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Abstract—FOIL is an Inductive Logic Programming Algorithm
to discover first order rules to explain the patterns involved
in a domain of knowledge. Domains as Information Retrieval
or Information Extraction are handicaps for FOIL due to the
huge amount of information it needs manage to devise the rules.
Current solutions to problems in these domains are restricted to
devising ad hoc domain dependent inductive algorithms that use
a less-expressive formalism to code rules.

We work on optimising FOIL learning process to deal with
such complex domain problems while retaining expressiveness.
Our hypothesis is that changing the information gain scoring
function, used by FOIL to decide how rules are learnt, can reduce
the number of steps the algorithm performs. We have analysed 15
scoring functions, normalised them into a common notation and
checked a test in which they are computed. The learning process
will be evaluated according to its efficiency, and the quality of
the rules according to their precision, recall, complexity and
specificity. The results reinforce our hypothesis, demonstrating
that replacing the information gain can optimise both the FOIL
algorithm execution and the learnt rules.

Index Terms—FOIL, ILP, scoring functions

I. INTRODUCTION

Machine learning systems aim to automatically learn to
recognize complex patterns based on data from some back-
ground knowledge and to make intelligent decisions on new
data. Many of these systems has their focus on Inductive
Logic Programming (ILP), a subfield of machine learning
which investigates the construction of first-order logic rules.
This kind of systems include FOIL [20], GOLEM [13],
PROGOL [12] with Shapiro’s program MIS as one of their
early predecessors [11].

However, a major problem of ILP systems arises when the
set of training data is too large. Obviously, it happens in
domains as information retrieval or information extraction; the
process of learning the hypothesis that best fits the available
knowledge becomes inefficient, or the set of learnt rules has
low recall. An alternative choice is propositional logic systems
since they result more practical for efficiency reasons, but they
produce rules quite less expressive and consequently, they are
restricted to be applied to simpler domains problems.

We wish to use FOIL algorithm to deal with such complex
domain problems and we try to improve it in order make the
learning process more efficient. To carry out this task, we have
studied 15 different scoring functions coming from statistics,
machine learning, and data mining literature and we propose
to use the best one instead of the information gain, which is
employed by the original FOIL to select the best candidate

rules. We have proved that some of these scoring functions
perform better since they find out best rules or find them out
faster.

We bet on FOIL algorithm because of the expressiveness
of first-order logic rules it is able to devise. First-order rules
allow the system to learn relational and recursive concepts that
cannot be represented in the attribute-value format assumed by
most machine learning algorithms. Furthermore, there have
been many authors who have tried to improve FOIL devel-
oping successors systems like FOCL [25], AUDREYII [18],
mFOIL [17], HYDRA [16], FOSSIL [15], FFOIL [14], FZ-
FOIL [27] and FOIDL [10]. Some of these systems proposed
to use likelihood ratio, correlation criterion, estimated accuracy
and interest measures as alternatives to the information gain.
In many cases, their results were better than FOIL ones but
restricted to domain dependent tasks. So that the problem has
not been solved yet. However, these systems and their results
suggest that FOIL can be optimised in many ways.

The paper is organised as follows: first, we introduce an
overview of FOIL algorithm and we propose to use new
scoring functions in order to solve the mentioned problems.
Next section a common notation and a set of scoring functions
are explained. Then, we perform a test we show the results
obtained. Conclusion section discuss these results and gives
some tips for future research.

II. FOIL

In first order learning, training data comprises a target
predicate, which is defined by a set of ground literals labelled
as positive, if they satisfy the target predicate, and as negative,
otherwise. Furthermore, a set of support predicates is defined
either extensionally, similarly to what was previously made
with the target predicate or intensionally, by means of a set of
rules. The goal is to learn a set of logic rules that explain the
target predicate in terms of itself and the support predicates.

FOIL is an algorithm of machine learning that induces first
order rules. It is based on sequential covering algorithm and
uses separate-and-conquer method, attempting to learn one
rule at a time to incrementally grow the final set of rules.
In order to learn each rule, it follows a top-down approach,
starting with the most general rule header, and guided by a
greedy search, is adding new unground literals to the rule, until
it does not satisfy any negative ground literal belonging to the
target predicate. The set of rules is ready when all positive
ground literals belonging to the target predicate are satisfied.



