
Behavioral Pattern Analysis of Secure Migration and Communications in
eCommerce using Cryptographic Protocols on a Mobile MAS Platform

S. Pozo, R. M. Gasca, R. Ceballos
Computer Languages and Systems Department

ETS Ingeniería Informática, University of Seville
Avda. Reina Mercedes S/N, 41012 Seville, Spain

sergio@us.es, {ceballos,gasca}@lsi.us.es

Abstract

Mobile Multi-Agent Systems (MAS) systems can be

used with real success in a growing number of
eCommerce applications nowadays. Security has been
identified as numerous times by different researchers
as a top criterion for the acceptance of mobile agent
adoption. In this paper we present an in-depth analysis
of behavior patterns of a mobile MAS platform when
using different cryptographic protocols to assure
communication and migration integrity and
confidentiality. Different use case sceneries of
eCommerce applications as well as many other aspects
have been studied, such as overhead, different
communication patterns, different loads and
bandwidth issues. This work is also extensible to other
mobile and non-mobile MAS platforms. The results
obtained can be used and should be taken into account
by designers and implementers of secure mobile and
also non-mobile agent platforms and agents.

1. Introduction

Mobile Multi-Agent Systems (MAS) can be used
with real success in a growing number of eCommerce
applications nowadays. For example, there are a lot of
research efforts in agent cooperation and negotiation
protocols and their applications, such as cooperating
agents in problem resolution and negotiating agents in
eCommerce. MAS are also being used with great
success in Tele-Assistance platforms for elderly care
[21, 22].

Most negotiation and cooperation protocols that are
widely deployed over big networks or over Internet
have been used with mobile MAS. Security has been
identified numerous times by different researchers as a
top criterion for the acceptance of mobile agent
adoption [1]. There are even many domains of

application which have specific security requirements
imposed by legislation, like the applications used in
health care and eCommerce environments. There is
also a trade off between trust and security, and the
overhead created by cryptographic protocols that
should be taken into account when designing
eCommerce applications, since it can affect severely its
usefulness.

In this paper we present an in-depth study of

behavior patterns of a mobile MAS platform when
using cryptographic protocols to assure
communication and migration integrity and
confidentiality. Different eCommerce use case
sceneries as well as many other aspects have been
studied, such as overhead, different communication
patterns, different loads, and bandwidth issues. This
work, as we are going to expose below, is also
extensible to other mobile and in some cases non-
mobile MAS platforms. The test system has been
implemented from a previous work [11], which is
based on the possibility of using secure tunnels to
mobile MAS.

The rest of the paper is organized as follows: In
section 2 we present a brief introduction to security
problems of platforms and mobile agents, and related
works. In section 3 we expose an overview of a secure
tunnel approach in which we have based our test
system. In section 4 we propose our testing
methodology and describe the testing environment,
and present the results obtained, discussions, and
conclusions about them. We conclude this work in
chapter 5 with general conclusions and future research
works suggested during this work.

2. Mobility and security issues in mobile
MAS. Related works

Mobile software agents are goal-directed programs
capable of suspending their execution state on one
platform and moving to another, where they resume
their execution. Static agents have the same
characteristics except that they are not mobile, i.e. they
cannot move from the system they are running on
(which is also the system which created them.)

There are different kinds of mobility: strong, in
which code and execution state are moved; and weak,
where only the code is moved. That is, every time the
agent arrives at a different destination, it runs back
from the beginning, or from a marker expressly placed
for this purpose.

Mobility can also be classified as single hop and
multi-hop. Most security problems which arise in
mobile multi-agent paradigm occur with multi-hop
mobile agents. This is due to the fact that only the
home platform (the platform where the agent was first
created) is trusted. That is, if we are not sure that a
mobile agent comes from a trusted source, on which
we know that neither the code nor the state have been
altered, we cannot know whether this agent will carry
out an unplanned activity on the destination platform.

