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EEG Signal Processing in MI-BCI Applications
With Improved Covariance Matrix Estimators
Javier Olias, Rubén Martín-Clemente , M. Auxiliadora Sarmiento-Vega , and Sergio Cruces

Abstract— In brain–computer interfaces (BCIs), the
typical models of the EEG observations usually lead to
a poor estimation of the trial covariance matrices, given
the high non-stationarity of the EEG sources. We propose
the application of two techniques that significantly improve
the accuracy of these estimations and can be combined
with a wide range of motor imagery BCI (MI-BCI) methods.
The first one scales the observations in such a way that
implicitly normalizes the common temporal strength of the
source activities. When the scaling applies independently
to the trials of the observations, the procedure justifies
and improves the classical preprocessing for the EEG data.
In addition, when the scaling is instantaneous and inde-
pendent for each sample, the procedure particularizes to
Tyler’s method in statistics for obtaining a distribution-
free estimate of scattering. In this case, the proposal pro-
vides an original interpretation of this existing method
as a technique that pursuits an implicit instantaneous
power-normalization of the underlying source processes.
The second technique applies to the classifier and improves
its performance through a convenient regularization of
the features covariance matrix. Experimental tests reveal
that a combination of the proposed techniques with the
state-of-the-art algorithms for motor-imagery classification
provides a significant improvement in the classification
results.

Index Terms— Common spatial pattern, brain–computer
interfaces, motor-imagery classification, covariance matrix
estimation.

I. INTRODUCTION

BRAIN-COMPUTER interfaces (BCI) have a great poten-
tial for enabling the communication between machine

and humans by means of the analysis of the electroen-
cephalographic activity. Nowadays, almost all the Motor
Imagery BCI (MI-BCI) systems summarize most of the
relevant information about the measurements in two kinds
of covariance matrices: the covariance matrices of the fil-
tered observations (employed for dimensionality reduction)
and the covariance matrices of the features (which are
required for classification). In the dimensionality reduction
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stage one tries to select those subspaces of the observations
that retain most of the discriminative power, for instance,
using the technique of Common Spatial Patterns (CSP) [1].
After that, the features are usually chosen as a non-linear
transformation of the band-power statistics of the projected
observations onto the previously selected subspaces [2]. The
covariance matrices of these features (together with their class-
conditional expectations) play a relevant role in the classifi-
cation stage of MI-BCI [3]. Although CSP was only suitable
for two-class classification problems, some later alternatives
have been also proposed for multi-class settings (see, for
instance, [4], [5]).

There are several sources of difficulty in the processing of
EEG signals. Among them, we may cite: the inevitable pres-
ence of noise and interference at the sensors, the low spatial
resolution of the BCI headsets [1], the possible presence of
outliers in the measurements [6], the difficulty in gathering
sufficient data trials for training [7], the need to determine
the suitable number of features in those method that apply to
dimensionality reduction [8], and the non-stationarity of the
EEG signals [9]–[11].

The non-stationary can happen at different levels. The
classical inter-subject and inter-session variabilities have been
frequently addressed in the literature [11]. In this work, we will
shift our attention to the less studied variabilities that happen
between trials, and also within samples of the same trial. The
signals generated by the brain are non-stationary in power at
the trial and sample levels. We will show later that this power
variability hinders the correct estimation of the covariance
matrices of the trials, which are the most used statistics in the
existing MI-BCI implementations. Our experimental results
avail the hypothesis that the correction of this EEG signal
variability leads to improved covariance matrix estimates,
which allow transversal improvements in accuracy for the
tested classification algorithms.

The main contributions of the article are the following:
• We show that the standard power normalization of

the observations, which is widely used in the pre-
processing of the EEG data for MI-BCI, is useful but
suboptimal.

• We propose the power-normalization of the effective
EEG source activities. This normalization has no hyper-
parameters and, in general, improves the quality of the
covariance matrix estimates during training and testing.

• The shrinkage of the feature covariance matrices in MI-
BCI was shown to be beneficial when the number of
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training trials is small [12]. We propose the application
of an alternative shrinkage estimate (gLDA) that is based
on the Gaussianity of the features [13].

Our experimental results confirm that the proposed power-
normalization and gLDA implementation lead to a transversal
improvement in the performance of the existing MI-BCI
algorithms. In addition, the proposal seems to be much less
sensitive with respect to the number of features employed in
the dimensionality reduction stage.

The article is organized as follows. Section II introduces
the basic model of the EEG measurements and section III
discusses some classical and state-of-the-art approaches for
MI-BCI. Section IV presents an overcomplete model of the
observations and defines the effective sources of the mixture.
Section V describes the proposal for the normalization in
power of the EEG sources and also analyzes its links with
the standard preprocessing of the observations. This method
is extended in section VI to the case of the instantaneous
power-normalization of the effective sources. Section VII
presents some variations in the implementations of the clas-
sifier using shrinkage estimates of the feature covariance
matrices. The experimental results are provided and discussed
in section VIII, while section IX is devoted to the conclusions.

