on incremental hole flanging focusing on multiple strategies are very

expensive from the time consumption point of view. To avoid this disadvantage,

Borrego et al. (2016) analysed the use of single-stage strategies in hole flanging
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by SPIF. In their study, they performed multiple experiments by changing the

main parameters, such as the initial and final diameters of the hole and the tool

diameter. The strains and the thickness distribution of the resulting parts were

analysed using circle grid analysis and microscopy, showing high amounts of thin-

ning and stretching in the flange wall (figure2.30). In a more recent research

paper of Morales-Palma et al. (2018), different two-stage strategies were analysed

numerically. The results obtained showed more uniform thickness compared to

single-stage hole flanging and shorter fabrication time compared to other multi-

stage strategies.

Figure 2.30. Hole flanging by SPIF in a single stage performed by Borrego et al. (2016):

(a) strain analysis within the FLD of hole flanges processed by SPIF and (b) details of

fractured specimens.

2.3.2 Open flanging: stretch and shrink

The number of studies on the fabrication of open flanges by SPIF in any of its

variants (stretch or shrink flanging) is currently limited compared to the inform-

ation found about hole flanging. A possible reason is that open flanges formed

incrementally do not have a large presence in industry yet due to the recent devel-

opment of this technology. Consequently, the manufacturing of this type of flange

is already associated with more conventional processes, such as rubber forming or

press working. In this context, the application of SPIF is still an interesting field
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to be explored from either the scientific or industrial point of view.

One of the first investigations related to stretch flanging was performed by

Wang and Wenner (1974). In this paper, the authors used numerical procedures

to calculate the stress and strain distribution in sheet metals flanged by press

working and obtained the maximum strain as a function of geometric variables.

Although it was formulated for an axisymmetric flanging case, this approximation

showed a good correlation with experimental data.

An additional effort on the prediction of strains was published by Dudra and

Shan (1988). They developed a finite element model for axisymmetric stretch

flanging and another model for a non-axisymmetric case (open stretch flanging).

The models were used to make geometry predictions and optimize the shape of

the sheet prior to the forming process to obtain the target geometry.

The first study on incremental forming of open flanges was performed by Powel

(1990). In his work, Powell investigates the feasibility of producing convex geo-

metries by repeated localized deformation. His study consisted of the simulation

and experimental validation of the manufacturing of a shrink flange using the

process depicted in figure 2.31a. This process was modified in Powell and An-

drew (1992) using the grooved roller ball presented in figure 2.31b. Both studies

demonstrated that incremental forming had sufficient potential to produce suc-

cessful shrink flanges, avoiding many of the disadvantages associated with the use

of dedicated tooling.

Figure 2.31. Incremental methods of forming shrink flanges without dedicated tooling:

(a) first design presented by Powel (1990) and (b) second design presented by Powell and

Andrew (1992).

The work presented by Asnafi (1999) studied stretch and shrink flanging by
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fluid forming from different approaches. In an analytical analysis, it was noted that

fracture is driven by the plastic strain at the edge of stretch flanges, which depends

on the strain ratio R and the hardening exponent of the material n. Additionally,

the analytical results were reproduced experimentally and using FE models to

obtain the strains at the flange edge for different initial blank radii (figure 2.32a).

In shrink flanging, Asnafi (1999) performed numerical and experimental analyses

and studied the conditions under which wrinkling occurs on flanges formed using

different die radii. The fluid pressure was found to play an important role in the

formation of wrinkles, as shown in figure 2.32b. In particular, higher pressure was

shown to increase the wrinkling limit.

Figure 2.32. (a) Circumferential strain at the flange edge versus initial blank radius for

stretch flanges calculated by three different paths, (b) shrink flanges with wrinkles at

different maximum pressures and (c) blank design for stretch flanging. Asnafi (1999).

The wrinkling limit in shrink flanging was also studied by Wang et al. (2001)
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using an analytical energy approach. They claimed that a large die radius and

a short flange length reduce wrinkling and, in the case of failure, the number

of wrinkles. Two years later, Zhang et al. (2003) performed experimental and

analytical studies, focusing on the prediction of compression strains along the

flange edge. In this case, the initial sheet metal was pre-curved, and the edge was

flanged, as shown in figure 2.33.

Figure 2.33. (a) Convex surface-straight edge shrink flanging and axisymmetric model

and (b) experimental set-up by Zhang et al. (2003).

In addition to failure by fracture in stretch flanging or wrinkling in shrink

flanging, some studies focusing on the elastic recovery of the flanges are found in

the literature. On this topic, Chen et al. (2010) used FE to analyse the springback

effect in stretch flanging by rubber forming. The simulations reproduced a real

aircraft part and showed a good correlation with the experimental results. Similar

studies on springback in shrink flanges were later performed by Chen (2011) and

Chen et al. (2015b).

However, the paper published by Voswinckel et al. (2013) is the first study

about the incremental stretch and shrink flanging process itself. Their analysis

focused on the influence of the toolpath, flange length and flange radius and com-

pared incremental sheet forming to conventional forming processes. They imple-
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mented four path strategies, see figure 2.34b, to obtain stretch and shrink flanges

using the experimental set-up depicted in figure 2.34a. In these experiments, the

authors observed different modes of failure. In stretch flanges, the modes of failure

observed were (i) the appearance of cracks in the region near the bending radius

of the die due to the stretching and bending of the material and (ii) excessive

material at the flange edge (see figure 2.35). In shrink flanges, the failures were

related to bulges in the bending zone and tilting at the perimeter of the flange. As

a consequence of this investigation, the incremental process was proven to increase

the conventional forming limits established by Dudra and Shan (1988). The form-

ability was measured using the ratio of the flange length to flange radii. Later,

(Voswinckel et al., 2014) presented a continuation of their previous work, focusing

on the geometric accuracy of the flanges. The main shape deviations observed

were the formation of bulges in the zone of the sheet that should be undeformed.

To reduce this defect, they proposed the tool presented in figure 2.36a, which uses

an adaptative moving blank holder that follows the forming punch. Figure 2.36b

shows the results obtained with this new tool design.

Figure 2.34. Stretch flanging process presented by Voswinckel et al. (2013): (a) stretch

flanging set-up and incremental flanging process and (b) different toolpath strategies

analysed.
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Figure 2.35. Failures in incremental forming of stretch and shrink flanges by Voswinckel

et al. (2013).

Figure 2.36. Incremental flange forming using the forming tool developed by Voswinckel

et al. (2014). (a) Pictures of the process set-up with and without the sheet holder. (b)

Comparison of the results obtained in terms of bulge height.

From a numerical perspective, Dewang et al. (2014c) published a review of

the different parametric studies based on finite element analysis applied to open

stretch flanging and hole flanging processes. They concluded that the use of expli-

cit or dynamic methods is dominant in FE analysis of flanging processes, and most

of them focused on the optimization of geometric and process parameters. Addi-

tionally, they also published three research papers based on both experimental and

numerical studies of open stretch flanges (Dewang et al. (2014a), Dewang et al.

(2014b), Dewang et al. (2017)). Very interesting results on the effect of different

process parameters, such as the punch-die clearance or initial flange length, were
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delivered (see figure 2.37). The typology of flanges was very similar to that in the

experiments carried out in the present thesis. However, the analyses focused ex-

clusively on non-incremental forming, opening an interesting and challenging field

to be explored.

Figure 2.37. Comparison of edge crack locations for different flange lengths by Dewang

et al. (2017). (a) Simulation (30 mm length), (b) experiment (30 mm length), (c) simu-

lation (40 mm length), and (d) experiment (40 mm length).

Figure 2.38. Concave and convex concatenated geometries studied by Zhang et al. (2018).

(a) Circumferential strain obtained from the FE model and (b) formed part.

More recently, using double-sided incremental forming, Zhang et al. (2018)

studied the deformation mechanics in fabricating a clover hole flange with complex

in-plane curvatures. The part contained both stretch and shrink flange geometries.

Experimental, analytical and numerical analyses were carried out, analysing the

strain evolution and the failure modes observed. The strain distribution obtained

from the FE analysis and one of the final flanges can be seen in 2.38. As expected,
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the compression zone and the stretching zone correspond to shrink and stretch

flanges, respectively (figure 2.38a).

The number of research papers focused on the study of incremental flanging

and open stretch and/or shrink flanges produced by SPIF is increasing in the

literature, but they are still very few compared to other common applications

of ISF. Regarding the importance of the flanging processes in industry and the

inherent versatility of incremental sheet forming processes, a detailed study of the

capability of SPIF to produce open flanges in terms of formability, failure and

strain modes and geometric accuracy deserves great interest. This analysis is the

core of the current PhD thesis.



Chapter 3

Experimental procedures

This chapter describes the experimental procedures and methodology of the present

work. The first section details the material properties of sheet metal AA2024-T3,

including a standard tensile characterization, determination of the Lankford an-

isotropy coefficients and a formability analysis by using Nakazima tests. In the

second section, the details of the flanging experiments are presented, describing

the experimental set-up, specimen preparation and process selected. Finally, the

third section presents the methodology used to analyse the flanges obtained ex-

perimentally.

3.1 Mechanical characterization

The material selected is 1.2 mm thick aluminium alloy AA2024-T3, which is widely

employed for manufacturing structural components in the aircraft industry. This

material has high strength and relatively low ductility and generally requires a

heat treatment prior to being used in a forming process. The specimens were

obtained from a single batch to guarantee homogeneity.

3.1.1 Tensile test

The tensile test is one of the most common types of mechanical tests. It consists of

applying a tensile force to a piece of material and measuring the stress and strain

response. The objective of applying this test to AA2024-T3 sheets is to determine

the elastic modulus, yield stress and anisotropy properties.

45
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Three tests were carried out for the rolling direction (0◦), transverse direction

(90◦) and diagonal direction (45◦), obtaining a total of nine successful tests. The

testing procedure was performed using the specimens shown in figure 3.1 on an

INSTRON model 1196 machine at room temperature under the specifications of

the standard ASTM E8/E8M – 09 (ASTM, 2009), and the strain was measured

using an extensometer of 25 mm reference length. Additional strain measurements

were obtained by digital image correlation (DIC) using the commercial system

Aramis®. In this regard, figure 3.2 depicts the three stress-strain curves obtained

for the different directions. There is no large difference with respect to the three

rolling directions. The curve at 0 degrees was fitted using least squares to the

Swift law, obtaining equation 3.1 for the AA2024-T3 sheet that was used in the

numerical model.

σ = 742.36(0.025 + εp)0.235 (3.1)

Figure 3.1. Tensile specimen.
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Table 3.1 shows the average tensile properties, including yield stress σY and

Young’s modulus E in the three rolling directions and a single averaged value of

ultimate tensile strength σUTS and Poisson coefficient ν.

Figure 3.2. Stress-strain curve for different angles with respect to the rolling direction.

Direction σY (MPa) σUTS (MPa) E (GPa) ν

r0 336 69.4

r45 306 526 67.1 0.33

r90 318 68.2

Table 3.1. Mechanical properties at 0, 45 and 90 degrees with respect to the rolling

direction.

3.1.2 Anisotropy

Previous studies by Vallellano et al. (2008) and later by López-Fernández et al.

(2019) showed the anisotropic behaviour of 1.2 mm thick AA2024-T3 sheets char-

acterized using Lankford coefficients ri. These coefficients have been expressed by

the ratio between the in-plane plastic minor strain εp2 and the through-thickness

plastic strain εp3 (equation 3.2). Applying volume constancy εp3 = −(εp1 + εp2), the

second part of the equation is obtained in terms of the in-plane plastic strains.

ri =
εp2
εp3
≡ −εp2
εp1 + εp2

(3.2)
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r =
r0 + 2r45 + r90

4
(3.3)

A series of tensile tests were carried out according to the standard ASTM

(2000) at room temperature and a velocity of 1 mm/min utilizing sheet specimens

with the geometry depicted in figure 3.1 3.1. The process is similar to a tensile

test with three discharges equally spread along the tensile curve (see figure 3.3).

At the end of each discharge, the minor strain εp2 and thickness strain εp3 were

evaluated, obtaining the value of ri (Eq. 3.2). In this case, the strain results were

analysed separately using an extensometer and the DIC system Aramis® to double

check the results. Furthermore, at least three valid replicates were performed for

each direction with the aim of providing statistical meaning to the results. The

results obtained for different directions and discharges and the average values r

are summarized in Table 3.2.

Figure 3.3. True strain vs. true stress evolution in Lankford tests for different directions

with respect to the rolling direction.

Discharge

1 2 3 Average

r0 0.82 0.75 0.72 0.76

r45 0.97 0.94 0.92 0.95

r90 0.56 0.54 0.53 0.54

r 0.83 0.79 0.78 −

Table 3.2. Three discharge and average Lankford coefficients corresponding to 0, 45 and

90 degrees with respect to the rolling direction.
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3.1.3 Formability analysis

This section describes the formability analysis carried out by means of Nakazima

tests performed in the universal sheet testing machine Erichsen model 142-20 de-

picted in figure 3.4 using a hemispherical punch of 100 mm. The Nakazima tests

were performed following the standard ISO 12004-2:2008 (2008), which describes

the process for determining the forming limit curves (FLCs) under laboratory con-

ditions. According to this standard, the velocity of the punch was set to 1 mm/s,

and the rolling direction was oriented longitudinally. To guarantee minimum fric-

tion, a set of Vaseline - PTFE - Vaseline was placed between the punch and the

specimens.

Figure 3.4. Erichsen universal testing machine.
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With the aim of obtaining the FLD of the material, the 5 specimen geometries

depicted in figure 3.5 were tested. Every specimen geometry was tested at less

than three times, checking that fracture occurred in the region specified by the

standard.

The strain evolutions corresponding to the different tests were obtained using

the DIC system Aramis® version 6.3 with recording cameras of 1.3 megapixels.

The frame rate was set to 12 frames per second until fracture, obtaining a number

of images between 300 and 600 depending on the specimen geometry. As an

example, figure 3.6 illustrates the strain analysis for a pure tension test.

Figure 3.5. Schematic view of specimen geometries and real specimens after testing

corresponding to the different strain states considered: (a) pure tension, (b) plane strain,

(c) and (d) biaxial strain, and (e) equi-biaxial strain.

The methodologies followed to detect the onset of necking were both the stand-

ard ISO 12004-2:2008 (2008) and the time-dependent methodology proposed by

Mart́ınez-Donaire et al. (2014). Neither of them showed evidence of necking prior

to fracture. Such an absence of necking agrees with the previous studies carried

out by Vallellano et al. (2008) and Centeno et al. (2012a) for other batches of this

material, which confirms its failure by direct ductile fracture. Consequently, this

material only presents the fracture limit FFL as the formability limit within the

FLD.
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Figure 3.6. Strain analysis of the Nakazima pure tension test using Aramis®: (a) strain

evolution, (b) major strain in the strain stage prior to fracture and (c) minor strain in

the strain stage prior to fracture.

The strains until the instant prior to fracture were obtained using the DIC

system. However, there was a time lapse between the last image recorded by the

DIC system and the instant of fracture in which the information could not be

processed. Due to this technical limitation and because the onset of necking and

fracture occurs instantly, necking and fracture strains could not be analysed using

this method. Therefore, the FLCs and FFL curves were obtained indirectly by

thickness measurement.

In general, the procedure to obtain the FFL using DIC in materials with neck-

ing assumes that, at necking, the minor strain ε2 is constant. As a consequence,

there is deformation only in the direction of major strain ε1 until fracture oc-

curs. However, in the absence of necking, the strain evolution prior to fracture

is different; therefore, other methodologies must be used. In this case, the strain

evolution of the fracture point is considered proportional to the principal strains

until fracture, assuming a constant value of β. Using equation 3.4) and applying

volume constancy (equation 3.5), only the thickness strain ε3 is needed to place

the fracture point in the FLD.

The thickness strain at fracture was obtained by applying equation 3.6, where

tf is the thickness at fracture in the vicinity of the crack and t0 is the initial

thickness of the sheet. To obtain an average value of tf , every specimen was cut

perpendicular to the fracture. Then, a number of thickness measurements were
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performed using a NICON SMZ800 microscope and the software KAPPA Image

Base Metreo version 2.7.2. From these thickness measurements, the values of ε3

corresponding to the Nakazima tests were obtained.

