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Introduction
Microarray technology is highly used in biological research 
environments due to its ability to monitor, for a great gene 
collection, the RNA concentration levels, thus enabling the 
study of genetic functions of species.1 Bioinformatics and data 
mining have developed a vast number of computational tools 
that allow us to analyze data obtained using this technology 
and to find new knowledge that is hidden from human eye-
sight.2,3 One of the most studied approaches is pattern search 
in gene expression data. The genes exhibiting high correlation 
among their expression levels could be involved in similar reg-
ulatory processes.4 The relationship between correlation and 
functionality has been proved in several studies as in the study 
by D’haeseleer et al.5

Clustering techniques are suitable for performing pattern 
search by creating groups of genes that exhibit similar expres-
sion patterns.6 Traditional clustering algorithms analyze the 
whole microarray dimensional space grouping genes tak-
ing into account all experimental conditions.7 However, the 
activity of genes could only appear under a particular set of 
experimental conditions, exhibiting local patterns. Discover-
ing these local patterns can be key to discover gene pathways, 
which could be hard to discover in other ways. For this reason, 
the paradigm of clustering techniques must be modified to 
methods that allow local pattern discovery in gene expression 
data.8 Biclustering9 addresses this problem by relaxing the 
conditions and by allowing assessment only under a subset of 

the conditions of the experiment, and it has proved to be suc-
cessful in finding gene patterns.10,11

If a third dimension is added to the dataset besides 
genes and conditions, such as time, clustering and biclus-
tering result insufficient. There is a lot of interest in tempo-
ral experiments because they allow an in-depth analysis of 
molecular processes in which the time evolution is impor-
tant, for example, cell cycles, development at the molecular 
level, or evolution of diseases.12 In this sense, triclustering 
appears as a technique going one step further by grouping 
genes under particular conditions and under particular time 
points,13 thus being capable of managing three-dimensional 
(3D) data. Therefore, triclustering is suitable for the analysis 
of microarray experiments where several samples are taken at 
different time points.14 This is of great interest since it allows 
for a deep analysis of biological processes where temporary 
development is important.

Both biclustering and triclustering attack NP-hard pro-
blems.15 Therefore, algorithms based on heuristics are well 
suited to manage this kind of problem. In this sense, defining 
an appropriate quality measure for triclusters is an important 
and essential challenge.16

In this work, we propose a quality measure called 
Multi Slope Measure (MSL), which measures the quality of 
a tricluster based on the similarity among the angles of the 
slopes formed by each profile formed by the genes, conditions, 
and times of the tricluster.
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We show the results obtained applying the MSL mea-
sure embedded in the TriGen Algorithm,17 an algorithm 
based on an evolutionary heuristic, genetic algorithms. The 
datasets used are a synthetic dataset and three real experi-
ment datasets: the yeast cell cycle–regulated genes,18 mouse 
degeneration of retinal cells,14 and human transcription factor 
oncogene OTX2 silencing effect on D425 medulloblastoma 
cell line.19

The results have been validated by three different meth-
ods. First, by analyzing the correlation among the genes, 
conditions, and times in each tricluster using two different 
correlation measures (Pearson20 and Spearman21). Second, 
by a graphic validation of the patterns extracted based on the 
graphic representation (see Graphic Representation subsec-
tion), and third we have provided functional annotations for 
the genes extracted from the Gene Ontology (GO) project.22 
The results obtained have been compared to two previously 
defined quality measures, MSR3D

23 and LSL,24 showing 
improvement in the performance of the measure (see Results 
and Discussion section).

The rest of the article is structured as follows. A review of 
the latest related works can be found in State of the Art sec-
tion. Methods section describes the MSL measure as well as 
a brief description of Triclustering, the graphic representation 
applied, and the TriGen algorithm. In the Results and Dis-
cussion section, we show the results and discussion of apply-
ing TriGen to the synthetic and real datasets. The last section 
shows the conclusions.

state of the Art
This section is to provide a general overview of recent works 
in the field of gene expression temporal data. In particular, for 
those works related to the application of triclustering, we focus 
on the measures applied to evaluate the triclusters.

We first present the authors’ previous contributions to 
this field. In our study,23 we described MSR3D, an adapta-
tion of the Mean Square Residue (MSR)9 to the 3D space, 
so that a third factor, time in this case, can be taken into 
account. MSR3D measures the homogeneity of a tricluster in 
the relation of each value of the tricluster, with the average 
of all genes, average of all conditions, average of all times, 
average of all genes and conditions, average of all genes and 
times, average of all conditions and times, and average of 
all genes, conditions, and times in the tricluster. We also 
have presented LSL in our recent study,24 which measures 
the quality of a tricluster based on the similarity among the 
slopes of the angles formed by the least square lines from 
each of the profiles formed by the genes, conditions, and 
times of the tricluster. LSL has obtained better results than 
MSR3D applied to the same datasets along with the TriGen 
algorithm.24

Regarding other authors’ contributions, in 2005, 
Zhao and Zaki25 introduced the triCluster algorithm to 
extract patterns in 3D gene expression data. They presented 

a measure to assess triclusters’s quality based on the sym-
metry property. This allows for very efficient cluster mining 
since clusters are searched over the dimensions with the least 
cardinality.

g-triCluster, an extended and generalized version of 
Zhao and Zaki’s proposal, was published one year later.26 The 
authors claimed that the symmetry property is not suitable 
for all patterns present in biological data and proposed the 
Spearman rank correlation21 as a more appropriate tricluster 
evaluation measure.

An evolutionary computation proposal was made by Liu 
et al.27 The fitness function defined is a multiobjective measure 
that tries to optimize three conflicting objectives: clusters size, 
homogeneity, and gene-dimension variance of the 3D cluster.

LagMiner was introduced by Xu et al.28 to find time-
lagged 3D clusters, what allows in turn to find regulatory 
relationships among genes. It is based on a novel 3D cluster 
model called S2 D3 Cluster. They evaluated their triclusters 
on homogeneity, regulation, minimum gene number, sample 
subspace size, and time periods length.

Wang et al.29 proposed a new algorithm called ts-cluster 
basing their definition for coherent triclusters also on finding 
regulatory relationships among genes. For that purpose, time 
shifting is also considered among time points in the evaluated 
triclusters.