II. BASIC MODEL OF THE EEG OBSERVATIONS

The EEG headset is based on an array of sensors that
measures the electromagnetic activity on the scalp. At time t ,
the variations of the activities of the sensors are measured with
respect to a given referential system (see EEG referencing
in [1]) and passband filtered to retain the 8Hz-32Hz band.
After that, they are centered at the origin by subtracting the
estimated mean of each trial and collected into the observation
vector x(t) = [x1(t), . . . , xNx (t)]T ∈ R

Nx .
The physiological nature of the problem allows one to

model the i th-element of the observation vector as a super-
position of contributions from: some desired latent EEG
source activities s j (t), j = 1, . . . , Ns , and some filtered
additive interference or noise component which we denote
by n j (t), j = 1, . . . , Nx . We will not assume any specific
value for Ns which, depending on the experiment, could be
greater or lower than Nx . The contribution of i th-source s j (t)
to the j th-observation x j (t) is modeled as ai j s j (t), where the
factor ai j refers to the attenuation of the almost instantaneous
propagation of the source activity to the sensor position.
In vector form, the filtered observations are known to follow
the linear instantaneous mixing model [14]

x(t) = As(t) + n(t), (1)

where A = [ai j ]i j ∈ R
Nx ×Ns refers to the mixing matrix.

In those cases where we would like to make explicit the trial
to which the observations belong to, we will use the notation
xτ (t) that refers to the vector of observations of the trial τ
at time t . The global power of the non-stationary process of
filtered observations is defined by

Px ≡ �E[�xτ (t)�2]�t,τ = 1

Nτ T

T�

t=1

Nτ�

τ=1

E[�xτ (t)�2]. (2)

A column-wise concatenation of the observed vector samples
from a trial results in the matrix model of the observations

Xτ = ASτ + Nτ , (3)

where Xτ , Nτ ∈ R
Nx ×T and Sτ ∈ R

Ns ×T . In the following,
the class of a trial τ will be denoted by c(τ ) ∈ {c1, . . . , cK }.

III. THE COMMON SPATIAL PATTERNS AND OTHER

SUCCESSFUL APPROACHES FOR MI-BCI

The Common Spatial Patterns (CSP) is a method designed
for the case of having two classes (K = 2) [15]. Let the
class-conditional covariance matrices of the classes be �x|c1

and �x|c2 . The CSP algorithm (see Table I) tries to reduce the
dimensionality of the observations by finding a p-dimensional
subspace for which the two classes are maximally separated
in a certain divergence sense [6], [16]. This goal is achieved
by setting the p < Nx spatial filters w1, . . . ,wp (for the
sake of simplicity p is assumed to be even) equal to the
p/2 principal and p/2 minor eigenvectors of the following
generalized eigenvalue problem

�x|c1w = �x|c2w λ. (4)

The selected eigenvectors are grouped in the matrix of
spatial filters W = [w1, . . . ,wp], which is used to perform
the dimensionality reduction of the observations

Yτ = WT Xτ ∈ R
p×T . (5)

There are several possible extension of CSP to multi-class
(K > 2) scenarios. Some are based on the joint approximated
diagonalization of the covariances matrices of the observations
for each class [14]

WT �x|ck W = Dck k = 1, . . . , K , (6)

where Dck refers to an approximately diagonal matrix. The one
proposed in [4] combines this approximated diagonalization
with a method to choose the most relevant filters based on an
Information Theoretic Feature Extraction criterion (ITFE).

Although the dimensionality reduction stage (implemented
by CSP and ITFE) sometimes is omitted, in general, as we
will see in the simulations, it is a recommended procedure for
datasets with moderate or relatively large number of sensors.

After the dimensionality reduction, some basic linear classi-
fication results can be obtained using Fisher’s Linear Discrimi-
nant Analysis (LDA). However, other state-of-the-art proposals
are nowadays preferable. This is the case of sLDA [7] a
shrinkage variant of LDA and also of the classifiers that exploit
the Riemmanian geometry of the manifold of symmetric and
positive definite (SPD) matrices. Among these classifiers,
we can mention the Riemannian Minimum Distance to Mean
(RMDM) [5], which is based on the minimization of the
Riemmanian distance between the sample covariance matrices
of the test trials and the Riemmanian mean of the classes.
Other improved classification methods are obtained by using as
features the projection of the sample covariance matrices onto
the tangent space (of the Riemmanian SPD manifold) at the
referential Riemmanian mean of the set of covariance matrices.
In this way, an LDA classifier applied to tangent space (TS)
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features give rise to a TSLDA implementation. Similarly,
the logistic regression (LR) classification of TS features leads
to a TSLR implementation [17]. The interested reader in
Riemmanian approaches for Brain-Computer Interfaces can
find in [17] and [18] respective tutorial reviews on this topic.

A. Classical Estimation of the Class Covariance Matrices

As the observations have been already centered, the EEG
spatial covariance matrix of trial τ is given by

C(0)
Xτ

= 1

T
Xτ XT

τ . (7)

The notation C(i)
Xτ

is adopted in this paper in order to allow the
possibility to refine this estimate through additional iterations.
Then, since the trials may have unequal power, the standard
CSP implementation [1] normalizes the EEG covariance matri-
ces as

C(1)
Xτ

= C(0)
Xτ

Tr{C(0)
Xτ

}/Nx

≡ Xτ XT
τ

1
Nx

Tr{Xτ XT
τ } . (8)

One may note that this definition only differs from the classical
normalization in the following irrelevant 1

Nx
scaling term,

which is mainly adopted here for notational convenience.
Finally, the class-conditional covariance matrices are usually

estimated by means of the arithmetic mean of the trials

�̂
(1)

x|ck
= 1

Nck

�

τ :c(τ )=ck

C(1)
Xτ

k = 1, . . . , K . (9)

In the following sections, we propose an alternative normal-
ization for the training and test covariance matrices. It has no
additional hyperparameters and, in general, outperforms the
standard one considered in (8). In particular, we will show
that the standard normalization can be regarded as a first
approximation to the proposed approach.