The most secure location for an agent is its home
platform. Although neither agents nor home platforms
are invulnerable, a number of conventional techniques
can be applied to construct adequate defenses. Each
time an agent migrates, security risks arise, and so it is
needed a way to transmit this trusted environment to
other platforms where agents may travel. The greatest
problem with multi-hop MAS is just the trust
relationship which can be established in single-hop
MAS between two platforms thanks to the security
mechanisms derived from Client/Server architecture.
These trust relationships are not transitive, nor have to
be bilateral.

There are some practical solutions for securing

communications and migration in multi-hop MAS, but
the vast majority of them include restrictions on
itineraries. For example, it is possible to set up a
restricted itinerary in which all platforms have mutual
trust in all others, so agents can move freely between
them (each platform signs and/or encrypts the agent
before it migrates).

In an earlier work [11], we proposed a different
way to secure agents based on secure tunnels. We
obtained a secure agent community usable in
production eCommerce, health care and Tele-
Assistance environments with existing technology,

with little impact in network topology, and without
having to modify existing agent applications or agent
platforms. Specifically we were looking for a system
that provide integrity, confidentiality, data origin
authentication, MAS independence, compliance with
standards, existence of cryptographic acceleration
hardware, cost-saving and reuse of existing software
and hardware infrastructure. Only communications and
migration were protected. No direct protection to
malicious agents or platforms was provided, as there
are other techniques for that purposes, such as fault
isolation [2], safe code interpretation [20], state
appraisal [3], path histories [4, 5], proof carrying code
[6], execution tracing [7], environmental key
generation [8], computing with encrypted functions
[9], code obfuscation [10], and others.

Aglets [13] have been used for our reference

implementation in the laboratory, since it is Open
Source, cross-platform, easy to develop, has weak
mobility (the maximum mobility a Java-coded MAS
could have), high acceptance and relatively good
documentation [14].

We have focused our research in the
parameterization of behavior patterns of secured
mobile agents in eCommerce: behavior with different
agent loads, behavior modification by the use of
different compression algorithms, behavior with
different communication patterns… concluding with a
performance analysis. Other issues related to the use of
our particular approach to securing communications
and migration in mobile MAS have arisen, such as
scalability, NAT and proxying issues. All of these
collateral issues, as well as an in-depth study of the
applicability of the cryptographic protocols used in this
work, have been discussed in more detail in a previous
work [11].

The conclusions derived from this paper are easily
applicable to other mobile MAS platforms, as our
security mechanism [11] is applicable in a wide variety
of them without having to modify platforms or agents
themselves. Moreover, the cryptographic protocols
used are based on standards, and can easily be
encountered implemented at platform level in many
mobile MAS platforms.

3. Overview of secure tunnels

Tunneling is the capability of encapsulating one
protocol within another, using this second protocol to
traverse network nodes. A secure tunnel encapsulates
an insecure protocol (like FTP or HTTP) within a
secure one (like SSL [19] or TLS [15]). Tunnels may
also be used to bypass firewalls, and are also
vulnerable to denial of service attacks, since they use a
public and untrusted network as transmission media.

We are going to give a very brief explanation of

cryptosystems applied to mobile MAS platform,
because an in-depth study is given in [11], where we
developed a trusted agent community with applications
which generate application independent secure tunnels.
• Stunnel [16] is an application which acts as SSLv3

server and/or client, providing a secure SSL-based
secure tunnel (wrapper) for insecure protocols or
applications with the only need of the installation of
the application in each of the systems that needs to
secure. Stunnel is distributed under a GPL license
and has versions for Microsoft Windows, some
flavors of UNIX and many other OS. Stunnel also
supports cryptographic accelerator hardware and
client and server authentication with X.509 digital
certificates (as SSL does).

• SSH [17] is a protocol for securing network services
over an insecure network. It is traditionally used for
protecting insecure UNIX protocols such as telnet,
rlogin, etc. Moreover SSH can be used to secure
other services creating a wrapper around them using
a local port redirection scheme very similar to the
one used by Stunnel. SSH is widely accepted by the
scientific community as being a trusted security
protocol. SSH architecture is very similar to SSL or
TLS one, and provides basically the same
functionality.

