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Abstract 

 
Mobile Multi-Agent Systems (MAS) systems can be 

used with real success in a growing number of 
eCommerce applications nowadays. Security has been 
identified as numerous times by different researchers 
as a top criterion for the acceptance of mobile agent 
adoption. In this paper we present an in-depth analysis 
of behavior patterns of a mobile MAS platform when 
using different cryptographic protocols to assure 
communication and migration integrity and 
confidentiality. Different use case sceneries of 
eCommerce applications as well as many other aspects 
have been studied, such as overhead, different 
communication patterns, different loads and 
bandwidth issues. This work is also extensible to other 
mobile and non-mobile MAS platforms. The results 
obtained can be used and should be taken into account 
by designers and implementers of secure mobile and 
also non-mobile agent platforms and agents. 
 
1. Introduction 
 

Mobile Multi-Agent Systems (MAS) can be used 
with real success in a growing number of eCommerce 
applications nowadays. For example, there are a lot of 
research efforts in agent cooperation and negotiation 
protocols and their applications, such as cooperating 
agents in problem resolution and negotiating agents in 
eCommerce. MAS are also being used with great 
success in Tele-Assistance platforms for elderly care 
[21, 22]. 

Most negotiation and cooperation protocols that are 
widely deployed over big networks or over Internet 
have been used with mobile MAS. Security has been 
identified numerous times by different researchers as a 
top criterion for the acceptance of mobile agent 
adoption [1]. There are even many domains of 

application which have specific security requirements 
imposed by legislation, like the applications used in 
health care and eCommerce environments. There is 
also a trade off between trust and security, and the 
overhead created by cryptographic protocols that 
should be taken into account when designing 
eCommerce applications, since it can affect severely its 
usefulness. 

 
In this paper we present an in-depth study of 

behavior patterns of a mobile MAS platform when 
using cryptographic protocols to assure 
communication and migration integrity and 
confidentiality. Different eCommerce use case 
sceneries as well as many other aspects have been 
studied, such as overhead, different communication 
patterns, different loads, and bandwidth issues. This 
work, as we are going to expose below, is also 
extensible to other mobile and in some cases non-
mobile MAS platforms. The test system has been 
implemented from a previous work [11], which is 
based on the possibility of using secure tunnels to 
mobile MAS. 

The rest of the paper is organized as follows: In 
section 2 we present a brief introduction to security 
problems of platforms and mobile agents, and related 
works. In section 3 we expose an overview of a secure 
tunnel approach in which we have based our test 
system. In section 4 we propose our testing 
methodology and describe the testing environment, 
and present the results obtained, discussions, and 
conclusions about them. We conclude this work in 
chapter 5 with general conclusions and future research 
works suggested during this work. 

 
 
 



2. Mobility and security issues in mobile 
MAS. Related works 
 

Mobile software agents are goal-directed programs 
capable of suspending their execution state on one 
platform and moving to another, where they resume 
their execution. Static agents have the same 
characteristics except that they are not mobile, i.e. they 
cannot move from the system they are running on 
(which is also the system which created them.) 

There are different kinds of mobility: strong, in 
which code and execution state are moved; and weak, 
where only the code is moved. That is, every time the 
agent arrives at a different destination, it runs back 
from the beginning, or from a marker expressly placed 
for this purpose. 

Mobility can also be classified as single hop and 
multi-hop. Most security problems which arise in 
mobile multi-agent paradigm occur with multi-hop 
mobile agents. This is due to the fact that only the 
home platform (the platform where the agent was first 
created) is trusted. That is, if we are not sure that a 
mobile agent comes from a trusted source, on which 
we know that neither the code nor the state have been 
altered, we cannot know whether this agent will carry 
out an unplanned activity on the destination platform. 

The most secure location for an agent is its home 
platform. Although neither agents nor home platforms 
are invulnerable, a number of conventional techniques 
can be applied to construct adequate defenses. Each 
time an agent migrates, security risks arise, and so it is 
needed a way to transmit this trusted environment to 
other platforms where agents may travel. The greatest 
problem with multi-hop MAS is just the trust 
relationship which can be established in single-hop 
MAS between two platforms thanks to the security 
mechanisms derived from Client/Server architecture. 
These trust relationships are not transitive, nor have to 
be bilateral. 