At this point, it is worth to comment other estimators for
�x|ck which have been suggested for MI-BCI applications
according to various strategies. The adaptation with respect
to differences between the training and testing distributions
of the data has been considered in [19], which suggests
the weighting of the samples according to their estimated
importance. In [20], class covariance matrices estimators of
minimum β-divergence for a Wishart model have been pro-
posed to ensure the robustness with respect to data outliers.
The solution, which is based on an iteratively weighting of the
trial covariance matrices of each class, uses cross-validation
(CV) for the determination of the hyper-parameter of the
divergence. The use of CV is also required in [21], which
proposed several regularized covariance matrix estimates with
the aim to avoid overfitting. One regularized estimate, which
has the remarkable advantage of avoiding CV, was proposed
by Ledoit and Wolf in [22].

IV. OVERCOMPLETE MODEL OF THE OBSERVATIONS

AND EFFECTIVE COMPONENT OF THE SOURCES

The linear mixing model of equation (1) provides an
overcomplete representation of the observations. This can be

seen by integrating the noise/interference contribution into an
extended sources vector s�

τ (t) to obtain

xτ (t) = (A I)
�

sτ (t)
nτ (t)

�
= A� s�

τ (t). (10)

Moreover, there is an inherent linear indeterminacy between
the sources and the columns of the mixing matrix.
In this sense, note that, for any arbitrary invertible matrix
M ∈ R

(Ns+Nx )×(Ns +Nx ), the model satisfies

xτ (t) = A� s�
τ (t) = (A�M−1) (Ms�

τ (t)). (11)

We avoid this indeterminacy by assuming, from here on, that
the global covariance matrix of the source signal process is
equal to the identity matrix. As we initially considered the
centering of the observations, this matrix is then given by
��

s = �E[s�
τ (t)(s�

τ (t))T ]�t,τ = I, and the global covariance
matrix of the observations is

�x = �E[xτ (t)(xτ (t))
T ]�t,τ = A�A�T . (12)

The fact that the resulting mixing matrix A� ∈ R
Nx ×(Ns +Nx )

is wide and of rank Nx , implies that not all the components
of the extended vector of sources s�(t) will contribute to
the observations. Only the component of the sources that is
aligned with the range space of the rows of A� will have
an effective contribution, while the orthogonal component to
this subspace will be discarded. To see this, consider the
orthogonal decomposition of the extended sources

s�
τ (t) = �A�T s�

τ (t) + �⊥
A�T s�

τ (t), (13)

where the proyection matrix onto the rows of the extended
mixing matrix is �A�T = A�T (A�A�T )−1A� and the orthogonal
projection matrix is given by �⊥

A�T = I − �A�T . Since these
projection matrices satisfy A��A�T = A� and A��⊥

A�T = 0, it
is easily observed that

xτ (t) = A� s�
τ (t) = A� s̃τ (t) (14)

where s̃τ (t) = �A�T s�
τ (t) represents the effective sources,

i.e., the component of the extended sources with a non-
negligible influence in the value of the observations xτ (t).
Moreover, it is straightforward to check that the global covari-
ance matrix of the effective sources coincides with the follow-
ing projection matrix �s̃ = �A�T , which is unitary similar to
the identity matrix of dimension Nx . Hence, the global power
of the effective sources is

Ps̃ = Tr{�s̃} = Tr{INx } = Nx . (15)

V. NORMALIZATION OF THE POWER OF THE SOURCES

Let’s define the power of the effective sources for trial τ as

PS̃τ
= Tr{CS̃τ

} = 1

T
Tr{S̃τ S̃T

τ }. (16)

When S̃τ for τ = 1, . . . , Nτ have dissimilar powers, their
contribution to the class-conditional covariance matrices is not
homogeneous. In this situation, a fraction of the trials may
dominate the estimation, implying a higher variance in the
estimates.
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TABLE I
PSEUDO-CODE OF CSP + LDA ALGORITHM FOR MI-BCI

The covariance normalization by the power of the obser-
vations P(0)

Xτ
= Tr{C(0)

Xτ
}/Nx in (8) only partially alleviates

the previous effect, since, due to the equivalence P(0)
Xτ

=
Tr{AC(0)

S̃τ
AT }, it depends on the interaction between the mixing

matrix and the trial covariance of the sources. Instead, we pro-
pose to equalize the power of the effective sources in each trial
in such a way that they all coincide with the global power of
the process, which was defined in (15). Although we don’t
have direct access to S̃τ , we explain in the sequel a method
that allows us to iteratively equalize its power, contributing in
this way to obtain more reliable estimates of the covariance
matrices.