• Zebedee [18] is another Open Source application
used to create secure tunnels with implementations
in Windows, UNIX, Linux, Java and Ruby.
Zebedee (from its documentation) has a small
memory footprint and low wire protocol overhead.
Zebedee uses a plain Diffie-Hellman protocol for its
(weak) key agreement process and a symmetric key
cryptographic algorithm, Blowfish. Zebedee does
not provide any features for data integrity. We have
included this application in our tests to verify the
claims about the overhead compared to other
protocols.

4. Behavior patterns of cryptographic
protocols in eCommerce applications

Different behavior patterns have been analyzed,
such as
• Behavior in single-hop and multi-hop with different

migration and communication patterns
• Behavior with different agent loads
• Behavior modification by the use of different

compression algorithms (before encryption phase)

We have also done a complete performance
analysis, since performance could be a discriminatory
factor in several environments, and more especially in
eCommerce. Moreover, some issues have also been
detected during the tests, as we are going to explain
below.

4.1. Environment

During our experiments there have been used two
computers connected between a dedicated 100Mbit
Ethernet switch isolated from the rest of the network.
All results have been taken when the machines were
fully dedicated and with a fresh installation of the
operating system. Both machines are Pentium 4
1,7GHz processor with a 400MHz FSB and 256Mb
DDR266 RAM. Both were running SuSE Linux 9.0
fully patched (at the time of the writing of this paper)
and compiled for i586 architecture. Linux Kernel
2.4.21-99, JDK 1.4.2b28 and Aglets 2.0.2 were the
base software used.
• Aglets 2.0.2. Aglets HTTP proxy feature have been

used to overcome a tunnel dodging problem [11], as
we think this is the way Aglets are going to be used
in a real environment. No embedded platform
authentication has been used in the tests.

• OpenSSL 0.9.7b. This library provides algorithms
used by other applications and protocols, in this
case Stunnel and OpenSSH. Default configuration
was used.

• Stunnel 4.04 PTHREAD. 128-bit AES encryption
have been used instead of 3DES, since AES is faster
than 3DES and 3DES is also being replaced with
AES. 1024-bit RSA certificate based authentication
scheme and no compression have also been used,
since Stunnel does not support it, as it uses SSL.
Stunnel was a bit difficult to configure because of
its lack of up to date documentation.

• OpenSSH 3.7.2.1p2-18. 128-bit AES encryption,
1024-bit RSA certificate based authentication and
no compression have been used. We got some
stability problems when transferring big agents

(bigger than 3Mb). We will explain more about it
later on this chapter, as well as behavior changes
when using compression.

• Zebedee 2.5.2 with libBlowfish 0.9.5a, libBzip2
1.0.1 and zlib 1.1.4. 128-bit Blowfish and SHA1
hashes (160 bit) have been used. Also compression
has been deactivated. No embedded authentication
mechanism has been used because of unusability
reasons explained before in this paper and in other
works [11].

4.2. Methodology and parameters

Nine variations of the same test application have
been used, varying in the number of hops the agent
traverses, and in the load the agent carries on. The
application is composed of a mobile agent that
migrates to a platform and then goes back to its home
platform. The agent does not compute anything at any
platforms.

For behavior recognition with different

communication patterns, the number of itinerary laps
performed by the agent changes between 1, 10 and
100. That is, if the number of itineraries is set to 10,
then the agent goes to the destination and then to its
home platform ten times.

For behavior recognition with different loads, the
agent was loaded with three different data vectors
(0Kb, 100Kb or 1Mb) using OpenOffice 1.1
sw645mi.dll file from its Microsoft Windows version,
in order to get some degree of randomness in data
content. The size of the compiled Aglet itself was
3,7Kb.

Compression was also used to test behavior changes
and overhead incurred on its usage, as it is common to
use compression on very low bandwidth links
(typically used in B2C eCommerce applications). Two
compression algorithms (Zlib and BZip2) were used in
order to test the relation between different
communication patterns, agent loads, and
cryptographic protocols.