 
There are some practical solutions for securing 

communications and migration in multi-hop MAS, but 
the vast majority of them include restrictions on 
itineraries. For example, it is possible to set up a 
restricted itinerary in which all platforms have mutual 
trust in all others, so agents can move freely between 
them (each platform signs and/or encrypts the agent 
before it migrates). 

In an earlier work [11], we proposed a different 
way to secure agents based on secure tunnels. We 
obtained a secure agent community usable in 
production eCommerce, health care and Tele-
Assistance environments with existing technology, 

with little impact in network topology, and without 
having to modify existing agent applications or agent 
platforms. Specifically we were looking for a system 
that provide integrity, confidentiality, data origin 
authentication, MAS independence, compliance with 
standards, existence of cryptographic acceleration 
hardware, cost-saving and reuse of existing software 
and hardware infrastructure. Only communications and 
migration were protected. No direct protection to 
malicious agents or platforms was provided, as there 
are other techniques for that purposes, such as fault 
isolation [2], safe code interpretation [20], state 
appraisal [3], path histories [4, 5], proof carrying code 
[6], execution tracing [7], environmental key 
generation [8], computing with encrypted functions 
[9], code obfuscation [10], and others. 

 
Aglets [13] have been used for our reference 

implementation in the laboratory, since it is Open 
Source, cross-platform, easy to develop, has weak 
mobility (the maximum mobility a Java-coded MAS 
could have), high acceptance and relatively good 
documentation [14]. 

We have focused our research in the 
parameterization of behavior patterns of secured 
mobile agents in eCommerce: behavior with different 
agent loads, behavior modification by the use of 
different compression algorithms, behavior with 
different communication patterns… concluding with a 
performance analysis. Other issues related to the use of 
our particular approach to securing communications 
and migration in mobile MAS have arisen, such as 
scalability, NAT and proxying issues. All of these 
collateral issues, as well as an in-depth study of the 
applicability of the cryptographic protocols used in this 
work, have been discussed in more detail in a previous 
work [11]. 

The conclusions derived from this paper are easily 
applicable to other mobile MAS platforms, as our 
security mechanism [11] is applicable in a wide variety 
of them without having to modify platforms or agents 
themselves. Moreover, the cryptographic protocols 
used are based on standards, and can easily be 
encountered implemented at platform level in many 
mobile MAS platforms. 

 
 
 
 
 
 
 



3. Overview of secure tunnels 
 

Tunneling is the capability of encapsulating one 
protocol within another, using this second protocol to 
traverse network nodes. A secure tunnel encapsulates 
an insecure protocol (like FTP or HTTP) within a 
secure one (like SSL [19] or TLS [15]). Tunnels may 
also be used to bypass firewalls, and are also 
vulnerable to denial of service attacks, since they use a 
public and untrusted network as transmission media. 

 
We are going to give a very brief explanation of 

cryptosystems applied to mobile MAS platform, 
because an in-depth study is given in [11], where we 
developed a trusted agent community with applications 
which generate application independent secure tunnels. 
• Stunnel [16] is an application which acts as SSLv3 

server and/or client, providing a secure SSL-based 
secure tunnel (wrapper) for insecure protocols or 
applications with the only need of the installation of 
the application in each of the systems that needs to 
secure. Stunnel is distributed under a GPL license 
and has versions for Microsoft Windows, some 
flavors of UNIX and many other OS. Stunnel also 
supports cryptographic accelerator hardware and 
client and server authentication with X.509 digital 
certificates (as SSL does). 

• SSH [17] is a protocol for securing network services 
over an insecure network. It is traditionally used for 
protecting insecure UNIX protocols such as telnet, 
rlogin, etc. Moreover SSH can be used to secure 
other services creating a wrapper around them using 
a local port redirection scheme very similar to the 
one used by Stunnel. SSH is widely accepted by the 
scientific community as being a trusted security 
protocol. SSH architecture is very similar to SSL or 
TLS one, and provides basically the same 
functionality. 