β =
ε2

ε1
(3.4)

εp3 = −(εp1 + εp2) (3.5)

ε3f = log
tf
t0

(3.6)

Finally, from the values of ε3 obtained using equation 3.6, applying volume

constancy (equation 3.5) and substituting the beta value from the Nakazima strain

paths into equation 3.4, the fracture strains of the Nakazima tests were obtained.

These fracture strains are represented using black filled points in the FLD depicted

in figure 3.7. The FFL is represented by connecting these points, and the strain

paths of Nakazima tests corresponding to different specimen geometries are shown

using dotted lines. Additionally, the last strain points obtained using DIC are

represented using white circles.

It must be noted that, assuming the von Mises criteria for isotropic materials,

the uniaxial strain path (α = σ2

σ1
= 0) coincides in the FLD with the line β = −0.5

presented in figure 3.7. This value is obtained from the relation between α and β

expressed by equation 3.7. However, if anisotropy exists, then the expression of β

depends on the yield criterion. For the AA2024-T3 sheets used in this study, β

was obtained using equation 5.28, which is based on Barlat’s 89 anisotropic yield

criterion that will be described in chapter 5. Using equation 5.28 and substituting

α = 0, the strain ratio β = −0.43 for uniaxial tension represented in 3.7 is obtained.

β =
2α− 1

2− α
(3.7)
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Figure 3.7. Forming limit diagram of AA2024-T3 represented by the FFL obtained from

Nakazima tests considering five different strain paths.

3.2 Flanging process by SPIF

3.2.1 Experimental plan

The experimental plan consisted of different flanging experiments performed by

SPIF. The tests were classified into two groups: stretch flanges (or concave flanges)

and shrink flanges (or convex flanges). The objective of this experimental cam-

paign is to provide a large set of flanges manufactured with a wide range of process

parameters with the aim of providing an overall analysis of the flanging process

by SPIF.

The parameters considered in the experiments were classified into geometric

and process parameters. The geometric parameters are related to the specimen

dimensions and the geometry of the forming dies, e.g., the initial width or length

of the specimen and the die principal radius, respectively. The process parameters

are related to the variables of the forming process, such as the spindle speed or

the step down ∆z. In this regard, six different parameters for stretch and shrink

flanges were considered: die principal radius (Rdie), initial width of the flange
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(w0), initial length of the flange (l0), diameter of the forming tool (φ), spindle

speed (S) and step down (∆z). These parameters and their values considered in

the experiments are shown in table 3.3 for the stretch flanges and table 3.4 for

the shrink flanges. It should be noted that the values of w0 correspond to the die

radius Rdie multiplied by a factor between 1 and 2, e.g., w0 = 73 mm is the result

of Rdie = 45 mm multiplied by 1.6. The experiments were carried out using a step

down of 0.4 mm per pass. A smaller step down ∆z = 0.2 mm was also tested,

initially obtaining similar results but a longer processing time.

Note that at least two replicates were performed for each set of process para-

meters to provide statistical meaning. In this context, the number of possible

parameter combinations is 280, resulting in more than 500 tests. However, the

final number of experiments was lower because the less relevant tests, i.e., flanges

far from failure, were removed from the initial experimental plan. The complete

set of experiments carried out is intensively described in chapter 6.

Stretch flanges

Geometric parameters Process parameters

Rdie (mm) w0 (mm) l0 (mm) φ (mm) S (rpm) ∆z (mm)

20 20, 24, 28, 32, 36 15, 20, 25 12, 20 20, 1000 0.2, 0.4

45 36, 45, 54, 63, 72 15, 20, 25, 30 12, 20 20, 1000 0.2, 0.4

Table 3.3. Experimental parameters in stretch flanging.

Shrink flanges

Geometric parameters Process parameters

Rdie (mm) w0 (mm) l0 (mm) φ (mm) S (rpm) ∆z (mm)

20 20, 24, 28, 32, 36 15, 20, 25 12, 20 20, 1000 0.2, 0.4

45 36, 45, 54, 63, 72 10, 15, 20, 25 12, 20 20, 1000 0.2, 0.4

Table 3.4. Experimental parameters in shrink flanging.

The preparation of the specimens includes a number of steps. In this process,

received aluminium sheets of 1x2 metres were cut into rectangles using a shearing

machine, leaving an excess of material for further operations. Afterwards, the rect-

angles were stacked and machined in a manual drilling machine to add positioning

grooves and guarantee parallelism between the corresponding edges. To remove
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imperfections at the perimeter of the specimens, the edges were polished using

sandpaper of successive decreasing grain size corresponding to sandpaper numbers

from 500 to 4000.

As will be revealed in the following sections, the deformed flanges were analysed

using circle grid analysis. This process requires the flanges to be electro-etched

with a circle grid. The etching process was performed using the electrolytic mark-

ing system EU-Classic 300 from Ötsling Marking Systems shown in figure 3.8a,

which provides AC/DC current from 0-24 V. This technology consists of the ap-

plication of electric currents to the surface of the sheet using an electrode and an

electrolytic solution. The stencil containing the pattern to be printed was placed

between the electrode and the sheet. In this regard, figure 3.9 shows the two

patterns with 1 mm and 1.5 mm distances between circles that were used with

fair results in this study. To increase the contrast of the circle pattern and reduce

the brightness, the specimens were submerged in a solution with a composition of

93.5% H2O, 1.5% HCl, 2.5% HNO3 and 2.5% HFl prior to the etching procedure.

In this case, neither a thickness reduction nor a variation in mechanical properties

were observed as a consequence of the etching process.

Figure 3.8. (a) Electrolytic marking machine. (b) Flanging specimen after the etching

process.

Figure 3.9. Grid patterns with (a) 1.5 mm and (b) 1 mm distances between points.
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3.2.2 Experimental set-up

The SPIF flanging experiments were performed on an EMCO VMC-200 3-axis

CNC milling machine. In this regard, figure 3.10 shows the different elements of the

experimental set-up, including the forming die and sheet holder, the dynamometer,

the forming tool, the fixing tools and the cooling system.

The two sets of forming dies and sheet holders corresponding to die radii of 20

mm and 45 mm are depicted in figure 3.11. They were obtained from a 10 mm

thick steel plate using laser cutting and had a number of holes used for positioning

and fixing the specimen. Each set had concave and convex radii to produce both

flange geometries using a single die. The SPIF process was carried out using two

hemispherical tools with 6 mm and 10 mm radii, as depicted in figure 3.12. The

feed rate of the tool was set to 1000 mm/min for all experiments, and the tool

rotation was set to either 20 rpm or 1000 rpm depending on the experiment.

For the selection of the lower spindle speed, the initial idea was to allow free

rotation of the forming tool to guarantee as little friction as possible. However,

this option was not possible on the CNC machine used for the experiments.

Figure 3.10. Experimental set-up used in the SPIF flanging experiments.
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In this regard, a number of tests were carried out with the spindle speed set

to 0 rpm, with low surface quality. Finally, the lower spindle speed was set to 20

rpm because it led to acceptable surface quality.

Figure 3.11. Upper view of the dies with (a) Rdie = 20 mm and (b) Rdie = 45 mm.

During the tests, the tool describes a pattern of circumferential arcs concentric

with the die radius followed by step downs along the z axis. In this regard, at the

end of each circumferential displacement, the tool loses contact with the flange,

and it is at this point when the z decrement is implemented (see figure 3.13).

With respect to the CNC language, ISO Code was used. However, due to the

variety of geometries analysed, the trajectories for the different experiments were

obtained using MATLAB®. The radius described by the tool was calculated for

stretch and shrink flanges using equation 3.8. In this equation, Rt is the radius

described by the tool, Rdie and φtool are the radius of the die and radius of the

tool, respectively, and t is the sheet thickness. Furthermore, the parameter ∆r

represents the clearance of 0.2 mm left to avoid possible ironing, and the symbol

± was set to − or + depending on the concave or convex shape, respectively. The

duration of the test varied depending on the radius, width and length of the flange,

although it was 3 minutes in the shortest test and 20 minutes in the longer case.
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Rt = Rdie ± φtool ± t±∆r (3.8)

Figure 3.12. Two forming tools used in the SPIF experiments.

Figure 3.13. Scheme of tool trajectories for (a) a shrink flange and (b) a stretch flange.

To minimize the friction between the tool and the sheet blank, commercial

lubricant Castrol Iloform TDN81 was continuously spread over the tool surface.

This oil is recommended for metal forming processes and shows successful results

at low spindle speeds. Nevertheless, it was observed that for a spindle speed of

1000 rpm, its viscosity increases as a consequence of the temperature. To avoid

this inconvenience, the lubricant was mixed with pressurized air and spread using

the device shown in figure 3.14. This system reduced the temperature, providing

a more homogeneous and effective distribution of the oil.
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Figure 3.14. Lubrication system used in the SPIF experiments.

3.3 Formability analysis

This section details the methodologies used to perform formability analysis of the

stretch and shrink flanges produced by SPIF. In the first section, the experimental

techniques for the strain analysis will be discussed, showing examples of stretch

and shrink flanges. In the second section, the failure modes observed for both

types of flanges will be described.

3.3.1 Strain analysis

Strain analysis was performed using the circle grid analysis commercial system

Argus®. The CGA technique is based on measuring the distortion of a grid

etched on the surface of the sheet metal. This grid usually consists of a pattern

of circular points that were drawn on the sheet surface prior to the test. After

the forming process, the specimens were placed together with several coded points

used as references (figure 3.15). Then, a number of photographs were taken from

different positions using a high-resolution camera. Finally, these pictures were

analysed using Argus® software, obtaining the principal strains from the surface

of the sheets.

The results of the strain analysis for each specimen were represented using the
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FLD and the principal strain contours, as depicted in figure 3.16 and figure 3.17

for a stretch flange and a shrink flange, respectively. In these examples, the major

and minor strain 3D contours along with their respective directions are presented

(figure 3.16b and figure 3.17b). The strain distribution of the flanges was depicted

within the FLD using points coloured as a function of the thickness reduction, as

shown in figure 3.16a and figure 3.17a. Additionally, the strains corresponding to

the most representative sections were highlighted in the FLD. These sections were

also displayed in the strain contours.

Figure 3.15. Argus® measurement configuration. (a) Elements involved in the measure-

ment process. (b) Example of a stretch flange and coded point distribution.

It is important to remark on two additional points regarding the strain analysis.

First, the strain data were obtained from the surface that was not in contact with

the tool. Therefore, the strain data from the numerical model described in chapter

4 were obtained from this surface. Second, the CGA technique needs four points

from the grid to interpolate the strains in between. As a consequence, the strains

located at the edge of the flange cannot be analysed. For the flanges analysed, the

distance from the last point measured using CGA to the edge of the flange was

approximately 0.5 mm.
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Figure 3.16. Strain analysis of a stretch flange produced by SPIF. (a) Strain points and

section on the FLD. (b) Strain contours.

Figure 3.17. Strain analysis of a shrink flange produced by SPIF. (a) Strain points and

section on the FLD. (b) Strain contours.

Because the strain data from the edge cannot be obtained using CGA, the

following alternative method was used.

Under the assumption that the edge of the flange is under pure tension con-

ditions, the strain points at the edge of the sheet should be on the β = −0.5

line for an isotropic material, which is the relation between ε1 and ε2 at the edge.
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Furthermore, the through-thickness strain ε3 was calculated by thickness measure-

ment (equation 3.6), where ε1 and ε2 were obtained by applying volume constancy

(equation 3.5). For the AA2024-T3 sheet analysed, the value of β corresponding

to pure tension conditions obtained using Barlat’s 89 anisotropy criterion was

β = −0.43. Consequently, the values of ε1 and ε2 slightly differ from those in the

anisotropic case.

3.3.2 Failure analysis

One of the main objectives of the experimental campaign is to determine whether

the flanges are acceptable from a functional point of view. In this regard, two

failure modes were observed in the stretch flanges, and two failure modes were

observed in the shrink flanges. The flanges were classified as successful flanges or

failed flanges according to their functionality.

On the one hand, the two different modes of failure observed for stretch flanging

were (i) fracture at the edge and (ii) fracture at the corner. In flanges that failed by

fracture at the edge, a crack was found near the edge, as depicted in figure 3.18a.

This mode of failure is a consequence of the high tensile strains at the edge of the

flange. As will be discussed in chapter 5, the fracture does not necessarily initiate

at the very edge but may appear at a certain distance from it and then propagate

toward the edge. In flanges that failed by fracture at the corner, the crack appears

at the lateral edge in the region depicted in figure 3.18b. In this region, the

material is stretched and experiences cyclical straining due to the multiple passes

of the forming tool.

Figure 3.18. Modes of failure in stretch flanging by SPIF. (a) Fracture at the edge. (b)

Major strain contour. (c) Fracture at the corner.

On the other hand, in shrink flanging, the two different modes of failure ob-

served were (i) failure by wrinkling and (ii) failure by incipient wrinkling. For both
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modes of failure, the flanges presented wrinkles, although with different intensities.

In the flanges that failed by wrinkling, the wrinkles were larger and appeared at

the centre of the flange. The tests corresponding to flanges that failed by wrink-

ling had to be stopped to avoid any damage to the forming tool. This is the case

for the shrink flange shown in figure 3.19a. In contrast, in flanges that failed by

incipient wrinkling, the wrinkles were smaller and usually located at some distance

from the centre of the flange. These flanges had an edge with a polygonal shape

instead of a circular shape, as depicted in figure 3.19b.

Figure 3.19. Modes of failure in shrink flanging by SPIF. (a) Failure by wrinkling. (b)

Failure by incipient wrinkling.





Chapter 4

Numerical methods

This chapter describes the numerical models used to reproduce the flanging process

by SPIF. First, section 4.1 describes the FE models corresponding to stretch and

shrink flanging by SPIF. Second, section 4.2 presents the process to obtain the

principal strain components in the plane of the sheet from the components of the

strain tensor.

4.1 SPIF modelling

Numerical simulations of the flanging process by SPIF were carried out with the

aim of (i) predicting the principal modes of failure attained in stretch and shrink

flanging by SPIF and (ii) analysing the stress and strain conditions that produce

these modes of failure. In this regard, the finite element (FE) models correspond-

ing to stretch flanging by SPIF and shrink flanging by SPIF presented in figure

4.1 and figure 4.2 were developed. Both models were designed using the commer-

cial software Ansys LS-Dyna® in the Ansys mechanical APDL® programming

environment. The simulations were based on an explicit integration scheme.

Explicit methods are widely employed in incremental sheet forming simula-

tions, as these approaches are more stable and faster than implicit formulations,

especially in contact problems (Bambach et al., 2003). A more exhaustive descrip-

tion of the differences between explicit and implicit methodologies can be found

in (Belytschko and Moran, 2000).

The model was developed using the SHELL163 element type available in the

Ansys LS-Dyna® element library, which is recommended for the simulation of
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Figure 4.1. Finite element model for stretch flanging by SPIF.

forming processes. This element type has 12 degrees of freedom (DOFs) in each

of its 4 nodes depicted in figure 4.3, allowing both in-plane and normal loads as

well as bending. Furthermore, five integration points placed at the centre of the

element were used to consider the through-thickness stress and strain gradients. A

previous configuration with 3 integration points was also tested, obtaining faster

simulations but less accuracy at the sheet surface. Regarding the element formula-

tion, the different options available in the Ansys® library were analysed, with the

Belytschko-Tsay element formulation providing better results. Additional inform-

ation about the SHELL163 element type and its different options can be found in

the Element Reference section of the Ansys® Help document (Ansys, 2018).

As seen in figure 4.1 and figure 4.2, each FE model has four components that

represent the different parts involved in the flanging process. On the one hand,

the forming die, sheet holder and forming tool were defined as rigid bodies with

different displacement restrictions. In this regard, the forming die was fixed in

3D space, whereas the displacements of the forming tool and the sheet holder

were defined by positioning vectors. On the other hand, the sheet metal was

modelled using the yield criteria proposed by Barlat and Lian (1989) for anisotropic
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Figure 4.2. Finite element model for shrink flanging by SPIF.

materials in combination with the Swift power law and the material properties of

the AA2024-T3 sheet described in chapter 3. Furthermore, as a consequence of

the cyclical deformation attained in SPIF, the plasticity hardening rule was set

to kinematic hardening. A more exhaustive analysis of Barlat’s 89 yield criterion

will be carried out in chapter 5.

The contact conditions were defined using the Ansys LS-Dyna® surface-to-

surface contact model “FSTS”, which is suggested for metal forming applications.

