
21

CHAPTER 2

SOFTWARE PROCESS DYNAMICS: MODELING,
SIMULATION AND IMPROVEMENT

Mercedes Ruiz†, Isabel Ramos‡, Miguel Toro‡

Department of Computer Languages and Systems
†Escuela Superior de Ingeniería

 C/ Chile, 1. 11003 – Cádiz (Spain)
‡Escuela Técnica Superior de Ingeniería Informática.
 Avda. Reina Mercedes, s/n. 41013 – Seville (Spain)

E-mail: mercedes.ruiz@uca.es
{isabel.ramos, miguel.toro}@lsi.us.es

The aim of this chapter is to introduce the reader to the dynamics of the
software process, the ways to represent and formalize it, and how it can
be integrated with other techniques to facilitate, among other things,
process improvement. In order to achieve this goal, different
approaches of software process modeling and simulation will be
introduced, analyzing their pros and cons. Then, continuous modeling
will be used as the modeling approach to build software process models
that work in the qualitative and quantitative fields, assessing the
decision-making process and the software process improvement arena.
The integration of this approach with current process assessment
models (such as CMM), static and algorithmic models (such as
traditional models used in the estimation process) and the design of a
metrics collection program which is triggered by the actual process of
model building will also be described in the chapter.

1. Introduction

Worldwide, the demand for highly complex software has significantly
increased in such a way that software has replaced hardware as having
the principal responsibility for much of the functionality provided by

M. Ruiz, I. Ramos, M. Toro

22

current systems. The rapid pace at which this software is required, the
problems related to cost and schedule overruns and customer perception
of low product quality have changed the focus of attention towards the
maturity of software development practices. Over the last few decades,
the software industry has received significant help from CASE tools,
new programming languages and approaches, and more advanced and
complex machines.

However, it is widely accepted that the potential benefits of better
technology cannot be translated into more successful projects if the
processes are not well defined, established, and executed. Proper
processes are essential for an organization to consistently deliver high
quality products with high productivity.

Dynamic modeling and simulation have been intensively used as
process improvement tools in the manufacturing area. Currently, interest
in software process modeling and simulation as an approach for
analyzing complex businesses and solving policy questions is increasing
among researchers and practitioners. However, simulation is only
effective if both the model and the data used to drive it accurately reflect
the real world. As a consequence, it can be said that the construction of a
dynamic model for the actual software process provides clear guidelines
on what to collect.

Many frameworks are now available for software processes, the
Capability Maturity Model (CMM)1 and ISO 90012 being among the
most influential and widely used. Although ISO 9001 is a standard, and
has been interpreted for a software organization in ISO 9000-33, it has
been written from the customer and external auditor’s perspective. On
the other hand, CMM is not a binary certification process, but a
framework that categorizes the software process at five levels of maturity
and provides roadmaps to evaluate the software process of an
organization, as well as planning software process improvements. One of
the common features that all these frameworks possess is that they
strongly recommend the application of statistical control and measure
guides to define, implement and evaluate the effects of different process
improvements. Within these frameworks, the availability of data is
considered of special importance for building the knowledge required to
define and improve the software process.

Software Process Dynamics: Modeling, Simulation and Improvement 23

The aim of this paper is to present a combination of traditional
techniques with software process modeling and simulation to build a
framework for supporting a qualitative and quantitative assessment for
software process improvement and decision making. The purpose of this
dynamic framework is to help organizations to achieve a higher software
development process capability according to CMM. The dynamic models
built within this framework provide the capability of gaining insight over
the whole life cycle at different levels of abstraction.

The level of abstraction used in a particular organization will depend
on its maturity level. For instance, in a level 1 organization the simulator
can establish a baseline according to traditional estimation models from
an initial estimate of the size of the project. With this baseline, the
software manager can analyze the results obtained by simulating
different process improvements and study the outcomes of an over- or
underestimate of cost or schedule. During the simulation metric data is
saved. This data conforms to the SEI core measures4 recommendation
and is mainly related to cost, schedule and quality.

The structure of the chapter is as follows. Section 2 describes in
detail the software process modeling and simulation approach. It includes
the benefits derived from this application, the formalisms used to build
software process models and a process model building methodology. In
section 3, a combination of hierarchical dynamic modeling and some
traditional techniques of the software engineering is proposed. The
conceptual ideas underlying this combination with the aim of building an
integrated dynamic framework for software process improvement are
presented. Sections 4, 5 and 6 describe the details concerning the
structure of the framework, the modular architecture and some aspects of
the implementation. An example of usage is presented in section 7.
Finally, section 8 summarizes the chapter and describes the most recent
applications of the software process dynamic modeling and simulation
approach.

2. Software process simulation

Simulation can be applied in many critical areas in support of software
engineering. It enables one to address issues before these issues become

M. Ruiz, I. Ramos, M. Toro

24

problems. Simulation is more than just a technique, as it forces one to
think in global terms about system behavior and about the fact that
systems are more than the sum of their components5. A simulation model
is a computational model that represents an abstraction or a simplified
representation of a complex dynamic system. The main benefit of
simulation models is the possibility of experimenting with different
management decisions. Thus, it becomes possible to analyze the effect of
those decisions on systems where the cost or risks of experimentation
make it unfeasible.

Another important factor is that simulation provides insights into
complex process behavior that cannot be analyzed by means of stochastic
models. Like many processes, software processes can contain multiple
feedback loops, such as those associated with the correction of defects.
Delays resulting from these defects may range from minutes to years.
The resulting complexity makes it almost impossible for mental analysis
to predict the consequences. According to Kellner, Madachy and Raffo6,
the most frequent sources of complexity in real software processes are:

- Uncertainty. Some real processes are characterized by a high degree

of uncertainty. Simulation models make it possible to deal with this
uncertainty as they can represent it flexibly by means of parameters
and functions.

- Dynamic behavior. Some processes may have a time-dependent
behavior. There is no doubt that the behavior of some software
process variables varies as the time cycle progresses. With a
simulation model it is possible to represent and formalize the
structures and causal relationships that dictate the dynamic behavior
of the system.

- Feedback. In some systems, the result of a decision made at a given
time can affect their behavior. In software projects, for example, the
decision to reduce the effort assigned to quality assurance activities
has different effects on the progress of these projects.

Thus, the common objectives of simulation models are to supply

mechanisms to experiment, predict, learn and answer questions, such as,
“What if …?”

Software Process Dynamics: Modeling, Simulation and Improvement 25

A software process simulation model can be focused on certain
aspects of the software process or the organization. It is important to bear
in mind that a simulation model constitutes an abstraction of the real
system, and so it represents only the parts of the system that were
intended to be modeled. Furthermore, currently available modeling tools,
such as ithink7, POWER-SIM8, and Vensim9, help to represent the
software development process as a system of differential equations. This
is a remarkable characteristic as it makes it possible to formalize and
develop a scientific basis for software process modeling and
improvement.

