
IMPROVING SOFTWARE PROCESS MATURITY THROUGH

DYNAMIC MODELING AND SIMULATION

Mercedes Ruiz1p, Isabel Ramos2, Miguel Toro2

Department of Computer Languages and Systems
1 Escuela Superior de Ingeniería. University of Cádiz (Spain)

2 Escuela Técnica Superior de Ingeniería Informática. University of Seville (Spain)

Resumen

Los modelos de procesos actuales como CMM, SPICE y otros recomiendan la

aplicación de control estadístico y de guías de métricas para la definición,

implementación y posterior evaluación de diferentes mejoras del proceso. Sin

embargo, precisamente en este contexto no se ha considerado lo suficiente el

modelado cuantitativo, reconocido en otras áreas como un elemento esencial para la

adquisición de conocimiento. En este trabajo se describe la base conceptual y

fundamental utilizada para el desarrollo de un marco enfocado a la mejora de

procesos software que combina las técnicas de estimación tradicionales con la

utilización extensiva de modelos dinámicos de simulación como herramienta para

asesorar en el proceso de evolución entre los diferentes niveles de madurez

propuestos por el modelo de referencia CMM. Tras la necesaria introducción a los

conceptos fundamentales del modelado y simulación del proceso software y la

justificación para la creación de dicho marco, se abordan las cuestiones

fundamentales para su desarrollo, tales como el enfoque conceptual y su estructura,

prestando especial atención al paradigma de desarrollo de los modelos dinámicos de

simulación que le dan soporte.

Abstract

Current software process models (CMM, SPICE, etc.) strongly recommend the

application of statistical control and measure guides to define, implement and

evaluate the effects of different process improvements. However, whilst quantitative

modelling has been widely used in other fields, it has not been considered enough in

1420

the field of software process improvement. During the last decade software process

simulation has been used to address a wide diversity of management problems.

Some of these problems are related to strategic management, technology adoption,

understanding, training and learning, and risk management, among others. In this

work a dynamic integrated framework for software process improvement is

presented. This framework combines traditional estimation models with an intensive

utilisation of dynamic simulation models of software process. The aim of this

framework is to support a qualitative and quantitative assessment for software

process improvement and decision making to achieve a higher software development

process capability according to the Capability Maturity Model. The concepts

underlying this framework have been implemented in a software process

improvement tool that has been used in a local software organisation. The results

obtained and the lessons learned are also presented in this paper.

1 INTRODUCTION

Dynamic modelling and simulation as process improvement tools have been

intensively used in the manufacturing area. Currently, software process modelling

and simulation are gaining an increasing interest among researchers and

practitioners as an approach to analyse complex business and solve policy

questions.

 In this paper an approach is proposed that combines traditional estimation

techniques with System Dynamics modelling. The aim of this combination is to build

a framework to support a qualitative and quantitative assessment for software

process improvement and decision making. The purpose of DIFSPI (Dynamic

Integrated Framework for Software Process Improvement) is to help organisations to

achieve a higher software development process capability according to the Capability

Maturity Model (Paulk et al. 1993). The dynamic models built inside this framework

provide the capability of gaining insight over the whole life cycle at different levels of

abstraction. The level of abstraction used in a certain organisation will depend on its

maturity level. For instance, in a level 1 organisation the simulator can establish a

baseline according to traditional estimation models from an initial estimate of the size

of the project. With this baseline, the software manager can analyse the results

obtained with the simulation of different process improvements and study the

outcomes of over or underestimate of cost or schedule. During the simulation metric

1421

data are saved. These data conform to SEI core measures recommendation

(Carleton et al. 1992) and are mainly related to cost, schedule and quality.

 The structure of the paper is as follows. Section 2 provides a brief overview of the

work conducted in the field of software process simulation. In Section 3 the

fundamental basis and structure of this framework are described. The

implementation and results obtained when applying it inside a local organisation are

discussed in Section 4. Finally, Section 5 summarises the paper and draws the

conclusions and lessons learnt.

2 SOFTWARE PROCESS SIMULATION

Simulation can be applied in many critical areas in support of software engineering. It

enables one to address issues before these issues become problems. Simulation is

more than just a technology, as it forces one to think in global terms about system

behaviour, and about the fact that systems are more than the sum of their

components (Christie 1999). A simulation model is a computational model that

represents an abstraction or a simplified representation of a complex dynamic

system. Simulation models have as a main advantage the possibility of

experimenting different management decisions.