• Zebedee [18] is another Open Source application 
used to create secure tunnels with implementations 
in Windows, UNIX, Linux, Java and Ruby. 
Zebedee (from its documentation) has a small 
memory footprint and low wire protocol overhead. 
Zebedee uses a plain Diffie-Hellman protocol for its 
(weak) key agreement process and a symmetric key 
cryptographic algorithm, Blowfish. Zebedee does 
not provide any features for data integrity. We have 
included this application in our tests to verify the 
claims about the overhead compared to other 
protocols. 
 
 

4. Behavior patterns of cryptographic 
protocols in eCommerce applications 
 

Different behavior patterns have been analyzed, 
such as 
• Behavior in single-hop and multi-hop with different 

migration and communication patterns 
• Behavior with different agent loads 
• Behavior modification by the use of different 

compression algorithms (before encryption phase) 
 

We have also done a complete performance 
analysis, since performance could be a discriminatory 
factor in several environments, and more especially in 
eCommerce. Moreover, some issues have also been 
detected during the tests, as we are going to explain 
below. 
 
4.1. Environment 
 

During our experiments there have been used two 
computers connected between a dedicated 100Mbit 
Ethernet switch isolated from the rest of the network. 
All results have been taken when the machines were 
fully dedicated and with a fresh installation of the 
operating system. Both machines are Pentium 4 
1,7GHz processor with a 400MHz FSB and 256Mb 
DDR266 RAM. Both were running SuSE Linux 9.0 
fully patched (at the time of the writing of this paper) 
and compiled for i586 architecture. Linux Kernel 
2.4.21-99, JDK 1.4.2b28 and Aglets 2.0.2 were the 
base software used. 
• Aglets 2.0.2. Aglets HTTP proxy feature have been 

used to overcome a tunnel dodging problem [11], as 
we think this is the way Aglets are going to be used 
in a real environment. No embedded platform 
authentication has been used in the tests. 

• OpenSSL 0.9.7b. This library provides algorithms 
used by other applications and protocols, in this 
case Stunnel and OpenSSH. Default configuration 
was used. 

• Stunnel 4.04 PTHREAD. 128-bit AES encryption 
have been used instead of 3DES, since AES is faster 
than 3DES and 3DES is also being replaced with 
AES. 1024-bit RSA certificate based authentication 
scheme and no compression have also been used, 
since Stunnel does not support it, as it uses SSL. 
Stunnel was a bit difficult to configure because of 
its lack of up to date documentation. 

• OpenSSH 3.7.2.1p2-18. 128-bit AES encryption, 
1024-bit RSA certificate based authentication and 
no compression have been used. We got some 
stability problems when transferring big agents 



(bigger than 3Mb). We will explain more about it 
later on this chapter, as well as behavior changes 
when using compression. 

• Zebedee 2.5.2 with libBlowfish 0.9.5a, libBzip2 
1.0.1 and zlib 1.1.4. 128-bit Blowfish and SHA1 
hashes (160 bit) have been used. Also compression 
has been deactivated. No embedded authentication 
mechanism has been used because of unusability 
reasons explained before in this paper and in other 
works [11]. 

 
4.2. Methodology and parameters 
 

Nine variations of the same test application have 
been used, varying in the number of hops the agent 
traverses, and in the load the agent carries on. The 
application is composed of a mobile agent that 
migrates to a platform and then goes back to its home 
platform. The agent does not compute anything at any 
platforms. 

 
For behavior recognition with different 

communication patterns, the number of itinerary laps 
performed by the agent changes between 1, 10 and 
100. That is, if the number of itineraries is set to 10, 
then the agent goes to the destination and then to its 
home platform ten times. 

For behavior recognition with different loads, the 
agent was loaded with three different data vectors 
(0Kb, 100Kb or 1Mb) using OpenOffice 1.1 
sw645mi.dll file from its Microsoft Windows version, 
in order to get some degree of randomness in data 
content. The size of the compiled Aglet itself was 
3,7Kb. 

Compression was also used to test behavior changes 
and overhead incurred on its usage, as it is common to 
use compression on very low bandwidth links 
(typically used in B2C eCommerce applications). Two 
compression algorithms (Zlib and BZip2) were used in 
order to test the relation between different 
communication patterns, agent loads, and 
cryptographic protocols. 

