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Abstract In this paper, we investigate the problem
of stability of time-varying stochastic perturbed singu-
lar systems by using Lyapunov techniques under the
assumption that the initial conditions are consistent.
Sufficient conditions on uniform exponential stabil-
ity and practical uniform exponential stability in mean
square of solutions of stochastic perturbed singular sys-
tems are obtained based upon Lyapunov techniques.
Furthermore, we study the problem of stability and
stabilization of some classes of stochastic singular sys-
tems. Finally, we provide numerical examples to vali-
date the effectiveness of the main results of this paper.
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1 Introduction

Differential-algebraic equations (DAEs) are a combi-
nation of differential equations along with algebraic
constraints. This class of systems is also called singu-
lar systems, degenerate systems, generalized systems,
descriptor systems, semi-state systems, or generalized
state-space systems.

Singular systems representation has been used as a
perfect tool to model a wide variety of problems, such
as electrical engineering, aircraft dynamics, robotics,
economics, optimization problems, chemistry, biology,
etc., which usually cannot be formed by standard ordi-
nary differential equations (ODEs).

As it is widely known, environmental noise exists
and cannot be ignored. In fact, some parameters of
dynamical systems may be existed or perturbed by
some environmental noise. Then, we obtain a gen-
eralization of differential-algebraic equations (DAEs)
and stochastic differential equations (SDEs). This class
of systems represents stochastic differential-algebraic
equations (SDAEs).

Indeed, it is essential to analyze whether the pres-
ence of some random terms in the equations of the
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models may produce a very different behavior of their
solutions. Although there exists awide literature on this
topic, we would like to mention [10,16,21,24,25,28].

In this paper, we consider the combination of Itô
stochastic representation and linear time-varying sin-
gular form to consider a large class of realistic systems
that are modeled with stochastic differential-algebraic
equations (SDAEs).

Because of the difficulty arising in analysis, few
results are concerned with the stability of stochastic
perturbed linear time-varying singular systems.

The stability theory of linear differential-algebraic
systems is an active research topic. Different authors
tackled the question of stability and stabilization of
time-invariant singular stochastic systems, see [6,26,
28–30]. However, there have been few results on the
stability of linear time-varying singular systems in the
past few decades, and we here mention [5,7,8,23]
among others.

The approach of Lyapunov functions is one of the
most efficient ones for the investigation of the stabil-
ity of dynamical systems, see [1,2], in particular, of
stochastic systems, see [10,11,17,27].

Lyapunov stability of stochastic singular systems
has attracted also the attention of several authors, and
we here mention [5,6,13] among others.

When the origin is not a trivial solution, we inves-
tigate the stability of the SDEs with respect to a small
neighborhood of the origin. In that sense, we can ana-
lyze the ultimate boundedness of the solutions of the
perturbed system or the possibility of proving the con-
vergence of the solutions toward a small ball centered
at the origin. Several results on the stability of the non-
trivial solution of stochastic systems are proposed in
[1,11,12].

To the best of our knowledge, no work has been
published about the practical stability of linear time-
varying stochastic perturbed singular systems. Our
main objective in this paper is to extend the results in
[12], which investigated the practical stability of linear
time-invariant perturbed stochastic systems, to the case
of linear time-varying stochastic perturbed systems.

Based upon the method of Lyapunov functions and
generalized Gronwall inequalities, we establish some
criteria for uniform exponential stability and practical
uniform exponential stability in mean square of a class
of linear time-varying stochastic perturbed systems.

The organization of the paper is as follows. In
Section 2, we recall some necessary preliminaries

and results about linear time-varying singular systems
which are transferable into a standard canonical form.
In Section 3, we discuss the problem of existence
and uniqueness of our system. In Section 4, we prove
some sufficient conditions ensuring uniform exponen-
tial stability and practical uniform exponential stability
in mean square of linear time-varying stochastic per-
turbed singular systems based on the method of Lya-
punov under the presumption that the initial conditions
are consistent. In Section 5, we state sufficient con-
ditions for uniform and practical uniform exponential
stabilization in mean square of stochastic singular sys-
tems. In Section 6, we exhibit some illustrative exam-
ples to show the applicability of our abstract theory.
Finally, some conclusions and prospects are given in
the last section.