This option is recommended by the Ansys LS-Dyna® manual (Ansys, 2018) for

modelling bodies with large contact areas and large amounts of relative sliding. For

both models, the sheet was modelled as the contact surface, whereas the forming

die, forming tool and sheet holder were modelled as target surfaces. Additionally,

a Coulomb friction model was assumed, setting the dynamic friction coefficient to

0.01 for the tool-sheet interface. This value was tuned by comparing numerical

results with experimental results in terms of strain and force evolutions.

The different parts of the FE model were meshed using a regular mesh of

quadrilateral elements with a characteristic length in the range of 0.5-1.5 mm.
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Figure 4.3. Element type Shell163 geometry. Note that X and Y are in the plane of the

element.

However, the element size of the sheet was set to values below 0.5 mm to avoid

the unstable results that arose depending on different factors, such as the mass

scaling, hourglass control or time scaling.

It is worth mentioning that the SHELL163 element type, which is recommen-

ded in problems involving large deformations, is an element type with reduced

integration. This type of element formulation produces zero-energy modes usu-

ally called hourglassing (HG), which have to be minimized, as they cause a lack

of stiffness and zigzag distortions in the element mesh. These HG modes were

controlled using local hourglassing controls.

The two HG controls available in Ansys LS-Dyna® consist of increasing the

model stiffness locally using either viscous hourglassing control or stiffness hourglassing

control. The former method, viscous hourglassing control, produces a damping ef-

fect on the velocity degrees of freedom in the direction of the hourglass modes. The

damping effect is proportional to the velocities and is effective in the simulation of

explosions and collisions but not in low velocity problems such as the simulation of

the SPIF process. The latter method, stiffness hourglassing, increases the stiffness

of the element to counteract the HG modes, whereas it allows rigid body motions

and linear deformations. In this case, the stiffness of the element increases propor-

tionally to the displacement of the nodes, which makes this HG control method

suitable for low velocity problems. The intensity of the stiffness hourglassing con-

trol was specified using the hourglass coefficient, which is recommended to be 0.03

in the Ansys LS-Dyna® documentation. The ratio of the energy related to the HG

effect to the total energy of the simulation was analysed to ensure a ratio below

10%, which is the maximum value recommended. This ratio was always in the

range of 1%-5% in all the simulations carried out.

Another two factors considered in the design of the FE models were time scaling
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and mass scaling. In the explicit method, the robustness of the simulation depends,

among other factors, on the discretization of the problem in time steps smaller

than a threshold value ∆t. This value is defined by equation 4.1, where Ls is

the characteristic length of the shell element and c is the speed of sound in the

material, which is expressed in equation 4.2.

∆t =
Ls
c

(4.1)

c =

√
E

ρ(1− ν2)
(4.2)

A smaller size of ∆t increases the number of steps to be solved, increasing the

simulation time. However, given a maximum value of ∆t, it is possible to reduce

the number of time steps using time scaling, which consists of artificially increasing

the speed of the physical process and reducing the simulation time. In the case of

the flanging FE models presented, the feed rate of the tool, which was set to 1000

mm/s in the experimental process, was multiplied by the factor MF. In this case,

different values of MF ranging between x10 and x10000 led to different results.

On the one hand, for MFs lower than x100, convergence problems and instabilities

arose. On the other hand, for MF values higher than x2000, the problem became

unstable as a consequence of the high feed rate, especially at the moment when

the tool contacted the sheet.

Another method for reducing the simulation time is to increase the density

of the material. Consequently, the constants c (see equation 4.2) and ∆t (see

equation 4.1) increase, reducing the number of time steps of the simulation. This

method is known as mass scaling. In this study, the mass scaling factor was set to

x10, although acceptable results were obtained in the range of x10-x100.

Time scaling and mass scaling methods should be applied under several condi-

tions. In the case of time scaling, when the speed is increased, the dynamic effect

becomes more important, and inertia forces may cause unwanted results. Special

attention should be paid to the moment when two bodies make contact. Regarding

mass scaling, the effect is similar, although in this case, it is the virtually increased

density that causes the inertia forces to increase.

Using time scaling and mass scaling, the simulation time was reduced by one

order of magnitude. For example, the simulation time for the FE model of a
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concave flange with w0 = 63 mm and l0 = 20 mm, with approximately 5000

elements in the sheet, was reduced from 4 days to less than 10 hours.

4.2 In-plane principal strains

As presented in chapter 3, the flanges were analysed in terms of principal strains

within the FLD, with the experimental principal strains obtained using the CGA

system Argus®. In this regard, the strains εarg1 , εarg2 and εargt , which correspond

to the major strain, minor strain and thickness reduction strain obtained using

Argus®, are different from the global principal strains ε1, ε2 and ε3 obtained from

the FE software. Consequently, the principal strains obtained from the FE model

were transformed to obtain the in-plane principal strains in the plane of the sheet.

The process to perform this transformation will be detailed below for a single

element.

First, the strain components εij of the strain tensor ε̄ presented in equation 4.3

were obtained from the FE software. Note that the strain tensor ε̄ is symmetrical

and can therefore be completely defined using 6 components. Figure 4.4a presents

the different components of the strain tensor expressed in an orthogonal reference

system that does not coincide with the reference system of the element. Then,

using equation 4.4, the strain tensor is expressed in the new coordinate system

X ′Y ′Z ′, whose axis X ′ and Y ′ are contained in the plane of the sheet. In this

equation Ā is the transformation matrix used to transform ε̄ to ε̄′, whose rows are

the axes of the new coordinates system X ′Y ′Z ′ expressed using the old coordinates

system XY Z. The transformation matrix Ā can be expressed according to the

Euler angles φ, ψ and θ as in equation 4.5, where C and S corresponds to cosine

and sine respectively. The z axis of the new coordinate system X ′Y ′Z ′ coincides

with the direction normal to the shell element, and therefore, the axes X ′ and Y ′

are in the plane of the sheet element. As seen in figure 4.4b, the components ε′xx,

ε′yy, ε′xy and ε′yx of the strain tensor ε̄′ are also contained in the plane of the shell

element.

At this point, the tensor ε̄′ is rotated around the Z ′ axis (see figure 4.4c) to

find a position at which its tangential strain components ε′xy and ε′yx are zero.

After this rotation, the components ε′′xx and ε′′yy of the tensor ε̄′′ are the in-plane

principal strains εip1 and εip2 , with ε′zz = εt. In this regard, εip1 and εip2 are obtained

from the eigenvalues of the 2x2 sub-matrix formed by ε′′xx, ε′′xy, ε′′yx and ε′′yy. The

new expression of the strain tensor is given by equation 4.6.
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Figure 4.4. Graphical representation of the strain tensor: (a) initial arbitrary orientation,

(b) z axis parallel to the element normal, and (c) orientation to obtain the in-plane

principal strains.

ε̄ =

 εxx εxy εxz

εxy εyy εyz

εxz εyz εzz

 (4.3)

ε̄′ = Ā · ε̄ĀT =

 ε′xx ε′xy ε′xz
ε′xy ε′yy ε′yz
ε′xz ε′yz ε′zz

 (4.4)

Ā =

 C(ψ)C(φ)− S(ψ)C(θ)S(φ) C(ψ)S(φ) + S(ψ)C(θ)C(φ) S(ψ)S(θ)

−S(ψ)C(φ)− C(ψ)C(θ)S(φ) −S(ψ)S(φ) + C(ψ)C(θ)C(φ) C(ψ)S(θ)

S(θ)S(φ) S(θ)C(φ) C(θ)


(4.5)

ε̄′′ =

 εip1 0 ε′′xz
0 εip2 ε′′yz
ε′′xz ε′′yz εt

 (4.6)

After the process described above, the components εip1 , εip2 and εt of the strain

tensor are equivalent to the major strain, minor strain and negative thickness re-

duction strain obtained from the CGA software, i.e., εarg1 , εarg2 and −εargt . This

transformation process described for a single element was applied to every ele-

ment of the sheet, obtaining the set of strain data that were comparable to the

experimental results.





Chapter 5

Analytical framework

This chapter presents the stress triaxiality theoretical framework used in the pre-

diction of failure for the flanging process by SPIF. In section 5.1, three plasticity

yield criteria widely used in finite element simulations are described. In section

5.2, the FFL for an AA2024-T3 sheet is obtained using these yield criteria, per-

forming a numerical-experimental validation of the FFL corresponding to Barlat’s

89 yield criterion.

5.1 Plasticity criteria: anisotropy

In a general plastic stress state, the material behaviour is defined using three ele-

ments: (i) a yield criterion that defines the value of the stress components in the

transition from the elastic to plastic state, (ii) a flow rule associated with this

criterion that relates the stress components to the strains and (iii) a description

of the stress evolution at yielding, known as the hardening rule. In FE model-

ling, these elements are considered in the definition of the material behaviour and

determine the response of the model.

As described in chapter 4, the material flow rule used in the FE models follows

the Swift power law, with the coefficients adjusted with the stress-strain curve

of the AA2024-T3 sheet. With respect to the hardening rule, two options avail-

able are kinematic and isotropic. The former, kinematic hardening, establishes

that the yield curve is displaced in the stress space without changing its shape.

The latter, isotropic hardening, leads to variation in the size of the yield curve

without displacement. In this regard, both hardening rules were tested, obtaining
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better results when using the selected option of kinematic hardening. Concerning

the yield criterion, three were considered: the von Mises plasticity yield criterion

for anisotropic materials, the Hill 48 anisotropic yield criterion and Barlat’s 89

anisotropic yield criterion. In this regard, the formulations of the yield criteria

were simplified assuming plane stress (σ3 = 0). Furthermore, the anisotropy was

specified using the Lankford coefficients, whose values can be found in chapter 3.

5.1.1 von Mises yield criterion

The plasticity criterion proposed by Mises (1913) is a yield criterion based on the

distortion energy. In this regard, it establishes that yielding occurs when the elastic

energy of distortion reaches a critical value. This assumption makes it possible to

experimentally obtain a critical stress value σ0 in uniaxial tension and use it as

a reference for more complex stress states. Assuming plane strain, the equation

of the von Mises anisotropy yield criterion can be expressed using equation 5.1.

This equation represents an ellipse in the plane of principal stresses σ1 and σ2, as

depicted in figure 5.1.

(σ1 − σ2)2 + σ2
1 + σ2

2 = 2σ2
0 (5.1)

Figure 5.1. Graphical representation of the von Mises yield criterion in the plane of

principal stresses.

Although von Mises is widely accepted as one of the classic plasticity criteria,



5.1 Plasticity criteria: anisotropy 75

it is defined only for isotropic materials. Therefore, it cannot represent the an-

isotropic behaviour of sheet metals. As can be observed in figure 5.1, the yield

surface in the stress plane is symmetric with respect to its axes. Consequently, σ1

and σ2 produce equal results. The von Mises criterion was included in this study

as an example of an isotropic criterion and for comparison with anisotropic yield

criteria.

5.1.2 Hill 1948 yield criterion

Hill 1948 (Hill, 1948) is one of the classical yield criteria. It was proposed as a

generalization of the von Mises criterion for anisotropic materials (Mises, 1928)

applied to orthotropic materials. As a von Mises anisotropic criterion, the Hill

criterion is based on a quadratic function. However, the Hill criterion assumes

orthotropy and includes only six coefficients. The general expression of the quad-

ratic Hill criterion is presented in equation 5.2, where F, G, H, L and M are six

constants, which depend on the anisotropy coefficients r0, r90 and r45.

2f(σ) ≡ F (σ22 − σ33)2 + G(σ33 − σ11)2 + H(σ11 − σ22)2

+ 2Lσ2
23 + 2Mσ2

31 + 2Nσ2
12 = 1

(5.2)

Particularizing for plane stress conditions (σ33 = σ31 = σ23 = 0), using the

Lankford anisotropy coefficients, this general expression can be written in terms

of the uniaxial yield stress in the rolling direction σ0, as expressed in equation 5.3,

where σ1 and σ2 are the stress components along the principal axes oriented 0◦ and

90◦ with respect to the rolling direction. This equation was used in figure 5.2 to

obtain a number of yield curves for different values of anisotropy. In these curves,

the yield stress σ0 was normalized to 1. Furthermore, the yield curve corresponding

to the von Mises isotropic yield criterion was also included for comparison with the

curves obtained with isotropic yield criteria. In this case, it must be mentioned that

when the anisotropy coefficients r are set to 1, the Hill yield criterion becomes the

von Mises isotropic yield criterion. Regarding the effect of anisotropy, the influence

of the different Lankford coefficients is depicted in figure 5.2a-c. Additionally,

figure 5.2d shows the yield curve obtained using the Lankford coefficients for the

AA2024-T3 sheet.
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σ2
1 −

2r0

1 + r0
σ1σ2 +

r0(1 + r90)

r90(1 + r0)
σ2

2 = σ2
0 (5.3)

Figure 5.2. Yield curves for the Hill 1948 yield criterion: (a) influence of r0, (b) influence

of r90, (c) influence of the normal anisotropy coefficient r and (d) yield curve for the

AA2024-T3 sheet.

As shown in figure 5.2d, for r < 1, the yield curve corresponding to the Hill

criterion is inside of the von Mises ellipse in the first quadrant (+,+), yielding

lower stress levels than in the isotropic case. In contrast, for r > 1, the curve

corresponding to the Hill criterion is outside the von Mises curve in the first

quadrant. Considering that the Lankford coefficients for the AA2024-T3 sheet

are less than 1, the predicted biaxial stress σb for this material is smaller than

the uniaxial stress σ0. In this regard, Woodthrope and Pearce (1970) and Pearce

(1968) showed that some materials, especially aluminium alloys, present σb > σ0
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for r < 1. They showed that this anomalous behaviour cannot be predicted

adequately using the Hill criterion. For this reason, the yield criterion proposed

by Barlat in 1989 was used in the FE models.

5.1.3 Barlat 1989 yield criterion

The yield criterion proposed by Barlat and Lian (1989) was developed from a

previous yield criterion of Barlat and Richmond (1987) formulated for isotropic

materials with the purpose of describing the behaviour of sheet metals with planar

anisotropy. As in the case of the Hill yield criterion mentioned above, its formu-

lation is based on the microstructural plastic potential and has been shown to be

useful in the prediction of the yield locus for aluminium alloys. This criterion as-

sumes plane stress and is frequently used in numerical simulations of sheet metal

forming processes, especially for those with planar anisotropy. One of its main

advantages is the lower complexity compared with other criteria. In this regard,

this criterion contains only four mechanical parameters (a, c, h and p) that can

be easily obtained except for p, which has to be identified numerically.

Equation 5.4 presents a generalization of Barlat’s 89 yield criterion in a gen-

eral stress state for materials that present planar anisotropy. The exponent m

is related to the crystallographic structure of the material, which, following the

recommendations of Logan and Hosford (1980), has to be 6 for BCC and 8 for

FCC materials. k1 and k2, which are invariants of the stress tensor, are obtained

from the equations expressed in 5.5. The values of a, c and h can be obtained by

introducing the anisotropy coefficients r0 and r90 into equation 5.6. The parameter

p is obtained numerically using the expressions that relate a, c, h and p with the

yield stresses obtained in different shear and uniaxial tests. In this study, p was

not obtained because the FE software does so internally. More information about

how to obtain this value can be found in the publication of Banabic (2010).

f(σ) ≡ a|k1 + k2|m + a|k1 − k2|m + c|2k2|m= 2σ̄m (5.4)

k1 =
σ11 + hσ22

2
; k2 =

√
σ11 − hσ22

2
+ p2σ2

12
(5.5)

a = 2− 2

√
r0r90

(1 + r0)(1 + r90)
; c = 2− a; h =

√
r0(1 + r90)

(1 + r0)r90
(5.6)
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Figure 5.3 shows different yield curves obtained using the expression of Barlat’s

89 yield criterion presented by equations 5.4, 5.5 and 5.6. The value of p was not

considered in this analysis because the curves are presented for a principal stress

state and, therefore, σ12 = 0. As depicted in figure 5.3b-d, the influence of the

anisotropy coefficients on the yield curve is similar to the effect observed for the

Hill 1948 yield criterion (figure 5.2). Regarding the effect of rmed in the first

quadrant (figure 5.3d), values of rmed less than 1 displace Barlat’s 89 yield curve

to inside of the von Mises yield curve, and values of rmed higher than 1 displace

the curve to outside the von Mises yield curve only in the biaxial region. With

respect to the effect of m (5.3d), for high values of m, the yield curve acquires a

polygonal shape that is reminiscent of the yield curve of the classical Tresca (1964)

yield criterion shown in figure 5.1.