Consider the notation for the inner product between two
symmetric positive definite matrices of dimension Nx ,

�CXτ , �−1
x � = 1

Nx
Tr{CXτ �

−1
x }. (17)

Lemma 1 (Power of the Effective Sources): The power of
the effective sources for each trial τ is given by the scaled
inner product between the covariance matrix of the trial and
the inverse of the global covariance matrix of the observations

PS̃τ
= Nx �CXτ , �−1

x �. (18)

This lemma, which provides an exact formula for the
evaluation of the power of the effective sources, is proved
in Appendix A. However, the determination of �x =
�E[xτ (t)(xτ (t))T ]�t,τ involves an expectation operation and,
as a consequence, is not feasible. Instead, we can estimate it
from the available samples at a given iteration i − 1.

Under a Gaussian mixture model for the observations, a nat-
ural estimate of �x (built from a combination of maximum
likelihood estimates) is given by the arithmetic mean of the
covariances of the trials

�̂
(i−1)
x = �C(i−1)

Xτ
�τ = 1

Nτ

Nτ�

τ=1

C(i−1)
Xτ

. (19)

After substituting �̂
(i−1)

x for �x in (18), the estimated power
of the effective sources at iteration i − 1 is P̂(i−1)

S̃τ
. The ratio

between the power of the effective sources at iteration (i − 1)
and their global power (obtained in (15)) is given by

(σ̂ (i−1)
τ )2 ≡ 1

Nx
P̂(i−1)

S̃τ
= �C(0)

Xτ
, (�̂

(i−1)
x )−1�. (20)

In order to equalize the power across trials at the i th

iteration, we should normalize the observations as

X(i)
τ = Xτ /σ̂

(i−1)
τ , (21)

since this scaling replaces the estimated power P̂(i−1)

S̃τ
of the

effective sources in each trial by the global average power
Ps̃ = Nx . After that, the scaled observations X(i)

τ lead to
normalized estimates of the trial covariance matrices

C(i)
Xτ

= 1

T
X(i)

τ (X(i)
τ )T = (σ̂ (i−1)

τ )−2 C(0)
Xτ

∀τ (22)

and to an improved estimate of the global covariance matrix

�̂
(i)
x = �C(i)

Xτ
�τ = 1

Nτ

Nτ�

τ=1

C(i)
Xτ

. (23)

This new estimate can still help in improving the normaliza-
tion of the sources, so the estimation procedure can continue in
a recursive manner until the relative variation in the estimate of
the global covariance matrix falls below a tolerance threshold
�. For instance, by continuing with the iteration until the

following condition is met: ��̂(i)
x − �̂

(i−1)
x �F/��̂(i)

x �F < �.
After the convergence of the iteration, the following average
covariance matrices of each class are used as inputs to the
method of dimensionality reduction

�̂
(i)
x|ck

= 1

Nck

�

τ :c(τ )=ck

C(i)
Xτ

k = 1, . . . , K . (24)

A. Expliciting the Link With the Standard Preprocessing
of the EEG Observations

At iteration i = 0, before having access to the observed data,
we may consider an initial isotropic estimate for the covariance

matrix of the observations �̂
(0)

x = I. Hence, the estimates of
the covariance matrices in (22) are, for i = 1, equal to

C(1)
Xτ

= (σ̂ (0)
τ )−2 C(0)

Xτ
= Xτ XT

τ
1

Nx
Tr{Xτ XT

τ } ∀τ, (25)
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which exactly coincide with those provided by the standard
normalization of the trials in (8). Next, the global covariance

matrix �̂
(1)

x is evaluated using (23) and used, in another itera-
tion (i = 2), to improve the normalization of the observations
in each trial. Then, the new trial covariance matrices are

C(2)
Xτ

= (σ̂ (1)
τ )−2 C(0)

Xτ
= C(0)

Xτ

�C(0)
Xτ

, (�̂
(1)

x )−1�
∀τ (26)

and again the new global covariance matrix �̂
(2)

x is evaluated.
One can continue with the iterations of the procedure until
it convergences. In the section of simulations, we will later
illustrate with a controlled experiment (see Figure 1) the
improvement of the estimates of the trial covariance matrices
with respect to the number of iterations.

Although we have previously suggested the initialization of

the iteration with �̂
(0)

x = I for revealing the link between the
proposal and the classical preprocessing of CSP, in practice,
it is better to choose as initial estimate the sample covariance

matrix of the trials �̂
(0)

x = �C(0)
Xτ

�τ . This latter estimate is
more informative than the identity matrix, which contributes
to a faster convergence of the iteration.

VI. INSTANTANEOUS POWER NORMALIZATION LEADS TO

AN EXISTING ESTIMATOR OF SCATTER

Until now, in order to illustrate the links of the proposed
power-normalization with the preprocessing used in classical
CSP, we have only addressed the equalization of the power
across trials. However, the technique is easily extended for
equalizing the power of the sources over temporal juxtaposed
(or overlapped) windows of arbitrary length. For signals like
the EEG sources, which are highly non-stationary, one can
improve the estimates of the covariance matrices by equalizing
the power across samples, i.e., considering windows of one
sample length.

Let us consider the instantaneous correlation matrix estimate
of the observations at the trial τ and time t

C(0)
xτ (t) = xτ (t)(xτ (t))

T , (27)

which is based on a single sample. In similarity with (20),
given �̂x at iteration (i − 1), we obtain the power ratio for
each trial and time sample

(σ̂
(i−1)
τ,t )2 ≡ �C(0)

xτ (t), (�̂
(i−1)

x )−1� (28)

= 1

Nx
Tr{xτ (t)(xτ (t))

T (�̂
(i−1)
x )−1} (29)

= 1

Nx
(xτ (t))

T (�̂
(i−1)

x )−1xτ (t). (30)

Its evaluation with (30), is recommended in the instantaneous
case because of the computational advantages over (29).