A new strategy to mine 3D clusters in real-valued data was 
introduced by Sim et al.30 The authors defined the Correlated 
3D Subspace Clusters (CSCs), where the values in each cluster 
must have high co-occurrences and those co-occurrences are 
not by chance. They measure the clusters based on the cor-
relation information measure, which takes into account both 
prerequisites.

Hu and Bhatnagar presented an approach focusing on 
the concept of Low-Variance 3-Cluster,31 which obeys the 
constraint of a low-variance distribution of cell values.

The work by Liu et al.32 was focused on finding Tem-
poral Dependency Association Rules, which relate patterns 
of behavior among genes. The rules obtained are to represent 
regulated relations among genes.

Finally, a brief survey on triclustering applied to gene 
expression time series was published in 2011.13 There are three 
main features that a triclustering algorithm can perform. 
According to Mahanta et al.13, these features are temporal 
coherence that makes reference to the ability of the algorithm 
to capture the coherence of different genes in a single time 
point across samples while generating the final triclusters 
and the ability to find triclusters with nonconsecutive time 
points and tricluster with a specific type of pattern (shift-
ing, scaling, delayed). g-triCluster,26 Moga3c,27 LagMiner,28 
ts-cluster,29 and Temporal Dependency Association Rules32 
perform the temporal coherence feature and only Tricluster25 
and Moga3c27 perform finding triclusters containing non-
consecutive time points. Tricluster25 finds scaling patterns, 
LagMiner28 finds shifting and scaling patterns and ts-cluster29 
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focuses on time-delayed patterns; the rest do not focus on 
finding a specific type of pattern. Another feature examined 
is the algorithm type distinguishing between deterministic 
(Tricluster25, g-triCluster26) and nondeterministic (Moga3c27) 
approaches. 

Methods
In this section, we describe our proposal, the tricluster quality 
measure called MSL that is based on tricluster’s angular fea-
tures. We will analyze all MSL principles and fundamentals 
and how it has been developed.

This section is structured as follows: Triclustering sub-
section describes the triclustering procedure as an evolution 
of its well-known predecessor biclustering. In the subsec-
tion Graphic Representation, we introduce the graphic 
representation, which is key for understanding the MSL 
measure. Then, in the subsection MSL Measure, we ana-
lyze the core of our work, the MSL measure. Finally, in the 
TriGen Algorith subsection, we briefly describe the TriGen 
algorithm.

triclustering. Clustering techniques are applied to ana-
lyze gene expression data from microarray experiments. The 
dataset obtained from the experiment, D, contains genes and 
experimental conditions and clustering aims at finding sub-
groups of genes that share a behavior pattern according to their 
expression level. Biclustering appears as an evolution of cluster-
ing due to its ability to mine subgroups of genes and conditions 
from the data set D, where the genes exhibit highly correlated 
patterns of behavior under certain experimental conditions.9

Triclustering emerges as an evolution of biclustering, 
taking into account the temporary evolution of genes under 
particular experimental conditions. In this way, from a dataset 
D obtained from a microarray experiment, which contains 
genes GD, conditions CD, and time points TD, we define tri-
clustering as a technique that finds triclusters TRI1,…,TRIn 
from D, where a tricluster TRI is formally defined as TRI = 
G × C × T, where G ⊆ GD, C ⊆ CD, and T ⊆ TD,17 ie, a subset 
of genes that contains information related to the behavior of 
some genes from dataset G under conditions C at times T. 
Figure 1 shows a tricluster with genes as rows, conditions as 
columns, and time as depth.

Graphic representation. In order to explain the MSL 
measure, we define the graphic representation of a tricluster 
TRIxop, with x, o, and p being either genes G, experimen-
tal conditions C, or time points T, so that the x elements in 
TRIxop will be on X axis and o elements in TRIxop will be the 
outlines represented in as many panels as p elements in TRIxop 
indicates, as can be seen in Figure 2.

To visually analyze the behavior patterns of a tricluster 
TRI, we always consider three graphical views:

•	 TRIgct (x = G, o = C, p = T): one panel for each time, 
genes on the X axis, the expression levels on the Y axis, 
and the lines of conditions as the outline.

•	 TRIgtc (x = G, o = T, p = C): one panel for each condition, 
genes on the X axis, the expression levels on the Y axis, 
and the time lines as the outline.

•	 TRItgc (x = T, o = G, p = C): one panel for each condition, 
times on the X axis, the expression levels on the Y axis, 
and the genes as the outline.

With TRIgct and TRIgtc, we can analyze how each gene 
expression level varies throughout conditions and times, 
respectively. TRItgc represents how each gene varies through-
out time for each condition.

MsL measure. After analyzing the graphic repre-
sentation of a tricluster, we describe our proposal: the 
Multi Slope Measure (MSL). MSL measures the differ-
ences among the angles formed by every series traced on 
each of three graphic representations taking into account 
TRIgct, TRIgtc, and TRItgc (subsection Graphic Represen-
tation). MSL takes into account the inf luence of neigh-
boring time points. We can observe an example of TRItgc 
view of TRI = G {g1, g4, g7, g10}, C {c2, c5, c8}, T {t0, t2, t11} 
in Figure 3. We can see how each outline or gene forms a 
set of angles (two for this particular example) def ined by 
each time point in the X axis for every panel or experi-
mental condition.

To calculate the MSL measure of a tricluster, we f irst 
perform the multiangular comparison term calculation. The 
multiangular comparison operation of a graphic represen-
tation xop from a tricluster TRI is defined in Equation 1a. 
We define ACmulti of a tricluster’s graphic representation 
TRIxop as the average of the differences ∆ of angles vectors 
avopε ang set (Equation 1b) of all outlines o for each panel 
p (Vmc in Equation 1c) and its equivalent for the rest of the 
panels (Hmc in Equation 1d), with Nmc being the number 
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figure 1. tricluster representation.
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of differences made (Equation 1e). An angle vector of an 
outline o in a panel p is defined as a set of angles that 
are formed by the outline o taking into account every data 
point in the X axis (Equation 1f), each outline will have 
Number of X axis ticks – 1 angles as you can see in Figure 3. 
The difference ∆ between two angles vector avA and avB 
is defined as the average of the MAX – MIN (MAX being 
the maximum and MIN the minimum of two angles avA(i) 
and avB(i)) of each component (or angle) i of avA and avB  
(Equation 1g).
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The ACmulti term is based on several operations with avop 
angle vectors. These elements have been obtained based on 
concept of series (Equation 2a) so that a series Sop of a outline 
o for a panel p is a set of pair of values from the x axis (xi) and 
expression levels (elj) that form the outline. For each series Sop, 
the alpha angle αxi

 is calculated as the spin of the arctangent 
of the slope of the line formed by (xi, eli) and (xnext(i), elnext(i)) 
points (Equation 2b). The spin operation of an angle showed 
in Equation 2c is the positive equivalent of this angle if it is 
negative.
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figure 2. Graphic representation of a tricluster.
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spin ifx x x xi i i i

( ) *α α α α= < ⇒ = +0 2 π  (2c)

To conclude, the MSL measure of a tricluster TRI (Equa-
tion 3) is the average of the angular comparison of the three 
graphic representations of the tricluster.