Figure 5.3. Yield curves obtained using Barlat’s 1989 yield criterion: (a) influence of r0,

(b) influence of r90, (c) influence of normal anisotropy coefficient r and (d) influence of

Barlat exponent m
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To determine the differences between the Barlat and Hill yield curves, both are

presented in figure 5.4 together with the von Mises criterion yield curve. In this

figure, the two anisotropic criteria predict yield curves inside the von Mises yield

curve. As has been revealed, this is an effect caused by Lankford coefficients less

than 1. However, Barlat’s 89 prediction for the biaxial yield stress is closer to the

von Mises yield curve than to the Hill 48 yield curve.

Figure 5.4. Superposition of yield curves obtained using the Barlat 1989, Hill 1948 and

von Mises isotropic yield criteria.

In conclusion, this section has shown differences between the two anisotropic

yield criteria analysed (Hill 1948 and Barlat 1989). According to the yield curves

obtained for the AA2024-T3 sheet depicted in figure 5.4, the predictions of yield

curves using the Barlat 89 and Hill 48 yield criteria are different, especially in the

biaxial region. In this regard, many studies have shown higher accuracy of Barlat’s

89 yield criterion for aluminium alloys. (Woodthrope and Pearce (1970) and Pearce

(1968)) showed that the Barlat 1989 yield criterion is better than the Hill 1948

yield criterion in reproducing the behaviour of aluminium, specifically due to the

anomalous behaviour of aluminium alloys (see section 5.1.2). Furthermore, Lege

et al. (1964) showed the effectiveness of the Barlat 1989 yield criterion for FCC

sheet metals. Based on these studies, the use of the Barlat 1989 yield criterion

instead of the Hill 1948 yield criterion seems to be more accurate in FE modelling.
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5.2 Stress triaxiality

This section presents a triaxiality approach to fracture prediction in SPIF based

on the transformation of the formability limits from the principal strain space to

the average stress triaxiality vs. equivalent strain space.

As suggested by Martins et al. (2014), fracture in SPIF usually occurs in mode

I of fracture mechanics when a corresponding damage function D reaches a critical

value Dcrit. In this regard, Atkins (1996) proposed the damage function expressed

in equation 5.7 based on the level of accumulated stress triaxiality, which was

derived from the void-growth fracture criterion of McClintock (1968).

D =

∫ ε̄

0

σm
σ̄
dε̄ = η̄ε̄ (5.7)

In addition, Bao and Wierzbicki (2004) and later Wierzbicki et al. (2005) rep-

resented the different stress-strain states of a forming process in terms of the stress

triaxiality ratio and the equivalent strain. Mirnia and Shamsari (2017) proposed a

methodology for the prediction of failure using the average stress triaxiality, valid

for both proportional and non-proportional loading paths, which is the case in

SPIF. More recently, Mart́ınez-Donaire et al. (2019) analysed the loading paths

attained in hole flanging by SPIF, suggesting that the lower triaxiality levels at-

tained in SPIF explained the high levels of principal strains at failure. In this re-

gard, they obtained the expressions of the equivalent strain and the average stress

triaxiality corresponding to the Hill 48 yield criterion and represented the FLD

and the FFL of the material in the triaxiality space. Based on this work, Magrinho

et al. (2019) proposed an analytical transformation from the stress space to the

stress triaxiality space using the Hosford yield criterion for proportional loading.

Based on these previous studies, the expressions of the average stress triaxiality

η̄ and the equivalent strain ε̄ are obtained in subsection 5.2.1 using the three yield

criteria: the von Mises isotropic yield criterion, Hill 48 yield criterion and Barlat

89 yield criterion. Afterwards, in subsection 5.2.2, these expressions are used to

assess, experimentally and using FE, the FFL of an AA2024-T3 sheet in the stress

triaxiality space.
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5.2.1 Triaxiality equations

The transformation of the experimental loading paths and the corresponding form-

ing limits from the principal strain space to the triaxiality space requires evaluating

the stress triaxiality ratio η and the effective strain ε̄. The expressions of η and ε̄

were obtained in terms of principal stresses σ1 and σ2, with the tangential com-

ponent of the stress tensor τ12 = 0 and assuming plane stress conditions (σ3 = 0).

5.2.1.1 von Mises

The expression of the stress triaxiality ratio η and the equivalent strain ε̄ cor-

responding to the von Mises criterion were obtained from the general expression

of the von Mises isotropic yield criterion for plane stress, which is expressed as

follows:

2f(σij) ≡ (σ1 − σ2)2 + σ2
1 + σ2

2 = 2σ̄2 (5.8)

Considering the general expression of the flow rule expressed in equation 5.9,

dε̄ij = dλ
∂f(σij)

∂σij
(5.9)

where dλ > 0 is the instantaneous hardening parameter related to the material

strain-stress curve and σij is taken as the von Mises isotropic plasticity criterion,

the expressions of the strain increments dε1 and dε2 (equation 5.10) are obtained:

dε1 = 4σ1 − 2σ2

dε2 = 4σ2 − 2σ1

(5.10)

Consequently, the expression of the strain ratio β can be written using equation

5.10 as follows:

β =
dε2

dε1
=

4σ2 − 2σ1

4σ1 − 2σ2
=

2α− 1

2− α
(5.11)

where α is the stress ratio (equation 5.12).



82 Analytical framework

α =
σ2

σ1
(5.12)

Then, considering the incremental plastic work per unit of volume expressed

in equation 5.13,

dwp = (σ1dε1 + σ2dε2) = σ̄dε̄ (5.13)

and the strain ratio expressed in equation 5.11 and assuming the equivalent

stress obtained from equation 5.8, the effective strain increment dε̄ becomes

dε̄ =
(1 + αβ)dε1√
α2 − α+ 1

(5.14)

which is also valid in terms of absolute variables dε̄eq = f(ε1) under the as-

sumption of proportional loading.

Finally, expressing the mean stress σm under plane stress conditions (σ3 = 0)

as

σm =
σ1 + σ2 + σ3

3
=
σ1 + σ2

3
=

1 + α

3
σ1 (5.15)

it is possible to use equation 5.8 and equation 5.15 to define the stress triaxiality

ratio η as follows:

η =
σm
σ̄

=
(1 + α)

3
√
α2 − α+ 1

(5.16)

Equations 5.14 and 5.16 can be used to transform the proportional strain load-

ing paths and the forming limits from the principal strain space to the triaxiality

space using the von Mises isotropic yield criterion.
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5.2.1.2 Hill 1948

The expressions of the stress triaxiality ratio η and the equivalent strain ε̄ for

the Hill 48 yield criterion were obtained following the same procedure as for the

von Mises yield criterion (section 5.2.1.1). These expressions were obtained by

Mart́ınez-Donaire et al. (2019) under the assumption of normal anisotropy. How-

ever, the expressions presented in this section will be formulated assuming planar

anisotropy, which considers the Lankford coefficients r0 and r90 instead of the nor-

mal anisotropy coefficient r. In this regard, the general expression of the Hill 48

yield criterion for plane stress, expressed in terms of principal stress components

σ1 and σ2, is

2f(σij) ≡ (G+H)σ2
1 − 2Hσ1σ2 + (H + F )σ2

2 = σ̄2 (5.17)

where the coefficients F, G and H are functions of the Lankford coefficients r0

and r90 through the relations

F =
r0

(1 + r0)r90
; G =

1

(1 + r0)
; H = 1− 1

(1 + r0)
(5.18)

The expressions of dε1 and dε2 are obtained by applying the general flow rule

(equation 5.9),

dε1 = (G+H)σ1 −Hσ2

dε2 = −Hσ1 + (H + F )σ2

(5.19)

Consequently, using equation 5.12, the strain ratio β can be expressed as a

function of the stress ratio α as follows:

β =
dε2

dε1
=
−Hσ1 + (H + F )σ2

(G+H)σ1 −Hσ2
=

(H + F )α−H
G+H −Hα

(5.20)

Then, considering the expression of the incremental plastic work per unit of

volume (equation 5.13) and the strain ratio expressed in equation 5.11 and assum-
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ing the equivalent stress obtained for the Hill 48 yield criterion (equation 5.17),

the effective strain increment dε̄ is expressed as follows:

dε̄ =
(1 + αβ)dε1√

G+H − 2Hα+ (H + F )α2
(5.21)

Finally, from the expression of the mean stress under plane stress conditions

(equation 5.15) and the general expression of the Hill 48 yield criterion for plane

stress conditions (5.17), it is possible to define the stress triaxiality ratio η as

follows:

η =
σm
σ̄

=
1 + α

3
√
G+H − 2Hα+ (H + F )α2

(5.22)

Equations 5.21 and 5.22 can be used to transform the proportional strain load-

ing paths and the forming limits from the principal strain space to the triaxiality

space using the Hill 48 yield criterion. Note that for r0 = 0 and r90 = 0, i.e.,

assuming isotropy, equation 5.21 and equation 5.22 become the expressions of

the strain increment (equation 5.14) and stress triaxiality ratio (equation 5.16),

respectively, that correspond to the von Mises isotropic yield criterion.

5.2.1.3 Barlat 1989

The general expression of the Barlat 1989 yield function for planar anisotropy and

plane stress conditions is presented in equation 5.23, where k1 and k2 (equation

5.24) can be written as functions of the principal stresses σ1 and σ2 or using the

expression of the stress ratio presented in equation 5.12.

f(σij) ≡ a|k1 + k2|m + a|k1 − k2|m + c|2k2|m= 2σ̄m (5.23)

k1 =
σ1 + hσ2

2
=

1 + hα

2
σ1; k2 =

√(
σ1 − hσ2

2

)2

=

√(
1− hα

2

)2

σ1
(5.24)

The parameters a, c and h, given by equation 5.25, are functions of the aniso-
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tropy coefficients r0 and r90, and the exponent m depends on the crystallographic

structure. In this case, m was set to 8, corresponding to FCC structures.

a = 2− 2

√
r0r90

(1 + r0)(1 + r90)
; c = 2− a; h =

√
r0(1 + r90)

(1 + r0)r90
(5.25)

Considering the general flow rule expression (equation 5.9), the strain incre-

ments dε1 and dε2 can be defined as follows:

dε1 = am|k1 + k2|m−2(k1 + k2) + cm|2k2|m−2(2k2)

dε2 = amh|k1 − k2|m−2(k1 − k2)− cmh|2k2|m−2(2k2)
(5.26)

Consequently, the stress ratio β can be written as a function of the stress ratio

α (equation 5.12) as shown in equation 5.27.

β =
dε2

dε1
=

a|k1 + k2|m−2(k1 + k2) + c|2k2|m−2(2k2)

ah|k1 − k2|m−2(k1 − k2)− ch|2k2|m−2(2k2)
(5.27)

Substituting into equation 5.27 the expressions of k1 and k2 presented in equa-

tion 5.24, σ1 is cancelled and β is defined as a function of the stress ratio α:

β =
ah

∣∣∣∣ 1+hα2 −
√

( 1−hα
2 )

2
∣∣∣∣m−2(

1+hα
2 −

√
( 1−hα

2 )
2
)
−ch

∣∣∣∣2√( 1−hα
2 )

2
∣∣∣∣m−2(

2
√

( 1−hα
2 )

2
)

a

∣∣∣∣ 1+hα2 +
√

( 1−hα
2 )

2
∣∣∣∣m−2(

1+hα
2 +

√
( 1−hα

2 )
2
)

+c

∣∣∣∣2√( 1−hα
2 )

2
∣∣∣∣m−2(

2
√

( 1−hα
2 )

2
) (5.28)

Then, considering the expression of the incremental plastic work per unit of

volume (equation 5.13) and the strain ratio β (equation 5.11) and assuming the

equivalent stress obtained for the Barlat 89 yield criterion (equation 5.23), the

effective strain increment dε̄ is expressed as follows:

dε̄ =
(σ1dε1 + σ2dε2)

σ̄
=

(1 + αβ)σ1dε1

σ̄
(5.29)
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Using the expression of equivalent stress σ̄ for the Barlat 89 yield function

obtained from equation 5.23 and substituting k1 and k2 from equation 5.24 into

equation 5.29, σ1 can be cancelled, obtaining the effective strain increment as a

function of α, β and the strain increment dε1 as follows:

dε̄ =
(1 + αβ)dε1(

a
2

∣∣∣∣ 1+hα
2 +

√(
1−hα

2

)2∣∣∣∣m + a
2

∣∣∣∣ 1+hα
2 −

√(
1−hα

2

)2∣∣∣∣m + c
2

∣∣∣∣√(1− hα)
2

∣∣∣∣m)
1
m

(5.30)

Equation 5.30 is also valid in terms of absolute variables ε̄eq = f(ε1) under the

assumption of proportional loading.

Finally, from the mean stress σm (equation 5.15) and the equivalent stress σ̄

for Barlat 89 (equation 5.23), the stress triaxiality ratio η is defined as follows:

η =
σm
σ̄

=

(1+α)
3(

a
2

∣∣∣∣ 1+hα
2 +

√(
1−hα

2

)2∣∣∣∣m + a
2

∣∣∣∣ 1+hα
2 −

√(
1−hα

2

)2∣∣∣∣m + c
2

∣∣∣∣√(1− hα)
2

∣∣∣∣m)
1
m

(5.31)

Using the expression of the stress triaxiality ratio expressed in equation 5.31,

the expression of the average stress triaxiality defined in equation 5.32 is obtained.

However, obtaining the analytical expression of equation 5.32) has not been ne-

cessary. On the one hand, the strain evolutions of the Nakazima tests used to

obtain the FFL are proportional, with the stress triaxiality ratio defined by a

constant. On the other hand, the average stress triaxiality corresponding to the

flanging simulations, which have non-proportional strain evolutions, is obtained

numerically.

η̄ =
1

εeq

∫ ε̄

0

σm
σeq

dεeq (5.32)
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5.2.2 Forming limit within the triaxiality space

Assessment of the FFL curves presented in the stress triaxiality vs. equivalent

strain space was carried out for the three yield criteria presented in section 5.2.1.

Additionally, the FFL corresponding to the Barlat 89 criterion, which is the yield

criterion used in the FE models, was obtained using FE simulations and the ex-

perimental fracture strains of the Nakazima test presented in section 3.1.3.

5.2.2.1 Obtaining the FFL curves

Assessment of the FFL curves in the triaxiality space was performed through the

transformation of the fracture points from the principal strain space to the average

stress triaxiality vs. equivalent strain (η̄-ε̄) space. To perform the transformation,

the expressions of η̄ and ε̄ for the three yield criteria presented in section 5.2.1

were evaluated using different fracture strains. For the two anisotropic criteria,

Hill 48 and Barlat 89, the Lankford coefficients corresponded to the AA2024-

T3 sheet (r0 = 0.76 and r90 = 0.54). The procedure to obtain the FFL curves is

homologous for the three yield criteria and will therefore be described exhaustively

for the Barlat 89 yield criterion and extrapolated for the other two criteria.

Table 5.1 contains the principal strains ε̄1 and ε̄2, the strain ratio β and the

stress ratio α of the points selected to represent the FFL in the triaxiality space.

These points were classified as either experimental (E) or theoretical (T). On

the one hand, the experimental points represent the fracture strains achieved in

the experimental Nakazima tests described in section 3.1.3. These points were

obtained by averaging the fracture strains obtained for each strain path presented

in figure 5.5a. In addition, the experimental points were used to obtain the FFL

in the principal strain space. On the other hand, the theoretical points were

obtained from the intersection between the FFL and the theoretical strain paths

corresponding to uniaxial tension (α = 0), plane strain (β = 0) and equi-biaxial

strain (β = 1). These points are represented in figure 5.5a by white squares. It

should be mentioned that β = −0.432 is the strain ratio for pure tension (α = 0)

of AA2024-T3 obtained using the Barlat 89 yield criterion from equation 5.27. In

the case of the FFL curves for the Hill 48 yield criterion and von Mises isotropic

yield criterion, equations 5.20 and 5.11 were used, respectively.
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Description β α ε1 ε2

Uniaxial (T) -0.432 0 0.468 -0.202

Uniaxial (E) -0.314 0.062 0.383 -0.120

Plane-strain (E) -0.089 0.232 0.284 -0.025

Plane-strain (T) 0 0.448 0.260 0

Biaxial 1 (E) 0.092 0.641 0.241 0.022

Biaxial 2 (E) 0.383 0.780 0.237 0.091

Equi-biaxial (E) 0.900 0.876 0.258 0.232

Equi-biaxial (T) 1 0.889 0.260 0.260

Table 5.1. Values of α, β and major strain ε1 for the points selected to represent the

FFL curve in the η̄-ε̄ diagram. (T) theoretical, (E) experimental.