The instantaneous power-normalization of s̃τ (t) is simply
obtained by scaling the observations

x(i)
τ (t) = xτ (t)/σ̂

(i−1)
τ,t ∀ τ, t . (31)

Therefore, the covariance matrices estimates of each trial

C(i)
Xτ

= 1

T

T�

t=1

x(i)
τ (t)(x(i)

τ (t))T (32)

TABLE II
PSEUDOCODE OF THE INSTANTANEOUS POWER-NORMALIZATION,
WHICH PARTICULARIZES TO A VERSION OF TYLER’S METHOD IN

STATISTICS FOR OBTAINING A ROBUST ESTIMATOR OF SCATTER

are, in general, more reliable and contribute, using (23), to an

improved estimation of the averaged covariance matrix �̂
(i)
x .

The whole iteration over the set of training trials is sum-
marized in the top part of Table II. The procedure for the
estimation of the covariance matrix of the test trials, which
is shown in the second part of Table II, is coherent with
the updates performed in the last iteration for the training
trials.

The combination of the instantaneous power-normalization
with CSP will be referred, hereinafter, as nCSP. However, since
the proposed normalization aims to recover the stationarity
in power of the effective sources vector, it is unnecessary to
apply any additional normalization of the features. Hence,
the recommended evaluation of the features is simply given
by formula (F2) of Table II, i.e., fτ = log

�
diag(CYτ )

�
,

which replaces all the instances of formula (F1)
in Table I.

In Appendix B, we discuss the link between the instanta-
neous power-normalization iteration and the method proposed
by Tyler in [23] for obtaining a distribution-free estimator
of scatter within the class of elliptically distributed data.
Both techniques use complementary arguments that arrive at
a similar final result. However, Tyler’s method assumes that
the observations are drawn from an elliptical distribution,
a hypothesis that may be true for a single trial (Nτ = 1)
and a unique class (K = 1). For multiple classes, the previ-
ous hypothesis can no longer be true, whereas the proposal
based on the power-normalization of the effective sources
still provides an admissible statistical interpretation for the
iteration.



900 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 27, NO. 5, MAY 2019

VII. GAUSSIAN SHRINKAGE LDA

Under the hypotheses of p-dimensional Gaussian features
for each class, with means μk, k = 1, 2, and homoscedastic
covariance matrices �f|c1 = �f|c2 = �f , the LDA classifier
considered in the Table I implements the maximum a posteriori
(MAP) Bayesian classification [24]. However, when the num-
ber of feature vectors fτ for training is not sufficiently large
with respect to their dimension p, this method can be prone to
overfitting. Moreover, the implementation of the classifier uses
the within-class precision matrix of the features �̂

−1
f , which

in this situation may be poorly conditioned.
To address this problem we should resort to some form of

regularization of the averaged within-class covariance

�̂f = p(c1)�̂f|c1 + p(c2)�̂f|c2 . (33)

Regularized Discriminant Analysis [25] considered the pro-
jection of the sample covariance estimate (in our case,
the �̂f defined previously) onto the identity matrix to obtain
� �̂f , I � I ≡ v I, and then estimate the true covariance matrix
�f with the convex combination

�̃f = (1 − ρ)�̂f + ρ(vI). (34)

The shrinkage of the sample covariance matrix towards the
projection can improve the matrix conditioning and provide a
closer estimate to the true covariance matrix for a carefully
chosen parameter ρ. The problem consists in finding the
optimal value for ρ. Ledoit and Wolf in [22] studied how
to automatically determine it by approximately minimizing
the minimum quadratic error between the unknown covariance
matrix �f and its shrunken estimation �̃f

min
ρ

E

�����f − �̃f

���
2

F

	
s.t. �̃f = (1 − ρ)�̂f + ρ(vI).

(35)

The estimator of ρ obtained by Ledoit and Wolf is given by

ρ̂LW =min


�Nτ
τ=1�(fτ − μkτ

)(fτ − μkτ
)T −�̂f�2

F

N2
τ ��̂f − (Tr{�̂f }/p) I�2

F

, 1

�
, (36)

where μkτ
refers to the mean of the class to which the

feature fτ belongs. This choice for the estimate guarantees an
asymptotically optimal combination of the sample covariance
matrix and the identity matrix, is asymptotically consistent and
makes no assumption over the data distribution.

In the context of MI-BCI, Lotte considered in [7] the
Shrunken LDA (sLDA) classification. This method replaces
the sample covariance matrix of the features �̂f in Linear
Discriminant Analysis with the Ledoit and Wolf regularized
covariance matrix �̃f for ρ = ρ̂LW. sLDA obtained signif-
icant accuracy improvements over standard LDA so its use
was highly recommended [3]. Note, however, that the LDA
classifier assumes conditional Gaussian classes and, under
this assumption, the Ledoit and Wolf regularization technique
usually does not provide the best possible mean-square error
for finite samples.

Chen et al. recognized in [13] that ρ̂LW uses statistics of
the features up to order four, while under Gaussian hypothesis
the mean and covariance condense all the relevant information.