2 Preliminary results

Throughout this paper, unless otherwise specified, we
use the following notations:

Notations:

kerD : The kernel of the matrix D ∈ R
m×n .

imD : The image of the matrix D ∈ R
m×n .

GIn(R) : The general linear group of degree n, i.e.,
the set of all invertible n×n matrices over
R.

C(J, S) : The set of continuous functions g : J →
S from an open set J ⊆ R to a vector space
S.

C
k(J, S) : The set of k-times continuously differen-

tiable functions g: J → S from an open set
J ⊆ R to a vector space S.

dom g : The domain of the function g.
In : Identity matrix in R

n×n .

||x || : = √
xT x : Euclidean norm of x ∈ R

n .
||D|| : = sup{||Dx || | ||x || = 1}, induced matrix

norm of D ∈ R
m×n .

||g||∞ : = sup{||g(t)|| | t ∈ dom g}, the infinity
norm of the function g.

Now, let us consider the following linear time-
varying continuous singular system:

E(t)ẋ(t) = A(t)x(t), x(t0) = x0, (2.1)
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where x(t) ∈ R
n is the system state vector, x(t0) =

x0 ∈ R
n is the initial condition, with (E, A) ∈

C(R+,Rn×n)2, where E is a singular matrix.

2.1 Standard canonical form

In this paragraph, we introduce the concept of consis-
tent initial values, and the subclass of DAEs (E, A)

which are transferable into a standard canonical form.
Furthermore, we recall some needed properties for the
subsequent sections. For extra details, we refer the
reader to see [19,29].

Definition 2.1 A pair (t0, x0) ∈ R+ × R
n is called

a pair of consistent initial values of the linear time-
varying singular system (2.1) if there exists a solution
x(·) of (2.1), with t0 ∈ dom x(·) and x(t0) = x0.

In the sequel, we denote by W the set of all pairs
of consistent initial values of the linear time-varying
singular system (2.1). In addition, for t0 ∈ R+,

W(t0) = {x0 ∈ R
n : (t0, x0) ∈ W}.

W(t0) is the linear subspace of initial values, which are
consistent at time t0.
Notice that, if x : J → R

n is a solution of the system
(2.1), then x(t) ∈ W(t) for all t ∈ J.

Definition 2.2 The DAEs (E1, A1) and (E2, A2) ∈
C(R+,Rn×n)2 are said to be equivalent, if there exist
S ∈ C(R+,GIn(R)) and T ∈ C

1(R+,GIn(R)), such
that

E2 = SE1T, A2 = S A1T − SE1
d

dt
(T ),

and we write (E1, A1) ∼ (E2, A2).

Definition 2.3 The system (2.1) is said to be transfer-
able into a standard canonical form (SCF), if there exist
S ∈ C(R+,GIn(R)), T ∈ C

1(R+,GIn(R)), b > 0,
such that

(E, A) ∼
[ (

Ib 0
0 N

)
,

(
J 0
0 In−b

) ]
, (2.2)

where J : R+ → R
b×b and N : R+ → R

(n−b)×(n−b),
which is pointwise strictly lower triangular matrix. A
matrix N is called pointwise strictly lower triangular,
if all entries of N (t) on the diagonal and above are zero
for all t ∈ R+.

Now, we are in a position to characterize the set of
consistent initial conditions DAEs (E, A), for the class
which are transferable into a standard canonical form.

Proposition 2.1 [29] Suppose that the DAE (E, A) ∈
C(R+,Rn×n)2 is transferable into a standard canoni-
cal form. Then,

(t0, x0) ∈ W ⇐⇒ x0 ∈ imT (t0)

(
Ib

0

)
.

3 Existence and uniqueness problem

Assume that some parameters of the deterministic lin-
ear time-varying singular system (2.1) are excited or
perturbed by some environmental noise (see Oksendal
[18], Mao [20] for more details).