Using the values of β and ε1 presented in table 5.1, the expressions of η̄ (equa-

tion 5.31) and ε̄ (equation 5.30) for the Barlat 89 yield criterion were evaluated,

obtaining the corresponding FFL in the stress triaxiality space depicted in figure

5.5b. In this figure, the blue line corresponds to the FFL for the Barlat yield

criterion, and the theoretical and experimental points are represented using blue

filled squares and filled circles, respectively, according to the criteria adopted in

figure 5.5a. As mentioned, the strain paths were considered proportional, and

consequently, (i) the major strain increment dε1 and the major strain ε1 coincide

in equation 5.31), and (ii) the expressions for the average stress triaxiality 5.32

and the triaxiality ratio 5.31 are equivalent. In the second case, this causes the

evolution of the average stress triaxiality to be represented by a straight vertical

line in the diagram depicted in figure 5.5b.

In addition, the FFL curves for the von Mises anisotropy yield criterion and

the Hill 48 yield criterion are presented in figure 5.5b. The FFL curves obtained

using the different yield criteria are sensibly different. In this regard, the FFL of

the von Mises yield criterion is similar to the FFL for Barlat’s 89 yield criterion

in the biaxial region (η̄ ≈ 0.65) and different from the FFL for the Hill 48 yield

criterion. In contrast, the FFL curves corresponding to the Barlat 89 and Hill

48 yield criteria are similar for η̄ ≤ 0.55 but different from the FFL obtained for

the von Mises criterion in the same range of η̄. Consequently, the predictions of

fractures in the triaxiality space using different yield criteria are very different.
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Figure 5.5. (a) FFL obtained by Nakazima tests and (b) FFL in the stress triaxiality

space using different yield criteria.

Regarding anisotropy, the effect of the Lankford coefficients on the FFL curves

was analysed. In this regard, figures 5.6 and 5.7 present the FFL curves for the

Barlat 89 yield criterion for different values of r0 and r90, respectively. In general,

a variation in the Lankford coefficients displaces the FFL curves in the triaxiality

space. Concretely, changes in r0 produce a displacement of the left part of the

curves (see figure 5.6), and variations in r90 displace the right part of the FFL

curves (see figure 5.7).

Figure 5.6. Effect of Lankford coefficient r0 on the FFL curves in the triaxiality space

obtained using Barlat’s 89 yield criterion.
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Figure 5.7. Effect of Lankford coefficient r90 on the FFL curves in the triaxiality space

obtained using Barlat’s 89 yield criterion.

Finally, the effect of different values of the Barlat exponent m was analysed.

The blue line in figure 5.8 corresponds to m = 2, which coincides with the Hill

criterion. The FFL presented in red is a hypothetical case corresponding to m =

20, which shows the effect of increasing m well above 8. In this regard, it can

be seen that the FFL curves are sensitive to the value of the Barlat exponent m,

obtaining different values of triaxiality ratio η and equivalent strain ε̄ for the same

fracture points.

Figure 5.8. Effect of Barlat exponent m on the FFL curves in the triaxiality space

obtained using Barlat’s 89 yield criterion.
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5.2.2.2 Numerical assessment of the Barlat FFL

This section analyses the evolutions of numerical Nakazima tests in the stress

triaxiality space using the Barlat 89 yield criterion. These evolutions are then

compared to the FFL obtained analytically in section 5.2.2.1 to assess the accuracy

of the triaxiality results obtained in section 6.1.4 for the simulations of flanging

by SPIF.

For the FE model of the Nakazima tests, the same parameters considered for

the simulations of flanging forming by SPIF were used. Specifically, the material

properties, meshing parameters and hourglass control are presented in section

4. The use of these parameters ensures consistency with the triaxiality results

obtained in section 6.1.4. Furthermore, to obtain different paths in the triaxiality

space, three different specimen geometries for the Nakazima tests were considered:

uniaxial tension, plane strain and equi-biaxial strain.

Figure 5.9 depicts the evolutions of the numerical Nakazima tests in the stress

triaxiality space. On the one hand, the grey curves represent the evolution of the

triaxiality ratio η during the tests. Under proportional loading, η is a constant,

and therefore, its evolution is a vertical line, as depicted for the equi-biaxial test

(η ≈ 0.65). However, the evolutions of η for uniaxial tension (η ≈ 0.36) and plane

strain (η ≈ 0.43) present oscillations in the initial stages of the test. This occurs

due to the adjustment between the specimen and the Nakazima spherical punch.

On the other hand, the dotted black curves represent the evolution of the average

stress triaxiality η̄. The evolution of η̄ is obtained from equation 5.32 and coincides

with η for proportional loading (η = constant). However, as has been mentioned,

η is not constant for plane-strain and uniaxial tension, and therefore, η and η̄ do

not coincide.

Concerning the assessment of the fracture points, the Nakazima FE models

did not reproduce the fracture itself. Consequently, the fracture points within the

triaxiality space were determined using the experimental fracture strains presented

in table 5.1 for uniaxial (E), plane-strain (E) and equi-biaxial (E) fractures. In

this regard, it was assumed that fracture is attained when the numerical major

strain reaches the corresponding experimental major strain at fracture (table 5.1).

As depicted in figure 5.9, the three fracture points predicted in the numerical

simulations coincide with the points obtained analytically.

Considering the results presented in this section, the numerical model repro-

duces the behaviour of the performed Nakazima tests in terms of stress triaxiality.

In this regard, the fracture points predicted analytically and using FE coincide for
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the same experimental fracture strains.

Figure 5.9. FFL and numerical evolution of Nakazima tests in the η̄-ε̄ space.



Chapter 6

Results

This chapter aims to present the results obtained in this research work, discussing

the main contributions. Stretch and shrink flanging experiments are independently

analysed in sections 6.1 and 6.2, respectively, using the experimental and numerical

resources described in previous chapters.

6.1 Stretch flanging

This section contains the results corresponding to stretch flanging by SPIF. First,

section 6.1.1 presents the stretch flanges obtained experimentally, describing and

classifying the failure modes observed. Second, in section 6.1.2, the most repres-

entative flanges in terms of principal strains and formability are analysed. Third,

in section 6.1.3, a validation of the numerical model for stretch flanging by SPIF

is performed. Finally, in section 6.1.4, the numerical model is used to perform a

formability analysis in terms of stress triaxiality.

It must be noted that the most relevant results concerning stretch flanging

by SPIF presented in this section have been successfully published in a keynote

international journal publication (López-Fernández et al., 2021).

93
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6.1.1 Experimental tests

The experimental campaign consisted of a series of stretch flanging experiments

carried out following the stretch flanging process described in section 3.2. The

aim of this series of tests is to obtain the process windows for different process

parameters and discuss the characteristics of the principal modes of failure. For

this purpose, the experimental tests presented in table 6.1 and table 6.2 were

performed based on the different parameters presented in table 3.3. The set of

parameters includes two different die radii (Rdie = 45 mm and Rdie = 20 mm),

two tool diameters (φtool = 12 mm and φtool = 20 mm), two spindle speeds (S = 20

rpm and S = 1000 rpm) and different initial widths (w0) and initial lengths (l0).

Note that at least two replicates were performed for every experiment to provide

statistical meaning, resulting in more than 200 tests.

According to their mode of failure, the experiments were classified using the

following nomenclature: S (safe) for the flanges produced successfully, F(E) for the

cases that presented fracture at the edge, and F(C) for the flanges with fracture

at the corner.

Table 6.1. Stretch flanging experiments corresponding to Rdie = 45 mm. Tests in bold

are analysed in section 6.1.2.
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Furthermore, a colour-based code is used in table 6.1 and table 6.2 to easily

identify the different regions, representing in green the safe zone, yellow the zone

corresponding to failure at the corner and red the experiments with fracture at

the edge. A more detailed description of the different modes of failure is presented

in section 3.3.2.

In general terms, short and narrow flanges (low values of l0 and w0) for both

die radii are within the safe zone, whereas large and wide flanges (high values of

w0 and l0) fail either by fracture at the corner or by fracture at the edge. Re-

garding the tool diameter φtool, it did not exhibit a clear effect with respect to

the mode of failure attained, with larger values increasing the safe zone for flanges

corresponding to the largest die radius (Rdie = 45 mm) but having the opposite

effect for the flanges corresponding to the smallest die radius (Rdie = 20 mm).

With respect to the spindle speed S, the highest value (S = 1000 rpm) increased

the safe zone independent of the die radius, as depicted in table 6.1 for Rdie = 45

mm and in table 6.2 for Rdie = 20 mm, which is in line with a previous trend

observed by Borrego et al. (2016) in hole flanging experiments.

Table 6.2. Stretch flanging experiments corresponding to Rdie = 20 mm. Tests in bold

are analysed in section 6.1.2.
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To perform a deeper analysis of the relation between the flange geometry and

the failure mode attained, the experiments presented in table 6.1c and table 6.2c

will be analysed independently.

First, the analysis is focused on the experiments corresponding to Rdie = 45

mm presented in table 6.1c. In this table, flanges with initial widths w0 less than

54 mm were in the safe zone, and for these narrow flanges, the process was similar

to a conventional sheet bending process. Two examples of narrow flanges are

depicted in figure 6.1. Although they are in the safe zone, narrow flanges with

high l0 sometimes do not have the desired geometry due to the springback effect.

With respect to the initial length l0, flanges with values of l0 less than 25 mm are

always within the safe zone, as these flanges are too short to be stretched by the

forming tool. Figure 6.2a and figure 6.2b contain two examples of short flanges,

corresponding to equal initial length l0 of 20 mm and initial widths w0 of 54 mm

and 72 mm, respectively. However, it must be mentioned that for initial lengths

of less than 15 mm, the resulting flanges have a very small flange height that

hardly adapts to the bending radius of the die. Concerning the experiments in the

unsafe zone, which corresponds to flanges of high initial length and high initial

width, the predominant failure is fracture at the corner. For this geometry, the

flanges are narrow enough to twist alternatively due to tool-sheet friction, causing

cyclic plastic straining at the corner of the flange and, consequently, fracture at

the corner, as shown in figure 6.3b.

Nevertheless, for some flanges, the failure mode attained is fracture at the edge

(see figure 6.3a). In these cases, fracture occurs due to the tensile strains at the

edge of the flange before cyclic straining produces fracture at the corner. As will

be discussed in section 6.1.2, the fracture does not necessarily initiate at the very

edge but may appear at a certain distance from it and then propagate toward

the edge. Additionally, it is worth noting that many tests were performed at step

down ∆z = 0.2 mm, leading to the conclusion that this value causes more cyclical

straining than the current value of ∆z = 0.4 mm. In this regard, for ∆z = 0.4 mm,

the number of tool passes for equal initial length is lower, avoiding some fractures

at corners. This analysis result was why the final experiments were performed at

∆z = 0.4 mm.
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Figure 6.1. Narrow stretch flanges included in table 6.1c corresponding to (a) an initial

width of w0 = 36 mm and an initial length of l0 = 30 mm and (b) an initial width of

w0 = 45 mm and an initial length of l0 = 30 mm.

Figure 6.2. Stretch flanges included in table 6.1c corresponding to (a) an initial width

of w0 = 54 mm and an initial length of l0 = 20 mm and (b) an initial width of w0 = 72

mm and an initial length of l0 = 20 mm.

Figure 6.3. Stretch flanges included in table 6.1c failed by (a) fracture at the corner

(w0 = 63 mm and l0 = 25 mm) and (b) fracture at the edge (w0 = 72 mm and l0 = 25

mm).
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Regarding the experiments for Rdie = 20, the flanges contained in table 6.2c

were analysed. For this die radius, flanges with initial widths w0 less than 32 mm

were successfully processed. As depicted in figure 6.4, the principal concave radius

of the flanges corresponding to w0 = 20 mm and w0 = 24 mm is very mild, and

their final shape is obtained in a sheet-bending operation. Additionally, although

the flanges with low w0 did not present fractures, they showed more springback

than flanges with larger w0. In this regard, the successful flanges in the centre of

table 6.2c, e.g., the flanges depicted in figure 6.5, present less springback and have

a principal concave radius that is more pronounced than that of flanges with lower

w0. With respect to the failure zone, both failure at the corner and failure at the

edge were obtained. Concretely, the flanges with larger l0 presented fracture at the

corner (figure 6.6a), as they were subjected to more cyclical straining compared

to flanges with lower l0. In contrast, the flange of w0 = 36 mm and l0 = 15 mm

depicted in figure 6.6b failed by fracture at the edge.

Figure 6.4. Narrow stretch flanges included in table 6.2c corresponding to (a) an initial

width of w0 = 20 mm and an initial length of l0 = 25 mm and (b) an initial width of

w0 = 24 mm and an initial length of l0 = 25 mm.
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Figure 6.5. Stretch flanges included in table 6.2c corresponding to (a) w0 = 32 mm and

l0 = 15 mm and (b) w0 = 28 mm and l0 = 20 mm.

Figure 6.6. Failed stretch flanges included in table 6.2c corresponding to (a) fracture at

the corner (w0 = 32 mm and l0 = 25 mm) and (b) fracture at the edge (w0 = 36 mm

and l0 = 15 mm).
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6.1.2 Strain analysis

The analysis within the principal strain space focuses on four flanges selected from

the tests presented in section 6.1.1, corresponding to the cases highlighted in bold

in table 6.1c and table 6.2c. These flanges are the most representative for studying

the transition from the successful manufacturing of a flange to failure by fracture

at the edge. The aim of this analysis is twofold: (i) understanding the strain

conditions that lead to fracture in stretch flanging by SPIF and (ii) evaluating the

formability attained in stretch flanging compared to the conventional FFL obtained

from Nakazima tests. For this purpose, following the methodology detailed in

section 3.3.1, two tests for each die radius (Rdie = 45 mm and Rdie = 20 mm)

with fixed tool diameter φtool = 12 mm and spindle speed S = 20 rpm were

analysed. In the case of the larger die radius Rdie = 45 mm, the transition from

the safe zone to fracture in table 6.1 was analysed at constant initial width w0 = 72

mm, whereas for the smaller die radius Rdie = 20 mm, this transition was attained

at constant initial length l0 = 15 mm.

Concerning the larger die radius Rdie = 45 mm, the two experiments analysed

are of fixed initial width w0 = 72 mm and initial lengths l0 = 20 mm and l0 = 25

mm, corresponding to the successful flange and the flange that failed by fracture

at the edge F(E) presented in table 6.1c.

In this regard, the contour of thickness reduction obtained using Argus® for

the successful flange is depicted in figure 6.7a. For the same flange, figure 6.7c

shows the principal strain distribution within the FLD, with the points coloured

based on the thickness reduction and including the FFL obtained for the AA2024-

T3 sheet. Additionally, the section depicted in blue in figure 6.7a is represented

in the principal strain diagram (figure 6.7c) by a white-circle dotted line. This

section is located in the flange longitudinally and coincides with the point where

fracture occurred in the flanges that failed by fracture at the edge F(E). The last

point of the section was obtained by thickness measurement using the methodology

detailed in section 3.3.1. As this point is at the edge of the flange and, therefore,

subjected to pure tension conditions, it was forced to be on the β = −0.43 line for

this material according to the Barlat 89 yield criterion.

Likewise, for the flange that failed by fracture at the edge for Rdie = 45 mm,

figure 6.7b and figure 6.7d present the thickness strain contour and the principal

strain distribution within the FLD, respectively. In this case, the section is located

along the flange and coincides with the actual fracture attained for this test.
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Figure 6.7. Formability analysis within the principal strain space of stretch flanges cor-

responding to φtool = 12 mm, S = 20 rpm, Rdie = 45 mm and w0 = 72 mm: contour of

thickness reduction for (a) l0 = 20 mm and (b) l0 = 25 mm with the corresponding FLD

in (c) and (d), respectively.