Following Figure 3, we show an example of ACmulti(TRItgc ) 
calculation in Figure 4. First, we arrange the example triclus-
ter TRI so that for each condition (panel) we obtain a table 
with one row per gene (outline) and one column per time point 
(X axis). Second, in order to get each avgc (Equation 1f) of 
angset (Equation 1b), we use Equation 2b from Sgc series and 
obtain all angles αxi

 of avgc vectors, and third, we use Equa-
tions 1c and 1d for Vmc and Hmc calculations, respectively, 
going through the av set in horizontal and vertical direction. 
Finally, we use Equation 1a to obtain the ACmulti(TRItgc) value. 
We will have to repeat this process twice more, once for each 

graphic representation TRIgct and TRIgtc, to obtain the MSL 
measure according to Equation 3.
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triGen algorithm. In this section, we present the TriGen 
(Triclustering-Genetic based) algorithm,17 where the MSL 
measure has been embedded in order to test its effectiveness. 
TriGen applies a bio-inspired paradigm of an evolutionary 
heuristic, genetic algorithms, in such a way that finds a set 
of triclusters from gene expression datasets where the time is 
also a component taken into account in the experiment. This 
method mimics the process of natural selection by creating 
an initial population of individuals representing solutions that 
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1. Input: The TriGen algorithm has two input arguments:

•	 D: A dataset containing the gene expression values from a 
microarray experiment containing genes DG, experimen-
tal conditions DC, and times DT . Therefore, each cell [i, j, 
k] from D where i ∈ DG, j ∈ DC, and k ∈ DT , represents 
the expression level of the gene i under the experimental 
condition j at time k.

•	 P: Set of parameters to execute the algorithm as described 
in Table 1. These parameters control the number of solu-
tions or triclusters to find (N), the number of generations 
to execute (G), the number of individuals in the popula-
tion (I), and the randomness factor they are generated 
with the initial population (Ale) as well as weights for the 
selection and mutation operators (Sel and Mut), weights 
to control the effect of the MSL measure (wf), the size 
of the triclusters (wg, wc, wt), and weights to control the 
overlap among solutions (wog, woc, wot).

The parameters have been chosen after an exhaustive 
experimentation with all possible ranks of values. Each of the 
parameters has effect on the triclusters found: size, overlapping, 
exploration versus exploitation of the algorithm, etc. We now 
describe the effects of each of the parameters. In the execution 
of TriGen, each parameter is associated to a genetic operator, 
that is, G controls the whole evolutionary process so an increase 
in the number of generations implies a greater number of 
recombination of individuals. Therefore, an excessive increase in 
G may favor exploitation versus exploration in excess and the 
algorithm may return solutions that fall into a local minimum. 
I and Ale control the initial population creation, and when the 
number of individuals I is increased, a larger search space for 
the solutions is created so that an excessive increase can create 
a scatter search effect, and therefore, not return good quality 

are crossed and mutated for a number of generations, with 
the best individuals in the population being finally selected. 
The MSL measure has been applied as the fitness function to 
assess the quality of the triclusters or solutions in the popula-
tion. The flowchart of the TriGen algorithm can be seen in 
Figure 5. We now define the most important elements of the 
algorithm such as inputs, outputs, codification of individuals, 
and genetic operators.

Table 1. TriGen algorithm parameters.

PARAMETER DESCRiPTion

N number of triclusters extracted

G number of generations

I number of individuals in the population

Ale randomness rate

Sel selection rate

Mut mutation probability

wf Weight for MSL measure

wg Weight for the number of genes

wc Weight for the number of conditions

wt Weight for the number of times

wog Weight for the overlap among genes

woc Weight for the overlap among 
conditions

wot Weight for the overlap among times

D, P

Initial population

Evaluation

Selection

Crossover

Mutation

Processed
generations < G

Update SOL

Solutions found < N

Get best TRI

SOL

figure 5. TriGen algorithm flowchart.
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solutions; an increase of the randomness rate Ale in the initial 
population has to be combined with the overlap control to make 
sure that a wide area of the space of solutions is initially cov-
ered. Sel controls the selection mechanism, and as a result, the 
crossover and a high Sel creates individuals with a low level of 
genetic recombination, favoring exploitation versus exploration, 
and if the parameter is increased in excess, the algorithm may 
fall into a local minimum. On the contrary, a high probability 
of mutation Mut favors exploration versus exploitation, and if 
increased in excess, we will end up with solutions in many areas 
of the search space but with low quality levels. w and wo com-
bined with wf control the fitness function; w weights control the 
number of items in the solutions, an increase of these weights 
involves favoring solutions with more volume; the increase of wo 
weights leads to little or nonoverlapped solutions, an excessive 
increase can lead to the loss of interesting solutions. The content 
under Genetic Operators in the subsection TriGen Algorithm 
explains all operators and how a parameter variation affects the 
execution of TriGen. 
2. Output: The TriGen algorithm’s output will be a set of N 

triclusters, formally SOL = {TRI1, TRI2,…, TRIN}. Each 
TRIi ε SOL is composed of a subset of genes TRIG, condi-
tions TRIC, and times TRIT from the input dataset D and 
has the best score in its population when evaluated under 
the MSL measure.

3. Codification of individuals: Each individual in the evolution-
ary process of the TriGen algorithm represents a tricluster, 
which is a potential solution. Therefore, an individual is 
represented as a subset of genes G g g gi i iF

=< >
1
, , , ,

2
…  a 

subset of conditions C c c ci i iQ
=< >

1 2
, , ,… , and a subset of 

time points T t t ti i iw
=< >

1 2
, , , .…  The genes, conditions, 

and times subsets are extracted from the input dataset D. 
The algorithm selects time points as part of the tricluster 
but always keeping their order. All genetic operators are 
applied to each individual in the population, in each of 
these three subsets.