Then, the stochastic perturbed singular system is
described by the following Itô equation:

E(t)dx(t) = A(t)x(t)dt + E(t)�(t) f (t, x(t))d Bt ,

(3.1)

where x(t0) = x0 ∈ R
n is the initial condition of the

system, Bt ∈ R is a standard Brownian motion defined
on a complete probability space (�, F, P) with B0 =
0. (E, A) ∈ C(R+,Rn×n)2, where E is a singular
matrix. � ∈ C(R+,Rn×n), such that im�(t) = W(t)
for all t ∈ R+, and f : R+ × R

n → R
n .

Remark 3.1 E� f is a structured perturbation and
secures that the stochastic perturbation does not affect
by the algebraic part in the system. Different authors
tackled the approach of structured perturbation for lin-
ear algebraic differential equations, see [4,12]. Indeed,
E� f is a structured perturbation that guarantees con-
sistency with the SDAEs (3.1), that is

E(t)�(t) f (t, x(t)) ∈ W(t), for all t ≥ 0.

Our target now is to prove the existence and uniqueness
of solution to our problem.

For the well-posedness of system (3.1), we impose
the following assumptions:

1. (E, A) ∈ C(R+,Rn×n)2 is transferable into a stan-
dard canonical form.

2. The function f (t, x) satisfies the following rela-
tions ∀t ≥ 0, ∀x, x̃ ∈ R

n,

‖ f (t, x)‖ ≤ K1‖x‖ + K2, (3.2)

|| f (t, x) − f (t, x̃)|| ≤ K3||x − x̃ ||, (3.3)
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where K1, K2 and K3 are given strictly positive
constants.

Now, we state and prove the following result for the
existence and uniqueness of the solution to the stochas-
tic perturbed singular system (3.1).

Theorem 3.2 Under assumptions (1) and (2), the
time-varying stochastic perturbed singular system (3.1)
has a unique global solution.

In order to prove Theorem 3.2, we need to recall
the following crucial lemma, which deals with the sub-
system N (t)dx(t) = x(t)dt , which is called a pure
differential-algebraic equation.

Lemma 3.3 [29] Let N (·) ∈ C(R+,R(n−b)×(n−b)) be
pointwise strictly lower triangular matrix. Then, x(·) =
0 is the unique global solution of the pure differential-
algebraic equation

N (t)dx(t) = x(t)dt. (3.4)

Proof of Theorem 3.2. (E, A) ∈ C(R+,Rn×n)2 is
transferable into a standard canonical form, and then,
there exist S ∈ C(R+,GIn(R)),T ∈ C

1(R+,GIn(R)),

such that:

S(t)E(t)T (t) =
(

Ib 0
0 N (t)

)
, (3.5)

S(t)A(t)T (t) − S(t)E(t)
d

dt
(T (t)) =

(
J (t) 0
0 In−b

)
,

(3.6)

where J : R+ → R
b×b and N : R+ → R

(n−b)×(n−b),
which is pointwise strictly lower triangular matrix.
Thus, we obtain

S(t)E(t)dx(t)

= S(t)A(t)x(t)dt + S(t)E(t)�(t) f (t, x(t))d Bt ,

S(t)E(t)T (t)T −1(t)dx(t)

= S(t)A(t)T (t)T −1(t)x(t)dt

+ S(t)E(t)�(t) f (t, x(t))d Bt .

Let z(t) = T −1(t)x(t) = (zT
1 (t), zT

2 (t))T , where
z1(t) ∈ R

b and z2(t) ∈ R
n−b.

Then, it follows that

S(t)E(t)T (t)

(
dz(t) − d

dt
(T (t)−1)x(t)dt

)

= S(t)A(t)T (t)z(t)dt

+ S(t)E(t)�(t) f (t, T (t)z(t))d Bt .

That is,

S(t)E(t)T (t)dz(t) − S(t)E(t)T (t)
d

dt
(T (t)−1)x(t)dt

= S(t)A(t)T (t)z(t)dt

+ S(t)E(t)�(t) f (t, T (t)z(t))d Bt .