The location of the fracture in the principal strain diagram is represented in

figure 6.7d by a black diamond, along with a picture of the crack.

If both flanges are compared, it can be seen that the maximum levels of thick-

ness reduction are higher in the failed flange than in the successful flange. Indeed,

in the flange that failed by fracture at the edge, fracture occurs at the location of

the edge with the highest thickness reduction. According to the principal strain

diagram, the maximum levels of principal strains are above the FFL for both the

successful flange and the failed flange. However, the flange that failed by fracture

at the edge presented a larger number of points with higher strain levels com-

pared to the successful specimen. In addition, in the case of the successful flange

and in the absence of fracture, there were a number of points slightly above the

FFL. These results demonstrate the increase in formability of flanging by SPIF
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with respect to the conventional limits represented by the FFL obtained by means

of Nakazima tests. These results agree with the increase in formability observed

for hole flanging by SPIF of aluminium sheets by Mart́ınez-Donaire et al. (2019)

and stainless steel sheets by Centeno et al. (2014). Furthermore, focusing on the

principal strain diagram of the failed flange depicted in figure 6.7d, the strains at

the points labelled as ”fracture at edge” are lower than the strain levels for points

inside from the edge. Based on this observation, it can be suggested that fracture

did not occur at the very edge but slightly inside from the edge.

Analogously, the previous study was performed for the experiments with Rdie =

20 mm. In this case, the transition from the successful zone to fracture was

analysed at constant initial length l0 = 15 mm and for two different initial widths

w0 = 32 mm and w0 = 36 mm. These experiments correspond to the successful

flange and the flange that failed by fracture at the edge highlighted in bold in

table 6.2c.

Consequently, for the successful case of w0 = 32 mm, figure 6.8a and figure

6.8c depict the thickness reduction contour and the strain distribution within the

FLD obtained from the software Argus®. In this case, the most representative

section was located in the centre of the flange, coinciding with the location where

the fracture occurred for failed flanges corresponding to Rdie = 20 mm. For the

flange that failed by fracture at the edge F(E), figure 6.8b and figure 6.8d present

the thickness reduction contour and the diagram of principal strains, respectively.

As for the case of Rdie = 45 mm, the section is represented in the principal strain

diagram (6.8d) using a white-dotted line. Furthermore, the strains at fracture

were obtained by thickness measurement and represented using a black diamond

along with the fractography of the crack for this flange.

According to the strain contours for both the successful and failed flanges, the

highest levels of thickness reduction are located at the centre of the flange near

the edge. Then, focusing on the principal strain diagrams, the highest strain levels

are below the FFL for the successful flange (figure 6.8c), whereas for the failed

flange (figure 6.8d), they are above the FFL. In this regard, although the number

of points above the FFL is not as high as in the case of Rdie = 45 mm, the number

of points above this limit also demonstrates an increase in formability for this die

radius.
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Figure 6.8. Formability analysis within the principal strain space of stretch flanges cor-

responding to φtool = 12 mm, S = 20 rpm, Rdie = 20 mm and l0 = 15 mm: contour of

thickness reduction for (a) w0 = 32 mm and (b) w0 = 36 mm with the corresponding

FLD in (c) and (d), respectively.

6.1.3 Validation of the numerical model

In this section, the FE model corresponding to stretch flanging by SPIF is valid-

ated in terms of principal strains. With this aim, the four experiments analysed in

section 6.1.2 were reproduced numerically and critically compared with the corres-

ponding experimental strains. Concretely, strain validation was performed using

the experimental and numerical results obtained from both the major strain con-

tours and the strain distribution of the most representative section of each flange.

A similar validation in terms of principal strains was used for stainless steel by

Centeno et al. (2017).
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Figure 6.9. Validation of numerical modelling: (a) comparison of numerical vs. experi-

mental principal strains and (b) experimental and numerical major strain contours (the

figures correspond to the successful case φtool = 12 mm, S = 20 rpm, Rdie = 45 mm,

l0 = 20 mm and w0 = 72 mm).

Figure 6.10. Validation of numerical modelling: (a) comparison of numerical vs. experi-

mental principal strains and (b) experimental and numerical major strain contours (the

figures correspond to the failed case φtool = 12 mm, S = 20 rpm, Rdie = 45 mm, l0 = 25

mm and w0 = 72 mm).

First, focusing on Rdie = 45 mm, figure 6.9 and figure 6.10 show the numerical
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and experimental results obtained for the successful flange S and the flange that

failed by fracture at the edge F(E), respectively. On the one hand, the strain

distributions within the FLD of the selected sections are depicted in figure 6.9 and

figure 6.10 for both flanges, showing good agreement between the numerical and

experimental results. On the other hand, the numerical and experimental major

strain contours of the flanges are shown in figure 6.9b and figure 6.10b.

The numerical model generally reproduces the major strains of the experi-

mental flanges in terms of the strain distribution and level of maximum strain.

In this regard, it should be noted that the experimental measurements obtained

using CGA do not allow evaluation of the strains at the very edge of the sheet;

therefore, the numerical contours provide additional information from the flange

edge.

Figure 6.11. Validation of numerical modelling: (a) comparison of numerical vs. experi-

mental principal strains and (b) experimental and numerical major strain contours (the

figures correspond to the successful case φtool = 12 mm, S = 20 rpm, Rdie = 20 mm,

l0 = 15 mm and w0 = 32 mm).

Analogously, the previous analysis was performed for a successful flange and

a failed flange corresponding to Rdie = 20 mm. In this regard, figure 6.11 and

figure 6.12 show the major strain contours and the strain distribution of the most

representative section (located in the centre of the flange) for both flanges. As

depicted in figure 6.11a and figure 6.12a, the numerical and experimental strain
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results from these sections are in good agreement for both flanges. Indeed, at

the last point of the section, the numerical prediction also agrees with the strains

obtained by thickness measurement. Regarding the strain contours, the FE model

reproduces the distribution of major strains, which are maximal at the centre of

the flange and near the edge for Rdie = 20 mm. The edge of the flange is not

represented in the experimental contour, with the strains at the edge of the flange

depicted only in the numerical major strain contours.

Figure 6.12. Validation of numerical modelling: (a) comparison of numerical vs. experi-

mental principal strains and (b) experimental and numerical major strain contours (the

figures correspond to the failed case φtool = 12 mm, S = 20 rpm, Rdie = 20 mm, l0 = 15

mm and w0 = 36 mm).

Based on the good agreement of the experimental and numerical results, it can

be concluded that the numerical model successfully reproduces the behaviour of

the stretch flanging process by SPIF and can therefore be used to provide accurate

predictions in terms of principal strains and modes of failure. In this regard, the

numerical model will be used in section 6.1.4 to perform a formability analysis in

terms of stress triaxiality.



6.1 Stretch flanging 107

6.1.4 Stress triaxiality analysis

The results presented in section 6.1.2 showed that the strain levels attained in

stretch flanging by SPIF exceed the conventional formability limit, which is rep-

resented by the FFL for materials without necking. As a consequence, in this

process, the onset of fracture cannot be adequately predicted based only on the

material FLD. In this regard, previous studies suggested the use of average stress

triaxiality vs. equivalent strain (η̄ vs. ε̄) diagrams to make failure predictions

in SPIF (Mirnia and Shamsari (2017), Magrinho et al. (2019), Mart́ınez-Donaire

et al. (2019)). In this section, the triaxiality approach to the prediction of failure

presented by Mart́ınez-Donaire et al. (2019) will be reproduced using the Barlat 89

yield criterion for stretch flanging by SPIF. With this aim, the FFL of the material

for proportional loading obtained in section 5.2.2, along with the corresponding

results obtained for stretch flanging by SPIF, will be analysed in the η̄-ε̄ space.

First, the FFL curves of the material in the triaxiality space are presented

in figure 6.13 and figure 6.14 for the different yield criteria presented in section

5.2.2. The black curve corresponds to the FFL for the Barlat yield criterion,

whereas the grey curve is the FFL obtained using the von Mises isotropic yield

criterion. As depicted, the average stress triaxiality values evaluated at fracture,

which in the case of proportional loading coincide with the stress triaxiality ratio,

obtained for the two curves are different. In the isotropic case, the triaxiality ratio

corresponds to η = 0.33, η = 0.58 and η = 0.67 for the pure tension, plane strain

and equi-biaxial Nakazima tests, respectively. In contrast, for the same tests, the

predictions of the Barlat 89 yield criterion correspond to η = 0.33, η = 0.53 and

η = 0.65, respectively. Consequently, it can be affirmed that the FFLs predicted

using both yield criteria are different in the stress triaxiality space.

Additionally, the flanges studied in section 6.1.3 were analysed within the tri-

axiality space along with the two FFL curves presented above. In this regard,

figure 6.13 and figure 6.14 present the evolution in the η̄-ε̄ space of the flanges

corresponding to Rdie = 45 mm and Rdie = 20 mm, respectively, using blue colour

for the successful cases and red colour for the evolution of the failed flanges. Fur-

thermore, for the fractured specimens, the fracture point is marked with ”x” in

the diagrams. The points at which η̄ and ε̄ were evaluated are presented in figures

6.9-6.12 under the label ”triaxiality measure point”. In the failed flanges, these

critical points are located at the fracture locus, whereas in the successful flanges,

they are the points with the highest equivalent strain ε̄.

As seen in figure 6.13 and figure 6.14, for the four flanges analysed, the aver-
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age stress triaxiality levels are lower than the values attained in the FFL curves,

whereas the equivalent strains are much higher than the FFL curves. In this re-

gard, it can be affirmed that the evolution of the critical points in the η̄-ε̄ diagram

occurs in a different region than the one where the Nakazima tests evolve. Con-

sequently, the FFL curves expressed in the η̄-ε̄ diagram do not allow the fracture

in stretch flanging by SPIF to be successfully predicted.

Figure 6.13. Analysis within the stress triaxiality space corresponding to a successful

flange and a flange that failed by fracture at the edge for Rdie = 45 mm.

To assess the onset of fracture in the η̄-ε̄ diagram, a different approach is

proposed. It consists of using the Atkins equation (Atkins, 1996), which is based

on the damage criteria proposed by McClintock (McClintock, 1968), to illustrate a

possible limit in the triaxiality space. This limit is expressed using an iso-damage

curve that follows the expression η̄ · ε̄ = k and is represented using a dotted line

in figure 6.13 and figure 6.14. For these flanges, the critical value ”k”, which

represents the value at which fracture occurs, is a material constant estimated
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from the average value of the different flanges analysed. Based on this approach,

the flanges that failed by fracture at the edge presented in figure 6.13 and figure

6.14 (red lines) present a higher level of accumulated damage than the successful

flanges (blue lines). Furthermore, the equivalent strains are higher in successful

flanges than in failed flanges, evidencing that the equivalent strain is not suitable

by itself for making fracture predictions.

Figure 6.14. Analysis within the stress triaxiality space corresponding to a successful

flange and a flange that failed by fracture at the edge for Rdie = 20 mm.

6.2 Shrink flanging

This section contains the results corresponding to shrink flanging by SPIF. Sec-

tion 6.2.1 presents the experimental tests carried out, classifying and describing

the principal modes of failure attained. In section 6.2.2, the most representative

shrink flanges in the principal strain space are analysed, discussing their prin-



110 Results

cipal characteristics in terms of formability. In section 6.2.3, the numerical model

is validated in terms of principal strains using the experimental results obtained

in section 6.2.2. In section 6.2.4, the final geometry of the flanges are analysed,

and the experimental results are compared with FE predictions. Finally, section

6.2.5 presents a new approach to failure prediction in shrink flanging based on the

analysis of compression stresses.

6.2.1 Experimental tests

This section presents the results of the experimental campaign performed for shrink

flanging by SPIF. A set of tests were carried out to analyse the principal modes of

failure and the influence of different process parameters on the material formability.

The parameters analysed include two principal die radii (Rdie = 45 mm and Rdie =

20 mm), two different tool diameters (φtool = 12 mm and φtool = 20 mm), two

spindle speeds (S = 20 rpm and S = 1000 rpm) and different values of initial

width (w0) and initial length (l0). The flanges resulting from the combination

of these parameters are summarized in table 6.3 and table 6.4, which represent

the process windows for Rdie = 45 mm and Rdie = 20 mm, respectively. Similar

to the process window obtained for stretch flanging, at least two replicates were

performed for every experiment to provide statistical meaning.

The experiments were classified using the following nomenclature: S (safe)

for flanges processed successfully, F(W) for flanges that failed by wrinkling and

F(IW) for failed flanges that presented a polygonal profile as a consequence of

incipient but stable wrinkling, named incipient wrinkling hereafter. Additionally,

in table 6.3 and table 6.4, the experiments corresponding to successful flanges are

coloured in green, whereas red and yellow colours correspond to flanges that failed

by wrinkling and flanges that failed by incipient wrinkling, respectively. More

details about the characteristics of the different modes of failure in shrink flanging

by SPIF can be found in section 3.3.2.

According to the process windows presented in table 6.3 and table 6.4, the

results obtained when processing a flange by SPIF are very different depending

on the die radius (Rdie). In this regard, flanges formed using Rdie = 45 mm were

susceptible to failing either by wrinkling F(W) or by incipient wrinkling F(IW),

whereas for flanges corresponding to Rdie = 20 mm, only failure by incipient

wrinkling was attained. Furthermore, the process parameters also had different

effects depending on Rdie. On the one hand, for the largest die radius (Rdie = 45

mm), reducing the tool diameter from φtool = 20 mm to φtool = 12 mm slightly
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Table 6.3. Shrink flanging experiments corresponding to Rdie = 45 mm. Tests in bold

are analysed in section 6.2.2.

increased the formability and produced more successful flanges, as depicted in

table 6.3. The spindle speed in turn had no effect in these tests in terms of

formability, obtaining the same results for flanges processed either at S = 20 rpm

or at S = 1000 rpm. On the other hand, as depicted in table 6.4 for Rdie = 20

mm, the process windows resulting from combining the different values of S and

φtool were identical.

To perform a more exhaustive analysis of the influence of the initial width w0

and initial length l0 on the flanges and the modes of failure, some results provided

in table 6.3 and table 6.4 will be discussed separately. Focusing on the flanges for

Rdie = 45 mm presented in table 6.3c, it can be seen that increasing the initial

length l0 and the initial width w0 reduced the formability, in some cases producing

failed flanges. As a result, the transition from the successful zone to the failed zone
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Table 6.4. Shrink flanging experiments corresponding to Rdie = 20 mm. Tests in bold

are analysed in section 6.2.2.

is almost aligned with the diagonal. In this regard, flanges with small initial length

l0, e.g., the flanges depicted in figure 6.15, were successfully processed independent

of their initial width w0. The reason is that these flanges are not large enough

to experience a level of compression that produces wrinkling. The flanges with

medium initial length, e.g., the flange shown in figure 6.16a, were also successful

if the initial width was 54 mm or less. These flanges are so narrow that there is

not enough shrinking to produce wrinkles, and the flanging process is similar to a

conventional bending operation.

Regarding the failed flanges, the factor that determined the mode of failure

was the initial width w0. In this case, failure by incipient wrinkling F(IW) was

attained for narrow flanges from medium to large values of l0. Figure 6.16b and

figure 6.17b show two flanges that failed by incipient wrinkling corresponding to

initial widths of w0 = 45 mm and w0 = 54 mm, respectively. As expected, the

larger the initial width w0 is, the higher the circumferential deformation. However,

for w0 larger than 54 mm, the flanges fail by wrinkling F(W), showing a number
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of well-established wrinkles, as in the case of the flange depicted in figure 6.17a.

Figure 6.15. Successful shrink flanges included in table 6.3 corresponding to (a) w0 = 54

mm and l0 = 15 mm and (b) w0 = 63 mm and l0 = 10 mm.

Figure 6.16. Narrow shrink flanges included in table 6.3 corresponding to (a) w0 = 36

mm and l0 = 25 mm and (b) w0 = 45 mm and l0 = 25 mm.

Figure 6.17. Failed shrink flanges included in table 6.3: (a) flange with wrinkles (w0 = 63

mm and l0 = 15 mm) and (b) flange with incipient wrinkles (w0 = 54 mm and l0 = 20

mm).