Special interest has been put in a comparative
analysis of each behavior pattern detected and its
derivates. Each test has been repeated three times. The
execution time presented in the performance analysis is
the average of the three results. We think that these
tests cover the majority of situations present in B2C
and B2B eCommerce applications.

4.3. Results and discussion

In this section we present the three main use case

eCommerce sceneries which have been conducted,
showing from only one itinerary to a hundred of them,
with results for different agent loads. Finally behavior
changes due to the use of compression are also cited.
With these tests near all possibilities regarding B2C
and B2B communications are covered, since migration
is a form of communication in which an agent can do
computations at destination platforms. Since our test
agents do not compute anything, a migration can be
thought as a message in terms of communication time,
adding the constant time taken to serialize and
reinstantiate the agent. Also the size of an unloaded
agent (3,7Kb in our unloaded test aglet) could be
similar to a FIPA-ACL small message, since it uses a
complex syntax, and data can be embedded into
messages. Testing a range of possible lengths in the
0Kb-3Kb range is irrelevant as is going to be exposed
below, since the differences in behavior are too small
to be taken into account. Again, we must note that the
results presented in this section are directly applicable
to other agent platforms, including platforms with the
cryptographic protocols cited below embedded in
them.

4.3.1. Behavior depending on agent communication
and migration patterns. We evaluated the behavior
of an aglet migrating only from one platform to
another and its way back to the home platform. Then
the aglet disposed itself. Then we tested all
cryptographic protocols explained in an earlier section
(Figure 1) for this behavior pattern (the aglet in clear,
Stunnel, SSH and Zebedee). Then a ten hop pattern
migration was used, and finally a hundred hop
migration pattern. No compression was used, and the
aglet was not loaded with any extra data (but the size
of its compiled code was 3,7Kb).

For one itinerary, differences are too small to be
representative, but some interesting results must be
noted. There is a minimal difference between the
behaviors of the aglet using no cryptographic protocol
and the one tunneled by Stunnel (SSL). But the time
taken by SSH is nearly twice the time taken by the
clear aglet to migrate and come back. Finally, the time
taken by a Zebedee tunneled aglet is three times the
one of the clear aglet. This basic test has given a sight
about the behavioral changes created by the overhead
of the different protocols with small loads.
Surprisingly, Stunnel (SSL) and SSH (which also used
RSA authentication) created less overhead than
Zebedee with no authentication. For the ten and a
hundred itineraries tests, these results can be seen with

great detail, as overhead differences are more
pronounced.

As it can be seen with more detail in the table
(Figure 1), there is no difference in practical terms
between behavior of a clear text aglet and of a SSH or
Stunnel ones as the number of itineraries increases. It
can be thought that computers used in the test were
powerful enough to encrypt the migrating aglet with no
performance hit. But if that were true, then Zebedee
results would be different, with less overhead. Clearly
Zebedee uses a poor designed protocol. The
differences between Zebedee and the other two ones
are too big. These differences are not related to the
small differences in performance of AES (used by
Stunnel and SSH) and Blowfish (Blowfish is used by
Zebedee, being only a bit slower than Twofish),
according to a wide range of studied cases [12, 23] in
32 bit platforms with C coded algorithms.

Figure 1. Behavior depending on the number
of itineraries (time in milliseconds)

4.3.2. Behavior depending on agent load patterns.
We evaluated the behavior of an aglet with different
loads. We tested it with no load (3,7Kb was the size of
compiled code), 100Kb and 1Mb. We tested all
cryptographic protocols explained in an earlier section.
Three sceneries were used in order to give a
comparative analysis of differences in behavior due to
different communication and migration patterns
described in the previous section, with one itinerary,
ten and a hundred ones (Figures 2, 3, and 4).

The first scenery (Figure 2) represents the one
itinerary behavior pattern studied in the previous

section, but with different loads. For no extra load, the
results are equal to the ones of the previous section for
one itinerary.

