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Digital predistortion has become an attractive technique for power
amplifier linearisation whose limiting factor for using Volterra series
as the underlying model is its computational complexity, since the
number of components rapidly grows with the non-linear order and
memory. Based on a previous reference algorithm, which consists on
applying the orthogonal matching pursuit for the sorting of the
model components and a Bayesian information criterion for the selec-
tion of the optimum number of components, a new technique to reduce
the size of the support set taking into account the structural information
within a model is presented. Experimental results of the predistortion
of a commercial power amplifier are given as a proof of its capabilities,
showing equivalent performance to the pruning with the reference
algorithm while further reducing the number of components.
Introduction: Recent advances in digital communication standards
require the management of the trade-off between efficiency and non-
linearity. Digital predistortion comes up as a solution that allows the
power amplifier (PA) to operate near saturation, mitigating the distortion
created in new standard signals such as orthogonal frequency division
multiplexing (OFDM), which are characterised by a high peak-to-
average power ratio (PAPR). Digital predistorters (DPDs) rely on behav-
ioral models [1], which usually take the form of Volterra series. The
most general full Volterra (FV) [2] series has a rich set of terms to rep-
resent the modelled system, but this number of components is usually
very large due to its inherent structure. Given the limited real-time com-
putational capability of nowadays field-programmable gate arrays, as it
is desirable to keep an easy-to-manage number of components, research-
ers have developed a set of pruning strategies – also called sparse recov-
ery techniques –. These strategies can be either ad-hoc, which include a
subset of the FV such as the generalised memory polynomial (GMP) or
dynamic deviation reduction among others, or based on information
theory, which do not include the information of the intrinsic structure
of the model [3]. Structural information based on the algorithm in [4]
was incorporated by the authors in [5]. In this Letter, we show the struc-
tural pruning of Volterra series and validate the method in the DPD
application, obtaining a reduced complexity model while keeping the
level of performance.

This Letter is organised as follows. The algorithm is first formulated.
Then, the experimental design of a DPD application for a commercial
PA is presented and results are discussed. Finally, conclusions are
drawn.

Structured compressed-sensing for Volterra series models: The struc-
tural compressed-sensing algorithm presented in this Letter can be
considered a particularisation of the stagewise orthogonal matching
pursuit algorithm, which selects a fixed number of regressors in each
iteration based on a threshold. The improvement consists on the
inclusion of a priority function that assigns the significance of the coef-
ficient within the model in the subset defined after the thresholding. The
new greedy algorithm for pruning Volterra model matrices taking into
account the structural information is summarised in Algorithm 1.

The initialisation, which corresponds to line 1 of Algorithm 1,
consists on the definition of the residual r(0) = y, that will be used for
keeping the remaining part of the output still to be modelled. The
support set S(0) is empty in the first iteration, as no regressor is still
selected. In each iteration t, the algorithm calculates the correlation
between the residual r(t) and each of the columns of the measurement
matrix X normalised by its ℓ2-norm (line 3). A first preselection is per-
formed where all the regressors with absolute value of the correlation
greater than a fraction (1− a) [ [0, 1] of the maximum are included
in the subset i(t)pre, shown in line 4. When the span a is equal to 0, the
selection becomes that of the classic OMP, which chooses only the
maximum correlation within all the regressors, and if it is equal to 1,
no correlation-based sorting is made and only the structural information
of the model is evaluated for this arrangement. Then, the regressor with
the lowest score given by the priority function f (·) is included onto the
support set. Then, the estimation of the Volterra vector ĥ is obtained by a
least-squares regression and the estimated output of the model ŷ(t) and
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the residual r(t) are updated (lines 7–9). An example of this function
is given in the experimental design section. Finally, when all the regres-
sors are sorted or a fixed maximum of regressors to sort nmax has been
reached, a Bayesian information criterion (BIC) is applied to obtain the
optimum number of Volterra kernels nopt. The model with the lowest
BIC is selected according to line 12, where ŝ2

e is the estimation of the
error variance and nc is the number of components.
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Fig. 1 Spectral densities for one realisation of the experiment for the cases
without DPD and with DPD in the case of a = 1
Algorithm 1: Summary of the structured compressed-sensing algorithm
for Volterra series models

Input: nmax . 0, a [ [0, 1], f (·), X [ C
m×n, y [ C

m

Output: S(t), nopt
Initialisation:

1: r(0) � y, S(0) � ∅
2: for t = 1 to nmax do
3: ut � (1− a) ·maxi�S(t)

XH
i{ } · r(t−1)

∣∣∣
∣∣∣

‖X i{ }‖2

4: i(t)pre �− ki∣∣∣∣ XH
i{ } · r(t−1)

∣∣∣
∣∣∣

‖X i{ }‖2
. utl

5: i(t) � argmini[i
(t)
pre
f X i{ }
( )

6: S(t) � S(t)< i(t)

7: ĥ � XH
S(t)XS(t)

( )−1
XH

S(t)y

8: ŷ(t) � XS(t)ĥ
9: r(t) � y− ŷ(t)