Special interest has been put in a comparative 
analysis of each behavior pattern detected and its 
derivates. Each test has been repeated three times. The 
execution time presented in the performance analysis is 
the average of the three results. We think that these 
tests cover the majority of situations present in B2C 
and B2B eCommerce applications. 

 
 
 

4.3. Results and discussion 
 
In this section we present the three main use case 

eCommerce sceneries which have been conducted, 
showing from only one itinerary to a hundred of them, 
with results for different agent loads. Finally behavior 
changes due to the use of compression are also cited. 
With these tests near all possibilities regarding B2C 
and B2B communications are covered, since migration 
is a form of communication in which an agent can do 
computations at destination platforms. Since our test 
agents do not compute anything, a migration can be 
thought as a message in terms of communication time, 
adding the constant time taken to serialize and 
reinstantiate the agent. Also the size of an unloaded 
agent (3,7Kb in our unloaded test aglet) could be 
similar to a FIPA-ACL small message, since it uses a 
complex syntax, and data can be embedded into 
messages. Testing a range of possible lengths in the 
0Kb-3Kb range is irrelevant as is going to be exposed 
below, since the differences in behavior are too small 
to be taken into account. Again, we must note that the 
results presented in this section are directly applicable 
to other agent platforms, including platforms with the 
cryptographic protocols cited below embedded in 
them. 

 
4.3.1. Behavior depending on agent communication 
and migration patterns. We evaluated the behavior 
of an aglet migrating only from one platform to 
another and its way back to the home platform. Then 
the aglet disposed itself. Then we tested all 
cryptographic protocols explained in an earlier section 
(Figure 1) for this behavior pattern (the aglet in clear, 
Stunnel, SSH and Zebedee). Then a ten hop pattern 
migration was used, and finally a hundred hop 
migration pattern. No compression was used, and the 
aglet was not loaded with any extra data (but the size 
of its compiled code was 3,7Kb). 

For one itinerary, differences are too small to be 
representative, but some interesting results must be 
noted. There is a minimal difference between the 
behaviors of the aglet using no cryptographic protocol 
and the one tunneled by Stunnel (SSL). But the time 
taken by SSH is nearly twice the time taken by the 
clear aglet to migrate and come back. Finally, the time 
taken by a Zebedee tunneled aglet is three times the 
one of the clear aglet. This basic test has given a sight 
about the behavioral changes created by the overhead 
of the different protocols with small loads. 
Surprisingly, Stunnel (SSL) and SSH (which also used 
RSA authentication) created less overhead than 
Zebedee with no authentication. For the ten and a 
hundred itineraries tests, these results can be seen with 



great detail, as overhead differences are more 
pronounced. 

As it can be seen with more detail in the table 
(Figure 1), there is no difference in practical terms 
between behavior of a clear text aglet and of a SSH or 
Stunnel ones as the number of itineraries increases. It 
can be thought that computers used in the test were 
powerful enough to encrypt the migrating aglet with no 
performance hit. But if that were true, then Zebedee 
results would be different, with less overhead. Clearly 
Zebedee uses a poor designed protocol. The 
differences between Zebedee and the other two ones 
are too big. These differences are not related to the 
small differences in performance of AES (used by 
Stunnel and SSH) and Blowfish (Blowfish is used by 
Zebedee, being only a bit slower than Twofish), 
according to a wide range of studied cases [12, 23] in 
32 bit platforms with C coded algorithms. 

 
 
 
 
 
 

Figure 1. Behavior depending on the number 
of itineraries (time in milliseconds) 

 
4.3.2. Behavior depending on agent load patterns. 
We evaluated the behavior of an aglet with different 
loads. We tested it with no load (3,7Kb was the size of 
compiled code), 100Kb and 1Mb. We tested all 
cryptographic protocols explained in an earlier section. 
Three sceneries were used in order to give a 
comparative analysis of differences in behavior due to 
different communication and migration patterns 
described in the previous section, with one itinerary, 
ten and a hundred ones (Figures 2, 3, and 4). 

The first scenery (Figure 2) represents the one 
itinerary behavior pattern studied in the previous 

section, but with different loads. For no extra load, the 
results are equal to the ones of the previous section for 
one itinerary. 