 Thus it becomes possible to analyse the effect of those decisions in systems

where the cost or risks of experimentation make it unfeasible. Another important

factor is that simulation provides insights into complex process behaviour which is

not possible to be analysed by means of stochastic models. Like many processes,

software processes can contain multiple feedback loops, such as associated with

correction of defects. Delays resulting from these defects may range from minutes to

years. The resulting complexity makes it almost impossible for mental analysis to

predict the consequences.

 The common objectives of simulation models consist on supplying mechanisms to

experiment, predict, learn and answer questions such as What if ...? A software

process simulation model can be focussed on certain aspects of the software

process or the organisation. It is important to bear in mind that a simulation model

constitutes an abstraction of the real system, and so, it represents only the parts of

the system that have been intended to be modelled. Furthermore, currently available

modelling tools such as STELLA, POWER-SIM and Vensim help to represent the

software development process as a system of differential equations. This is a

1422

remarkable characteristic as it makes it possible to formalise and develop a scientific

basis for software process modelling and improvement. Some noticeable applications

of the dynamic approach to model software process can be found in (Kellner et al.

1999).

3 DIFSPI STRUCTURE

Project management is composed of activities that are intimately interrelated in the

sense of that a certain action performed over a determined area will possibly affect

other areas. For instance, a time delay will always affect the cost of the project but it

may or may not affect the morale of the development team or the quality of the

product. The interactions among the different areas of project management are so

strong that on some occasions the throughput of one of them can only be achieved

by reducing the throughput of another. A clear example of this behaviour can be

found in the frequent practice of reducing the quality or the number of requirements

to be implemented in a certain version of the product with the aim of accomplishing

the time or cost estimates.

Dynamic models help to understand this integrated nature of project management

as they describe it through different processes, structures and main

interrelationships. In the framework proposed here, project management is

considered as a set of dynamic interrelated processes. Projects are composed of

processes. Each process is composed of a series of activities designed for the

achievement of an objective (Paulk et al. 1993). From a general point of view, it could

be said that projects are composed of processes that fall in one of the following

categories:

− Management process. This category collects all those processes related to the

description, organisation and control of the project.

− Engineering process. All those processes related to the specification and

development activities of the software product are collected in this category.

Both categories interact during the time cycle of the project. From an initial plan

performed by the project management processes, engineering processes begin to be

executed. Using the information gathered about the progress of this second group of

processes, project management processes determine the modifications which need

to be made to the plan in order to achieve the project objectives. The DIFSPI

proposed follows this same classification and it is structured attending to project

1423

management and engineering processes. In both levels, the utilisation of dynamic

models to simulate the real processes and to define and develop a historical

database will be the main feature

The engineering processes in the DIFSPI the dynamic models simulate the life

cycle of the software product. The benefits that simulation provides at this level are

the following:

− To build a model it is necessary to improve the knowledge one has about the

software development process as it is required to establish the limits and the

scope of those real behaviours to be modelled and simulated.

− The parameters required by the model and the tables that determine its time

behaviour will constitute the main elements of a metrics collection program to

define a historical database.

− The effective application of this metrics program will feed the database.

The historical data gathered will assess in the validation and calibration of the

model.

− The dynamic model will finally simulate the software processes with the

knowledge and the maturity that the organisation has at the moment.

− The utilisation of the dynamic model allows the establishment of a baseline for the

project, the investigation of possible improvements, and the development of a

historical database which can be fed either by real or simulated data.

The dynamic models of this level at DIFSPI should follow the levels of visibility and

knowledge of the engineering processes that organisations have at each maturity

level. It is obvious that the complexity of the dynamic model used in level 1

organisations cannot be the same as that one of the models capable of simulating

the engineering processes of, for instance, level 4 organisations.

Management processes are divided into two main categories:

− Plan. It groups the processes devoted to the design of the initial plan and the

required modifications when the progress reports indicate the appearance of

problems. The models of this group integrate traditional estimation and planning

techniques together with dynamic ones.

− Control. In this group all the models designed for the monitoring and tracking

activities are gathered. These models will also have the responsibility of

determining the corrective actions to the project plan. Therefore, the simulation of

1424

process improvements will be of an enormous importance.