During the last decade, software process simulation has been used to
address a wide variety of management problems. Some of these
problems are related to strategic management, technology adoption,
understanding, training and learning, and risk management, among
others. Noticeable applications of this approach to software process
modeling can be found in Kellner, Madachy and Raffo6, Prosim 200410
and Prosim 200511.

2.1. Software process modeling for simulation

There are different approaches for building simulation models of the
software process. In practice, the modeling approach inevitably has some
influence on what it should be modeling. Hence, there is no preferred
approach for modeling the software process in every situation, but the
best approach is always the one that is considered to be the most suitable
for a particular case.

There are two broad types of simulation modeling: continuous
simulation and discrete-event simulation. The distinction is based on
whether the state can change continuously or at discrete points in time.
However, even though events are discrete, time and state domains may
be continuous. There are three main paradigms that can be used for
discrete-event simulation modeling: event-scheduling, activity-scanning
and process-interaction. Although state-transition diagrams (e.g., finite-
state automata or Markov chains) can be used for software process
simulation modeling, they are less common because the state spaces
involved are typically very large. Examples of discrete-event simulation

M. Ruiz, I. Ramos, M. Toro

26

applied to model and simulate the software process can be found in
Raffo12, Kellner13 and Hansen14.

A continuous simulation model represents the interactions between
key process factors, as a set of differential equations, where time is
increased step by step. Frequently, the metaphor of a system of
interconnected tanks filled with fluid is used to exemplify the ideas
underlying this kind of modeling approach.

On the other hand, discrete modeling is based on the metaphor of a
queuing network where time advances when a discrete event occurs.
When this happens, an associated action takes place, which, mostly,
implies placing a new event in the queue. Time is always advanced to the
next event, so it can be difficult to integrate continually changing
variables.

Since the purpose of this study is to model and visualize process
mechanisms, continuous modeling has been used. This technique also
allows systems thinking and it is considered to be better than the
discrete-event model at showing qualitative relationships15. Examples of
continuous simulation applied to model and simulate the software
process can be found in Abdel-Hamid16, Pfhal and Lebsant17, Burke18,
and Wernick and Hall19.

2.2. Continuous modeling and simulation of the software process

System dynamics is a methodology for studying and analyzing complex
feedback systems such as software organizations. Feedback is the key
differentiating factor of dynamic systems. It refers to the situation in
which A affects B and B affects A, through a chain of causes and effects.
It is not possible to study the link between A and B and, independently,
the link between B and A to predict the behavior of the system. There are
a significant number of software process features that follow this
feedback pattern. For instance, known patterns, such as Brook’s Law20
(“Adding manpower to a late project makes it later”) or Parkinson’s
Law21 (“Work expands to fit the time available”), can be described by
continuous modeling.

Software Process Dynamics: Modeling, Simulation and Improvement 27

System dynamics links structure (feedback loops) to behavior over
time and helps to explain why what is happening is happening. The field
was initially developed from the work of Jay W. Forrester22.

To better understand and represent the system structures that cause
the patterns of behavior observed in the software process, two kinds of
diagrams are used: causal-loop diagrams and stock-and-flow diagrams.

2.2.1. Causal-Loop Diagrams

Causal-loop diagrams present relationships that are difficult to describe
verbally because natural language presents interrelations in linear cause-
and-effect chains, whereas a diagram shows that there are circular chains
of cause-and-effect in the actual system23. Figure 1 shows an example of
a causal-loop diagram for a very simplified model of software process
dynamics. In this diagram, the short descriptive phrases represent the
elements that make up the system described, and the arrows represent the
causal influences between these elements. This diagram includes
elements and arrows or links that help to connect these elements, but also
includes a sign (either + or -) on each link. These signs have the
following meaning23:

- A causal link from one element A to another element B is positive if

either (a) A adds to B or (b) a change in A produces a change in B in
the same direction.

- A causal link from one element A to another element B is negative if
either (a) A subtracts from B or (b) a change in A produces a change
in B in the opposite direction.

In addition to the signs of each link, a complete loop is also given a

sign. The sign of a particular loop is determined by counting the number
of minus signs on all the links that make up the loop. Specifically,

- A feedback loop is called positive, indicated by (+), if it contains an

even number of negative causal links.
- A feedback is called negative, indicated by (-), if it contains an odd

number of negative causal links.

M. Ruiz, I. Ramos, M. Toro

28

Thus, the sign of a loop is the algebraic product of the signs of its
links. The diagram shown in Figure 1 is composed of four feedback
loops: two positive and two negative. A brief description of the pattern
modeled follows.

First feedback loop. Estimations of cost and time for the project can
be derived from the initial estimations. With these estimations the
required manpower is acquired by performing hiring activities. As the
project runs, information about the real progress is obtained.
Comparisons of the values obtained with those originally estimated may
lead to a change in some of the estimations and, possibly, a modification
of the hiring policy.

Second feedback loop. This loop illustrates the effects caused by the
schedule pressure on the quality of the software product. If the perceived
completion time is greater than the planned time to complete, the project
has schedule pressure. To combat this, the project manager may decide
either to hire more personnel or have overtime worked. However,
permanent overtime may further exhaust personnel, contributing to an
increase in the number of errors in the project. This rise in the number of
committed errors requires a bigger effort in terms of error detection and
rework activities, which holds back progress.

Third feedback loop. The growth in the level of human resources
appears to contribute to a growth of productivity. However, it is also
important to note that the productivity of the new personnel is
significantly less than that of the expert personnel. Hence, some effort of
the expert personnel is commonly invested in the training of the newly-
hired personnel. These training activities, together with the
communication overheads derived from the Book’s Law, contribute to a
decrease in the net productivity of the working team.

Fourth feedback loop. This loop illustrates the effect of creative
pressure. When the personnel know that the project is behind schedule,
they tend to be more efficient. This is normally reflected in a reduction of
idle time.

Software Process Dynamics: Modeling, Simulation and Improvement 29

Fig. 1. Simple causal-loop diagram of the software process dynamics.

Hiring

Initial estimates

Time and cost
estimates

Progress

Defects

Schedule pressure

Training and
communication

overheads

-

+

-

+-

+

+
+

-

-

Productivity

(1)

(2)

(3) (4)

M. Ruiz, I. Ramos, M. Toro

30

2.2.2. Stock-and-Flow Diagrams

Figure 2 illustrates the main components of stock-and-flow diagrams.
This notation consists of three different types of elements: stock, flows
and information. These three elements provide a general way of
graphically representing any process. Furthermore, this graphical
notation can be used as a basis for developing a quantitative model that
can be used to study the characteristics of the process. As with a causal-
loop diagram, the stock-and-flow diagram shows relationships among
variables that have the potential to change over time. To understand and
build stock-and-flow diagrams, it is necessary to understand the
difference between stocks and flows. Distinguishing between stocks and
flows is sometimes difficult. As a starting point, stocks can be thought of
as physical entities that can accumulate and move around. The term stock
also has an identical meaning to the term state variable from the systems
engineering analysis. The term flow refers to the movement of something
from one stock to another.