When the agent was loaded with 100Kb, the 
protocol overhead becomes more evident due to the 
fact that, even with more data to encrypt, the migration 
times have not increased too much. This can be seen 
with more detail in SSH tests, where the behaviors of 
0Kb and 100Kb aglet have minimal differences 
(301ms Vs. 314ms). For the rest of the protocols, 
behavior differences are more evident. But for all of 
them, behavior differences between unloaded aglets 
and 100Kb loaded ones are minimal. A load increase is 
necessary to know about behavioral changes due to 
encryption overhead rather than protocol overhead. 

 

 
 
 
 
 
 

 
Figure 2. Behavior depending on agent load. 

One itinerary (time in milliseconds) 
 

It is difficult to think that typical eCommerce agent 
applications would use big messages or big pieces of 
code because of the nature of mobile agent paradigm 
and eCommerce applications, but we have also studied 
a 1Mb loaded aglet. In this case, the overhead is 
created by the encryption algorithm and not by the 
protocol overhead. There is a severe behavioral change 
between a 100Kb aglet and a 1Mb one in all cases. 
This difference in quantitative terms is a multiplicative 
factor of approximately 10 in time, which is consistent 
with the increase in load (from 100Kb to 1Mb). 
Moreover there is an important fact to note: at 1Mb 
load, the times between different cryptographic 
protocols are minimal (including the aglet used with no 

 1 10 100 
Clear 174 667 4792 
Stunnel 210 974 6231 
SSH 301 845 5008 
Zebedee 540 2420 21108 

 0Kb 100Kb 1Mb 
Clear 174 225 3312 
Stunnel 210 319 3512 
SSH 301 314 3522 
Zebedee 540 633 3520 



encryption), like if it were a performance bottleneck. 
This bottleneck could be due to many external, non 
platform and non algorithm related factors, like 
memory bandwidth limitation, data too big to fit in 
cache, transmission media limitation, etc. 

 
The second scenery (Figure 3) represents the ten 

hop itinerary pattern studied in the previous section, 
but with different loads. For no extra load, the results 
are equal to the ones of the previous section for ten 
itineraries. 

The behavior of these aglets is very similar to the 
ones of Figures 1 and 2 but in a different, higher scale. 
Even the behavioral differences between Stunnel and 
SSH for one and ten itineraries are the same for the 
same number of itineraries, with an unloaded aglet and 
with a 100Kb aglet. Note that a load increase does not 
change behavior of the aglets in other way than the 
increase in itineraries did. For a hundred of itineraries 
(Figure 4), the results are even the same, but again at a 
bigger scale. 

 
 
 
 
 
 
 

Figure 3. Behavior depending on agent load. 
Ten itineraries (time in milliseconds) 

 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 

Figure 4. Behavior depending on agent load. A 
hundred of itineraries (time in milliseconds) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Detailed view of SSH protocol 
behavior (time in milliseconds) 

 
The performance bottleneck also remains there for 

1Mb load, but at a higher level. The jump between 
100Kb and 1Mb is too big to analyze with detail the 
causes of the heavy behavioral change. Because of 
that, some tests with aglets loaded in the range 128Kb- 
512Kb were conducted. We have tested this pattern 
(Figure 5) with SSH, as this has been the protocol with 
a more stable behavior and with better performance 
from all of the studied ones. 
 

 0Kb 100Kb 1Mb 
Clear 667 1155 17921 
Stunnel 974 2168 18249 
SSH 845 1660 18125 
Zebedee 2420 2857 17896 

 0Kb 100Kb 1Mb 
Clear 4792 9709 151796 
Stunnel 6231 13431 170393 
SSH 5008 11961 163912 
Zebedee 21108 30341 165208 

0Kb 845 
100Kb 1660 
512Kb 11309 
1Mb 18125 
2Mb 22629 



 
 
 

We discovered that only from 512Kb to higher ones 
produces the severe behavioral change, a scale change 
to a higher one (note the 2Mb test). For loads fewer 
than 512Kb only reasonable changes take place. In our 
opinion this confirms that the performance bottleneck 
should be due to external, non platform and non 
cryptographic algorithm related factors, like memory 
bandwidth limitation, data too big to fit in cache, 
transmission media limitation, etc. Another scale 
change would be possible at even higher than 2Mb 
loads, but we have not tested it. 
 