In view of d
dt (T (t)−1) = −T (t)−1 d

dt (T (t))T (t)−1,

which follows from differentiation of I = T −1(t)T (t).
Consequently, we obtain

S(t)E(t)T (t)dz(t)

+ S(t)E(t)T (t)T −1(t)
d

dt
(T (t))T (t)−1x(t)dt

= S(t)A(t)T (t)z(t)dt

+ S(t)E(t)�(t) f (t, T (t)z(t))d Bt .

Thus, we have

S(t)E(t)T (t)dz(t)

+ S(t)E(t)
d

dt
(T (t))z(t)dt = S(t)A(t)T (t)z(t)dt

+ S(t)E(t)�(t) f (t, T (t)z(t))d Bt .

Hence, we see that

S(t)E(t)T (t)dz(t)

=
(

S(t)A(t)T (t) − S(t)E(t)
d

dt
(T (t))

)
z(t)dt

+ S(t)E(t)�(t) f (t, T (t)z(t))d Bt .

Based upon the form of SET (3.5), we may always
choose � in the following form:

� =
(

Ib 0
0 0n−b

)
.
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Consequently, for f =
(

f1
f2

)
, we obtain � f =

(
f1
0

)
, that is the perturbation term affects only the

differential part of the SDAE (3.1).
Taking into account (3.6) and (3.5), we obtain
(

Ib 0
0 N (t)

) (
dz1(t)
dz2(t)

)

=
(

J (t) 0
0 In−b

) (
z1(t)
z2(t)

)
dt

+S(t)E(t)

(
f1(t, T (t)z(t))

0

)
d Bt .

Let f̂1(t, z(t)) = S(t)E(t)

(
f1(t, T (t)z(t))

0

)
, which

in turn gives

dz1(t) = J (t)z1(t)dt + f̂1(t, z(t))d Bt , (3.7)

N (t)dz2(t) = z2(t)dt. (3.8)

Since the function f (t, x) satisfies conditions (3.2)
and (3.3), then we obtain the conditions of the usual
existence and uniqueness theorem for SDEs (see, e.g.,
[18,20], for the regular SDE (3.7)):

• Lipschitz condition: The coefficient f̂1(t, z) :=
S(t)E(t)

(
f1(t, T (t)z)

0

)
is

Lipschitz-continuous with respect to z1 with a con-
stant L f̂1

≤ K3||S||∞||E ||∞||T ||∞, where K3 is
the Lipschitz constant for the function f.

• Growth condition: Since f depends continuously
on t , also f̂1 depends continuously on t . Hence, the
growth condition follows from the global Lipschitz
condition.

Applying the existence and uniqueness theorem for
SDEs to the regular stochastic equation (3.7), then the
regular SDE (3.7) possesses a unique global solution
on the interval [0,+∞). Moreover, in view of Lemma
3.3, it follows that the pure differential algebraic equa-
tion (3.8) has a unique global solution z2(·) = 0. Thus,

z(t) = [z1(·)T , 0]T , with z(t0) =
(

z1(t0)
0

)
. Eventu-

ally, we obtain x(t) = T (t)z(t) is the unique global
solution to (3.1) on t ≥ 0. ��
Remark 3.4 Theassumptions (3.2) and (3.3) for f (t, x)

(linear growth condition and global Lipschitz condi-
tion) are used in the proof of Theorem 3.2 to ensure

that the function f̂1(t, x) satisfies the same assump-
tions. In this way, we can always confirm that the regu-
lar SDE (3.7) possesses a unique global solution. Thus,
the SDAE (3.1) possesses a unique global solution.
The above conditions can be weakened by imposing
a Lyapunov-like condition and a Local Lipschitz con-
dition. But in this case, we cannot guarantee, in general,
that the solution of system (3.1) is globally defined.

Remark 3.5 In this paper, we restrict ourselves to study
the problem of stability of a stochastic perturbed singu-
lar system, where its associated unperturbed nominal
system (2.1) is transferable into a standard canonical
form.