4. Overlapping control: We have designed an overlapping 
control mechanism to avoid overlapping among the tri-
cluster solutions obtained. It is called Data Hierarchy and 
consists in maintaining the number of occurrences of 
genes, conditions, and time points of dataset D in each 
tricluster solution from less to most visited in such a way 
that, as we will explain in Initial Population in the sub-
section TriGen Algorithm, the initial population cre-
ation uses this structure to initialize population with the 
minimum overlapping. This Data Hierarchy is updated at 
every generation a new tricluster solution is selected.

5. Genetic operators:
a. Initial population: With the initial population method, 

I individuals are generated attending to the Ale ran-
domness parameter. An Ale percent of individuals are 
created at random by two methods: half of the indi-
viduals are purely randomly generated, this is, a ran-
dom subset of genes TRIG, conditions TRIC, and times 

TRIT are chosen from D and the other half is also 
randomly created but controlling that the values for 
the genes TRIG are contiguous, the values for the con-
ditions TRIC are contiguous and the times TRIT are 
contiguous as well. The rest of the individuals are ran-
domly created, but taking into account the previously 
created individuals to control overlapping of solutions 
according to Data Hierarchy structure (Overlapping 
Control in the subsection TriGen Algorithm).

b. Fitness function: Our proposed measure has been 
included as the genetic algorithm’s fitness function 
FF(TRI) along with the size and the overlapping 
control. As can be seen in Equation 4, MSL has been 
combined with six other factors as a weighted aver-

age. Three of these factors 1
| |
| |

1
| |
| |
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ditions, and times of TRI (|TRIG, C, T|) relative to the 
dataset’s size (|DG, C, T|). MSL is a minimizing fitness 
function, and we have to set 1 minus each amount 
proportion in order to favor TRI with greater sizes 
when wg, wc, or wt are increased. The other three 
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order to favor TRI with less overlapping when wog, 
woc, or wot are increased. Finally, the main member  
MSL TRI( )

2π
 measures MSL (TRI) proportionally  

calculated to its maximum value 2π in order to 
favor TRI with smaller MSL when wf is increased. 
A default configuration for wf, wg, wc, wt, wog, woc, 
and wot consists in fixing wf to 0.8 and distributing 
0.2 among wg, wc, wt, wog, woc, and wot.
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c. Selection: Three groups of individuals are randomly 
selected sorted from lowest to highest according to 
the fitness function, and then a random selection from 
the three groups is made. The Sel parameter indicates 
how many of these individuals will pass to the next 
generation. The rest of the individuals until complet-
ing the next population (I – #Selected individuals) will 
be created based on the crossover operator.

d. Crossover: To complete the next generation, we cre-
ate new individuals with this operator as follows: two 
individuals (parents, A and B) are combined to create 
two new individuals (offsprings, child1 and child2). 
The parents are randomly chosen. Their genetic 
materials are combined by a random one-point cross 
in the genes TRIG, conditions TRIC, and time TRIT 
and mixing the coordinates in both children.17

e. Mutation: An individual can be mutated accord-
ing to a probability of mutation, Mut. The mutation 
probability is verified for every individual, and if 
it is satisfactory, one out of nine possible actions is 
taken. These actions are add a new random gene to 
TRIG, add a new condition to TRIC, or add a new 
time point to TRIT , by removing a random gene, 
condition, or time, or by changing a random gene or 
condition for another that is randomly chosen. The 
election of these actions is also random. For the case 
of addition of a new gene, condition, or time, the 
operator checks whether the new member is already 
in the individual or not.

results and discussion
In this section, we show the results obtained by application of 
MSL as a fitness function embedded in the TriGen algorithm17 
(see the subsection TriGen Algorithm).

MSL has been applied to four different datasets: one syn-
thetically generated dataset and three real datasets. The real 
datasets are obtained from experiments with the yeast cell 
cycle (Saccharomyces cerevisiae),18 an experiment with mice (Mus 
musculus) called GDS451014 and data from experiments with 
humans (Homo sapiens) called GDS4472.19 The last two data 
sets have been retrieved from Gene Expression Omnibus,33 a 
database repository of high-throughput gene expression data. 
All biological experiments examine the behavior of genes 
under conditions at certain times.

For the analysis of the triclusters obtained as the result of 
the experiments, we have developed a three-step process based 
on providing information related to correlation among expres-
sion values, the graphic properties of the representation of the 
values, and biological validation.

The correlation validation is based on the Pearson and 
Filon20 and Spearman21 coefficients. For every tricluster, 
we calculate the average of the correlation coefficients 
between each combination of gene, condition, and time 
for all genes. For instance, for a tricluster with four genes 

{1, 4, 8, 10}, two conditions {3 and 7}, and three times {1, 3 
and 5}, we provide the Pearsons and Spearmans correlation 
coefficient average for values at the eight possible combi-
nations, each having three time points: Vg=1, c=3, Vg=1, c=7, 
Vg=4, c=3, Vg=4, c=7, Vg=8, c=3, Vg=8, c=7, Vg=10, c=3, and Vg=10, c=7.

The graphic properties of the representation are shown as 
described in the subsection Graphic Representation as a way 
to visually check how the gene patterns behave.

Finally, for the biological validation, we will show the 
GO terms22 related to the triclusters. We present a GO anal-
ysis table in which we include the most representative terms 
extracted by the Ontologizer software,34 each term associated 
to a P-value that denotes the relevance level of the term. In 
this type of studies, P-values are considered as relevant below 
0.05 and are better when closer to 0. Regarding the GO 
project, it is a major bioinformatics initiative with the aim 
of standardizing the representation of gene and gene product 
attributes across species and databases. The project provides 
an ontology of terms for describing gene product character-
istics and gene product annotation data. The ontology covers 
three domains: cellular component, the parts of a cell or its 
extracellular environment; molecular function, the elemen-
tal activities of a gene product at the molecular level, such 
as binding or catalysis; and biological process, operations, or 
sets of molecular events with a defined beginning and end, 
pertinent to the functioning of integrated living units: cells, 
tissues, organs, and organisms.