Each learnt rule is of the form H ← B where H is the
head and B is the body of the rule. H is an unground literal of
the form R(X0, X1, . . . , Xn) where R is the target predicate
and X0, X1, . . . , Xn are the variables. Similarly, B is a set of
unground literals, for instance P1(X0, X2), P2(X3, X1), . . .,
where Pi represents any predicate defined in the knowledge
base and X0, X1, . . . , Xn are the variables of the predicate Pi.

To add a new literal to the current rule, a list of unground
literals is generated. Each one is added to the current rule
giving rise to a new candidate rule. The candidate rules
are weighted based on information gain scoring function.
It measures how benefits replacing the current rule with a
specific candidate rule. To compute this score, the information
gain relies on the number of positive and negative ground
literals that are satisfied before and after this replacement. The
candidate rule with higher score is selected to keep growing.

Let tp be the number of positive ground literals and fp the
number of negative ground literals that are satisfied by the
current rule. The information conveyed by the knowledge that
a ground literal satisfied by the current rule is positive is given
by

I(H ← B) = −log tp

tp+ fp
(1)

Similarly, for each new candidate rule Ik(H ← B′) built
from adding a new literal generated Lk to the current rule.
Being t the number of positive ground literals satisfied by both
the current and a new candidate rule, the information gain has
a straightforward interpretation in terms of information theory
and is given by the formula:

I(H ← B′) = t× (Ik(H ← B′)− I(H ← B)) (2)

In FZFOIL [27] some deficiencies in the information gain
have been identified. Presumably, it may be due to the in-
formation gain only take into account the number of positive
and negative ground literals a new candidate rule satisfies,
forgetting other parameters as the number of positive and
negative ground literals this candidate rule discards.

For the purpose of improving the learning process, we anal-
yse other scoring functions from the literature trying to solve
the information gain problem stated. They weigh the candidate
rules up according to the existing correlation between it and
the current rule. Therefore, the gain of these scoring functions
will measure the amount of correlation gained if the current
rule is replaced with a new specific candidate rule.

III. COMPARISON FRAMEWORK

The proposed scoring functions will be defined in terms
of the well-known contingency table. For evaluating any first
order candidate rule H ← B′, we rely on a contingency table
as the one below in I.

Actual class are those positive and negative ground literals
satisfied by the head of a candidate rule. Predicted class are
those ground literals satisfied by the body of the candidate
rule being analysed. Thus, tp denotes the number of positive

Predicted Class

Actual Class

B ¬B
H tp fn

true positives false negatives
¬ H fp tn

false positives true negatives
N

TABLE I
CONTINGENCY TABLE

Scoring Function Formula

1 Coverage tp+fp
N

2 Laplace
Accuracy

tp+1
tp+fp+2

3 Leverage tp·tn−fn·fp
N2

4 φ-coefficient
tp·tn−fn·fp√

(tp+fn)·(tp+fp)·(fp+tn)·(fn+tn)

5 Support tp
N

6 Confidence tp
tp+fp

7 Satisfaction tp·tn−fp·fn
(tp+fp)·(tn+fp)

8 Confirmation (tp·tn−fp·fn)2

N2·(tp+fp)·(tn+fp)

9 F-measure 2 · tp
2·tp+fn+fp

10 kappa (κ) 2·(tp·tn−fp·fn)

N2−(tp+fn)·(tp+fp)−(fp+tn)·(tn+fn)

11 Odds-ratio tp·tn
fp·fn

12 Yule’s Q tp·tn−fp·fn
tp·tn+fp·fn

13 Lift (Interest) N·tp
(tp+fp)·(tp+fn)

14 Collective
Strength

tp+tn
(tp+fp)·(tp+fn)+(fn+tn)·(fp+tn)

×N
2−(tp+fp)·(tp+fn)−(fn+tn)·(fp+tn)

N−tp−tn

15 Jaccard(ζ) tp
tp+fp+fn

TABLE II
LIST OF SCORING FUNCTIONS

ground literals that are satisfied by the head and the body of the
candidate rule and fp denotes the number of negative ground
literals satisfied by the head and the body of the candidate rule.
Similarly, fn denotes the number of positive ground literals
satisfied by the head but not by the body of the candidate rule
and tn denotes the number of negative ground literals satisfied
by the head but not by its body. N is the total number of
positive and negative ground literals.