Systems transferable into SCF have been introduced
by Campbell [9] almost 30 years. Since then, many
other approaches to time-varying linear DAEs pro-
posed, see [19,29].

This class is a time-varying generalization of time-
invariant singular system, where the corresponding
matrix pencil is regular. The following proposition
shows that transferability into SCF for linear time-
varying DAEs (E, A) is a generalization of regularity
for linear time-invariant DAEs, where E, A ∈ R

n×n ,
i.e., det(s E − A) �= 0, s ∈ C.

Proposition 3.6 [29] For E, A ∈ R
n×n, we have

(E, A) is transferable into SCF ⇐⇒ (E, A) is regular.

Remark 3.7 Here, we should mention that in [12] we
study the stability of the stochastic perturbed singular
system for which its associated unperturbed system is a
linear time-invariant singular system, where the corre-
sponding matrix pencil is regular. Our main objective
in this paper is to extend the results in [12] to the time-
varying case where it is transferable into a standard
canonical form.

4 Stability analysis

Wealthy historic background recorded in the investi-
gation of the stability of linear time-invariant singular
systems, where E ∈ R

n×n and A ∈ R
n×n within the

method of Lyapunov, see [9,13–15].
For linear time-invariant singular systems (E, A) ∈

(Rn×n)2 it is well known that one seeks for solutions
P, Q ∈ R

n×n of the Lyapunov equation

AT P E + ET P A = −Q, (4.1)
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and the corresponding Lyapunov function candidate is
the following

V : W \ {0} → R, x �−→ (Ex)T P(Ex),

where W \ {0} = W(t), for all t ∈ R+.

For linear time-varying singular systems (E, A) ∈
C(R+,Rn×n)2, the analogousLyapunov function is the
following:

V : W → R, (t, x) �→ (E(t)x)T P(t)(E(t)x).

(4.2)

T. Berger and A. IIchman [5] generalized the Lya-
punov equation (4.1) for linear time-varying singu-
lar systems (2.1), which are transferable into a stan-
dard canonical form (SCF), such that for all Q(·) ∈
C(R+,Rn×n), there exists P(·) ∈ C(R+,Rn×n) solves
the following equation:

xT
[

AT (t)P(t)E(t) + ET (t)P(t)A(t)

+ d

dt
(ET (t)P(t)E(t))

]
x = −Q(t), ∀(t, x) ∈ W.

(4.3)

4.1 Exponential stability of the stochastic perturbed
singular system in mean square

In this section, we assume that the perturbation f van-
ishes at zero, that is, f (t, 0) = 0, ∀t ≥ 0, which
allows us to analyze the stability properties of the null
solution to system (3.1) based upon theLyapunovdirect
method.

We state the definition of exponential stability in
mean square of stochastic perturbed singular system
(3.1).

Definition 4.1 The stochastic perturbed singular sys-
tem (3.1) is said to be uniformly exponentially stable
in mean square, if there exist positive constants α1 and
α2, such that for all (t0, x0) ∈ W ,

E(||x(t)||2) ≤ α1||x0||2e−α2(t−t0), for all t ≥ t0.

(4.4)

Theorem 4.1 [20] Let x(t) be an n-dimensional Itô
process on t ≥ 0 satisfying the following stochastic

differential equation

dx(t) = h(t, x(t))dt + f (t, x(t))d Bt ,

where h ∈ L1(R+;Rn) and f ∈ L2(R+;Rn×m).
Let V ∈ C1,2(R+ × R

n,R) the family of all non-
negative functions V (t, x(t)) defined onR+×R

n which
are once continuously differentiable with respect to t
and twice with respect to x.
Then, V (t, x(t)) is an Itô process and

dV (t, x(t))

= LV (t, x(t))dt + Vx (t, x(t)) f (t, x(t))d Bt ,

where

LV (t, x) := Vt (t, x) + Vx (t, x)h(t, x)

+ 1

2
trace[ f T (t, x)Vxx (t, x) f (t, x)],

Vt (t, x) = ∂V

∂t
(t, x) ; Vx (t, x) = (

∂V

∂x1
(t, x),

∂V

∂x2
(t, x), ..,

∂V

∂xn
(t, x)) ;

Vxx (t, x) =
( ∂2V

∂xi∂x j
(t, x)

)
n×n

.