When the agent was loaded with 100Kb, the
protocol overhead becomes more evident due to the
fact that, even with more data to encrypt, the migration
times have not increased too much. This can be seen
with more detail in SSH tests, where the behaviors of
0Kb and 100Kb aglet have minimal differences
(301ms Vs. 314ms). For the rest of the protocols,
behavior differences are more evident. But for all of
them, behavior differences between unloaded aglets
and 100Kb loaded ones are minimal. A load increase is
necessary to know about behavioral changes due to
encryption overhead rather than protocol overhead.

Figure 2. Behavior depending on agent load.

One itinerary (time in milliseconds)

It is difficult to think that typical eCommerce agent
applications would use big messages or big pieces of
code because of the nature of mobile agent paradigm
and eCommerce applications, but we have also studied
a 1Mb loaded aglet. In this case, the overhead is
created by the encryption algorithm and not by the
protocol overhead. There is a severe behavioral change
between a 100Kb aglet and a 1Mb one in all cases.
This difference in quantitative terms is a multiplicative
factor of approximately 10 in time, which is consistent
with the increase in load (from 100Kb to 1Mb).
Moreover there is an important fact to note: at 1Mb
load, the times between different cryptographic
protocols are minimal (including the aglet used with no

 1 10 100
Clear 174 667 4792
Stunnel 210 974 6231
SSH 301 845 5008
Zebedee 540 2420 21108

 0Kb 100Kb 1Mb
Clear 174 225 3312
Stunnel 210 319 3512
SSH 301 314 3522
Zebedee 540 633 3520

encryption), like if it were a performance bottleneck.
This bottleneck could be due to many external, non
platform and non algorithm related factors, like
memory bandwidth limitation, data too big to fit in
cache, transmission media limitation, etc.

The second scenery (Figure 3) represents the ten

hop itinerary pattern studied in the previous section,
but with different loads. For no extra load, the results
are equal to the ones of the previous section for ten
itineraries.

The behavior of these aglets is very similar to the
ones of Figures 1 and 2 but in a different, higher scale.
Even the behavioral differences between Stunnel and
SSH for one and ten itineraries are the same for the
same number of itineraries, with an unloaded aglet and
with a 100Kb aglet. Note that a load increase does not
change behavior of the aglets in other way than the
increase in itineraries did. For a hundred of itineraries
(Figure 4), the results are even the same, but again at a
bigger scale.

Figure 3. Behavior depending on agent load.
Ten itineraries (time in milliseconds)

Figure 4. Behavior depending on agent load. A
hundred of itineraries (time in milliseconds)

Figure 5. Detailed view of SSH protocol
behavior (time in milliseconds)

The performance bottleneck also remains there for

1Mb load, but at a higher level. The jump between
100Kb and 1Mb is too big to analyze with detail the
causes of the heavy behavioral change. Because of
that, some tests with aglets loaded in the range 128Kb-
512Kb were conducted. We have tested this pattern
(Figure 5) with SSH, as this has been the protocol with
a more stable behavior and with better performance
from all of the studied ones.

 0Kb 100Kb 1Mb
Clear 667 1155 17921
Stunnel 974 2168 18249
SSH 845 1660 18125
Zebedee 2420 2857 17896

 0Kb 100Kb 1Mb
Clear 4792 9709 151796
Stunnel 6231 13431 170393
SSH 5008 11961 163912
Zebedee 21108 30341 165208

0Kb 845
100Kb 1660
512Kb 11309
1Mb 18125
2Mb 22629

We discovered that only from 512Kb to higher ones
produces the severe behavioral change, a scale change
to a higher one (note the 2Mb test). For loads fewer
than 512Kb only reasonable changes take place. In our
opinion this confirms that the performance bottleneck
should be due to external, non platform and non
cryptographic algorithm related factors, like memory
bandwidth limitation, data too big to fit in cache,
transmission media limitation, etc. Another scale
change would be possible at even higher than 2Mb
loads, but we have not tested it.