We have implemented and evaluated a subset of scoring
functions proposed in [24] as objective measures and
in [19] as measures for predictive and descriptive induction.
Furthermore, we have selected other scoring functions for
being quite traditional. The set of scoring functions adapted
to our notation are showed in table II.

A summary description for each scoring function:



• Coverage is a measure of generality of a rule. If a rule
characterizes more information in the data set, it tends to be
more interesting.

• Laplace Accuracy [23] is an approximate measure to estimate
the expected accuracy directly. General rules tend to be favored.

• Leverage [22] is one of the most frequently measure used in
the evaluation of rules. It is also known as Leverage. It trades
off generality and relative accuracy.

• φ − coefficient [21] is a statistical measure analogous to
Pearson’s product-moment correlation coefficient. It measures
the degree of association between two binary variables (e.g.,
two rules). It is closely related to the χ2 statistic since φ2 =
χ2

N
.

• Support [9] is a measure known from association rule learning,
also called frequency. It is used for specifying if a rule is
observed frequent enough in a data set.

• Confidence is also known as confidence [9]. It is related to the
reliability. A rule is reliable if its predictions are highly accurate.

• Satisfaction [19] is similar to confidence e.g., Sat(H ← B) =
1 if Confidence(H ← B) = 1, but, unlike Confidence, it
takes the entire contingency table into account and is thus more
suited towards knowledge discovery.

• Confirmation [8] is defined in terms of a modified χ2 statistic.
It trades off satisfaction and Leverage measures.

• F-measure is other statistic measure of a test accuracy. It
considers both the precision and the recall of the test to compute
the score. We compute F1-score which is the harmonic mean
of precision and recall.

• kappa (κ) [7] captures the degree of agreement between a pair
of variables (e.g., the head and the body of a candidate rule). If
both variable are highly agree with each other, then the values
for κ will result higher.

• Odds-ratio [5] represents the strength of association or non-
independence between two binary data values. Unlike other
measures of association for paired binary data, the comparison
between the two variables is symmetrical.

• Yule’s Q coefficient [6] is a normalized variant of the odds
ratio.

• Lift (Interest) [3] is used quite extensively in data mining for
measuring deviation from statistical independence. It gives an
indication of rule significance or interest.

• Collective Strength [4] is other measure of correlation variant of
Lift measure. It compares between actual and expected values.

• Jaccard(ζ) [2] is a statistic used for comparing the similarity
and diversity of sample sets. It is used extensively in information
retrieval to measure the similarity between documents. We
measure the similarity between two rules.

We have defined some measures to help us decide which
scoring function is more promising. The set of measures taking
into account are:

1) Efficiency. This is defined as the amount of useful work
in relation to time and resources used. The resources are
memory and space required.

2) Precision. It measures the number of ground literals
satisfied by the set of rules correctly against all ground
literals satisfied, although so far, we only search for
100% accuracy rules, i.e., we do not allow rules that
satisfy any negative ground literal.

3) Recall. It determines if a set of rules is complete, i.e.,
if it satisfies all positive ground literals belonging to the
target predicate.

4) Complexity of the induced set of rules. It is computed

in terms of bits from Minimum Description Length
Principle [26].

5) Specificity/Generality of the induced set of rules. It is
general if they are only a few single rules that satisfy
most of positive ground literals belonging to the target
predicate. They will be too specificity when they are too
large and only satisfy a few number of positive ground
literals. We prefer general rules rather specific rules.

However, there are measures that can not be estimated
objectively because they depend on other measures which we
call secondary measures. For instance, secondary measures
that may affect efficiency directly may be the number of
backtracking performed or the number of candidate rules that
were evaluated, which is one of the most expensive step in
the algorithm. The number of different predicates used in
the induced set of rules could also affect the efficiency of
the learning process because it gives an idea about how well
the knowledge base was built and therefore, how useful the
support predicates defined are.

Secondary measures that may affect to generality/specificity
of a rule are the number of the variables used in the set of
rules and the deep of the learnt rules measured in terms of the
number of unground literals in each rule. If these numbers are
small it will mean that the rules are quite general, which is a
desirable property.