Fig. 2. Main elements of stock-and-flow diagrams.

Flow

Variable

Stock Accumulation – State of the system

Flow – Growth or depletion of stocks

Auxiliary variables

Cloud – Boundary of the system

Software Process Dynamics: Modeling, Simulation and Improvement 31

Figure 3 shows a stock-and-flow diagram for the first feedback loop of
the causal diagram shown in Figure 1. The variables are Pending tasks,
Accomplished tasks, Personnel, hiring rate and development rate. The
first three are stock or level variables, whereas the last two are flow
variables. The number of tasks to be developed is determined from an
initial estimate of the size of the project. These pending tasks become
accomplished tasks depending on the development rate that is
determined by the productivity of the personnel allocated to the
development of the tasks under simulation.

 The stock-and-flow diagram has a precise mathematical meaning.
Stocks accumulate (integrate) their inflows less their outflows. The rate
of change of a stock is the total inflow minus the total outflow. Thus a
stock and flow map corresponds to a system of integral or differential
equations that formalize the model. Mathematical description of a system
requires only the stocks and their rates of change. However, it is often
helpful to define intermediate or auxiliary variables. Auxiliaries consist
of functions of stocks and constants. The set of equations must then be
solved applying mechanisms for solving differential equations or by
simulation. Simulation packages are often used to solve these sets of
equations, since it soon becomes unfeasible to solve such equations by
hand as the number of stocks and flows or the complexity of the
equations increases.

Fig. 3. Simple stock-and-flow diagram.

Pending tasks
Accomplished

tasks
development rate

Personnel

hiring rate

INITIAL SIZE ESTIMATES

M. Ruiz, I. Ramos, M. Toro

32

The equations derived from the stock-and-flow diagram follow:

 t
0 dt rate(t)t developmen - ESTIMATES SIZE INITIAL tasks(t)Pending (1)

t
o dt rate(t)t developmen tasks(t)edAccomplish (2)

t
0 dt rate(t) hiring t)Personnel((3)

otherwise 0,

ESTIMATES SIZE INITIAL tasks(t)edAccomplish if ty(t),Productivi t)Personnel(
 rate(t)t developmen (4)

 DELAYHIRING t)Personnel(- t)personnel(required rate(t) hiring (5)

Figure 4 shows the time evolution of the main variables of this
illustrative model after solving the equations by simulation.

Software Process Dynamics: Modeling, Simulation and Improvement 33

Fig. 4. Time evolution of the main variables of the stock-and-flow diagram.

Nevertheless, as Sweeny and Sterman24 stated, building a model is not
about spending considerable time on the basics of stocks and flows, time
delays, and feedback, but developing intuition rather than mathematics.

2.3. Process model building methodology

According to Martinez and Richardson25, the system dynamics model
building process involves seven key activities, as shown in Figure 5. The
most important ones are: (1) problem identification and definition, (2)
system conceptualization, (3) model formulation, (4) model testing and
evaluation, and (5) understandings of the model.

 Accomplished and Pending Tasks, Personnel and Development Rate
2,000 LOC

400 Person
400 LOC/Month

1,500 LOC
300 Person
300 LOC/Month

1,000 LOC
200 Person
200 LOC/Month

500 LOC
100 Person
100 LOC/Month

0 LOC
0 Person
0 LOC/Month

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (Month)

Accomplished tasks LOC
Pending tasks LOC
Personnel

 Person
development rate LOC/Month

M. Ruiz, I. Ramos, M. Toro

34

Fig. 5. Steps of process model building methodology.

In problem identification and definition, there is a group of practitioners
who consistently prefer to model the case at hand, as opposed to another
group who thinks that the best way is to model the class to which the
system belongs.

In system conceptualization, the best practice is considered to be to
start with major stock variables. Practitioners can choose to iterate using
a causal-loop diagram approach or a stock-and-flow approach to
conceptualization.

In model formulation, there are two major approaches. The first
relates to the issue of starting small and continuously simulating,
preferably always having a running model. The second refers to

Model Use,
Implementation and

Dissemination

Undertandings of the
problem and the system

Problem Identification
and Definition

Design of Learning
Strategy/Infrastructure

System
Conceptualization

Model
Formulation

Model Testing and
Evaluation

Understandings of
the Model

Software Process Dynamics: Modeling, Simulation and Improvement 35

formulating in big chunks and is not concerned about continuously
having running prototypes.

Model testing and evaluation consists of three main activities that
determine the correctness of the model26. These activities are divided into
two categories: activities focused on verifying the model structure and
activities that verify the model behavior. Table 127 summarizes these
activities.

Finally, understandings of the model is centered on the knowledge
that can be gained from use of the model.

3. Dynamic Integrated Framework for Software Process
 Improvement: Conceptual approach

Using simulation for process improvement in conjunction with CMM is
not a new idea. As a matter of fact, Christie5 suggests that CMM is an
excellent incremental framework to gain experience through process
simulation. Nevertheless, there are no dynamic frameworks capable of
helping to achieve higher process maturity. One of the main features of
the Dynamic Integrated Framework for Software Process Improvement
(DIFSPI) is that this help is provided throughout the development of the
whole dynamic framework and not only by using the associated final
tool. The reason for this is that the benefits that can be gained from the
utilization of dynamic models within an organization are directly related
to the knowledge and the empirical information that the organization has
about its processes. Figure 6 illustrates this idea. It shows the existing
causal relationships between the maturity level of the organization, the
utilization of dynamic models and the benefits obtained.

The positive feedback loop comes to illustrate the causal relationship
that reinforces the collection of metrics within the organization. The
metrics collected will be used to calibrate and initialize the dynamic
models.

 Lower maturity organizations are characterized by the absence of
metrics programs and historical databases. In this case, it is necessary to
begin by identifying the general processes and what information has to
be collected about them. The questions of what to collect, how often and

M. Ruiz, I. Ramos, M. Toro

36

how accurately have to be answered at this time. The design process of
dynamic models helps to find an answer to these questions.

Table 1. Main model testing and evaluation activities27.