4.3.3. Comparative behavior analysis depending on 
migration and load patterns. A graphical 
comparative analysis (Fig. 6) is necessary to note the 
behavioral changes between the different studied 
behavior patterns. When looking at the comparative 
graphic, representing one, ten or a hundred itineraries, 
with different load and cryptographic protocols in 
them, the three graphics appears to be equal.  

 
 
 

Nevertheless the time scale is different. When 
increasing the number of itineraries and aglet load at 
the same time, the differences in execution time 
between the ciphered aglets and the plain ones widen. 
An increase in itinerary number is also more critical 
than an increase in terms of agent size, except for 
really big agents, where the performance bottleneck 
arises. 
 
4.3.4. Behavioral changes when using compression. 
The use or not of compression is a controversial issue, 
because some cryptographic protocols define 
compression as a desirable feature (SSL, SSH) rather 
than a required one. Of course, interoperability is 
guaranteed during the negotiation phase between 
peers. The use of compression is an interesting issue to 
test, since compression is usually used in very low 
bandwidth links, as telephone lines or cell phones. 

In our tests (with a high bandwidth link) 
compression have been activated and deactivated to 

Figure 6. Comparative analysis of all studied 
behavior patterns 



test its impact in all the studied patterns. The results 
are not convincing, with better results in some cases 
and worse in others. Since the use of compression 
cannot be changed dynamically, this issue is not easy 
to solve nor the focus of this work. Only SSH (Zlib) 
and Zebedee (BZip2) were tested using compression, 
as Stunnel does not support compression. 
• One itinerary. Performance only gets better if aglet 

size is less than 100Kb. If the aglet is loaded with 
more data, performance gets worse. 

• Ten itineraries. Only SSH improves performance 
with the use of compression, but in very particular 
cases. SSH can use a wide range of symmetric key 
cryptosystems. The two faster ones are AES and 
Blowfish. Performance only improves when using 
Blowfish and loads under 100Kb. Blowfish is bit a 
slower algorithm than AES, so the performance 
improvement could be due to the fact that Blowfish 
has to encrypt less data because it was compressed. 
This should be true if the compression phase is 
faster than the encryption one, as usually is, and 
only if the compression ratio is enough to justify the 
time spent in that phase, as there is no way to know 
dynamically how well or bad a file is going to 
compress (but we can estimate it). Nevertheless, the 
same fact should apply to AES: with the use of 
compression transmission time should also improve. 
But this is not the case, as compression only 
improves transmission time using Blowfish. This is 
a very strange issue we have not solved. 

• A hundred itineraries. Performance always got 
worse results in any case. 

 
We think that there are enough reasons not to use 
compression with any cryptographic protocol in a mid 
to high bandwidth link, mainly due to heterogeneity 
issues between different protocols and lack of stability 
at different situations. Behavior testing of agents with 
a very low bandwidth requires a totally new analysis, 
since there are a lot of new variables to take into 
account: system architecture (cell phone, PDA, etc.), 
memory constraints, programming language design 
and implementation issues, OS constraints, line 
quality, etc. 
 
4.3.5. Conclusions about eCommerce behavior 
pattern analysis. During this in-depth analysis and 
experimentation we have assured some well known 
facts, such as that is faster to send a big agent than 
sending a high number of small agents (the same 
applies to messages, Figures 2, 3, 4). Other not so well 
know facts have also been discovered, such as that the 
difference in execution time of a clear agent and a 

tunneled one shorten when sending a burst of 
messages or doing a burst of migrations (Figure 2). 
From our point of view, due to stability and 
performance during our tests with different patterns, 
SSH2 is the best suited protocol (from the studied 
ones) for securing communications and migration in 
B2B and B2C eCommerce applications. Moreover, the 
use of cryptographic protocols does not suppose a 
significative performance penalty. We recommend 
using 128 bit AES (AES have a significative 
performance penalty at higher strengths) and at least 
1024 bit RSA key for exchange. Table 1 reflects a 
summary of all the studied aspects. 
 