4 DIFSPI UTILISATION

The potential applications of the DIFSPI have already been mentioned in the former

sections. In this section some of the data obtained when DIFSPI was applied inside a

local software development organisation are provided. This local organisation could

be placed at level 1. At first the software process capability of this organisation was

unpredictable because it was constantly changed or modified as the work

progressed. Performance depended on both the capabilities of the project manager

and the technical team. Moreover, there were few stable software processes in

evidence. According to Level 1 organisations, the software process here was

perceived as an amorphous entity, ‘a black box’, and visibility into the project's

processes was very limited. Requirements flowed into the software process in an

uncontrolled manner, giving a product as a result. The purpose of this application

was to insure that the framework could reproduce the behaviour observed in a real

project and, therefore, could trigger a metrics collection program, and help in decision

making, predicting and cost estimating. Table 1 shows the characteristics of the

project that was simulated for this case study together with the data of the baseline

reported by the simulation. It should be noted here that the data reported by the

simulation conforms the core measures recommended by the Software Engineering

Institute (SEI) (Carleton et al. 1992).

Size of the project = 80,000 LOC

REAL DATA SIMULATED DATA

Time 250 days Time 263 days

Initial Workforce 8 technician Effort 4,361 technician-day

Effort 4,780 technician-day Quality 80% (tasks revised)

 Workforce 9 technician

Table 1: Real and simulated data for the case study

The scenario shown in Table 2 helps to analyse the impact of the size of the

technical staff over the main four variables (time, effort, quality, and overall

workforce). Two different cases were simulated. The first one (CASE 1) had a

1425

schedule of 250 days and 16 part-time technicians. The second case (CASE 2) had a

schedule of 150 days and 16 full-time technicians.

The expected behaviour for projects with a high level or personnel is that the average

productivity per technician achieved will be lower. The average productivity per

technician in the baseline was 0.8926 tasks/(technician*day). CASE 1 and 2 both

had the double initial workforce than that of the baseline, although schedules and

resource allocation were different between them. The average productivity obtained

for case 1 and 2 was, respectively, 0.8277 tasks/(technician*day) and 0.8142

tasks/(technician/day).

CASE 1 CASE 2

Time 135 days Time 140 days

Effort 1,396 technician-day Effort 3,596 technician-day

Quality 91% Quality 91%

Workforce 18 technician Workforce 16 technician

Table 2: Simulated data for scenario analysis

5 CONCLUSIONS

Motivated by lessons learnt from another System Dynamics application in an

industrial environment, the development of a framework to combine the traditional

estimation tools with the dynamic approach has been initiated. The main objective of

this dynamic framework is to assess project managers and members of the SEIG to

define, evaluate and implement process improvements to achieve higher levels of

maturity. The whole process of development of the framework also helps to design a

specific metrics collection program which, once implemented, contributes to build and

feed a historical database inside an organisation.

With the application of DIFSPI in a level 1 organisation important benefits were

obtained. First, it must be mentioned that during the process of model building, the

project manager gained much new insight into those aspects of the development

process that mostly influence the success of the project (time, cost and quality).

Second, having the possibility of gaming with the DIFSPI, it allowed him to better

understand the underlying dynamics of the software process. As a consequence,

several process improvement suggestions were easily designed and, most

1426

importantly, analysed using simulation of scenarios. Finally, templates and guidelines

for a metrics collection program were almost automatically derived from the

requirements of the dynamic modules.

Our future work will mainly concentrate on research towards a full development of the

dynamic modules that implement the key process areas of the higher maturity levels.

Once this development has been accomplished it is intended to validate the complete

DIFSPI in real industrial environments.

REFERENCES

1. Paulk, M., Garcia, S.M., Chrissis, M.B., Bush, M., 1993. Key practices of the

capability maturity model. Version 1.1 Technical Report CMU/SEI-93-TR-25.

Software Engineering Institute, Carnegie Mellon University, Pittsburg, PA.

2. Carleton, A., Park, R.E., Goethert, W.B., Florac, W.A., Bailey, E.K., Pfleeger, S.L.,

1992. Software measurement for DoD systems: recommendations for initial core

measures. Technical Report CMU/SEI-92-TR-19. Software Engineering Institute,

Carnegie Mellon University, Pittsburg, PA.

3. Christie, A.M., 1999. Simulation in support of CMM-based process improvement.

The Journal of Systems and Software, 46, (1999), 107-112.

4. Kellner MI, Madachy R, Raffo D. Software process simulation modeling: Why?

What? How? The Journal of Systems and Software, 46, (1999), 91-105.

CORRESPONDENCE

Mercedes Ruiz Carreira

Dpto. de Lenguajes y Sistemas Informáticos

E.S. de Ingeniería

C/ Chile, nº1

11003 - Cádiz (Spain)

Phone: +34 956 015 714 Fax: +34 956 015 139

e-mail: mercedes.ruiz@uca.es

Acknowledgements

The authors wish to thank to Comisión Interministerial de Ciencia y Tecnología,

Spain, (under TIC2001-1143-C03-02) for supporting this research effort.

1427