Verification

Structure

Dimensional consistency

Behavior with extreme values

Problem adequacy

Behavior
Parameter sensitivity

Structure sensitivity

Validation

Structure
Reality check

Parameter correctness

Behavior

Scenario replication

Extreme condition simulations

Non-conventional input

simulations

Statistical tests

Evaluation

Structure

Size

Complexity

Granularity

Behavior
Intuitive behavior generation

Knowledge generation

When developing a dynamic model, one needs to know: a) what it is
intended to model, b) the scope of the model, and c) what behaviors need
to be analyzed.

Once the model has been developed, it needs to be initialized with a
set of initial conditions in order to execute the runs and obtain the

Software Process Dynamics: Modeling, Simulation and Improvement 37

simulated behaviors. These initial conditions customize the model to the
project and to the organization to be simulated and they are effectively
implemented by a set of initial parameters.

It is precisely these parameters that govern the evolution of the model
runs that answer the above question of what data to collect: the data
required to initialize and validate the model will be the main components
of the metrics collection program. Once the components of the metrics
collection program have been derived, it can be implemented within the
organization. This process will lead to the formation of a historical
database. The data gathered can then be used to simulate and empirically
validate the dynamic model. When the dynamic model has been
validated, the results of its runs can be used to generate a database. This
database can be used to perform process improvement analyses. An
increase in the complexity of the actions for analysis will lead directly to
an increase in the complexity of the dynamic model required and,
therefore, to a new metrics collection program for the new simulation
modules.

The bottom half of Figure 6 illustrates the effects derived from the
utilization of dynamic models in the context of process improvement.
Using dynamic models that have been designed and calibrated according
to an organization’s data has three important benefits. Firstly, the data
from the simulation runs can be used to predict the evolution of the
project. The graphical representations of these data show the evolution of
the project from a set of initial conditions that have been established by
the initialization parameters. By analyzing these graphs, organizations
with a low level of maturity can obtain useful qualitative knowledge
about the evolution of the project. As the maturity level of the
organization increases, the knowledge about its processes is also higher
and the simulation runs can be used as real quantitative estimates. These
estimates help to predict the future evolution of the project with an
accuracy that is closely related to the uncertainty of the initial
parameters. Secondly, it becomes possible to define and experiment with
different process improvements by analyzing the different simulation
runs. This capability helps in the decision-making process, as only the
improvements that yielded the best results will be implemented.
Moreover, it is noteworthy that these experiments are performed at no

M. Ruiz, I. Ramos, M. Toro

38

cost or risk to the organization, as they use the simulation of scenarios.
Thirdly, the simulation model can also be used to predict the cost of the
project; this cost can be referred to the overall cost, or to a hierarchical
decomposition of the total cost, like, for instance, the cost of quality or
rework activities. These three benefits are the main factors that lead to
the achievement of a higher maturity level within an organization
according to CMM.

Fig. 6. Causal relationships concerning the utilization of dynamic models.

4. Framework Structure and Module Architecture

Project management is composed of activities that are closely
interrelated in the sense that any action taken in one particular area will
possibly affect other areas. For instance, a time delay will always affect
the cost of the project, but it may or may not affect the morale of the
development team or the quality of the product. The interactions among
the different areas of project management are so strong that sometimes
the throughput of one of them can only be achieved by reducing the
throughput of another. A clear example of this behavior can be found in
the common practice of reducing the quality, or the number of

Maturity level

Estimation of cost
Process improvement

Prediction of evolution

MetricsData

Dynamic Model

Software Process Dynamics: Modeling, Simulation and Improvement 39

requirements to be implemented in a version of the product with the aim
of meeting the cost estimates or time deadlines.

Dynamic models are an aid for understanding the integrated nature of
project management, as they describe it by means of different processes,
structures, and key interrelationships.

In the framework proposed here, project management is considered as
a set of dynamic interrelated processes. Projects are composed of
processes. Each process is composed of a series of activities designed to
achieve an objective1. From a general point of view, it could be said that
projects are composed of processes that fall into one of the following
categories:

- Management process. This category includes all processes related to

the description, organization, and control of the project.
- Engineering process. All processes related to the software product

specification and development activities fall into this category.

Engineering processes begin to be executed from an initial plan

performed by the project management processes. Using the information
gathered about the progress of this second group of processes, project
management processes determine the modifications that need to be made
to the plan in order to achieve the project objectives. The proposed
DIFSPI follows this same classification and is structured to account for
project management and engineering processes. At both levels, the
utilization of dynamic models to simulate real processes and to define
and develop a historical database will be the main feature.

4.1. Engineering processes in the DIFSPI

At this level the dynamic models simulate the life cycle of the software
product. In low maturity organizations, the amount of information
required to begin running simulations is relatively small and mainly
focused on the initial estimations, that is, the estimated size of the project
and the initial size of the working team. The best dynamic model is
simulated depending on the paradigm followed to develop the software
product and the maturity level of the organization. The main paradigms

M. Ruiz, I. Ramos, M. Toro

40

that can be currently simulated within the framework are the traditional
waterfall and COTS paradigms. Depending on the chosen paradigm,
different dynamic modules will be joined in order to create a final and
fully operational dynamic model. Once the simulation has been run, it
provides data that are saved in a database. This initial data contains the
results of the simulation together with a set of initial estimations
resulting from the computation of the static models. These initial
estimations establish the baseline for the project, and the simulated data
obtained represent the dynamic evolution of the project variables
throughout the whole life cycle. Apart from storing the initial baseline
and the simulated data, the database contains a third component. This
third component contains the results of applying some other techniques
during the simulation of the project, which are oriented towards gaining
insight into the process under simulation. These techniques, which have
been integrated with the dynamic modules, are described in section 5.

As mentioned before, the process of modeling the software process
requires a good knowledge of the software process itself, and triggers a
metrics collection program that can then be used to initialize the
parameters of the model and increment the level of visibility the model
has of the process. All that has been simulated so far must be put into
practice.

After determining the initial estimates and running the simulations to
establish the initial baseline, it is possible to run different scenarios in
order to find out what effects different initial values have on the project
estimates. This reflects, of course, the level of uncertainty that low
maturity organizations have at the initial stages of a project. When the
real project begins, the metrics collection program may be applied to
gather real information about the process. This real data is also saved in
the database, enabling the development of a historical database. As this
data becomes available, it is possible to perform analysis and calibrate
the functions and parameters of the dynamic modules so that their
accuracy can be improved. Improving the accuracy of the dynamic
modules may require an improvement in the knowledge we have of the
software process and, this way, the loop is closed.

The dynamic models of this level of DIFSPI should follow the levels
of visibility and knowledge of the engineering processes that

Software Process Dynamics: Modeling, Simulation and Improvement 41

organizations have at each maturity level. Obviously the dynamic model
used in level 1 organizations will not be as complex as the models
capable of simulating the engineering processes of, for instance, level 4
organizations.