5. Conclusions and future work 

Mobile multi-agent systems introduce a great deal 
of security issues. Some of them are new and others 
are very similar to client-server paradigm ones. 
Security has been identified as numerous times by 
different researchers as a top criterion for the adoption 
of mobile agents in real applications. 

We have presented an in-depth study of behavior 
patters of a mobile MAS platform when using 
cryptographic protocols to assure communication and 
migration integrity and confidentiality in eCommerce 
applications. Different eCommerce use case sceneries 
as well as many other aspects have been studied, such 
as protocol overhead, communication patterns, load 
patterns, compression use and bandwidth issues, 
covering a wide range of eCommerce real situations. 
This work is also extensible to other mobile and in 
some cases non-mobile MAS platforms. 

During this in-depth study we have assured some 
well known facts. Other not so well known facts have 
also been discovered, such as the performance 
bottleneck (and scale change) Vs. burst-sending of 
agents and messages. From our point of view, due to 
stability and performance during our tests with 
different patterns, SSH2 is the best suited protocol 
(from the studied ones) for securing communications 
and migration. Another significant conclusion is that 
the use of cryptographic protocols does not suppose a 
significative performance penalty compared with not 
using them at all. 

The results obtained can be used and should be 
taken into account by designers and implementers of 
secure mobile and non-mobile agent platforms and 
agents, as these results can also be applied to message 
transmission, because of the implications of behavioral 
changes cryptographic protocols, communication, 
migration, load and compression patterns have in 
mobile agent paradigm. 



 
The use of compression is a controversial issue, 

since we have obtained very interesting, and in some 
cases contradictory results. These results suggested us 
that another in-depth analysis of behavioral changes in 
constrained devices with very low bandwidth (and low 
quality in some times) links is necessary, as MAS 
platforms are being developed for constrained devices, 
with constrained memory, processing power and 
energy consumption. Behavioral analysis of these 
mobile MAS platforms are a very interesting topic for 
future research, since traditional public key 
cryptography (i.e. based on factorization problems) 
cannot be used due its high computation power needs. 
Different cryptosystems, such as elliptic curve ones, 
need to be used. 
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Pattern Results 

Communication and migration 
behavior patterns 

• It is preferable to send a burst of agents or 
migrations than isolated ones 

• Bad protocol design could lead in a really big 
performance hit 

Load behavior patterns 

• For small loads protocol overhead is more 
evident, with few changes in performance 
between clear and encrypted agents 

• As load increases, protocol overhead becomes 
less evident. Performance hit derives from the 
cryptographic algorithm itself 

• For very high loads (>=512Kb), there is severe 
behavior change and a scale change in 
measured time (even for the clear agent) 

Communication, migration and 
load blend behavior patterns 

• In general, any increase in number of 
itineraries or messages sent, or in agent load 
produces an increase in execution time, but at 
different scales 

• Increasing both number of itineraries and agent 
load widen the difference in execution time 
between clear and ciphered agents more than 
in whatever isolated case 

• Increasing the number of messages sent or the 
number of migrations necessary to transfer 
data to a destination rather than sending a big 
block of data, decreases performance, except 
for the performance bottleneck case 

Compression in a mid to high 
bandwidth media behavior 
pattern 

• Improves performance for isolated and small 
messages or migrations. The performance is 
worse in the rest of cases 

• A study in very  low bandwidth link is 
necessary to test behavioral changes in other 
environments 

Table 1. Summary of eCommerce behavior 
analysis results 



7. References 
 
1. V. Roth: Obstacles to the adoption of mobile agents. 

Proceedings of the 2004 IEEE International Conference 
on Mobile Data Management (MDM 2004). Berkeley, 
California, USA, January 2004. ISBN 0-7695-2070-7. 

2. R. Wahbe, S. Lucco, T. Anderson: Efficient Software-
Based Fault Isolation, October 1998. 

3. W. Farmer, J. Guttman, V. Swarup: Security for Mobile 
Agents: Authentication and State Appraisal. Proceedings 
of the 4th European Symposium on Research in Computer 
Security (ESORICS), September 1996. 

4. J. J. Ordille: When Agents Roam, Who Can You Trust? 
Proceedings of the First Conference on Emerging 
Technologies and Applications in Communications, May 
1996. 