4.3.3. Comparative behavior analysis depending on
migration and load patterns. A graphical
comparative analysis (Fig. 6) is necessary to note the
behavioral changes between the different studied
behavior patterns. When looking at the comparative
graphic, representing one, ten or a hundred itineraries,
with different load and cryptographic protocols in
them, the three graphics appears to be equal.

Nevertheless the time scale is different. When
increasing the number of itineraries and aglet load at
the same time, the differences in execution time
between the ciphered aglets and the plain ones widen.
An increase in itinerary number is also more critical
than an increase in terms of agent size, except for
really big agents, where the performance bottleneck
arises.

4.3.4. Behavioral changes when using compression.
The use or not of compression is a controversial issue,
because some cryptographic protocols define
compression as a desirable feature (SSL, SSH) rather
than a required one. Of course, interoperability is
guaranteed during the negotiation phase between
peers. The use of compression is an interesting issue to
test, since compression is usually used in very low
bandwidth links, as telephone lines or cell phones.

In our tests (with a high bandwidth link)
compression have been activated and deactivated to

Figure 6. Comparative analysis of all studied
behavior patterns

test its impact in all the studied patterns. The results
are not convincing, with better results in some cases
and worse in others. Since the use of compression
cannot be changed dynamically, this issue is not easy
to solve nor the focus of this work. Only SSH (Zlib)
and Zebedee (BZip2) were tested using compression,
as Stunnel does not support compression.
• One itinerary. Performance only gets better if aglet

size is less than 100Kb. If the aglet is loaded with
more data, performance gets worse.

• Ten itineraries. Only SSH improves performance
with the use of compression, but in very particular
cases. SSH can use a wide range of symmetric key
cryptosystems. The two faster ones are AES and
Blowfish. Performance only improves when using
Blowfish and loads under 100Kb. Blowfish is bit a
slower algorithm than AES, so the performance
improvement could be due to the fact that Blowfish
has to encrypt less data because it was compressed.
This should be true if the compression phase is
faster than the encryption one, as usually is, and
only if the compression ratio is enough to justify the
time spent in that phase, as there is no way to know
dynamically how well or bad a file is going to
compress (but we can estimate it). Nevertheless, the
same fact should apply to AES: with the use of
compression transmission time should also improve.
But this is not the case, as compression only
improves transmission time using Blowfish. This is
a very strange issue we have not solved.

• A hundred itineraries. Performance always got
worse results in any case.

We think that there are enough reasons not to use
compression with any cryptographic protocol in a mid
to high bandwidth link, mainly due to heterogeneity
issues between different protocols and lack of stability
at different situations. Behavior testing of agents with
a very low bandwidth requires a totally new analysis,
since there are a lot of new variables to take into
account: system architecture (cell phone, PDA, etc.),
memory constraints, programming language design
and implementation issues, OS constraints, line
quality, etc.

4.3.5. Conclusions about eCommerce behavior
pattern analysis. During this in-depth analysis and
experimentation we have assured some well known
facts, such as that is faster to send a big agent than
sending a high number of small agents (the same
applies to messages, Figures 2, 3, 4). Other not so well
know facts have also been discovered, such as that the
difference in execution time of a clear agent and a

tunneled one shorten when sending a burst of
messages or doing a burst of migrations (Figure 2).
From our point of view, due to stability and
performance during our tests with different patterns,
SSH2 is the best suited protocol (from the studied
ones) for securing communications and migration in
B2B and B2C eCommerce applications. Moreover, the
use of cryptographic protocols does not suppose a
significative performance penalty. We recommend
using 128 bit AES (AES have a significative
performance penalty at higher strengths) and at least
1024 bit RSA key for exchange. Table 1 reflects a
summary of all the studied aspects.

5. Conclusions and future work

Mobile multi-agent systems introduce a great deal
of security issues. Some of them are new and others
are very similar to client-server paradigm ones.
Security has been identified as numerous times by
different researchers as a top criterion for the adoption
of mobile agents in real applications.