4.2. Management processes in the DIFSPI

The control modules model and simulate all the activities that determine
the progress of the project, and make the corrective decisions that are
required to meet the project objectives. These modules are highly
important in the design of the process improvements.

Within the framework, management processes are divided into two
main categories:

- Planning. It groups the processes devoted to the design of the initial

plan and the required modifications when the progress reports
indicate the appearance of problems. The models of this group
integrate traditional together with dynamic estimation and planning
techniques.

- Control. This group includes all the models designed for monitoring
and tracking activities. These models will also have the
responsibility of determining the corrective actions to the project
plan. Therefore, the simulation of process improvements will be of
enormous importance.

Figure 7 shows the utilization of DIFSPI at this level. As mentioned

earlier, the initial baseline for the project is established using the static
models built within the framework. The dynamic modules that model the
planning activities performed in the organization not only have
differential equations to model these activities, but also the equations of
the traditional static estimation models. To gain useful information from
these static models, the very same knowledge about the software process
is needed at this point as is required to use these models.

M. Ruiz, I. Ramos, M. Toro

42

4.3. Module Architecture

The approach followed to construct the dynamic models is based on two
fundamental principles:

The principle of extensibility of dynamic models. According to this
principle, different dynamic modules are joined to an initial and basic
dynamic model. This initial model models the fundamental behavior of a
software project. Each one of the dynamic modules models each one of
the key process areas that conforms the step to the next level of maturity.
These modules can be either “enabled” or “disabled” according to the
objectives of the project manager or the members of the Software
Engineering Improvement Group (SEIG).

The principle of aggregation/decomposition of tasks according to the
level of abstraction required for the model. Two levels of
aggregation/decomposition are used:

▪ Horizontal aggregation/decomposition according to which

different sequential tasks are aggregated into a unique task with a
unique schedule.

▪ Vertical aggregation/decomposition according to which different
and individual, but interrelated and parallel tasks are considered
as a unique task with a unique schedule too.

The definition of the right level of aggregation and/or decomposition

for the tasks mainly affects the modeling of the engineering activities and
principally depends on the maturity level of the process to be simulated.

To define the initial dynamic model, the common feedback loops
among the software projects must be taken into account. The objective of
this approach is to achieve a generic model avoiding the modeling of
specific behaviors of concrete organizations, which could limit the
flexibility of DIFSPI. Data from historical databases described in the
available literature can be used to initialize the functions and parameters
of the initial model28. Figure 7 shows the main structure of the initial
model. Four dynamic modules are joined together to develop an
operational model that provides the set of final differential equations to
generically simulate the software process in low maturity organizations.

Software Process Dynamics: Modeling, Simulation and Improvement 43

By replicating some of the equations of the initial model it is possible
to model the progress to higher maturity levels. The initial model can be
used to simulate software projects developed in organizations
progressing to level 2.

Generally speaking, the software product development process can
be considered as follows. The number of tasks to be developed is
determined from an initial estimate of the size of the project. These
pending tasks become accomplished tasks according to the development
rate. During this process, errors can be committed. Thus, in accordance
with the desired quality objective for the project, the quality rate and the
rework rate are determined. These two rates govern the number of tasks
that are revised.

Fig. 7. Submodules architecture of the initial model.

To model the progress to level 3, the model will make use of a horizontal
decomposition, creating as many substructures as phases or activities are
present in the task breakdown structure of the project (analysis, design,
code and test, in the waterfall paradigm). According to this approach,
each time a complete model or some part of it is replicated, it will be
necessary to define the new fixing mechanisms (dynamic modules) for
the new structures. These mechanisms effectively implement the above-
mentioned principle of aggregation/decomposition. The replication of

R
em

ai
ni

ng
 ti

m
e

Required development rate

Accomplished project fractionP
en

di
ng

 ta
sk

s

Project finished

Quality

Productivity PersonnelControl
Module

Human Resource
Module

Development
Module

R
eq

ui
re

d
de

ve
lo

pm
en

t r
at

e

Plan
Module

A
cc

om
pl

is
he

d
ta

sk
s

Required personnel

M. Ruiz, I. Ramos, M. Toro

44

structures also provides the possibility of replicating the modules related
to the project management processes. This replication is especially useful
for high maturity level organizations, which will be able to establish
process improvement practices for each particular activity of the life
cycle.

Having described the approach to the elaboration of the dynamic
models, this section gives a description of the hierarchical structure of
the framework presented in this paper.

Figure 8 illustrates this hierarchy. The dynamic model for level 1
organizations progressing to level 2 is composed of four main dynamic
modules, each of them devoted to modeling and simulating each of the
four main subsystems of the software process: planning, human resource
management, control, and development activities. These four subsystems
form an initial dynamic model. This initial model is intended to be used
in level 1 organizations progressing to level 2.

Software Process Dynamics: Modeling, Simulation and Improvement 45

To get a dynamic model to model and simulate the software process of
level 2 organizations, new dynamic modules are added to the initial
model.

Outsourcing management. With this module, it is possible to analyze
the influence of outsourcing over the life cycle of the project.

Personnel experience. Although this is not a key process area of
CMM level 2, the human resource management module of the initial
model has been enhanced so that it can reflect the influence of the
experience factor on the progress and the cost of the project.

Quality assurance. The necessary structures to model and analyze
the cost and state of the quality assurance activities are implemented in
this module.

CMM 2 - 3

CMM 1 - 2

Personnel
Experience

Requirement
Management

Outsourcing
Management

Quality
Assurance

CMM 3 - 4

CMM 2 - 3

CMM 2 - 3

CMM 2 - 3

CMM 2 - 3

C
O
U
P
L
I
N
G

CMM 4 - 5

CMM 3 - 4

Quantitative
Management

Quality
Management

CMM 1 - 2

Human
Resource

 Plan

 Control Development

Fig. 8. Hierarchical structure of the dynamic integrated framework.

M. Ruiz, I. Ramos, M. Toro

46

Requirement management. This module helps to determine the
impact of requirements variability on software development projects.

The next step towards the following level of maturity does imply an
important structural change. This change is determined by the special
emphasis on the engineering activities that the CMM suggests as of level
3. While the CMM recommends the development of good planning and
management practices in the initial levels of maturity, the engineering
process acquires key importance at level 3. The principle of model
replication is used to reflect this idea. Thus, to model level 3
organizations progressing to level 4, the model developed for the
previous level is replicated as many times as the number of generic
phases there are in the work breakdown structure of the project. For the
purpose of this study, the four main characteristic phases of a traditional
life cycle were considered (analysis, design, code and test). To simulate
each phase, a complete dynamic model is used. Each of these dynamic
models can be used, separately, to simulate the whole project in
organizations with the previous level of maturity. To get all these models
working together to simulate a higher maturity organization, coupling
structures need to be defined. These coupling structures must allow inter-
module communication as well as serving as support structures for the
sharing of information.