We have compared the results obtained to those from 
Gutiérrez-Avilés and Rubio-Escudero,23 where the fitness 
function was the MSR3D measure and also to the results in 
Gutiérrez-Avilés and Rubio-Escudero,24 where the fitness 
function was the LSL measure. The comparison has been 
made in terms of correlation and GO analysis. For each real 
experiment, we have compared the maximum, minimum, 
and mean Pearson’s and Spearman’s correlation index and the 
maximum, minimum, and mean P-value for each solution 
considered.

All experiments were executed on a multiprocessor 
machine with 64 processors, Intel Xeon E7-4820 2.00 GHz 
with 8-GB RAM memory. We have used Java to implement 
TriGen algorithm (and other ad hoc developments) and an R 
framework to create graphics and get dataset resources from 
GEO.33

We now analyze the results obtained in each of the four 
experiments.

synthetic experiments. Synthetic data are widely used 
not only for testing the performance of microarray analyzing 
techniques14 but also in more general data mining publica-
tions.35 It has the advantage that the process that generated 
the data is well known and so one is able to judge the success 
or failure of the algorithm.36

In this work, we have used an application designed by 
ourselves to generate the synthetic data used in this experi-
ment. We have executed the TriGen algorithm with the MSL 
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measure over a synthetic dataset composed of 4,000 genes, 30 
experimental conditions, and 20 time points whose expres-
sion levels were randomly generated by a cryptographic secure 
standard library Math3 provided by Apache Commons.37 In 
this dataset, we inserted 10 triclusters composed of 150 genes, 
6 experimental conditions, and 4 time points, whose expres-
sion levels form a constant behavior pattern. These triclusters 
are located in random positions in the dataset.

To see the behavior of the MSL measure applied along 
with TriGen and also with the aim of analyzing the effect 
of the value of the parameters in the solutions, we have 
made executions setting N to 200 and varying other con-
trol para meters as follows: G ε {100, 200}, I ε {50, 100}, Sel 
ε {0.5}, Mut ε {0.2, 0.3}, Ale ε {0.3, 0.5}, wg ε {0.03, 0.05, 0}, 
wc ε {0, 0.01}, wt ε {0,0.01}, wog ε {0.04, 0.05}, woc ε {0,0.03}, 
and wot ε {0,0.03} (see Input in the TriGen Algorithm sub-
section for a detailed description of these parameters). The 
algorithm has been capable of finding between 94% and 
100% of the inserted triclusters. There were no false positives 
or false negatives found. The application of the MSR3D along 
with the TriGen algorithm in the study by Gutiérrez-Avilés 
and Rubio-Escudero23 was capable of finding 91% to 95% 
and LSL24 obtained a matching ratio between 93% and 97% 
of the triclusters, so we can see in slight improvement when 
applying the MSL measure.

yeast elutriation experiments. For this experiment, we 
have applied the TriGen algorithm with MSL measure to the 
yeast (Saccharomyces cerevisiae) cell cycle problem,18 specifically 
the Elutriation experiment. The yeast cell cycle analysis project’s 
goal is to identify all genes whose mRNA levels are regulated 
by the cell cycle. The resources used are public and available in 
http://genome-www.stanford.edu/cellcycle/. Data have been 
normalized as part of the preprocessing. We have created a data-
set Delu3D from the elutriation experiment with 7,744 genes, 13 
experimental conditions, and 14 time points. Experimental con-
ditions correspond to different statistical measures of the Cy3 
and Cy5 channels while time points represent different moments 
of taking measures from 0 to 390 minutes.

The parameter configuration used for this experiment is 
shown in Table 2. We set G and I values in order to obtain 
a default exploration of the solution space and Ale, Sel, and 
Mut provide us with a high random factor in population 
generation, low elitism in the next generation promotion, 
and high mutation factor, respectively. We favor solutions 
with a high number of genes setting wg to 0.05 and solutions 
with high variability in genes, conditions, and times thanks 
to wog, woc, and wot set to 0.05. These configurations have 
been obtained as a result of a deep experimental study on the 
Delu3D dataset.

Regarding the correlation analysis, we can observe in 
Table 3 show Pearson and Spearman’s values vary between 
[0.95, 0.97] and [0.98, 1], respectively, which implies a high 
correlation between genes series for every experimental con-
dition through time points. These high values confirm us that 

the quality of the triclusters obtained from these experiments 
is very high in terms of correlation.

We can see the graphic representation of tricluster TRI11 
in Figure 6. Only one out of the 20 triclusters obtained has been 
represented for legibility reasons. We can observe how TRI11 

Table 2. TriGen algorithm control parameters for yeast cell cycle 
dataset.

PARAMETER vALuES

n 20

G 150

i 200

ale 0.9

sel 0.4

mut 0.9

wf 0.8

wg 0.05

wc 0

wt 0

wog 0.05

woc 0.05

wot 0.05

 

Table 3. correlation results for triclusters from the yeast cell cycle 
dataset.

TRIsol PEARSon SPEARMAn

TRI1 0.97 0.98

TRI2 0.97 0.99

TRI3 0.96 0.99

TRI4 0.96 0.98

TRI5 0.97 0.99

TRI6 0.96 0.99

TRI7 0.96 0.99

TRI8 0.96 0.98

TRI9 0.96 0.98

TRI10 0.96 0.99

TRI11 0.96 0.99

TRI12 0.95 0.98

TRI13 0.96 0.98

TRI14 0.96 0.98

TRI15 0.97 1

TRI16 0.96 0.98

TRI17 0.96 0.98

TRI18 0.96 0.99

TRI19 0.96 0.99

TRI20 0.96 0.98
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with 200 genes, 2 conditions, and 3 time points shows a coherent 
pattern through time points for CH1I and CH1B experimen-
tal conditions (TRIgct view, Fig. 6C). TRIgct (Fig. 6A) and TRIgtc 
(Fig. 6B) show how conditions vary for 0 minutes, 330 minutes, 
and 390 minutes for all genes and how times vary for CH1I and 
CH1B for all genes, respectively. In Figure 6A we can see that 
each of the two conditions vary in almost the same way for every 
time point. This can also be observed in Figure 6B but according 
to time variation for every experimental condition.

Finally, regarding the experiment biological analysis, we can 
see GO results of the biological annotations related to the genes 
selected in TRI11 (Table 4). We can see how three related biolog-
ical processes have been annotated with TRI11 genes, these are 
cellular amide catabolic process (GO:0043605), allantoin meta-
bolic process (GO:0000255), and catabolic (GO:0000256) pro-
cess. These biological processes are related to a more general one 
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figure 6. TRI11 graphic representations from yeast cell cycle results. (A) sample curves, (b) time curves, (C) gene curves.