We have presented an in-depth study of behavior
patters of a mobile MAS platform when using
cryptographic protocols to assure communication and
migration integrity and confidentiality in eCommerce
applications. Different eCommerce use case sceneries
as well as many other aspects have been studied, such
as protocol overhead, communication patterns, load
patterns, compression use and bandwidth issues,
covering a wide range of eCommerce real situations.
This work is also extensible to other mobile and in
some cases non-mobile MAS platforms.

During this in-depth study we have assured some
well known facts. Other not so well known facts have
also been discovered, such as the performance
bottleneck (and scale change) Vs. burst-sending of
agents and messages. From our point of view, due to
stability and performance during our tests with
different patterns, SSH2 is the best suited protocol
(from the studied ones) for securing communications
and migration. Another significant conclusion is that
the use of cryptographic protocols does not suppose a
significative performance penalty compared with not
using them at all.

The results obtained can be used and should be
taken into account by designers and implementers of
secure mobile and non-mobile agent platforms and
agents, as these results can also be applied to message
transmission, because of the implications of behavioral
changes cryptographic protocols, communication,
migration, load and compression patterns have in
mobile agent paradigm.

The use of compression is a controversial issue,

since we have obtained very interesting, and in some
cases contradictory results. These results suggested us
that another in-depth analysis of behavioral changes in
constrained devices with very low bandwidth (and low
quality in some times) links is necessary, as MAS
platforms are being developed for constrained devices,
with constrained memory, processing power and
energy consumption. Behavioral analysis of these
mobile MAS platforms are a very interesting topic for
future research, since traditional public key
cryptography (i.e. based on factorization problems)
cannot be used due its high computation power needs.
Different cryptosystems, such as elliptic curve ones,
need to be used.

6. Acknowledgements

This work was funded in part by the Fifth Framework
IST program of the European Commission under the
TeleCARE IST-2000-27607, and by the Spanish
company SKILL Technology Group SL. The authors
thank the contribution of the TeleCARE consortium
members.

Pattern Results

Communication and migration
behavior patterns

• It is preferable to send a burst of agents or
migrations than isolated ones

• Bad protocol design could lead in a really big
performance hit

Load behavior patterns

• For small loads protocol overhead is more
evident, with few changes in performance
between clear and encrypted agents

• As load increases, protocol overhead becomes
less evident. Performance hit derives from the
cryptographic algorithm itself

• For very high loads (>=512Kb), there is severe
behavior change and a scale change in
measured time (even for the clear agent)

Communication, migration and
load blend behavior patterns

• In general, any increase in number of
itineraries or messages sent, or in agent load
produces an increase in execution time, but at
different scales

• Increasing both number of itineraries and agent
load widen the difference in execution time
between clear and ciphered agents more than
in whatever isolated case

• Increasing the number of messages sent or the
number of migrations necessary to transfer
data to a destination rather than sending a big
block of data, decreases performance, except
for the performance bottleneck case

Compression in a mid to high
bandwidth media behavior
pattern

• Improves performance for isolated and small
messages or migrations. The performance is
worse in the rest of cases

• A study in very low bandwidth link is
necessary to test behavioral changes in other
environments

Table 1. Summary of eCommerce behavior
analysis results

7. References

1. V. Roth: Obstacles to the adoption of mobile agents.

Proceedings of the 2004 IEEE International Conference
on Mobile Data Management (MDM 2004). Berkeley,
California, USA, January 2004. ISBN 0-7695-2070-7.

2. R. Wahbe, S. Lucco, T. Anderson: Efficient Software-
Based Fault Isolation, October 1998.

3. W. Farmer, J. Guttman, V. Swarup: Security for Mobile
Agents: Authentication and State Appraisal. Proceedings
of the 4th European Symposium on Research in Computer
Security (ESORICS), September 1996.

4. J. J. Ordille: When Agents Roam, Who Can You Trust?
Proceedings of the First Conference on Emerging
Technologies and Applications in Communications, May
1996.