The last model of the hierarchy is made from the model developed
for the previous level, plus the modules required to model and simulate
the new key process areas. In this case, the new modules are focused on
the specific aspects of the key processes of quantitative management and
software quality management.

5. Integrated Techniques

As mentioned before, our aim was to develop a working environment
where the simulation of different scenarios can be used to generate the
simulated database where managers can experiment with different
process improvements and activities focused on the implementation of
metrics programs and value analysis. The following techniques and
methods are currently successfully implemented in DIFSPI:

Software Process Dynamics: Modeling, Simulation and Improvement 47

Traditional estimation techniques. Traditional algorithmic estimation
models have been implemented within this framework with the aim of
providing an initial baseline for software projects carried out in low
maturity level organizations 29, 30.

SEI Core Measures. Recent studies and experiences highlight the
benefits of the application of these four core measures to the software life
cycle. The main aspects of the product and process (quality, time, size
and cost) are monitored and tracked to facilitate project success and
higher maturity achievement. Within this framework these four measures
constitute the basics for both the dynamic models and the graphical
representation of process performance4.

Metrel Rules. Given the dynamical nature of the proposed DIFSPI,
we consider it could be useful to integrate a taxonomy of software
metrics derived from the needs of users, developers, and management.
Of all the potential advantages of using this system of metrics, we would
like to point out the dynamic performance of these metrics, that is, how
their accuracy, precision, and utility changes throughout a project, the
life of a product or the strategic plan of an organization. In DIFSPI
Metrel rules have been used as an efficient method for depicting on one
graph the information needed for management, staff, and customers to
view or predict process performance results. We consider that Metrel
rules are particularly important in the field of software process modeling
as their application provides a formal procedure for the expansion and
transformation of models. By employing simple mechanisms like
derivatives or integration (over time, phases or even projects), a
mathematical model for one level can be transformed into another for
another level, providing a simple but powerful extension for the analysis
processes31.

CoSQ. The basis for the Cost of Software Quality (CoSQ) is the
accounting of two kinds of costs: costs that are due to a lack of quality
and costs that are due to the achievement of quality. We think that CoSQ
can help not only to justify quality initiatives, but also have a number of
other benefits. Of these benefits, we would like to point out that CoSQ

M. Ruiz, I. Ramos, M. Toro

48

provides the basics for measuring and comparing the cost effectiveness
of the quality improvements undertaken by an organization32, 33.

Earned value analysis. Earned value analysis has been chosen as the
method for performance measurement as it integrates scope, cost, and
schedule measures to help managers assess process performance. The
three main values and the derived efficiency indexes are used in
combination to provide measures of whether or not work is being
accomplished as planned. Furthermore, the earned value analysis is used
to evaluate the performance of different software process improvements
within DIFSPI34 .

Statistical process control. Current software process models (CMM,
SPICE, etc.) strongly recommend the application of statistical control. In
the framework, Statistical Process Control (SPC) is used to obtain run
charts and control charts with the aim of helping software managers to
find an answer to questions such as “How do I know if my software
development process is under control?” SPC is also used to test the
capability of the process. For this purpose, SPC and earned value
techniques can be merged as Lipke and Jennin35 suggest.

Data mining. Data mining processes can be used to get useful
information from the volume of data generated by model simulation.
Genetic algorithms are fed with the databases resulting from simulations,
and then executed to obtain management rules to guide the process of
maturity improvement36. Machine learning algorithms based on decision
trees such as C4.537, decision lists such as COGITO38, and association
rules39 have been used in combination with other algorithms that
transform the simulation outputs into a labeled database. In this labeled
database, each record stores information about one simulated scenario
(parameters and outputs) and a label that helps to classify the success of
the simulated project in terms of time, cost, and quality. After running
the machine learning algorithms, a set of management rules is obtained.
These rules can be expressed graphically or using natural language. The
information they offer is what the best range for the parameters that the
algorithm has determined to be the most influential on the success of the
project should be to meet the objectives of the project. These objectives,
regarding the three key factors of time, cost, and quality together with the
labeled databases, constitute the input of the algorithm.

Software Process Dynamics: Modeling, Simulation and Improvement 49

6. Implementation of the Framework

The conceptual ideas presented above were firstly implemented using
VemSim® which was used to develop and analyze the different dynamic
models. However, there are some drawbacks to using this tool. This
simulation environment provides a crude way of modularization, there is
no easy way to both overlay objects for abstraction and generate a
generic sub-model so that it can be instantiated multiple times without
duplicating effort, and hence there is no scoping mechanism, all the
elements are global to each other. Like traditional programming
languages, a mechanism to allow data encapsulation and modularity is
essential for handling complexity in large and complex models.
Therefore, the complete framework has been re-engineered using UML
and JavaTM technology. The purpose of this process was to develop a
library of classes, each of which represents a simple dynamic module.
When using this tool, a suitable dynamic model is built from the required
objects. This way, the abstraction aspect and standardization of the
interface of these defined modules may be taken to the point that project
managers could transparently “plug-in” the modules regarding the
software process improvement they would like to analyze. This approach
involves putting special effort into the interfacing mechanism of these
different modules when they are plugged together.

7. Example of Usage

This section contains an example of how the use of this framework can
help organizations in the field of software process improvement. More
precisely, the following example studies one of the key process areas of
CMM level 2: influence of the outsourcing activities on software
projects. Table 2 shows the initial data for the project.

Table 2: Initial estimates for the project.

Size 20 KLDC

Number of newly hired engineers 3 engineers

Number of expert engineers 5 engineers

M. Ruiz, I. Ramos, M. Toro

50

Estimated time 35 months

Number of outsourced tasks 150 tasks

Loss of effort due to outsourcing (%) 15%

Project reduction (%) 5%

Given this initial situation, two different scenarios are simulated. Both of
them have the same initial data except for outsourcing activities: one of
the projects does not have any outsourcing activities, while the other one
does and is driven by the data shown in Table 2. The results obtained
from the simulation runs are shown in the following subsections.

7.1.1 . Accomplished tasks

Figure 9 shows the evolution of tasks accomplishment in the project.
First of all, it can be observed that the development rates in both projects
are of a similar shape. Secondly, the project with outsourcing ends before
the project without outsourcing. This may be due to the fact that the
organization with outsourcing is carrying out a project that is smaller in
size than the project of the organization that is not outsourcing. The
vertical dotted line shows when the project with outsourcing is
completed.

Software Process Dynamics: Modeling, Simulation and Improvement 51

Fig. 9. Evolution of the variable Accomplished tasks.

7.1.2 Effort

Figure 10 shows the evolution of the daily effort consumed in the project
activities. Notice that the effort values, and therefore cost, for the project
with outsourcing are greater than the values for the project without
outsourcing.