Intuitively, the total number of induced rules will affect
both, efficiency and generality/specificity. Fewer number of
rules will make the process more efficient and the final set of
rules more general. Note the latter is true as long as the set
of rules has a good recall.

IV. ON GOING WORK

The example tested was first showed in [27] and it tries
to explain when somebody is sick. To carry out this task we
rely on a set of seventeen individuals among which eight are
sick, and the rest are not. The target predicate will be sick(X0),
which means the individual X0 is sick. The support predicates
defined to induce a set of rules that explain the target predicate
sick(X0) are:

• bearded(Xi), which means the individual Xi is bearded.
• smoker(Xi), which means the individual Xi is a

smoker.
• father(Xi, Xj), which means Xi is Xj’s father.
• boss(Xi, Xj), which means Xi is Xj’s boss.

In the knowledge base, the positive ground literals belonging
to the target predicate are all individuals who are sick. The
rest are the negative ground literals and they can be defined
explicitly or to be induced by Closed World Assumption.
Similarly, we have to define the positive ground literals that
satisfy each support predicate but there is no need to define
the negative ones explicitly.



Scoring P R C TFunction
Information Gain 1 1 23.75 6257

Coverage 1 0.5 12.17 138275
Laplace Accuracy 1 1 30.66 22317

Leverage 1 1 22.34 5400
Φ-coefficient 1 1 37.09 34200

Support 1 1 26.77 43759
Confidence 1 1 23.08 19017
Satisfaction 1 1 20.17 3512

Confirmation 1 1 20.17 3705
F-Measure 0 0 0 58147

Kappa 1 1 22.34 4983
Odds ratio 1 1 25.92 10470
Yule’s Q 1 1 56.85 25701

Lift 1 1 23.08 17249
Collective Strength 1 1 22.34 4745

Jaccard 0 0 0 57480

TABLE III
RESULTS OBTAINED

Our knowledge base would be a Prolog program and the set
of learnt rules for this example is showed in IV1. The results
obtained for the evaluation measures explained previously, are
presented in table IV2

V. CONCLUSIONS

As well as in other analysis of measures or scoring func-
tions, we can not conclude saying there is a scoring function
consistently better than the rest in all applications domains,
although we have found some scoring functions that perform
better than information gain in our running example.

All rules induced are 100% accurate because we do not
allow rules that satisfy any negative ground literal. Therefore
the goal is to get the most reduced set of learnt rules with
the largest recall in the shortest time possible. The final set
of rules will depend largely on the scoring function used. If
it is not good enough FOIL might not learn a complete set
of rules (i.e, the set do not have a recall of 100%). We wish
a balance among precision, recall, efficiency, complexity and
specificity/generality to decide which is the most promising
set of rules obtained.

Taking of these factors into account, we consider that
Collective Strength and Leverage scoring function performed
better maintaining the full recall, because they took shorter
time to get the rules. Furthermore the set of rules were
more general and less complex. Satisfaction, Confirmation and
kappa scoring functions are even better than the previous one.
They took less time to find out a set of rules and, although
Satisfaction and Confirmation scoring functions had one rule
more, both had a complexity still lower.

Support scoring function is quite similar to the information
gain. It spent more time evaluating many candidate rules and
the rules are more complex but more general. It is difficult

1Note that FOIL relies on predefined predicates which are of the form
Xi = Xj or Xi = cj , where Xi and Xj are variables and cj is a constant
(e.g., cj can be any specific individual).

2where: P: Precision, R: Recall, C: complexity (bits), T: elapsed time
(milliseconds)

Rules
Information Gain
sick(X0)← smoker(X0).
sick(X0)← boss(X1,X0), sick(X1), ¬father(X0, X2).
sick(X0)← boss(X1,X0), sick(X1), father(X2, X0), sick(X2).
Coverage
sick(X0)← smoker(X0).
sick(X0)← boss(X0,X1), father(X0, X2).
Laplace Accuracy
sick(X0)← father(X1,X0), bearded(X1), smoker(X0).
sick(X0)← boss(X1,X0), sick(X1), father(X2,X0), sick(X2).
sick(X0)← ¬father(X0,X1), boss(X1,X2), boss(X2,X3),