They developed an Oracle Approximate Shrinkage (OAS) pro-
cedure for small samples that exploits the Gaussian hypothesis.
The estimator of ρ provided by the OAS method is

ρ̂OAS = min

⎧
⎪⎪⎨

⎪⎪⎩

�
1−2

p

�
Tr(�̂

2
f ) + Tr2(�̂f )

�
Nτ +1−2

p

� �
Tr(�̂

2
f ) − Tr2(�̂f )

p

� , 1

⎫
⎪⎪⎬

⎪⎪⎭
, (37)

and it was shown to attain a better mean square error in
simulations than ρ̂LW and other alternatives.

In what follows we denote by gLDA the implementation of
the LDA classifier in combination with the Oracle Approx-
imate Shrinkage estimator of the feature covariance matrix,
which is obtained from equation (34) with ρ = ρ̂OAS. The
added “g” refers to the Gaussian hypothesis of the centered
features.

According to our experiments in MI-BCI, the classification
with gLDA provides relevant gains in accuracy with respect
to both the standard LDA and sLDA techniques.

VIII. EXPERIMENTAL RESULTS

In this section, we will try to corroborate through illustrative
simulations the good performance of the proposed covariance
estimators that form part of the proposals nCSP and gLDA.
The first simulation reveals the expected improvement in the
estimation of the covariances with a set of synthetic data since,
for its evaluation, the true underlying covariance matrices of
the classes have to be known. The remaining simulations
consider real datasets from the BCI competitions and test
the possible combination of the proposals with state-of-the-
art techniques.

A. Testing the Improvement in the Estimation of �x|ck

In this experiment, we design a synthetic simulation for
corroborating the improvement that can be obtained with the
proposed estimation method for the class covariance means.
The centroids for the right-hand and left-hand classes have
been set equal to the estimated class covariances of user
A01 from the dataset IV-2a [29]. We used 25 training trials per
class, each with 22 sensors and a length of 500 samples. The
samples xτ (t) of each trial τ were drawn from a multidimen-
sional Gaussian density N (0, C̃τ ), where C̃τ was generated
from a local perturbation of the conditional-class mean �x|ck

of the trial. The details of the procedure for the generation of
local random covariance matrices in the neighborhood of its
centroids are described in Appendix C.

The proposed power-normalization technique does not help
to guess the absolute scales of the underlying covariance
matrix centroids, because these scales are subordinated to the
objective of equalizing the power of the effective sources.
Fortunately, it is well known that they are irrelevant in the
evaluation of the common principal directions. Hence, a good
measure of similarity between the true and estimated covari-
ance centroids should be invariant with respect to the scaling
of the compared arguments. A natural measure of dissimilarity
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TABLE III
EXPECTED USER ACCURACY FOR THE Binary MI CLASSIFICATION PROBLEM IN EACH OF THE CONSIDERED DATASETS. THE BEST

PERFORMANCES ARE MARKED IN BOLD. ONE CAN OBSERVE THAT IN THE MAJORITY OF THE CASES THE IMPROVEMENTS

OBTAINED WHEN COMBINING THE STATE-OF-THE-ART METHODS WITH THE PROPOSED TECHNIQUES

CAN BE REGARDED AS STATISTICALLY SIGNIFICANT (p-value < 5e-02)

Fig. 1. Variations of the scale-invariant Riemannian distance (between
the reference �x |ck and estimated �̂x |ck covariance matrices) with
respect to the number of iterations of the proposed power-normalization
procedures. The solid lines represent average distances while the bars
represent the 25% and 75% percentiles. Iteration 0 refers to the absence
of normalization, iteration 1 coincides with the standard trace-based
normalization used in CSP, while the remaining iterations are instances
of the proposed normalization.

between covariance matrices with arbitrary scaling is the scale-
invariant version of the Riemmanian distance

DR(�̂x|ck , �x|ck) = min
α

δR(α�̂x|ck , �x|ck) (38)

= min
α

�
Nx�

i=1

log2 λi

α

� 1
2

(39)

=
� Nx�

i=1

log2 λi

e
1

Nx

�Nx
j=1 log λ j

� 1
2

(40)

where δR(· , ·) denotes the standard Riemmanian distance and
λi , i = 1, . . . , Nx , refers to the eigenvalues of �̂

−1
x|ck

�x|ck .
Figure 1 illustrates the improvement in the estimation

of the class-conditional covariance matrix means for the
block (Section V) and instantaneous (Section VI) power-
normalization procedures, when both share the initialization

�̂
(0)
x = I. The x-axis represents the iteration i at which

the covariance matrix estimate �̂
(i)
x|ck

is evaluated, whereas
the y-axis represents the average across classes of the scale-

invariant Riemannian distances between �x|ck and �̂
(i)
x|ck

.
The simulation results confirm the expected improvement of

these normalizations with respect to the classical one, which
corresponds with the result obtained for iteration 1. Being,
in this case, the power-instantaneous equalization method
slightly more precise than the block based-implementation.