These higher costs are justified by the effort that needs to be
allocated to some activities that are not present in the second project.
When a project has outsourcing, some effort has to be allocated to
mainly formal communication activities with the members of the
outsourced team. This effort allocation leads to the growth of the final
costs, a feature that has been illustrated by the simulation outputs.

Accomplished tasks

400

300

200

100

0

0 7 14 21 28 35 42 49
Time (Months)

Accomplished tasks – Without Outsourcing Tasks
Accomplished tasks – With Outsourcing Tasks

M. Ruiz, I. Ramos, M. Toro

52

Fig. 10. Evolution of the variable Daily effort.

7.1.3. Quality

Finally, Figures 11 and 12 illustrate the aspects concerning the quality of
the product under development. The initial quality objective for both
projects is set as the number of tasks that need to be demonstrated, tested
and corrected. This percentage is 90% for both projects. Figure 11 shows
that this percentage is maintained for most of the duration of the
lifecycle. However, when the final phase of each project is close, the
percentage of tested tasks diminishes considerably. Nevertheless, the
project with outsourcing achieves a higher level of final quality. The
explanation for this result can be found in Figure 12. Figure 12 shows the
evolution of the error detection rate. It can be observed that the project
with outsourcing has a much higher error detection rate than the project
without outsourcing. This behavior may be due to the fact that in the
project with outsourcing, part of the quality assurance activities is
performed by the outsourced team. Hence, the volume of

Software Process Dynamics: Modeling, Simulation and Improvement 53

tasks that need to be tested, demonstrated and corrected within the
organization is significantly lower, and this makes it possible to achieve
higher values in the error detection and correction rates. The increment in
these rates translates into a higher quality of the final product.

Fig. 11. Evolution of the variable Quality.

8. Conclusions and Outlook

This chapter has focused on software process modeling and simulation
together with other traditional techniques to help organizations improve
their maturity level according to CMM. There is an important factor that
plays a decisive role in the achievement of this improvement. This factor
is the knowledge that the organization has of its processes. It is in this
field where the modeling and simulation approach can offer important
advantages. The first one lies in the actual model building process. A
model is a mathematical abstraction of a real system. To effectively build
a simulation model, it is necessary to define what it is intended to model,
define its scope and identify the rules that govern its behavior. These

Quality
1

.9

.8

.7

.6
0 7 14 21 28 35 42 49

Time (Months)

Quality – Without Outsourcing Dimensionless
Quality – With Outsourcing Dimensionless

M. Ruiz, I. Ramos, M. Toro

54

three activities share a common requirement: knowledge about the real
system. Without knowledge, there is no information and, therefore,
models. According to CMM, without knowledge, it is not possible to
define the software process and therefore, to improve the maturity level.
Therefore, as far as process maturity level is concerned, knowledge and
process improvement go hand in hand.

Fig. 12. Evolution of the variable Error detection rate.

On the other hand, simulation has always been considered as a

powerful tool in the decision-making area. In this chapter, simulation has
been proposed not only as a tool to help in the decision-making process,
but as a factor that helps to design and evaluate process improvements. It
also promotes simulation modeling and modular model building as an
approach to automatically trigger the set of metrics that need to be
collected, since each new dynamic module developed requires its own
set of initial parameters. These initial parameters required to initialize
each dynamic module should form part of the metrics collection program
carried out within the organization. In addition, this new data is not only

Error Detection Rate
4

3

2

1

0
0 7 14 21 28 35 42 49

Time (Months)

Error Detection Rate – Without Outsourcing Task/Month
Error Detection Rate – With Outsourcing Task/Month

Software Process Dynamics: Modeling, Simulation and Improvement 55

used in the simulation runs, but also to increase the level of knowledge
that the organization has of its processes.

As an example of how to integrate traditional software engineering
methods with software process simulation modeling, a dynamic
integrated framework for software process improvement has been
introduced. This framework can build dynamic software process models
by means of model abstraction, module construction and reuse. These
models can then be used to design and evaluate software process
improvements such as analyzing the impact of the size of the technical
staff on the main four variables (time, cost, quality, and overall
workforce) at a level 1 organization40 or evaluating the impact of
carrying out formal inspection activities in level 3 organizations41.

Currently, the software process modeling and simulation community
is working on the application of this technique to the latest aspects of the
software engineering field, such as updating the framework to work
according to the CMMi42. Some remarkable applications are: web-based
open software development43, open source software evolution44, extreme
programming45 and COTS-based development46.

Acknowledgments
This work was supported by the Interministerial Commission of Science
and Technology, (CICYT, Spain) through grant TIN 2004-06689-C03-
03.

References

1. M.C. Paulk, B. Curtis, M.B. Chrissis, and Charles V. Weber, Capability Maturity
Model for Software, Version 1.1, Software Engineering Institute, Technical Report
CMU/SEI-93-TR-24. Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA. February 1993.

2. International Standard Organization. ISO 9001. Quality Systems – Model for
Quality Assurance in Design/Development, Production, Installation, and Services,
1987.

3. International Standard Organization. ISO 9000-3. Guidelines for the Application of
ISO9001 to the Development, Supply, and Maintenance of Software, 1991.

4. A. Carleton, R.E. Park, W.B. Goethert, W.A. Florac, E.K. Bailey, and Pfleeger S.L.
Software Measurement for DoD Systems: Recommendations for Initial Core

M. Ruiz, I. Ramos, M. Toro

56

Measures. Technical Report CMU/SEI-92-TR-19. Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA. 1992.

5. A.M. Christie. Simulation – An Enabling Technology in Software Engineering.
http://www.sei.cmu.edu/publications/articles/christie-apr1999/christie-apr1999html

6. M.C. Kellner, R.J. Madachy and Raffo, D.M. Software Process Simulation
Modeling. Why? What? How? Journal of Systems and Software, 46 (1999) 91-105.

7. High Performance Systems, Inc. 45 Lyme Road. Hannover, NH, 03755.
http://www.hps-inc.com/edu/stella/stella.htm

8. PowerSim Corporation. 1175 Hendon Parkway, Suite 600, Hendon, VA, 20170.
http://www.powersim.com/default_home.asp

9. Ventana Systems, Inc. 60 Jacob Gates Road, Harvard, MA 01451.
http://www.vensim.com

10. Proceedings of the 5th International Workshop on Software Process Simulation and
Modeling. ProSim 2004. May 24- 25, 2004. Edinburgh, Scotland UK.

11. Proceedings of the 6th International Workshop on Software Process Simulation and
Modeling. ProSim 2005. May 14-15, 2005. Saint Louis, MO, USA.

12. D.M. Raffo. Modeling Software Processes Quantitatively and Assessing the Impact
of Potential Process Changes on Process Performance. Ph.D. Dissertation.
Graduate School of Industrial Administration, Carnegie Mellon University,
Pittsburgh, MA. 1996.