Table 4. Go analysis for tricluster TRI11 found in the yeast cell cycle 
dataset.

iD nAME p-vALuE

Go:0043605 cellular amide catabolic process 1.98E-09

Go:0000255 allantoin metabolic process 1.17E-08

Go:0000256 allantoin catabolic process 1.17E-08

Go:0004523 rna-Dna hybrid ribonuclease 
activity

4.72E-05

Go:0016893 Endonuclease activity, active  
with either ribo- or deoxyribo 
nucleic acids and producing  
5’-phosphomonoesters

7.50E-05

Go:0043603 cellular amide metabolic  
process

1.46E-04

Go:0006144 purine nucleobase metabolic  
process

3.91E-04

Go:0044419 interspecies interaction  
between organisms

4.03E-04

Go:0009112 nucleobase metabolic process 6.08E-04

Go:0016891 endoribonuclease activity,  
producing 5’-phosphomonoesters

1.01E-03

called cellular amide metabolic process (GO:0043603) in which 
individual cells carry out the chemical reactions and pathways 
involving an amide. We can observe how two molecular func-
tions as RNA-DNA hybrid ribonuclease activity (GO:0004523) 
and endonuclease activity with either ribo- or deoxyribonucleic 
(GO:0016893) have been annotated for TRI11 as well. Both 
groups of terms, biological processes, and molecular functions 
are related with the metabolic process of the cell. All terms 
annotated have a high level of statistical significance denoted by 
P-values in the [1.98E-09, 1.01E-03] interval.

We can observe in Table 5 a comparison among MSR3D, 
LSL, and MSL measures according to the published Elutriation 
results published in the studies by Gutiérrez-Avilés and Rubio-
Escudero23,24 Regarding correlation indexes, a clear improve-
ment of MSL in relation to MSR3D and LSL can be observed 
as well as an improvement in terms of the P-value.

Mouse Gds4510 experiments. In this experiment, we 
have used a dataset obtained from the GEO33 with accession 
code GDS4510 whose title is rd1 model of retinal degeneration: 
time course.14 In this biological experiment, the degeneration of 
retinal cells in different individuals of home mice (Mus muscu-
lus) is analyzed over 4 days just after birth, specifically on days 

Table 5. comparison of MSR3D, LSL, and MSL yeast cell cycle 
results.

MsR3D lsl Msl

max Pearson 1 0.79 0.97

min Pearson 0.31 0.58 0.95

mean Pearson 0.47 0.69 0.96

max spearman 1 0.82 1

min spearman 0.31 0.54 0.98

mean spearman 0.45 0.67 0.99

max P-value 1.04 × 10−2 7.53 × 10−5 1.01 × 10−3

min P-value 1.97 × 10−3 4.35 × 10−6 1.98 × 10−9

mean P-value 5.68 × 10−3 4.29 × 10−5 2.68 × 10−4

http://www.la-press.com
http://www.la-press.com/evolutionary-bioinformatics-journal-j17


MSL: 3D patterns from gene expression.

131Evolutionary Bioinformatics 2015:11

2, 4, 6, and 8. Data have been normalized as part of the pre-
processing. We have formed our input dataset DGDS45103D 
with 22,690 genes, 8 experimental conditions (one for each 
individual involved in the biological experiment), and 4 time 
points. Each of the replicates has been treated as an indepen-
dent condition.

The parameter configuration used for this experiment is 
shown in Table 6. We set G to a default value and I is increased 
in order to expand the exploration of the solution space, Ale, 
Sel, and Mut have been set to 0.5 in order to get a medium rate 
of randomness factor, elitism, and mutation rates, respectively. 
With this size and overlapping control, we use TriGen to find 
solutions with a high number and variability of time points. 
This configuration has been obtained as a result of an exten-
sive experimental study over DGDS45103D dataset.

According to Table 7, we can see how Pearson and 
Spearman’s values vary between [0.54, 0.96] and [0.56, 0.9], 

respectively. Pearsons values fall in the [0.8, 0.9] interval are 
predominant in most of the solutions as well as Spearman’s 
ones. This fact implies a high correlation between gene series 
for every experimental condition through time points in most 
of the solutions of this experiment.

In Figure 7 we show three graphic representations of tri-
cluster TRI10 composed by 50 genes, 2 experimental condi-
tions, and 4 time points. In the TRItgc graphic representation, 
we can see how all genes form an almost perfectly coherent 
pattern through the four time points for all experimental 

Table 6. TriGen algorithm control parameters for mouse GDs4510 
dataset.

PARAMETER vALuES

N 20

G 150

I 500

Ale 0.5

Sel 0.5

Mut 0.5

wf 0.8

wg 0

wc 0

wt 0.1

wog 0

woc 0

wot 0.1

Table 7. correlation results for tricluster mouse GDs4510 dataset.

TRIsol PEARSon SPEARMAn

TRI1 0.93 0.9

TRI2 0.58 0.57

TRI3 0.92 0.89

TRI4 0.65 0.67

TRI5 0.61 0.65

TRI6 0.63 0.60

TRI7 0.54 0.62

TRI8 0.59 0.63

TRI9 0.63 0.65

TRI10 0.6 0.56

TRI11 0.95 0.9

TRI12 0.89 0.85

TRI13 0.93 0.89

TRI14 0.95 0.89

TRI15 0.95 0.9

TRI16 0.56 0.62

TRI17 0.93 0.87

TRI18 0.92 0.85

TRI19 0.94 0.89

TRI20 0.94 0.89
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figure 7. TRI10 graphic representations from mouse GDs4510 results. (A) sample curves, (b) time curves, (C) gene curves.
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conditions. This fact is reinforced when we observe TRIgct 
(Fig. 7A) and TRIgtc (Fig. 7B) graphic representations in which 
variation of expression levels in sample and time perspectives 
show coherent patterns.