boss(X4,X1), father(X5,X2), X0 6= X3.
Leverage
sick(X0)← father(X1,X0), bearded(X1), boss(X0,X2).
sick(X0)← ¬father(X0,X1), boss(X1,X2), ¬boss(X2,X0).
φ-coefficient
sick(X0)← ¬boss(X0,X1), boss(X1,X2), ¬boss(X2,X0).
sick(X0)← father(X1,X0), boss(X0,X2), ¬father(X0,X3).
sick(X0)← father(X1,X0), bearded(X1), boss(X0,X2).
Support
sick(X0)← boss(X0,X1), smoker(X0).
sick(X0)← father(X1,X0), boss(X1,X2), X1 6= X2,

boss(X1, X3), sick(X1).
Confidence
sick(X0)← smoker(X0).
sick(X0)← boss(X1,X0), sick(X1), father(X2,X0), sick(X2).
sick(X0)← ¬father(X0,X1), boss(X1,X2), boss(X2,X3),

boss(X4,X1), father(X5,X2), X0 6= X3.
Satisfaction
sick(X0)← smoker(X0).
sick(X0)← ¬father(X0,X1), ¬bearded(X0).
sick(X0)← boss(X1,X0), sick(X1), bearded(X1).
Confirmation
sick(X0)← smoker(X0).
sick(X0)← ¬father(X0,X1), ¬bearded(X0).
sick(X0)← boss(X1, X0), sick(X1), bearded(X1).
F-measure
kappa (κ)
sick(X0)← father(X1,X0), bearded(X1), boss(X0,X2).
sick(X0)← ¬father(X0,X1), boss(X1,X2), ¬boss(X2,X0).
Odds-ratio
sick(X0)← smoker(X0).
sick(X0)← boss(X1,X0), boss(X0,X2), sick(X2), sick(X1).
sick(X0)← ¬boss(X0,X1), boss(X1,X2), ¬bearded(X0).
Yule’s Q
sick(X0)← ¬bearded(X0), boss(X1,X0), sick(X1).
sick(X0)← boss(X1,X0), ¬father(X1,X2).
sick(X0)← smoker(X0).
sick(X0)← father(X1,X0), ¬boss(X2,X0).
sick(X0)← boss(X0,X1), boss(X2,X0), smoker(X1).
sick(X0)← boss(X0,X1), boss(X2,X0), ¬father(X0,X3).
Lift (Interest)
sick(X0)← smoker(X0).
sick(X0)← boss(X1,X0), sick(X1), father(X2,X0), sick(X2).
sick(X0)← ¬father(X0,X1), boss(X1,X2), boss(X2,X3),

boss(X4,X1), father(X5,X2), X0 6= X3.
Collective Strength
sick(X0)← father(X1,X0), bearded(X1), boss(X0,X2).
sick(X0)← ¬father(X0,X1), boss(X1,X2), ¬boss(X2,X0).
Jaccard(ζ)

TABLE IV
SET OF LEARNT RULES



to decide which is better. As efficient is a relevant factor, we
would opt for information gain. However, Laplace accuracy,
φ-coefficient, Confidence and Lift behaved worse than infor-
mation gain, wasting time searching for more specific rules.
Note Lift and Laplace accuracy obtained similar results.

Finally, Coverage, FMeasure and Jaccard scoring functions
did not find out a set of rules that satisfy all positive ground
literals defined in the knowledge base. The last two were
unable to find out a single rule and they evaluated a huge
amount of candidate rules caused among other factors, by the
backtracking performed. Note FMeasure and Jaccard scoring
function has very similar formulae so they behaved in an
identical way.

We can conclude saying that scoring functions like Lever-
age, Confirmation, Satisfaction, Kappa and Collective Strength
are more promising than the information gain. Anyway, es-
tablishing a ranking among the proposed scoring functions
is a hard task because we have not identified which are the
most relevant evaluation measures yet and there could be more
interesting measures to check. The relevance of each one will
depend on the domain being studied although we opt for those
measures that affect the efficiency directly as more relevant.

The application of this kind of systems is usually better
than with any other known approach, so it needs to find more
training sets to be tested, to define more additional measures
if that would be necessary and to perform an exhaustive
evaluation to get a reliable ranking. All this in order to
apply FOIL satisfactorily to domains with a huge amount of
information.
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