5. D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris, G.
Tsudik: Itinerant Agents for Mobile Computing. IEEE
Personal Communications, vol.2, no. 5, October 1995.

6. G. Necula, P. Lee: Safe Kernel Extensions Without Run-
Time Checking. Proceedings of the 2nd Symposium on
Operating System Design and Implementation (OSDI),
October 1996.

7. G. Vigna: Protecting Mobile Agents Through Tracing.
Proceedings of the 3rd ECOOP Workshop on Mobile
Object Systems, June 1997.

8. J. Riordan, B. Schneier: Environmental Key Generation
Towards Clueless Agents. Mobile Agents and Security,
Springer-Verlag, Lecture Notes in Computer Science No.
1419, 1998.

9. T. Sander, C. Tschdin: Protecting Mobile Agents Against
Malicious Hosts. Mobile Agents and Security, Springer-
Verlag, Lecture Notes in Computer Science No. 1419,
1998.

10. F. Hohl: Time Limited Blackbox Security: Protecting
Mobile Agents From Malicious Hosts. Mobile Agents and
Security, Springer-Verlag, Lecture Notes in Computer
Science No. 1419, 1998.

11. S. Pozo, R. M. Gasca, M.T. Gómez-López.: Securing
Mobile Agent Based Tele-Assistance Systems. 1st
International Workshop on Tele-Care and Collaborative
Virtual Communities in Elderly Care, TELECARE 2004
(in conjunction with ICEIS 2004). Porto, Portugal, April
2004. INSTICC Press 2004, ISBN 972-8865-10-4, pp. 62
72.

12. NIST Adavanced Encryption Standard (AES)
Development Effort. CSRC Crypto Toolkit.

13. D. B. Lange, M. Oshima: Programming and Deploying
Java Mobile Agents with Aglets. Addison-Wesley, 1998.
ISBN 0-201-32582-9.

14. J. Altmann, F. Gruber, L. Klug, W. Stockner, E. Weippl:
Using Mobile Agents in Real World: A Survey and
Evaluation of Agent Platforms. 5th International
Conference on Autonomous Agents, 2nd Workshop on
Infrastructure for Agents, MAS, and Scalable MAS at
Autonomous Agents. Montreal, Canada, May 2001.

15. S. Blake-Wilson, M. Nystrom, D. Hopwood, J.
Mikkelsen, T. Wright: The TLS protocol version 1.0,
RFC 3546. Internet Engineering Task Force, June 2003.

16. W. Wong: Stunnel: SSLing Internet Services Easily.
SANS Institute, November 2001.

17. T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, S.
Lehtinen: SSH Protocol Architecture, September 2002.

18. N. Rinsema: Secure (and free) IP Tunneling using
Zebedee. SANS Institute, June 2001.

19. Netscape Technologies, Inc.: Introduction to SSL.
20. J. K. Ousterhout: Scripting: Higher-Level Programming

for the 21st Century. IEEE Computer, March 1998.
21. L.M. Cmarinha-Matos, H. Afsarmanesh: Design of a

virtual community infrastructure for elderly care”. 3rd
IFIP Working Conference on infrastructures for Virtual
Entrerprises, PRO-VE 2002. Sesimbra, Portugal, May
2002. Kluwer Academic Publishers, ISBN 1-4020-7020-
9.

22. L.M. Camarinha-Matos, O. Castolo, J. Rosas: A multi-
agent based platform for virtual communities in elderly
care. 9th IEEE International Conference on Emerging
Technologies and Factory Automation, EFTA 2003.
Lisbon, Portugal, September 2003.

23. B. Preneel, B. Van Rompay, S.B. Örs, A. Biryukov, L.
Granboulan, E. Dotax, M. Dichtl, M. Schafheutle, P. Serf,
S. Pyka, E. Biham, O. Dunkelman, J. Stolin, M. Ciet, J-J.
Quisquater, F. Sica, H. Raddum, M. Parker: Performance
of Optimized Implementation of the NESSIE Primitives.
IST-1999-12324, D21v2, February 2003.

