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Abstract

Nowadays, the recognition of physical activity (PA)
is a well-known problem with many solutions. Sev-
eral kind of algorithms, using MEMS sensors, al-
low determine the most likely activity. Indeed,
these applications work well when physical activity
is performed for long periods of time and steadily.
However, indoors, these systems are not entirely
suitable and have several problems. In this paper,
thanks to the introduction of new context infor-
mation, such as EEG, and through communication
between WoT based elements interface at home,
it would be possible to perform a more accurate
and low-level recognition. By using uPnP proto-
col and additional services, information from other
smart housing elements with user device itself can
be shared, enriching traditional systems based on
ac-celerometry.

1 Introduction
Just 30 minutes of moderate activity five days a week, can im-
prove your health according to the Centers for Disease Con-
trol and Prevention. By enabling activity monitoring on an
individual scale, over an extended period of time in a ubiqui-
tous way, physical and psychological health and fitness can be
improved. Studies performed by certain health institutes ini-
tiative [Manson et al., 2002, Ellekjaer et al., 2000, Sattelmair
et al., 2010, Lee, 2001] have shown significant associations
between physical activity and reduced risk of incident coro-
nary heart disease and coronary events. Their results can be
seen in Figure 1, where the inverse correlation between the
risk of cardiovascular incidents and physical activity level is
shown through the comparison of four separate studies.

In recent years, thanks largely to the increased interest in
monitoring certain sectors of the population such those of
as elderly people with dementia and of people in rehabilita-
tion, activity recognition systems have increased in both num-
ber and quality. Furthermore, communication between rela-
tives, friends and professionals can be improved by means of
graphs of weekly activity (high relevant for sportsmen and
for the relatives of elderly people) whereby the doctor can be
automatically alerted if any strange activity is detected. By

using data acquired from accelerometer, NFC, or even micro-
phone sensors and applying some classification algorithm, it
is possible to recognize human activities. Artificial neural
networks (ANN) method will be analyzed and compared with
our work. Results show the main differences between differ-
ent studies, and certain drawbacks are determined which rules
them out for development on users’ smartphones To reduce
the cost related to process accelerometer signals, this paper
opts for an innovative technique, through which the work is
performed in the field of discrete variables. Thanks to a dis-
cretization process, the classification cost is much lower than
that obtained when working with continuous variables. Any
dependence between variables during the recognition process
is therefore eliminated and, on the other hand, energy con-
sumption from the process itself is minimized.

Activity recognition
1.1 Data Collection
Certain related studies attain results on activity recognition
off-line. A comprehensive training set from the accelerome-
ter output is first needed before data can be classified into any
of the recognized activities. However, this paper has sought
to minimize the waiting time for recognition, thereby pro-
viding valid information of the activity very frequently. To
this end, both training and recognition sets are obtained us-
ing time windows of fixed duration. After having conducted
a performance and system accuracy analysis, it is determined
that the optimum length for these windows is 5 seconds. Five
seconds windows was chosen due to for our system it’s ex-
tremely important to ensure that in each time window there
is, at least, one activity cycle. Where activity cycle is define
as an complete execution of some activity pattern. For in-
stance, two steps are an activity cycle for walking and one
pedal stroke is the activity cycle for cycling. If at least one
activity cycle can not be ensure in each time window, it’s not
possible to determine, basing on accelerometer patterns, the
activity performed. This statement could be seen in the next
example. Suppose a two second cycle is having and the actor
is jumping continuously, that is, we have a cadence of one
jump for each two seconds. The system is configured with
one second time window and thus, for each activity cycle will
have two windows. In the first one, while the user is rising,
vertical acceleration is negative. In the other one, because the
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The first difference observed between the systems developed so far is the type of sensors used. There are systems that use 
specific hardware (Nishkam Ravi, Nikhil D, Preetham Mysore, 2005) [10] [11], while others use general purpose hardware 
[12] [13] [6]. Obviously, generic hardware use is a benefit for users, since the cost of such devices and versatility are assets 
in their favour and the risk of loss and of leaving the hardware behind is decreased since objects, like users’ smartphones, 
have already been integrated into the users’ daily life. However, general purpose devices are used for other purposes, such as 
making phone calls, surfing the Internet, and listening to music. For this reason, the physical activity recognition system must 
be executed in background mode and cause the least possible impact on the system, in terms of complexity and energy 
consumption. 

Another difference found between related studies is the number and position of the sensors. In [14], it can be seen that the 
accelerometer sensor is placed in a glove, which user must wear, and it can recognize a multitude of activities depending on 
the movement of the hand. In contrast, certain studies use various sensors all over the body to recognize these activities [15] 
[16]. In recent years, as a result of technological progress, it has been possible to build sensors of such a diminutive size that 
they can be installed into users’ clothes [17] or attached to the user’s body [18] [19]. 