13. M. Kellner. Software Process Modelling Support for Management Planning and
Control. Proceedings of the First International Conference on the Software Process.
Redondo Beach, California. IEEE Computer Society Press, Los Alamitos, CA
(1991) 8-28.

14. G.A. Hansen. Simulating Software Development Processes. IEEE Computer,
January 1996, 73-77.

15. P.M. Senge. The Fifth Discipline. Currency, 1st. Edition, 1994.
16. T. Abdel-Hamid and Madnick, S. Software Project Dynamics: an Integrated

Approach. Prentice-Hall, 1991.
17. D. Pfhal and Lebsant, K. Integration of System Dynamics Modelling with

Descriptive Process Modelling and Goal-Oriented Measurement. Journal of
Systems and Software, 46 (1999), 135-150.

18. S. Burke. Radical Improvements Require Radical Actions: Simulating a High
Maturity Organization. Technical Report CMU/SEI-96-TR-025, ESC-TR-96-024.
Software Engineering Institute, Carnegie Mellon University Pittsburgh, PA, 1996.

19. P. Wernick, and Hall, T. Simulating Global Software Evolution Processes by
Combining Simple Models: An Initial Study. Software Process: Improvement and
Practice, 7 (2002) 113-126.

20. F.P. Brooks, Jr.. The Mythical Man-Month. Essays on Software Engineering. 20th.
Anniversary Edition. Addison Wesley – Pearson Education, 1995.

21. C. N. Parkinson. Parkinson's Law: The Pursuit of Progress, London, John Murray
1958.

Software Process Dynamics: Modeling, Simulation and Improvement 57

22. J.W. Forrester. Industrial Dynamics. Walthan, MA: Pegasus Communications,
1961.

23. C.W. Kirkwood. System Dynamics Methods: A Quick Introduction. Technical
Report. College of Business, Arizona State University, Tempe, 1998.

24. L.B. Sweeny and J.D. Sterman. Bathtub Dynamics: Initial Results of a Systems
Thinking Inventory. System Dynamics Review 16 (4): 249-286.

25. I.J. Martinez and Richardson, G.P.. Best Practices in System Dynamics Modeling.
Proceedings of the 19th International Conference of the System Dynamics Society.
Atlanta, GA USA, 2001.

26. J.W. Forrester and Senge, P.M. Tests for Building Confidence in System Dynamics
Models In Legasto, A.A. Jr., Forrester, J.W. and Lyneis, T.M. (eds.). System
Dynamics. New York Elsevier North-Holland, 1980, 209- 228.

27. J.D. Tvedt. An Extensible Model for Evaluating the Impact of Process
Improvements on Software Development Cycle Time, Ph.D. Dissertation, Arizona
State University, 1996.

28. L.H. Putnam and Meyers, W. Measures for Excellence: reliable software, on time,
within budget. Prentice Hall, 1991.

29. B. Boehm. Software Engineering Economics. Prentice Hall, Inc., 1981.
30. B. Boehm, E. Horowitz, R.J. Madachy, D. Reifer, B.K. Clark, B. Steece, A.W.

Brown, S. Chulani and Abts, C. Software Cost Estimation with COCOMO II.
Prentice Hall, Inc., 2000.

31. T.L. Woodings. A Taxonomy of Software Metrics. Software Process Improvement
Network (SPIN), 1995.

32. S.T. Knox. Modeling the Cost of Software Quality Digital Technical Journal, Vol, 5,
No. 4 (fall 1993), 9-16.

33. D. Houston and Keats JB. Cost of Software Quality: a Means of Promoting
Software Process Improvement. Quality Engineering, 10(3), 563-573, 1998.

34. Q.W. Fleming and Koppleman, J.M. Earned Value Project Management, 2nd
Edition. Newton Square, Project Management Institute, 1999.

35. W. Lipke and Jennin, M. Software Project Planning, Statistics and Earned Value.
Crosstalk, December 2000.

36. I. Ramos, J.C Riquelme and Aroba, J. Improvement in the Decision Making in
Software Projects. Miranda, P., B. Sharp, A. Pakstas, and J. Gilipe (eds.)
Proceedings of the 3rd International Conference on Enterprise Information Systems
(ICEIS 2001) (on CD-ROM).

37. J.R. Quinlan. C4.5: Programs for machine learning. Morgan Kauffman, 1993.
38. J.C. Riquelme, J.S. Aguilar and M. Toro M. Discovering Hierarchical Decision

Rules with Evolutive Algorithms in Supervised Learning. International Journal of
Computer, Systems and Signals 1(1): 73-84, 2000.

39. R. Agrawal, Mining quantitative association rules in large relational tables, ACM
SIGMOD Record, v.25 n.2, 1-12, June 1996.

M. Ruiz, I. Ramos, M. Toro

58

40. M. Ruiz, I. Ramos and Toro, M. A Dynamic Integrated Framework for Software
Process Improvement. Software Quality Journal (10): 181-194, 2002.

41. M. Ruiz, I. Ramos and Toro, M. Integrating Dynamic Models for CMM-Based
Software Process Improvement. Oivo, M., and S. Komi-Sirviö (eds.) Proceedings of
the 4th International Conference PROFES 2002. LNCS 2559. Rovaniemi (Finland),
63-77.

42. M.B. Chrissis, M. Konrad and Shrum, S. CMMi: Guidelines for Integration and
Product Improvement. SEI Series in Software Engineering. Addison-Wesley, 2003.

43. C. Jensen and Scacchi, W. Process Modeling Across the Web Information
Infrastructure. Proceedings of the 5th International Workshop on Software Process
Simulation ands Modeling. ProSim 2004. May 24- 25, 2004, 40-49. Edinburgh,
Scotland UK.

44. N. Smith, A. Capilupi, and Ramil. J.F. Qualitative Analysis and Simulation of Open
Source Software Evolution. Proceedings of the 5th International Workshop on
Software Process Simulation ands Modeling. ProSim 2004. May 24- 25, 2004, 103-
112. Edinburgh, Scotland UK.

45. A. Cau, G. Concas, M. Melis and Turnu, I. Evaluate XP Effectiveness Using
Simulation Modeling. H. Baumeister, M. Marchesi and M.Holcome (eds.).
Proceedings of the Extreme Programming and Agile Processes in Software
Engineering. XP 2005. LNCS 3556. June 18-23, 2005, 48-56. Sheffield, UK.

46. M. Ruiz, I. Ramos and Toro, M. Using Dynamic Modeling and Simulation to
Improve the COTS Software Process. In F. Bomarious and H. Iida (eds.): PROFES
2004, LNCS 3009, 568-581, 2004.