We can see the biological validity of TRI10 in Table 8. 
It reflects very good results with P-values in the [7.92E-30, 
7.52E-07] interval. Terms like olfactory receptor activity 
(GO:0004984), which is the molecular function that denotes 
the transmission of the signal from both sides of cellular 
membrane in order to initiate a change in cell activity due 
to detection of smell, has been annotated close to sensory 
perception of chemical stimulus (GO:0007606) and detec-
tion of chemical stimulus involved in sensory perception of 
smell (GO:0050911), which have a very low P-value, are 
biological processes that have olfactory receptor activity as a 

part of them. We can see how pheromone receptor activity 
(GO:0016503), that involves the effects of pheromone in cell 
activity, is related with G-protein–coupled receptor signaling 
pathway (GO:0007186) since it is a biological process whose 
pheromone receptor activity is part of this aforementioned term 
through G-protein coupled receptor activity (GO:0004930) 
term that has been annotated as well.

Regarding the comparison with MSR3D and LSL mea-
sures (see Table 9), we can see that MSL performs slightly 
better than MSR3D and very similar to LSL, which performs 
exceptionally well for this particular experiment, in terms of 
correlation indexes. In terms of GO analysis, we can see a 
marked improvement of MSL against MSR3D and the mini-
mum P-value of the LSL measures.

Human Gds4472 experiments. For this experiment, 
the DGSD44723D dataset has been built from source data 
obtained from GEO33 under code GDS4472 titled Transcrip-
tion factor oncogene OTX2 silencing effect on D425 medulloblas-
toma cell line: time course.19 In this experiment, the effect of 
doxycycline on medulloblastoma cancerous cells at six time 
points after induction for 0, 8, 16, 24, 48, and 96 hours has 
been analyzed. Data have been normalized as part of the pre-
processing. DGSD44723D is composed of 54,675 genes, 4 con-
ditions (one for each individual involved), and 6 time points 
(one per hour).

We can see the parameter configuration for TriGen used 
for this experiment in Table 10. We want to expand the search 
space setting G to 700 and I to 500 due to the size of the input 
dataset, we increase the random factor setting Ale to 0.8 and we 
combine low elitism with high-variability setting Sel to 0.2 and 
Mut to 0.9, respectively. Regarding size control, we can see how 
we want triclusters with a balance between a high number of 
genes, wg to 0.01, and a high number of conditions and times, 
wc to 0.045 and wt to 0.045, respectively. The overlapping con-
trol follows the same proportion with wog set to 0.01, woc set 
to 0.045, and wot set to 0.045 in terms of variability of genes, 
experimental conditions, and time points of the solutions.

As regards the correlation analysis, we can observe in 
Table 11 how Pearson and Spearman’s values vary between 
[0.47, 0.96] and [0.45, 1], respectively, and most of the 

Table 8. Go analysis for tricluster TRI10 found in the mouse. 
GDs4510 dataset.

iD nAME p-vALuE

Go:0007606 sensory perception of chemical 
stimulus

7.92E-30

Go:0004984 olfactory receptor activity 4.98E-25

Go:0050911 Detection of chemical stimulus 
involved in sensory perception of smell

4.98E-25

Go:0050907 Detection of chemical stimulus 
involved in sensory perception

 
1.17E-24

Go:0007186 G-protein coupled receptor signaling 
pathway

7.72E-23

Go:0007608 sensory perception of smell 3.62E-22

Go:0009593 Detection of chemical stimulus 7.82E-22

Go:0050906 Detection of stimulus involved in sen-
sory perception

1.43E-20

Go:0004888 transmembrane signaling receptor 
activity

2.52E-20

Go:0038023 signaling receptor activity 5.35E-19

Go:0007600 sensory perception 7.33E-18

Go:0004872 receptor activity 7.21E-17

Go:0051606 Detection of stimulus 1.90E-16

Go:0050877 neurological system process 5.97E-15

Go:0004871 signal transducer activity 6.91E-15

Go:0060089 molecular transducer activity 1.48E-13

Go:0004930 G-protein–coupled receptor activity 4.69E-13

Go:0003008 system process 1.07E-11

Go:0007166 cell surface receptor signaling 
pathway

4.10E-11

Go:0016503 Pheromone receptor activity 1.15E-09

Go:0019236 response to pheromone 4.42E-09

Go:0005550 Pheromone binding 5.88E-09

Go:0005549 odorant binding 1.59E-08

Go:0042221 response to chemical 1.51E-07

Go:0016021 integral component of membrane 3.76E-07

Go:0031224 intrinsic component of membrane 7.52E-07

Table 9. comparison of MSR3D, LSL and MSL GDs4510 results.

MSR3D LSL MSL

max Pearson 1 1 0.95

min Pearson 0.52 0.64 0.54

mean Pearson 0.91 0.89 0.78

max spearman 1 1 0.9

min spearman 0.5 0.6 0.56

mean spearman 0.91 0.89 0.77

max P-value 7.34 × 10−4 7.40 × 10−8 7.52 × 10−7

min P-value 1.53 × 10−6 8.79 × 10−21 7.92 × 10−30

mean P-value 3.33 × 10–4 8.02 × 10−9 5.02 × 10−8
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solutions found have both index above 0.9; therefore, this is a 
good experiment in terms of correlation.

According to graphic representation, we show the tri-
cluster TRI19 in Figure 8, which has 40 genes, 4 experimental 
conditions, and 5 time points. We can see a coherent behav-
ior pattern for all genes through five time points for every 
experimental condition in the TRItgc graphic representation 
(Fig. 8C). In the TRIgct graphic representation (Fig. 8A), we 
can see a homogeneity variation of expression levels of all genes 
for all experimental conditions at each time point. We can also 
see this fact in TRIgtc graphic representation (Fig. 8B).

We can see the biological analysis of TRI19 in Table 12 
in which there is a set of terms annotated with P-value in 
[3.33E-60, 5.99E-48] interval that is a very low rate of P-value; 
therefore, they are good biological results. We pay attention 
to term GO:0006614 named SRP-dependent cotranslational 
protein targeting to membrane that describes the targeting 

of proteins to a membrane that occurs during translation 
and it is related to another two biological processes anno-
tated as well: cotranslational protein targeting to membrane 
(GO:0006613) and protein targeting to ER (GO:0045047). 
We also underline the GO:0019083 term named viral tran-
scription that describes the process by which a viral genome 
is transcribed within the host cell that is closely related with 
viral gene expression (GO:0019080) biological process since 
the transcription process is part of the gene expression one. 
Finally, we can see how nuclear-transcribed mRNA catabolic 

Table 10. TriGen algorithm control parameters for human GDs4472 
dataset.

PARAMETER vALuES

N 20

G 700

I 500

Ale 0.8

Sel 0.2

Mut 0.9

wf 0.8

wg 0.01

wc 0.045

wt 0.045

wog 0.01

woc 0.045

wot 0.045
 

Table 11. correlation results for tricluster human GDs4472 dataset.