According to certain comparative studies and research based on multiple sensors, this type of sensor produces results of 
higher accuracy, although, in work such as that by [12], it is shown that it is more comfortable for the user when the sensor 
placed in the user's pocket. This is because installing them in the under monitoring persons’ body is easier, not to mention 
that infrastructure is much lower. 

Once the most comfortable alternative for users is determined, then the various sensors can be analyzed in terms of the 
way basis data is obtained to perform the activity recognition. As noted above, certain related work has made use of sensors 
such as GPS, accelerometers and microphones, and the most efficient sensor with which to obtain the highest accuracy must 
be selected. 

In order to determine the method which provokes the least drain of energy, a comparison between the energy 
consumption of the most frequently used sensors in the literature is made. This is critical in choosing the best sensor method 
since, together with performance, these constitute the two main issues upon which the final decision is based. To this end, an 
application is developed which measures the battery energy consumed by each sensor. To prevent problems arising from the 
use of certain devices, the application was installed on 60 users’ smartphones with different features. The 8 most used 
sensors (microphone, GPS, Wi-Fi, accelerometer, NFC, Bluetooth, electrocardiograph connected by Bluetooth and 
gyroscope) from the literature in the field of activities recognition were analyzed. The result of this comparison is shown in 
Figure 2, where the time is represented on the horizontal axis, and on the vertical axis the battery level at a specific instant of 
time appears. It can be seen in the figure, that the lowest power consumption is given by the microphone, followed by that of 
the accelerometer sensor. Therefore, from these results it can be deducted that the use of GPS or Bluetooth does not 
constitute a good choice for the development of an energy-efficient physical-activity recognition system. 
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Figure 1: Associations between physical activity and reduced risk of incident coronary heart disease and coronary events Figure 1: Associations between physical activity and reduced risk of incident coronary heart disease and coronary events

user is falling, vertical acceleration will positive. If user in-
crease the cadence by two, mean between acceleration set is
close to , due to vertical positive and negative accelerations
will be counteracted. For this reason, it’s very important to
ensure that one cycle of all activities, regardless of the speed
performed, is contained in a time window. Segmentation pro-
cess and activity cycle is shown in Figure 2.

Based on these time windows, which contain data for each
accelerometer axis, the signal module has been chosen in or-
der to reduce the computational cost of the new solution. In
addition to rendering the system more efficient, this choice of
module eliminates the problem caused by device rotation [He
and Jin, 2009]. Furthermore, user comfort with the system
is decreased by removing the restriction that forces its ori-
entation to be maintained during the process of learning and
recognition. Using the accelerometer module, a data from
each of the different readings taken within a time window
ai = (ax,i, ay,i, az,i) for the x, y, and z axes is defined as
follows

|ai| =
√

(ax,i)2, (ay,i)2, (az,i)2 (1)

For each temporal window is obtained Arithmetic Mean,
Minimum, Maximum, Median, Std deviation, Geometric
mean and other measures. In addition to the above variables,
hereafter called temporal variables, a new set of statistics
from the frequency domain of the problem is generated. This
second set of variables will be called frecuencial variables. In
order to obtain the frequency characteristics, the Fast Fourier
Transform (FFT) for each time window is applied. In this
way, and based on the frequency components obtained.

2 Qualitative method
2.1 Ameva Algorithm
Let X = {x1, x2, . . . , xN} be a data set of a continuous at-
tribute X of mixed-mode data such that each example xi be-
longs to only one of ` classes of the variable denoted by

C = {C1, C2, . . . , C`}, ` ≥ 2

A continuous attribute discretization is a functionD : X → C
which assigns a class Ci ∈ C to each value x ∈ X in the
domain of the property that is being discretized.

Let us consider a discretization D which discretizes the
continuous domain of X into k discrete intervals:

L(k;X ; C) = {[d0, d1], (d1, d2], · · · , (dk−1, dk]}

In this discretization, d0 is the minimum value and dk is the
maximum value of the attribute X , and the di values are in
ascendent order.

If L1 is the interval [d0, d1] and Lj is the interval
(dj−1, dj ], j = 2, 3, . . . , k, then

L(k;X ; C) = {L1, L2, · · · , Lk}

Therefore, the aim of the Ameva method [Abril et al.,
2009] is to maximize the dependency relationship between
the class labels C and the continuous-values attribute L(k),
and at the same time to minimize the number of discrete in-
tervals k.