B. Experiments Using the BCI Competitions Datasets

This subsection is devoted to the experimental comparison
of the proposals on real BCI datasets. The normalization
scheme for the estimation of the class-conditional covariance
matrices, proposed in Section VI, can be combined with
a variety of MI-BCI techniques to improve their accuracy.
In particular, we compare the differences of performance,
between classical CSP and nCSP (our proposal), when they are
used in combination with the following classifiers: LDA, its
shrinkage variants sLDA and gLDA, RMDM and TSLR. The
Python code for the RMDM and tangent space (TS) implemen-
tations can be downloaded from [5]. For TSLR, the Logistic
Regression (LR) classifier was implemented according to
version 0.19.2 of [26] with its default parameters.

The experiments in this section have been carried out using
three datasets from BCI competitions. Dataset 3a from BCI
competition III [27], which contains 60 EEG channels, three
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Fig. 2. This experiment shows the accuracy of the binary classification methods with respect to the number of training trials for dataset IV-2a. The
arrows in Subfigures (a) and (b) represent the improvement in performance of nCSP + gLDA, nCSP + RMDM and nCSP + TSLR with respect to
their baselines. (a) Improvement of nCSP + gLDA over the baselines. (b) Improvement of nCSP + TSLR and nCSP-RMDM over the baselines.

Fig. 3. Variations in performance of the MI-BCI binary classification methods with respect to p, the number of spatial filters. The results confirm the
advantages of using nCSP in combination with the state-of-the-art classifiers to improve the expected user accuracy.

users and four classes of motor imagery movements (MIM);
dataset 4a from BCI competition III [28] with 108 EEG
channels, four users and two classes of MIM; finally, dataset 2a
from BCI competition IV [29] has 22 EEG channels, nine
users with two sessions per user and four classes of MIM.

Each experiment consists of 40 Monte-Carlo simulations
where the whole set of available trials for each session, user
and pair of movements is randomly split into testing and
training groups. After that, the averaged performance over
the test trials is reported. The simulations report the average
classification accuracy over all the possible confrontations of
pairs of classes (K = 2) for each user. By default, the number
of training and testing trials is set to 40 and the number of
spatial filters is set 8, except for those cases where a range of
these values is specified.

In Table III, we show the accuracy results for each subject in
each of the three datasets. We also report the mid-p values of
one-sided McNemar’s tests of hypotheses [30] for paired data
that allows to check whether the proposals have significant
advantages in accuracy with respect to their respective state-
of-the-art approaches. One can observe in Table III that for

two of the datasets the proposal nCSP leads to significant
improvements in expected accuracy with respect to classical
CSP, whereas, its performance remains equivalent for the
dataset III-4a.

We also compare the algorithms when the number of
training trials varies from 4 to 80, while the number of testing
trials remains equal to the default value of 40. For this purpose,
we have employed the dataset IV-2a. Figures 2(a) and 2(b)
represent the improvement of nCSP + gLDA, nCSP+ RMDM
and nCSP + TSLR with respect to their respective baselines:
CSP+sLDA, CSP+RMDM and CSP+TSLR. In both figures,
the best performance over the whole range of training trials is
obtained for the proposed normalization. Figure 2(b) reveals
that the use of nCSP instead of CSP progressively increases the
improvement with the number of training trials. In Figure 2(a),
the combination of nCSP with gLDA sustains the improvement
across the number of training trials. A disaggregated analysis
reveals that gLDA improves greatly over sLDA for a small
number of training trials.

In the last experiment, we analyze the sensitivity of the
methods with respect to the chosen number of spatial filters p
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for dimensionality reduction. Figure 3 enables us to compare
the accuracy of the proposals nCSP + gLDA and nCSP +
TSLR with respect the existing approaches, for the datasets
IV-2a and III-3a. These figures reveal that the standard method
CSP+LDA (orange dashed-line) is quite sensitive to the choice
p. Its performance attains a maximum at a relatively small
value of p and greatly decreases as this number increases.
This finding supports the necessity of employing automatic
selection techniques to determine the right number of spatial
filters for each user [8]. Although, use of Ledoit and Wolf
covariance shrinkage estimates (green dashed-line) partially
alleviates the previous drawback, the accuracy for the proposed
nCSP + gLDA (green solid-line) is more robust with respect
to a misspecification of the optimum number of spatial filters.

In our simulations, the best performance was obtained for
the nCSP procedure in combination with the Tangent Space
Logistic Regression (TSLR) classifier (blue continuous-line).
This method has outperformed CSP+TSLR (blue dashed-line)
in expected user accuracy over all the range of the number of
spatial filters and training trials.

Similar results have been obtained for multiclass scenarios.
We refer the interested reader to the supplementary mate-
rial [31] that accompanies this manuscript and includes an
illustrative Python demo.

IX. CONCLUSION

In this work, we have studied the problem of obtaining
improved covariance matrix estimators for the processing
of the MI-BCI signals. We have proposed the application
of two techniques that improve the accuracy of these esti-
mations. To counter the inter and intra-trial non-stationarity
that hinders the correct estimation of the trial covariance
matrices, we propose a power normalization of the EEG
source activities. When this is implemented across trials,
it improves the classical normalization of the observations
used for the EEG trials. Furthermore, the instantaneous power-
normalization of the sample source vector seems to enable
superior classification results. In this latter case, the proposal
extends Tyler’s method (for obtaining an estimate of scatter)
to the context of heterogeneous trial observations. The second
technique refers to a convenient regularization of the fea-
ture covariance matrix of the classifiers. Both proposals are
transversal, in the sense that they can be easily combined with
the existing MI-BCI algorithms to boost their performance.
Experimental tests on several BCI competition datasets reveal
that a combination of the proposed techniques with state-of-
the-art algorithms for motor-imagery classification provides a
significant improvement in the classification results.