114 Results

Regarding the flanges corresponding to Rdie = 20 mm, the flanges analysed

correspond to tests in table 6.4c. In contrast to the process window with Rdie = 45

mm, these flanges fail only by incipient wrinkling F(IW). In general, the following

rule applies for this die radius: short and narrow flanges (small w0 and l0) were

successfully processed, whereas large and wide flanges (large w0 and l0) failed, in

this case by incipient wrinkling. On the one hand, flanges of w0 less than 28 mm,

as presented in figure 6.18 and figure 6.19a, were successful for all the values of l0

tested. However, as mentioned for Rdie = 45 mm, the flanges with the smallest

w0 and the largest l0 presented similar characteristics to straight flanges, with

the effect of the die curvature almost negligible. On the other hand, flanges of

w0 larger than 28 mm presented failure by incipient wrinkling F(IW), even for

small values of l0, showing the polygonal shape depicted in figure 6.20b, which

is characteristic of this mode of failure. Furthermore, the flanges that failed by

incipient wrinkling F(IW) presented different degrees of shape deviation depending

on the initial width w0, with the wider flanges being more affected by this mode

of failure. This effect becomes patent in the failed flanges depicted in figure 6.20.

The flange of w0 = 36 mm is clearly more deformed than the flange of w0 = 28

mm.

Note that the highest value of initial width (w0 = 36 mm) analysed for Rdie =

20 mm coincides with the lowest value of w0 tested for Rdie = 45 mm. In this case,

flanges of w0 = 36 mm were successfully processed for the largest die radius (Rdie =

45 mm), whereas forRdie = 20 mm, the flanges failed by incipient wrinkling F(IW).

In this regard, it can be established that the die radius is determinant in the onset

of failure by wrinkling, allowing more successful flanges to be processed as Rdie

increases.

Figure 6.18. Narrow shrink flanges included in table 6.4 corresponding to (a) w0 = 20

mm and l0 = 20 mm and (b) w0 = 24 mm and l0 = 20 mm.
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Figure 6.19. Successful shrink flanges included in table 6.4 corresponding to (a) w0 = 28

mm and l0 = 15 mm and (b) w0 = 24 mm and l0 = 15 mm.

Figure 6.20. Failed shrink flanges included in table 6.4: (a) flange with incipient wrinkles

corresponding to w0 = 28 mm and l0 = 20 mm and (b) flange with incipient wrinkles

corresponding to w0 = 36 mm and l0 = 20 mm.

6.2.2 Strain analysis

This section presents the analysis within the principal strain space carried out on

the shrink flanges processed by SPIF presented in section 6.2.1. In this regard,

the most representative tests were selected to analyse the conditions leading to

the different modes of failure. The strain distributions of these flanges were eval-

uated experimentally using CGA, following the methodology detailed in section

3.3.1. The results obtained were analysed within the FLD. The pure compression

state was represented by β = −2.33 for AA2024-T3 assuming the Barlat 89 yield

criterion.

With this aim, the five experiments highlighted in bold in table 6.3c (Rdie = 20
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mm) and table 6.4c (Rdie = 45 mm) were analysed, all of which were performed

at fixed values of spindle speed (S = 20 rpm) and tool diameter (φtool = 12

mm). Concretely, the flanges selected represent the transition from a successfully

processed shrink flange to a failed flange, either by wrinkling or incipient wrinkling,

allowing us to analyse the onset of the two failure modes attained in shrink flanging.

For Rdie = 45 mm, the following flanges presented in table 6.3 were analysed:

(i) a successful flange S of initial width w0 = 63 mm and initial length l0 = 10

mm, (ii) a flange that failed by wrinkling of w0 = 63 mm and l0 = 15 mm and

(iii) a flange that failed by incipient wrinkling of w0 = 54 mm and l0 = 20 mm.

For the successful flange, the analysis of principal strains obtained using Argus®

is depicted in figure 6.21. In this regard, figure 6.21a shows a picture of the inner

side of the flange, i.e., the flange surface that was not in contact with the forming

tool. This is the surface where the strains were evaluated using the CGA system.

Figure 6.21c depicts the principal strain contours of the major strain, minor strain

and thickness reduction.

Figure 6.21. Formability analysis within the principal strain space corresponding to a

successful shrink flange for Rdie = 45 mm, φtool = 12 mm, S = 20 rpm, w0 = 63 mm

and l0 = 10 mm: (a) flange surface, (b) strain distribution within the FLD and (c) strain

contours. (Open dot ≡ centre section; square dots ≡ lateral section.)
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The major and minor strains are presented within the FLD in figure 6.21b.

The strain points are coloured as a function of the thickness reduction contour,

as depicted in figure 6.21b. In this FLD, two sections were represented to analyse

the strain distribution in the most representative regions of the flange. On the

one hand, the central section longitudinally crossed the most compressed region,

which is the location where wrinkle onset occurs in failed flanges. This section is

represented in blue in figure 6.21c. On the other hand, is located a few millimetres

from the central section at the location of the highest major strain. In addition, the

pure tension and pure compression lines β = −0.43 and β = −2.33, respectively,

are presented in the FLD for the AA2024-T3 sheet and according to the Barlat 89

plasticity criterion.

Similarly, the previous analysis was also carried out for the flanges that failed

by wrinkling F(W) and by incipient wrinkling F(IW). In this regard, figure 6.22

and figure 6.23 present the strain contours and strain distribution within the FLD

for these two flanges.

Figure 6.22. Formability analysis within the principal strain space corresponding to a

flange that failed by wrinkling for Rdie = 45 mm, φtool = 12 mm, S = 20 rpm, w0 = 63

mm and l0 = 15 mm: (a) flange surface, (b) strain distribution within the FLD and (c)

strain contours. (Open dot ≡ centre section; square dots ≡ lateral section.)

In general terms, the highest compression strains are located at the centre of
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the flange for the three tests analysed, which is where wrinkles occur, whereas

the sides of the flanges are undeformed. However, in the minor strain contours

corresponding to the failed flanges (see figure 6.22c and figure 6.23)c, the centre

of the flange edge presents lower strains than the adjacent regions. It is worth

mentioning that when using the Argus system®, only the strains on the surface

of the sheet can be evaluated. Consequently, if the sheet is bent, e.g., in the

case of wrinkling, the strain values obtained depend on the face where the strains

are evaluated, with the concave side of the wrinkle under compression and the

convex side under tension. This effect can also be seen in the FLD for both

flanges that failed by wrinkling and by incipient wrinkling, as depicted in figures

6.22b and 6.23b, respectively. In these cases, the last point of the lateral section

(measured from the concave surface) presented lower values of minor strains than

its homologous point in the central section (measured from the convex surface).

Likewise, the major strains and thickness reduction strains are also influenced by

this phenomenon, as seen in figure 6.22c.

Figure 6.23. Formability analysis within the principal strain space corresponding to a

flange that failed by incipient wrinkling for Rdie = 45 mm, φtool = 12 mm, S = 20 rpm,

w0 = 54 mm and l0 = 20 mm: (a) flange surface, (b) strain distribution within the FLD

and (c) strain contours. (Open dot ≡ centre section; square dots ≡ lateral section.)

According to the principal strain diagrams, the points corresponding to the

successful flange are above the pure compression line, whereas in the FLDs cor-
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responding to the failed flanges, there are points below this limit. Concretely, the

points below the pure compression line correspond to the last points of the lateral

sections for both failed flanges, which in both cases coincide with the compressed

side of a wrinkle. Furthermore, in the successful flange, the levels of minor strain

are higher than those in the wrinkled flange but lower than those in the flange ex-

hibiting only incipient wrinkling. These results suggest that for their given width

and length, the successful flange was closer to failure by wrinkling than it was to

failure by incipient wrinkling.

Regarding the flanges corresponding to Rdie = 20 mm, a similar strain analysis

was carried out for the tests highlighted in bold in table 6.4. In this case, the tests

correspond to a successful flange of w0 = 28 mm and l0 = 15 mm (figure 6.24) and

a flange that failed by incipient wrinkling of w0 = 32 mm and l0 = 15 mm (figure

6.25). As seen in figure 6.24c and figure 6.25c, the strain distributions along the

flange are similar to the strains obtained for Rdie = 45 mm. In this regard, the

highest levels of major strains are located at the centre of the flange, being higher

in the failed flange than in the successful flange. The lowest levels of minor strains

are located at the centre of the flange edge for both flanges. As expected, higher

levels are observed in the failed flange.

Figure 6.24. Formability analysis within the principal strain space corresponding to a

successful shrink flange for Rdie = 20 mm, phitool = 12 mm, S = 20 rpm, w0 = 28 mm

and l0 = 15 mm: (a) flange wall, (b) FLD and (c) strain contours. (Open dot ≡ centre

section; square dots ≡ lateral section.)
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Additionally, incipient wrinkles can be seen in the thickness contour depicted

in figure 6.25c, which presents two regions of thickness increase at the edge of the

flange.

Focusing on the principal strain diagram, both flanges present lower levels of

major strains than the flanges corresponding to Rdie = 45 mm, whereas the minor

strains are of a similar level. However, according to figure 6.24b and figure 6.25b,

the flanges for Rdie = 20 mm present strain points below the pure compression line

(β = −2.33). In the case of the flange with incipient wrinkles, these points could

be the result of measuring the strains on the surface of the wrinkles, as occurred

for the failed flanges analysed previously. Nevertheless, in the successful flange,

these levels of strains cannot be explained as a measurement effect, as this flange

did not present wrinkles.

For these two flanges, the points below the pure compression line correspond to

the edge of the flange; therefore, they can be analysed according to the last points

of the two sections presented in the diagrams. In this regard, in the successful

flange, the edge in the central section is more compressed (lower ε2) than that in

the lateral section. The reverse occurs in the failed flange as a consequence of the

wrinkle appearance.

Figure 6.25. Formability analysis within the principal strain space corresponding to a

shrink flange that failed by incipient wrinkling for Rdie = 20 mm, φtool = 12 mm, S = 20

rpm, w0 = 32 mm and l0 = 15 mm: (a) flange wall, (b) strain contours and (c) FLD.

(Open dot ≡ centre section; square dots ≡ lateral section.)
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In summary, it can be concluded that the strain levels and strain distributions

for both flange radii analysed were similar. Furthermore, the analysis performed

for Rdie = 20 mm presented strain levels below the pure compression line of the

material. This suggests that assuming the pure compression line as a wrinkling

limit is not completely effective in the prediction of wrinkling for incremental

forming, at least for flanges formed using small die radii.

Finally, due to the limitations of the CGA technique in measuring the strains in

the presence of bending, it can be concluded that the study of wrinkling cannot be

based only on the experimental analysis of principal strains using this method. In

this regard, the next sections propose complementary analyses based on FE simu-

lations and geometry analyses, providing a better understanding of the wrinkling

phenomenon in shrink flanging by SPIF.

6.2.3 Validation of the numerical model

This section details the validation of the FE model used in the simulations of the

shrink flanging process by SPIF. For this purpose, four shrink flanging tests were

reproduced numerically, and their results were compared with the experimental

results presented in section 6.2.2. For Rdie = 45 mm, the flanges analysed were

the successful flange (w0 = 63 mm and l0 = 10 mm) and the flange that failed by

wrinkling (w0 = 63 mm and l0 = 15 mm) highlighted in bold in table 6.3c. For

Rdie = 20 mm, the analysis was carried out on the successful flange (w0 = 28 mm

and l0 = 15 mm) and the flange that failed by incipient wrinkling (w0 = 32 mm

and l0 = 15 mm) shown in table 6.4c.

Figure 6.26a and figure 6.27a show the strain distribution of the numerical and

experimental central sections corresponding to flanges for Rdie = 45 mm. In this

regard, the evolution of the experimental and numerical principal strains for the

successful flange are in good agreement. Although there are differences at the end

of the sections, (i) these differences only involve less than 0.5 mm distance from

the edge, and (ii) the experimental point right at the edge is not included in the

experimental section, as it cannot be measured by CGA.

Regarding the numerical strain contours (see figure 6.26b), they reproduce the

results included in the experimental analysis presented in figure 6.21b in that the

highest values of major and minor strains are in the centre of the flange. In the

analysis of the flange that failed by wrinkling, the FE model reproduced the three

wrinkles depicted in figure 6.17a, although they were in the opposite direction with

respect to the wrinkles obtained in the experimental flange. Note that wrinkling
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is an unstable phenomenon; therefore, the direction of the wrinkles is aleatory.

Figure 6.26. Validation of numerical modelling: (a) comparison of numerical vs. ex-

perimental principal strains in the central section of the flange and (b) numerical strain

contours (the figures correspond to the successful case φtool = 12 mm, S = 20 rpm,

Rdie = 45 mm, l0 = 10 mm and w0 = 63 mm).

Figure 6.27. Validation of numerical modelling: (a) comparison of numerical vs. ex-

perimental principal strains in the central section of the flange and (b) numerical strain

contours (the figures correspond to the failed case φtool = 12 mm, S = 20 rpm, Rdie = 45

mm, l0 = 15 mm and w0 = 63 mm).
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Consequently, the experimental and numerical sections represented in the FLD

only coincided in the region that was not affected by the wrinkles, as one wrinkle

was measured from its concave surface and the other from its convex surface.

However, although the strain distribution of the central sections did not agree

completely, the number of wrinkles and their amplitude were reproduced success-

fully by the numerical model.

A similar validation was performed for the shrink flanging tests with Rdie = 20

mm. In this regard, figure 6.28 and figure 6.29 present the numerical validations

performed for the successful flange and the flange that failed by incipient wrinkling,

respectively, consisting of the strain distribution within the FLD and the numerical

major and minor strain contours. The numerical and experimental central sections

are in good agreement in both tests with the exception of the end of the numerical

section corresponding to the failed flange. As explained previously, this issue only

affects the last 0.5 mm of the section. Regarding the strain distributions depicted

in the principal strain contours, they are also in good agreement, showing the

highest levels of major strain and the lower levels of minor strains in the centre

and at the edge, respectively.

Figure 6.28. Validation of numerical modelling: (a) comparison of numerical vs. ex-

perimental principal strains in the central section of the flange and (b) numerical strain

contours (the figures correspond to the successful case φtool = 12 mm, S = 20 rpm,

Rdie = 20 mm, l0 = 15 mm and w0 = 28 mm).
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In general, the numerical validation performed demonstrates that the FE model

is able to reproduce the different modes of failure and the strain levels attained in

shrink flanging by SPIF. In the case of flanges that failed by wrinkling, although the

FE model did not reproduce the final shape of the wrinkles, it was able to predict

the onset of the instability, the number of wrinkles and the order of magnitude of

the principal strains.

Figure 6.29. Validation of numerical modelling: (a) comparison of numerical vs. ex-

perimental principal strains in the central section of the flange and (b) numerical strain

contours (the figures correspond to the failed case φtool = 12 mm, S = 20 rpm, Rdie = 20

mm, l0 = 15 mm and w0 = 32 mm).

6.2.4 Geometry analysis

This section analyses the flanges presented in section 6.2.3 to evaluate the spring-

back in shrink flanging by SPIF. For each flange, two representative profiles will be

analysed, comparing experimental and numerical results to assess the capability

of the FE model to predict the shape of the flanges. These profiles are depicted in

figure 6.30. The blue line and the red line correspond to the central section and

the edge section of the flange, respectively.
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Figure 6.30. Central, lateral and edge sections on a Rdie = 45 mm flange.

Focusing on the larger die radius, figure 6.31 and figure 6.32 present the central

section and edge section for the successful flange S and the flange that failed by

wrinkling F(W) corresponding to Rdie = 45 mm. The profiles of the numerical

and experimental sections represent the medium plane of the sheet, whereas the

die profile represents the surface of the die.

As shown in figure 6.31, there is good agreement between the numerical and

experimental results for both the central section and the edge section of the suc-

cessful flange. In this flange, as a consequence of the springback, the wall is not

completely parallel to the die profile, as seen in the central section presented in

figure 6.31a. The effect of the elastic recovery can also be seen in the profile of the

edge section (see figure 6.31b), where the final radius of the flange edge is slightly

higher than 45 mm. As a consequence of the increased radius, the sides of the

edge section are 5 mm from the die profile.

In the case of the flange that failed by wrinkling, three wrinkles can be observed

in both the experimental and numerical edge sections presented in figure 6.32b.

In this regard, although the FE model did not reproduce the final shape of the

flange, the number of wrinkles and their amplitude were successfully predicted, as

described in section 6.2.3.
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Figure 6.31. Profile analysis of a successful flange of w0 = 63 mm and l0 = 10 mm. a)

Picture of the formed flange. b) Numerical and experimental edge profile.