Our approach structured in this section is to use theLya-
punov function (4.2) for the deterministic linear time-
varying singular system (2.1) as a Lyapunov function
candidate for the stochastic perturbed singular system
(3.1) under some assumptions in the perturbation term.

Now, we state and prove one of our main results in
this paper.

Theorem 4.2 Consider the stochastic perturbed sin-
gular system (3.1). Assume that there exists P ∈
C(R+,Rn×n) being the solution of the generalized time
varying Lyapunov equation (4.3), with Q = QT ∈
C(R+,Rn×n), such that

∃q1, q2 > 0 :
q1xT x ≤ xT Q(t)x ≤ q2xT x, ∀(t, x) ∈ W,

(4.5)
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and ET P E ∈ C
1(R+,Rn×n), such that

∃p1, p2 > 0 : p1xT x ≤ xT ET (t)P(t)E(t)x

≤ p2xT x,∀(t, x) ∈ W. (4.6)

Additionally, assume that

||�(t)|| ≤ M, ∀t ≥ 0, (4.7)

|| f (t, x)|| ≤ μ||x ||, ∀(t, x) ∈ W, (4.8)

where μ and M are positive constants, and the matrix
Q is chosen such that q1 > p2μ2M2.

Then, the stochastic perturbed singular system (3.1) is
uniformly exponentially stable in mean square.

Now, we recall the following Gronwall lemma, which
will be crucial in our analysis.

Lemma 4.3 [22] Let ϕ : R+ −→ R+ be a continuous
function, ε is a positive real number and η is a strictly
positive real number. Assume that for all t ∈ R+ and
0 ≤ ϑ ≤ t, we have

ϕ(t) − ϕ(ϑ) ≤
∫ t

ϑ

(−ηϕ(s) + ε)ds.

Then,

ϕ(t) ≤ ε

η
+ ϕ(0) exp(−ηt).

Proof of Theorem 4.2. Consider the following Lya-
punov like function:

V : W → R, (t, x) �→ (E(t)x)T P(t)(E(t)x).

Applying Itô’s formula to V (·, x(·)) where x(·) is a
solution to system (3.1), we obtain

LV (t, x(t)) = xT (t)
(

AT (t)P(t)E(t) + d

dt
(ET (t)P(t)E(t))

+ ET (t)P(t)A(t)
)

x(t)

+
(

E(t)�(t) f (t, x(t))
)T

P(t)
(

E(t)�(t) f (t, x(t))
)

= −xT (t)Q(t)x(t) +
(

E(t)�(t) f (t, x(t))
)T

P(t)
(

E(t)�(t) f (t, x(t))
)
.

One can deduce from the standing assumptions that

LV (t, x(t)) ≤ −q1||x(t)||2 + p2μ
2M2||x(t)||2

= −(q1 − p2μ
2M2)xT (t)x(t).

Since q1 > p2μ2M2, then from (4.6) we obtain

LV (t, x(t)) ≤ −q1 − p2μ2M2

p2
V (t, x(t)).

Thanks to Dynkin’s formula [18], we obtain

E(V (t, x(t))) − V (0, x(0)) =
∫ t

0
E(LV (s, x(s)))ds.

Then, for all ϑ, t with 0 ≤ ϑ ≤ t ≤ ∞, it yields that

0 ≤ E(V (t, x(t))) − E(V (ϑ, x(ϑ)))

≤
∫ t

ϑ

E(LV (s, x(s)))ds

≤
∫ t

ϑ

−q1 − p2μ2M2

p2
E(V (s, x(s)))ds.