APPENDIX

A. Proof of the Formula for the Power of the Effective
Sources

We start by noting that there is a one to one correspondence
between Xτ and S̃τ , which is given by

S̃τ = �A�T S̃τ = A�T (A�A�T )−1Xτ . (41)

Recalling the invariance of the trace of the product of com-
patible matrices with respect to cyclic permutations in the

matrix positions, i.e., Tr{S̃τ S̃T
τ } = Tr{S̃T

τ S̃τ }, and using (41)
to substitute the value of S̃τ in (16), we obtain

PS̃τ
= 1

T
Tr{XT

τ (A�A�T )−1Xτ }. (42)

As we have seen in equation (12), A�A�T coincides with
the global average covariance matrix of the observations �x,
hence, we can write without any approximations that

PS̃τ
= 1

T
Tr{XT

τ �−1
x Xτ } = Tr{�−1

x C(0)
Xτ

}. (43)

B. Equivalence With Tyler’s Method for Estimation
of Scatter

The algorithmic solution provided by the proposed instan-
taneous power-normalization technique may be regarded as a
variation of Tyler’s method used in statistics for obtaining a
robust m-estimator of scatter [23]. As it will be shown, for
a single trial (Nτ = 1) and a single class (K = 1), both
techniques use complementary arguments to arrive by different
paths to a similar final result. To trace back the equivalence,
we review the problem considered by Maronna in [32], where
he studied how to obtain robust affine-invariant estimates of
mean and scatter from a set {x(1), . . . , x(T )} of multivariate
i.i.d. samples, drawn from an elliptical distribution. Let the
density of x(t) for a given scatter matrix Cx be

p(x(t);Cx)=κ |Cx |−1/2λ((x(t)−μx)
TC−1

x (x(t)−μx )) (44)

where λ(·) is an integrable and non-negative function with
domain R

+ and κ is the normalization constant. For simplicity,
we assume in this exposition that the mean μx is known (or
can be reasonably estimated from the data) and focus on the
steps for the estimation of Cx . The normalized log-likelihood
of the observations is

�log p(x(t); Cx)�t = log κ − 1

2
log |Cx | + �log λ(αt )�t

where αt = (x(t) − μx)
T C−1

x (x(t) − μx ). In [32] the
maximization of the log-likelihood leads to an M-estimator
of scatter Ĉx that satisfies the estimating equation

Ĉx −
�
u(α̂t )(x(t) − μx)(x(t) − μx)

T
�

t
= 0 (45)

where u(αt ) = −2 d log λ(αt )
dαt

.
Although there is no close-form solution to this equation

because of the coupling between α̂t and CX, there is a general
set of conditions that guarantees its uniqueness (see [32]).
Years later, Tyler considered in [23] the same problem.
He studied the properties of the specific weighting function
u(αt ) = Nx /αt and showed that this choice gives the “most
robust estimator of the scatter matrix of an elliptical distri-
bution in the sense of minimizing the maximum asymptotic
variance”. He also proposed to iteratively solve the estimation
equation through a fixed point iteration.

In our particular case, xτ (t) ≡ x(t) − μx and Tyler’s
iteration for the estimation of the trial covariance matrices
Ĉx ≡ CXτ is given by

C(i)
Xτ

= Nx

T

T�

t=1

xτ (t)(xτ (t))T

(xτ (t))T (C(i−1)
Xτ

)−1xτ (t)
. (46)
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In fact, this estimate of the covariance matrices of the trials
has been recently considered for SSVEP-BCI in [33], however,
we are not aware of its previous use in MI-BCI applications.
Our proposed instantaneous power-normalization in (32), i.e.,

C(i)
Xτ

= Nx

T

T�

t=1

xτ (t)(xτ (t))T

(xτ (t))T (�̂
(i−1)

x )−1xτ (t)
(47)

simplifies to (46) in the specific case of having a unique class
and a single trial. This is a straightforward consequence of the

fact that �̂
(i−1)
x = C(i−1)

Xτ
for Nτ = 1, see (19). However, for

the case of heterogeneous trials and classes, this last proposal
will eventually improve the obtained performance results.

C. Procedure for Generating Random and Locally
Perturbed Covariance Matrices

The procedure for its generation has been the following.
Initially, for each trial, a symmetric random perturbation H is
built on the tangent space of the matrix mean x|ck . This can
be done with the help of the following MatLab commands:

G = randn(Nx ); H0 = (G + GT )/2 (48)

H = rand(1) (2.5
�

Nx ) H0/�H0�x|ck
(49)

where the natural norm in the tangent space is given by

�H0�x|ck
=

�
Tr{H0

−1
x|ck

H0
−1
x|ck

}. (50)

After that, the retraction of H onto the covariance matrix
manifold results in the randomly perturbed covariance matrix

C̃τ = �
1/2
x|ck

expm(�
−1/2
x|ck

H�
−1/2
x|ck

)�
1/2
x|ck

. (51)

Lastly, the samples of the trial xτ (t) are drawn according
to the Gaussian density N (0, C̃τ ).
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