As a result from applying the above algorithm to each sta-
tistical value of the system, a series of intervals associated
with a particular C tag is obtained. Thus, after processing all
system statistics, a three-dimensional matrix is obtained. In
the first two dimensions, the label of the activity C associated
with the interval Li = (Ll

i, L
s
i ], as well as with the lower limit

Ll
i and the upper limit Ls

i of that range is stored. In a third di-
mension, the matrix contains the above data for each statistic
S = {S1, S2, ..., SS},S ≥ 2 . This three-dimensional matrix
containing the set of interval limits for each statistic is called
the Discretization Matrix and is denoted by Dm{C, Ll,s,S}.
The Discretization Matrix therefore determines the interval to
which each item of data belongs with respect to each statis-
tical value, by means of carrying out a simple and fast dis-
cretization process.

Class Integration
The next step of the algorithm determines the probability
associated with the statistical data for each of the activities
based on previously generated intervals. To this end, each el-
ement of the training set x = {X ; C} is processed, to which,
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Figure 2: Time windows split method over accelerometer signal

in addition to the value of each statistic whose calculation is
based on the time window, is also associated the label of the
specific activity in the training set. In order to carry out this
process, Class-Matrix is denoted by Cm{x, Li,S} and is de-
fined as a three-dimensional matrix that contains the number
of data x from the training set associated with each Li inter-
val for each statistical S of the system. This matrix is defined
as follows,

Cmx,i,s = |x ∈ X |x ≥ Ll
i ∧ x < Ls

i ∧ x{C} = Cs (2)

Therefore, by this definition, each position in the Class-
Matrix is uniquely associated with a position in the
Discretization-Matrix, as determined by its range.

At this point not only is it possible to determine the dis-
cretization interval likelihood, but the Class-Matrix also helps
to obtain the probability associated with the discretization
process performed with the Ameva algorithm.

Activity-Interval Matrix
The next step in the learning process is to obtain the matrix of
relative probabilities. This three-dimensional matrix, called
the Activity-Interval Matrix and denoted by AIm{x, Li,S}
, determines the likelihood that a given value x associated
to an S statistic corresponds to a specific Ci activity. This
ratio is based on the quality of the discretization performed by
Ameva, and in order to determine the most probable activity
from the generated data and the intervals of the training set.
First the contents of the array AIm is defined as follows,

AImc,i,s =
Cmc,i,s

totalc,s
· 1

`− 1

∑̀
j=1,j 6=c

(1− Cmj,i,s

totalj,s
) (3)

where totalc,s is the total number of time windows of the
training process labeled with the c activity for the ∫ statistic.

Figure 3 shows the overall process described on this section
for carry on data analysis and interval determination.

2.2 Classification Process
Having obtained the discretization intervals and the probabil-
ities of belonging to each interval, the process by which the
classification is performed can be described. This classifica-
tion is based on data from the analysis of time windows. The
process is divided into two main steps: the way in which to
perform the recognition of physical activity is first described;
and the process to determine the frequency at which some
particular activity is then presented.

Classifying Data
For the classification process, the most probable activity is de-
cided by a majority voting system. This process starts from
the Activity-Interval Matrix and uses a set of data x ∈ X for
each of the statistics belonging to the S set. The process con-
sists of finding an activity mpa ∈ C such that the likelihood is
maximized. The above criterion is included in the following
expression,

mpa(X ) = max

s∑
s=1

AImc,i,s|xs ∈ (Ll
i, L

s
i ] (4)

Figure 4 shows the overall process described on this section
for recognition process from Activity-Interval Matrix calcu-
lated in the previous stage.

The expression shows that the weight contributed by each
statistic to the calculation of the probability is identical. This
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Figure 3: Overall process of data analysis and interval determination
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Figure 4: Overall recognition process from data sensors
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can be carried out under the assumption that all statistics pro-
vide the same information to the system, and that there is
no correlation between them. Thus, the most probable activ-
ity, or mpa, represents those activities whose data, obtained
through the processing time window, is more suited to the
AIm set values. In this way, the proposed algorithm not only
determine the mpa, but also its associated probability. From
this likelihood, certain activities that do not adapt well to sets
of generic classification can be identified. This could be an in-
dication that the user is carrying out new activities for which
the system has not been previously trained.

3 Conclusions and future work
In this work, a highly successful recognition system based
on discrete variables is presented, which uses the Ameva dis-
cretization algorithm and a new Ameva-based classification
system. It has therefore been possible to achieve an aver-
age accuracy of 98% for the recognition of 8 types of activ-
ities. Furthermore, working with discrete variables has sig-
nificantly reduced the computational cost associated to data
processing during the recognition process. By using this pro-
cess to increase recognition frequency, it has been possible
to obtain a physical activity reading every 5 seconds and to
enter these readings into the user activity log. However, the
main problem of this system based on statistical learning is
the limit to the number of activities that can be recognized.
Working only with accelerometer sensors implies a limit to
the number of system variables and therefore may lead to a
strong correlation between these variables.
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