5. D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris, G. 
Tsudik: Itinerant Agents for Mobile Computing. IEEE 
Personal Communications, vol.2, no. 5, October 1995. 

6. G. Necula, P. Lee: Safe Kernel Extensions Without Run-
Time Checking. Proceedings of the 2nd Symposium on 
Operating System Design and Implementation (OSDI), 
October 1996. 

7. G. Vigna: Protecting Mobile Agents Through Tracing. 
Proceedings of the 3rd ECOOP Workshop on Mobile 
Object Systems, June 1997. 

8. J. Riordan, B. Schneier: Environmental Key Generation 
Towards Clueless Agents. Mobile Agents and Security, 
Springer-Verlag, Lecture Notes in Computer Science No. 
1419, 1998. 

9. T. Sander, C. Tschdin: Protecting Mobile Agents Against 
Malicious Hosts. Mobile Agents and Security, Springer-
Verlag, Lecture Notes in Computer Science No. 1419, 
1998. 

10. F. Hohl: Time Limited Blackbox Security: Protecting 
Mobile Agents From Malicious Hosts. Mobile Agents and 
Security, Springer-Verlag, Lecture Notes in Computer 
Science No. 1419, 1998. 

 
 
 
 
 
 
 

11. S. Pozo, R. M. Gasca, M.T. Gómez-López.: Securing 
Mobile Agent Based Tele-Assistance Systems. 1st 
International Workshop on Tele-Care and Collaborative 
Virtual Communities in Elderly Care, TELECARE 2004 
(in conjunction with ICEIS 2004). Porto, Portugal, April 
2004. INSTICC Press 2004, ISBN 972-8865-10-4, pp. 62 
72. 

12. NIST Adavanced Encryption Standard (AES) 
Development Effort. CSRC Crypto Toolkit. 

13. D. B. Lange, M. Oshima: Programming and Deploying 
Java Mobile Agents with Aglets. Addison-Wesley, 1998. 
ISBN 0-201-32582-9. 

14. J. Altmann, F. Gruber, L. Klug, W. Stockner, E. Weippl: 
Using Mobile Agents in Real World: A Survey and 
Evaluation of Agent Platforms. 5th International 
Conference on Autonomous Agents, 2nd Workshop on 
Infrastructure for Agents, MAS, and Scalable MAS at 
Autonomous Agents. Montreal, Canada, May 2001. 

15. S. Blake-Wilson, M. Nystrom, D. Hopwood, J. 
Mikkelsen, T. Wright: The TLS protocol version 1.0, 
RFC 3546. Internet Engineering Task Force, June 2003. 

16. W. Wong: Stunnel: SSLing Internet Services Easily. 
SANS Institute, November 2001. 

17. T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, S. 
Lehtinen: SSH Protocol Architecture, September 2002. 

18. N. Rinsema: Secure (and free) IP Tunneling using 
Zebedee. SANS Institute, June 2001. 

19. Netscape Technologies, Inc.: Introduction to SSL. 
20. J. K. Ousterhout: Scripting: Higher-Level Programming 

for the 21st Century. IEEE Computer, March 1998. 
21. L.M. Cmarinha-Matos, H. Afsarmanesh: Design of a 

virtual community infrastructure for elderly care”. 3rd 
IFIP Working Conference on infrastructures for Virtual 
Entrerprises, PRO-VE 2002. Sesimbra, Portugal, May 
2002. Kluwer Academic Publishers, ISBN 1-4020-7020-
9. 

22. L.M. Camarinha-Matos, O. Castolo, J. Rosas: A multi-
agent based platform for virtual communities in elderly 
care. 9th IEEE International Conference on Emerging 
Technologies and Factory Automation, EFTA 2003. 
Lisbon, Portugal, September 2003. 

23. B. Preneel, B. Van Rompay, S.B. Örs, A. Biryukov, L. 
Granboulan, E. Dotax, M. Dichtl, M. Schafheutle, P. Serf, 
S. Pyka, E. Biham, O. Dunkelman, J. Stolin, M. Ciet, J-J. 
Quisquater, F. Sica, H. Raddum, M. Parker: Performance 
of Optimized Implementation of the NESSIE Primitives. 
IST-1999-12324, D21v2, February 2003. 

 