10: end for
11: ŝ2

e = ‖y− ŷ(nmax)‖22
12: nopt � argminnc 2m ln ŝ2

e + 2nc ln (2m)
{ }

Experimental design: A set of measurements were acquired in order to
validate the predistortion capabilities of the algorithm. The weblab for
PA digital predistortion and characterisation by Chalmers University
of Technology was used [6]. The weblab setup consists of the PXI
chassis PXIe-1082 from National Instruments Inc. The device under
test was a GaN PA CGH40006P in its test board. The measurements
were taken at an output power of +35.2 dBm. The test signal is com-
pound of 56 OFDM symbols of a 15-MHz OFDM signal generated
from 16-QAM symbols modulated onto 900 subcarriers and filtered
by a raised-cosine with roll-off factor of 0.1, according to the
LTE-downlink standard. This signal exhibits a PAPR of about 11 dB
and a hard clipping to the seven samples with the highest absolute
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value was applied to reduce the PAPR to 10 dB. An oversampling of 1
to 6 applied to the original signal results in a sampling frequency of
92.16 MHz which was also used to record the measurements. The test
signal contains over 360,000 samples.
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Fig. 2 15-MHz bandwidth signal constellation for original signal without
DPD and with DPD in the case of a = 1

Table 1: Performance results of DPD in a sweep of span a values
Case

ACPR-2,

dBc

ACPR-1,

dBc

ACPR
+1, dBc
ACPR
+2, dBc
ELE
EVM,
%

CTRO
NMSE,
dB
NICS
#
Coeff.
w/o
DPD
−38.04
 −32.82
 −32.93
 −38.00
 5.00
 −25.52
 –
a

0.00
 −39.76
 −36.83
 −36.82
 −39.80
 2.82
 −30.46
 200
0.20
 −42.57
 −40.46
 −40.51
 −42.75
 1.89
 −33.90
 198
0.40
 −44.15
 −41.35
 −41.29
 −44.17
 1.78
 −34.49
 190
0.60
 −44.65
 −42.92
 −42.91
 −44.74
 1.46
 −36.18
 148
0.80
 −50.04
 −48.58
 −48.71
 −50.24
 0.80
 −41.52
 17
1.00
 −55.09
 −53.88
 −54.13
 −55.37
 0.52
 −45.62
 194
A GMP model was selected to test the algorithm. This model has the
structure shown in (1), where a configuration of seventeenth order and a
maximum distance from the diagonal of 10 was set. This corresponds to
Ka = Kb = Kc = 16, La = 10 and Lb = Mb = Lc = Mc = 5. The
resulting Volterra model contains 1087 components.

y(k) =
∑Ka

p=0

∑La
l=0

aplx(k − l)|x(k − l)|p

+
∑Kb

p=1

∑Lb
l=0

∑Mb

m=1

bplmx(k − l)|x(k − l − m)|p

+
∑Kc

p=1

∑Lc
l=0

∑Mc

m=1

cplmx(k − l)|x(k − l + m)|p. (1)

The thresholding function designed for this experiment was
f (l, m, p) = |l + m| + (p+ 1) according to the form of the GMP
regressors of x(k − l)|x(k − l + m)|p. This function assigns a higher
score – which corresponds to less priority – to high orders and lags,
considering a memory fading behaviour [7]. The number of maximum
components to be considered nmax was set to 200.

The predistorter was calculated through the indirect learning scheme
[8]. The 30% of the signal with the highest maximum value at the output
of the PAwas used for modelling and the span value from 0 to 1 with an
increment of 0.2 was swept. Once the predistorter was identified, the
validation was carried out with the complete signal and the predistorted
signal was obtained placing the previous PA input signal at the input of
the DPD. The output of the DPD was then sent to the web platform and
the performance parameters of normalised mean square error (NMSE),
adjacent channel power ratio (ACPR) and error vector magnitude
(EVM) were measured in the returned signal.

DPD performance: The performance parameters of the DPD are pre-
sented in Table 1. The ACPR, EVM and NMSE values experience a
decrease with the span, which indicates that the introduction of the
span enhances the predistortion capabilities of the model. The signal
without predistortion is characterised by a first lower and upper
ACPRs of −32.82 and −32.93 dBc. The predistortion enhances this
values from about 4 dB for a = 0 to 21 dB in the case of a = 1,
LETTERS
where the minimum values of −53.88 and −54.13 dBc are reached.
Similar improvements are achieved for the second lower and upper
ACPRs, where the minimum is also obtained in the same case and
take the values of −55.09 and −55.37 dBc, corresponding to an
improvement of about 17 dB with respect to the case without DPD.
These values are in accordance with Fig. 1, where the power spectral
density (PSD) of the predistorted signal for the best case is compared
with the case without DPD. The reduction of the spectral regrowth
achieved by the DPD agrees with the PSD of the error signal, which
shows a low in-band and out-of-band error densities. The EVM is
decreased from a 5% to a 2.8% for a = 0 and a 0.52% in the case of
a = 1. This enhancement is clear in the constellation shown in Fig. 2,
where the predistorted case shows a reduction in dispersion compared
with the signal without predistorsion. The NMSE is reduced from
−25.52 dBm without predistortion to −30.45 dB for the lowest value
of the span and to −45.62 dB for a = 1. Finally, the number of com-
ponents in the pruned model results in roughly the same value for all
the range of the span, which indicates that the pruning capabilities of
the algorithm remains at the same performance level.

Conclusion: An improved method for the sparse recovery of Volterra
series models has been presented. It adds structural information of
the PA model in the selection process to achieve a reduction in the
optimum number of coefficients while maintaining the fidelity. The
benefits of the introduction of the span parameter has been experimen-
tally demonstrated. This method is susceptible to be applied to any kind
of Volterra series behavioral model. Predistortion with models given by
the algorithm have been performed showing a high reduction of the
complexity of the model with the same level of performance that the
ones given by the complete model before pruning.
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