TRIsol PEARSon SPEARMAn

TRI1 0.96683677 1

TRI2 0.48750048 0.47676471

TRI3 0.47592126 0.47121212

TRI4 0.75202621 0.79373957

TRI5 0.95392167 1

TRI6 0.94749964 1

TRI7 0.74349846 0.80536153

TRI8 0.47685516 0.46931529

TRI9 0.95370964 1

TRI10 0.95102082 1

TRI11 0.94672151 1

TRI12 0.48325216 0.47366678

TRI13 0.72992209 0.80331134

TRI14 0.95754954 1

TRI15 0.95225892 1

TRI16 0.95262299 1

TRI17 0.95113522 1

TRI18 0.9536509 1

TRI19 0.47363796 0.45628145

TRI20 0.95549408 1
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figure 8. TRI19 graphic representations from human GDs4472 results. (A) sample curves, (b) time curves, (C) gene curves.
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process, nonsense-mediated decay, GO:0000184 term, is 
annotated beside nuclear-transcribed mRNA catabolic process 
(GO:0000956) and mRNA catabolic process (GO:0006402) 
whose biological processes define the first one.

Regarding to the comparison between MSL and the 
other two measures, MSR3D and LSL (Table 13) we can see 
an improvement of MSL from MSR3D and LSL in terms of 

maximum correlation indexes, this fact is less perceptible in 
terms of minimum and mean correlation indexes. We can 
also appreciate a high improvement of MSL over MSR3D and 
LSL in terms of three considered aspects of P-value. There-
fore, we can affirm that MSL globally improves the other two 
measures.

conclusion
In this work, we have presented a new evaluation measure for 
triclusters, MSL, which measures the homogeneity among 
genes, conditions, and times in a tricluster. We have analyzed 
how this measure has been formulated in detail and we have 
also applied it as a part of TriGen algorithm,17 which is our 
triclustering approach to mine triclusters from microarray 
experiments involving time, in order to assess the quality of 
the measure.

We have applied MSL embedded in the TriGen algo-
rithm in four datasets: synthetically generated data, data from 
experiments with the yeast cell cycle (Saccharomyces cerevisiae) 
obtained from the Stanford University18 and two datasets 
retrieved from Gene Expression Omnibus,33 an experiment 
with mice (Mus musculus) and an experiment with humans 
(Homo sapiens). All experiments examine the behavior of genes 
under conditions at certain times. The results obtained in real 
experiments have been validated by a three-way analysis: 
first analyzing the correlation among the genes, conditions, 
and times in each tricluster using two different correla-
tion measures: Pearson20 and Spearman,21 second graphical 
analysis and finally providing functional annotations for the 
genes extracted from the GO project.22 We have provided a 
comparison among MSL and another two developed mea-
sures MSR3D

23 and LSL24 as well, showing that MSL per-
forms better in terms of correlation coefficient and functional 
annotations.

Summarizing, regarding synthetic experimental results, 
we can observe how MSL combined with TriGen has been 
capable to extract from 94% to 100% of the triclusters. Regard-
ing the real dataset results, they are also successful, with corre-
lation values close to 1, good graphical representations in which 
you can distinguish very clear behavior pattern and GO vali-
dation with high levels of significance for the terms extracted 
(P-values smaller than 0.05 and very specific terms).

MSL is a tricluster evaluation measure created to assess 
the quality of triclusters extracted from temporal experi-
ments with microarrays, but it can be used in other biologi-
cally related fields, for instance combining expression data 
with gene regulation information by means of substituting 
the time dimension by ChIP-chip data representing tran-
scription factor–gene interactions what can provide us with 
regulatory network information. This proposal can also 
be applied to mine RNA-seq data repositories. Tricluster-
ing can also be applied to not biologically related fields, for 
instance, the seismic zonification of areas at risk of undergo-
ing an earthquake.38 In this case, the third component does 

Table 12. Go analysis for tricluster TRI19 found in the human 
GDs4472 dataset.

iD nAME p-vALuE

Go:0006614 srP-dependent cotranslational  
protein targeting to membrane

3.33E-60

Go:0006613 cotranslational protein targeting  
to membrane

6.24E-60

Go:0045047 Protein targeting to Er 1.15E-59

Go:0022626 cytosolic ribosome 2.83E-59

Go:0072599 Establishment of protein localization  
to endoplasmic reticulum

3.80E-59

Go:0000184 nuclear-transcribed mrna catabolic  
process, nonsense-mediated decay

1.19E-58

Go:0070972 Protein localization to endoplasmic  
reticulum

4.72E-57

Go:0003735 structural constituent of ribosome 1.91E-55

Go:0044391 ribosomal subunit 8.37E-55

Go:0006415 translational termination 3.29E-53

Go:0006612 Protein targeting to membrane 8.04E-53

Go:0000956 nuclear-transcribed mrna  
catabolic process

3.17E-52

Go:0019083 viral transcription 1.18E-51

Go:0006402 mrna catabolic process 2.22E-51

Go:0044033 multi-organism metabolic process 5.60E-51

Go:0019080 viral gene expression 5.60E-51

Go:0044445 cytosolic part 2.46E-50

Go:0005840 ribosome 1.00E-49

Go:0006401 rna catabolic process 1.32E-49

Go:0006413 translational initiation 5.99E-48
 

Table 13. Go analysis for tricluster TRI19 found in the human 
GDs4472 dataset.

MsR3D lsl Msl

max Pearson 0.95 0.83 0.96

min Pearson 0.8 0.76 0.47

mean Pearson 0.89 0.8 0.8

max spearman 0.95 0.81 1

min spearman 0.8 0.74 0.45

mean spearman 0.89 0.78 0.83

max P-value 3.30 × 10−3 6.9 × 10−32 5.99 × 10−48

min P-value 6.48 × 10−4 1.15 × 10−44 3.33 × 10−60

mean P-value 1.64 × 10−3 7.88 × 10−33 3.1 × 10−49
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not identify time points but features associated to every pair 
of geographical coordinates of the area under study.

The next step in our researching work is to gather all 
aspects of tricluster experimental evaluation presented in 
Results and Discussion section, that is correlation, graphic 
representation, and biological validation, in one mea-
sure, and thus, improving the experimental workflow of 
triclustering.
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