Figure 6.32. Profile analysis of a flange of w0 = 63 mm and l0 = 10 mm with wrinkles.

a) Picture of the formed flange. b) Numerical and experimental edge profile.

Similarly, figures 6.33 and 6.34 depict the geometry analyses carried out for the

successful flange and the flange that failed by incipient wrinkling for Rdie = 20 mm.

The FE model successfully reproduced the shape of both flanges. Indeed, it also

predicted the shape of the flange that failed by incipient wrinkling, reproducing the

springback and the polygonal shape that is characteristic of this mode of failure.
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Figure 6.33. Central, lateral and edge sections on a Rdie = 45 mm flange.

Figure 6.34. Central, lateral and edge sections on a Rdie = 45 mm flange.

Based on these results, it can be affirmed that the influence of the springback

effect should be considered in shrink flanging by SPIF. In this regard, the FE

model has been shown to be effective in reproducing the final shape of successful

flanges and the flanges that failed by incipient wrinkling, allowing estimation of the

springback effect. Furthermore, although the model did not predict the shape of

the wrinkles, it was demonstrated to be useful in predicting the onset of wrinkling.
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6.2.5 Wrinkling prediction by stress analysis

According to the results presented in section 6.2.1, it is clear that wrinkling is

the principal cause of failure in shrink flanging by SPIF. With the objective of

predicting both the failure by wrinkling and that by incipient wrinkling, different

approaches based on principal strains and FE analysis were proposed. In this

regard, in section 6.2.2, it was demonstrated that the predictions based on the

pure compression line are not entirely effective, as some successful flanges showed

strain points beyond this line. Additionally, in section 6.2.4, the geometry analyses

performed using FE modelling were shown to be effective in predicting the different

modes of failure and the final geometry of the flanges. However, this method only

addresses the final geometry of the simulations, not providing a deeper analysis

of the conditions that lead to failure by wrinkling in shrink flanging by SPIF. In

this context, a more physical approach based on evaluation of the compression

and stress in the sheet is proposed in this section. This methodology focuses on

analysis of the principal in-plane compression stress σip2 , considering that wrinkling

occurs when a critical stress level is reached.

To perform the stress analysis, the principal in-plane stresses σip1 and σip2 were

evaluated at the critical point previously depicted in figure 6.30. As previously

explained, this critical point is the most compressed point in successful and failed

flanges, being the location where wrinkle onset is more likely to occur. The stress

data were obtained using the FE model for shrink flanging validated in section

6.2.3.

Figure 6.35 depicts the evolution of the minor and major principal in-plane

stresses σip1 and σip2 along the simulation corresponding to the FE model of the

successful flange for Rdie = 45 mm, highlighted in bold in table 6.3c. Note that the

horizontal axis is the vertical displacement of the forming tool ztool. The evolution

of the compression stress σip2 during the flanging process is cyclical, coinciding with

each cycle with a different tool pass. In this regard, the compression stress σip2
reaches a local minimum when the tool approaches the critical point, whereas it

reaches a maximum when the tool is at the furthest point with respect to the

critical point. The grey curve, which corresponds to σip1 , also follows this cyclical

pattern, reaching maxima and minima with every tool cycle. In addition, an

envelope curve is presented, connecting the local minima in the compression stress

σip2 . The analysis carried out for the successful flange was also applied to the flange

that failed by wrinkling F(W) highlighted in table 6.3c, as presented in figure 6.36.

The instant corresponding to the numerical onset of wrinkling is represented with
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the label zcrit.

Figure 6.35. Evolution of principal in-plane stresses corresponding to the successful flange

for Rdie = 45 mm.

Figure 6.36. Evolution of principal in-plane stresses corresponding to the flange that

failed by wrinkling for Rdie = 45 mm.

The methodology followed to predict the onset of wrinkling is based on the

analysis of the local minima in the compression strain σip2 . In this regard, the

evolutions of σip2 for successful and failed flanges presented in figure 6.35 and

figure 6.36 show different behaviours. For the failed flange, the local minima of

σip2 always decrease at a constant rate as the forming process proceeds. For this

flange, the minimum value of σip2 (−700 MPa) is attained at the end of the process.
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In contrast, for the successful flange, the minimum value envelope of σip2 decreases

in the first half of the forming process but is almost constant in the second half of

the simulation. For this flange, the lowest value of compression strain is reached

at ztool = 15 mm (σip2 = −525 MPa). Comparing the stress results of both flanges,

the minimum σip2 obtained for the successful flange (σip2 ≈ −525 MPa) is higher

than the minimum σip2 for the failed flange (σip2 ≈ −700 MPa), with the critical

point of the failed flange being more compressed than that of the successful flange.

Furthermore, it can be seen that the value of the σip2 envelope at ztool = zcrit

(σip2 ≈ −530 MPa) is similar to the minimum σip2 obtained in the analysis of the

successful flange.

In this regard, it must be noted that these flanges represent the transition from

a successful flange to a flange that failed by wrinkling, and therefore, the successful

flange must be close to failure by wrinkling. The existence of a wrinkling limit at

levels of σip2 slightly near −530 MPa will be analysed in the following.

Figure 6.37. Evolution of the σip
2 envelope for three successful flanges corresponding to

Rdie = 45 mm.

With the aim of determining the wrinkling limit in terms of compression stress

for the flanges corresponding to Rdie = 45 mm, the evolutions of σip2 of six flanges

were analysed. In this case, to simplify the comparison of the different flanges,

only the σip2 envelopes of each test are included. Figures 6.37 and 6.38 show the

σip2 envelopes corresponding to three successful flanges and three failed flanges,
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respectively. These flanges were selected from the set of flanges included in table

6.3c, which were processed using identical process parameters (tool diameter φtool

and spindle speed S). The initial width and initial lengths corresponding to these

flanges are shown in the figure legends.

Figure 6.38. Evolution of the σip
2 envelope for three failed flanges corresponding to

Rdie = 45 mm.

As seen in figure 6.37, the evolution of σip2 in the successful flanges presents a

characteristic pattern with three stages consisting of (i) a first stage with decreasing

σip2 , (ii) a stabilization of the curve at constant σip2 and (iii) an increase in σip2 at

the end of the test. In all cases, the minimum value of in-plane compression strain

(having a value of σip2 ≈ −525 MPa) was reached in the second stage. Note that

this value is very similar to those for the successful flanges analysed previously.

Figure 6.38 presents the σip2 envelopes of the failed flanges. According to the

trend of these curves, the σip2 evolution of the flange that failed by wrinkling F(W)

is always decreasing, and therefore, the minimum value of σip2 is reached at the end

of the tests. Two behaviours were observed for the flanges that failed by incipient

wrinkling. On the one hand, the σip2 evolution of the flange that failed by incipient

wrinkling F(IW) with w0 = 54 mm and the flange that failed by wrinkling F(W)

with w0 = 63 mm is always decreasing. Note that these flanges are close to each

other in the process window (see table 6.3c). On the other hand, the σip2 evolution

of the failed flange with w0 = 45 mm is similar to that of the successful flanges
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presented in figure 6.37.

The onset of wrinkling obtained from the FE simulation is presented in the

curves corresponding to the failed flanges. According to the levels of σip2 at wrink-

ling, it can be seen that for both modes of failure, the values are very similar. In

this regard, the average level of σip2 at wrinkling is represented using a horizontal

line at σip2 = −530 MPa with the label “Wrinkling limit”. This wrinkling limit,

which is also presented in figure 6.37, is slightly below the minimum levels of σip2
obtained for the successful shrink flanges, showing the relation between the min-

imum compression strains attained in shrink flanging by SPIF and the onset of

wrinkling.

The results presented above show that for the die radius analysed and the

process parameters selected, wrinkling occurs at similar values of compression

strains σip2 in shrink flanging by SPIF. This allows a quantitative wrinkling limit

to be defined based on the maximum compression stress in the flange during the

forming process.
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Conclusions

This chapter covers the main conclusions of the thesis and proposes possible further

works that may result from this investigation.

7.1 General conclusions

This thesis presents a systematic study with the aim of increasing the knowledge of

stretch and shrink flanging by single point incremental forming (SPIF) of AA2024-

T3 sheets. With this aim, an experimental campaign was performed considering

large (Rdie = 45 mm) and small (Rdie = 20 mm) principal flange radii, assessing

the formability limits within a wide range of process parameters. In addition, FE

modelling was used to study the principal modes of failure, performing formability

predictions regarding the two flange geometries analysed, i.e., stretch and shrink.

The 2024-T3 sheet material was characterized by means of tensile tests, determ-

ining the tensile properties in different directions and the corresponding Lankford

anisotropy coefficients r0, r90 and r45. Additionally, the conventional formabil-

ity limits within the FLD were obtained, which were, for this sheet material in

particular, uniquely expressed by the FFL, as the material did not present necking.

The experimental campaign was performed considering a wide range of process

parameters, thus allowing the process windows for stretch and shrink flanging by

SPIF to be obtained. The parameters analysed include the flange length (l0),

flange width (w0), flange principal radius (Rdie), tool diameter (φtool) and spindle

speed (S). In this regard, the principal modes of failure were determined for both

flange geometries, consisting of (i) either fracture at the corner F(C) or fracture

133
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at the edge F(E) in the case of stretch flanges and (ii) failure by wrinkling F(W)

or failure by incipient wrinkling F(IW) in the case of shrink flanges.

An explicit FE model based on the Barlat 89 yield criterion was used to re-

produce a number of flanging tests for fixed values of φtool and S. The obtained

results allow an understanding of the process conditions involved in the transition

from a successful flange to a failed flange for different failure modes. Additionally,

two novel approaches were proposed to assess the formability in flanging by SPIF,

consisting of (i) analysis of the stress triaxiality in stretch flanging and (ii) assess-

ment of the level of compression stresses in shrink flanging.

Presenting the general conclusions of this study, the particular conclusions for

each flange geometry will be summarized individually.

Stretch flanges

From the stretch flanging analysis, the following particular conclusions are drawn:

As a result of the experimental campaign performed for stretch flanging by

SPIF, two different modes of failure were observed. On the one hand, failure by

fracture at the corner F(C) was attained in flanges of high initial length l0 and

medium to moderate initial width w0. On the other hand, failure by fracture at

the edge F(E) was observed in wide flanges with low to moderate initial lengths.

It was also found that narrow flanges produced successful flanges independent of

their initial length.

Regarding the effects of the process parameters analysed, a lower tool diameter

increased the formability of flanges for Rdie = 45 mm, whereas it had the opposite

effect on flanges for Rdie = 20 mm, not providing a clear effect on the material

formability. In addition, increasing the spindle speed from S = 20 rpm to S = 1000

rpm increased the formability only in the tests performed using the lower tool

diameter φtool = 12 mm, and it did not have any effect on the flanges processed

using the larger tool diameter φtool = 20 mm.

A set of flanges corresponding to φtool = 20 mm and S = 20 rpm were selected

to analyse the strain levels attained in the transition from a successful flange to a

flange that failed by fracture at the edge. For both die radii, the strain levels of the

failed flanges were higher than the strain levels observed in the successful flanges.

In these analyses, the successful flanges corresponding to Rdie = 45 mm and the

failed flanges for both die radii presented strains above the FFL of the material
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at points outside of the fracture region. According to these results, it can be

concluded that the stretch flanging process by SPIF may produce an enhancement

of formability beyond the conventional limit represented by the FFL in materials

without necking.

A numerical and analytical framework was established to assess the formability

in the stress triaxiality space based on the Barlat 89 anisotropy yield criterion

for the first time. In this regard, the material FFL was transformed from the

principal strain space to the average stress triaxiality η̄ versus equivalent strain

ε̄ space using the corresponding expressions obtained from the Barlat 89 yield

criterion. Additionally, the FFL curves in the η̄-ε̄ space corresponding to the von

Mises isotropic yield criterion and Hill 48 yield criterion were compared with the

Barlat FFL, showing the importance of selecting an appropriate yield criterion.

The evolutions of the critical points corresponding to successful and failed

flanges for both die radii were analysed in the η̄-ε̄ space. The results demonstrated

that these evolutions occur in a region of the η̄-ε̄ space that is different from the

location of the FFL obtained for proportional loading. These results suggest that

a failure criterion based only on the FFL obtained using Nakazima tests is not

suitable for assessing the onset of failure in stretch forming by SPIF. Consequently,

a new approach based on iso-damage curves derived from the Atkins interpretation

of the McClintock damage model was proposed to assess the formability in stretch

flanging by SPIF.

Shrink flanges

As a result of the shrink flanging campaign, the following particular conclusions

are drawn:

In the experimental campaign performed for shrink flanging by SPIF, two

modes of failure were obtained: (i) failure by wrinkling F(W) and (ii) failure

by incipient wrinkling. On the one hand, failure by wrinkling is attained when

the flanges present well-established wrinkles. This mode of failure was observed

only in flanges of large initial width for Rdie = 45 mm. On the other hand, failure

by incipient wrinkling was considered when the flanges presented shape deviations

but not larger wrinkles. This mode of failure was found in flanges for Rdie = 45

mm and in flanges for Rdie = 20 mm.

The influence of the different process parameters on the formability was ana-

lysed. In this regard, reducing the tool diameter from 20 mm to 12 mm increased
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the formability for Rdie = 45 mm flanges, whereas it did not present any effect on

the process windows corresponding to Rdie = 20 mm. With respect to the spindle

speed S, the variation from S=20 rpm to S=1000 rpm produced no effects in terms

of formability for any of the die radii analysed.

To study the conditions in the transition from a successful flange to a failed

flange in the process windows, a set of flanges were analysed in terms of principal

strains for both die radii and constant process parameters φtool = 12 mm and

S = 20 rpm. From these analyses, it was concluded that, in general, failed flanges

present principal strains below the pure compression line of the material, assuming

that the Barlat 89 yield criterion corresponds to β = −2.33. Furthermore, in the

analyses of the successful Rdie = 20 mm flanges, there were a number of strain

points below this limit, showing an increase in formability with respect to this

line. These results suggest that assuming the pure compression line as a wrinkling

limit is not completely effective in the prediction of wrinkling in shrink flanging

by SPIF.

Furthermore, a geometry analysis of the flanges in the transition zone from the

successful to failure zone was carried out. The experimental results confirmed that

the springback effect is present in flanges for both die radii and should therefore

be considered in the manufacturing of flanges using SPIF. Additionally, the shape

of the flanges was compared to the results obtained using FE modelling, showing

good agreement in the geometry predictions and demonstrating the capacity of the

FE model to predict the different modes of failure. In the case of the flange that

failed by wrinkling, the FE model predicted the onset of the wrinkles, whereas in

the case of the flange that failed by incipient wrinkling, the characteristic polygonal

shape of this mode of failure was successfully reproduced.

Finally, an engineering approach to the prediction of wrinkling in shrink flanging

by SPIF based on evaluation of the compression stress was proposed. This method

focuses on the level of the in-plane minor stress σip2 , suggesting that wrinkling oc-

curs when the compression stress reaches a critical value of σip2 . This critical value

was determined for the flanges corresponding to Rdie = 45 mm.

7.2 Future works

This section presents possible future investigations that could be performed to

continue this research, with some of them currently being carried out already:

In this study, the flanges were obtained from rectangular specimens. Further



7.2 Future works 137

works will focus on optimizing the pre-cut shape to obtain flanges with straight

edges using the experimental results and the numerical tools developed in this

thesis.

The analyses performed on stretch and shrink flanges focused on flanges of

small and medium principal radii. In this regard, future work could be performed

on a different range of large die radii (e.g., Rdie larger than 100 mm) used for large

structures and other industrial applications.

The AA2024-T3 sheet is a low ductility material that fails directly by fracture,

with the formability limited by the FFL in the principal strain diagram. In this

regard, similar studies could be performed for a more ductile aluminium sheet that

fractures by necking and for polymeric sheets.

The analyses of principal strains within the FLD showed strains beyond the

conventional forming limits represented by the FFL in stretch flanging as well as

strains below the pure compression line in shrink flanging. To assess the increase in

formability obtained in SPIF versus the formability in a single-stage flanging pro-

cess, conventional flanging experiments using a punch and a die need to be carried

out. This approach would allow us to compare the conventional and incremental

flanging processes.
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