Thanks now to Gronwall’s lemma (Lemma 4.3), it fol-
lows that

E(V (t, x(t)))

≤ E(V (0, x(0))) exp

(
−

(
q1
p2

− μ2M2
)

t

)
.

Next, we aim to derive an estimate for E(||x(t)||2).

E(||x(t)||2) ≤ 1

p1
E

(
(E(t)x(t))T P(t)(E(t)x(t))

)

≤ 1

p1
E

(
V (0, x(0))

)

× exp

(
−

(
q1
p2

− μ2M2
)

t

)

= 1

p1
xT (0)ET (0)P(0)E(0)x(0) exp

(
−

(
q1
p2

− μ2M2
)

t

)

≤ p2
p1

||x0||2 exp
(

−
(

q1
p2

− μ2M2
)

t

)
.
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That is,

E(||x(t)||2) ≤ p2
p1

||x0||2 exp
(

−
(

q1
p2

− μ2M2
)

t

)
.

Hence, the stochastic perturbed singular system (3.1)
is uniformly exponentially stable in mean square. ��

4.2 Practical exponential stability of the stochastic
perturbed singular system in mean square

In this section, we study the exponential stability in
mean square of a nontrivial solution of the stochas-
tic perturbed singular system (3.1). We suppose that
f (t, 0) is not necessarily zero.
Now, we define the exponential stability in mean

square for the stochastic perturbed singular system
(3.1) when the origin is no longer an equilibrium point.
In this case, we study the stability of solutions with
respect to a small neighborhood of the origin.

The study of the asymptotic behavior of solutions
leads to investigate the stability behavior of a small ball
centered at the origin: Br := {x ∈ R

n | ‖x‖ ≤ r} , r >

0.

Definition 4.2 i) Br is uniformly exponentially sta-
ble in mean square, if there exist positive constants
λ1 and λ2, such that for all (t0, x0) ∈ W,

E(||x(t)||2) ≤ λ1||x0||2 exp(−λ2(t−t0))+r, ∀t ≥ t0.

i i) The stochastic perturbed singular system (3.1) is
said to be practically uniformly exponentially sta-
ble in mean square, if there exists r > 0, such
that Br is uniformly exponentially stable in mean
square.

Now, we proceed to investigate the practical expo-
nential stability in mean square of stochastic perturbed
singular system (3.1) by using Lyapunov functions.

Theorem 4.4 Consider the stochastic perturbed sin-
gular system (3.1). Assume that there exists P ∈
C(R+,Rn×n) being the solution of the generalized
time varying Lyapunov equation (4.3), with Q =
QT ∈ C(R+,Rn×n) satisfying condition (4.5), and
ET P E ∈ C

1(R+,Rn×n) fulfills condition (4.6). Fur-
thermore, suppose that � satisfies (4.7), and f (t, x)

satisfies the following condition:

|| f (t, x)||2 ≤ γ ||x ||2 + φ(t), ∀(t, x) ∈ W, (4.9)

where φ(·) is a nonnegative continuous bounded func-
tion. Assume that the matrix Q is chosen such that
q1 > p2M2γ. Then, the stochastic perturbed singu-
lar system (3.1) is practically uniformly exponentially
stable in mean square.

Proof Consider the following Lyapunov function:

V : W → R, (t, x) �→ (E(t)x)T P(t)(E(t)x).

By the Itô formula applied to V (·, x(·)), where x(·) is
a solution to (3.1), we obtain

LV (t, x(t)) = xT (t)
(

AT (t)P(t)E(t) + d

dt
(ET (t)P(t)E(t))

+ ET (t)P(t)A(t)
)

x(t)

+
(

E(t)�(t) f (t, x(t))
)T

P(t)
(

E(t)�(t) f (t, x(t))
)

= −xT (t)Q(t)x(t) +
(

E(t)�(t) f (t, x(t))
)T

P(t)
(

E(t)�(t) f (t, x(t))
)
.

Taking into account the assumptions, we obtain

LV (t, x(t))

≤ −q1xT (t)x(t) + p2M2γ xT (t)x(t) + p2M2φ(t)

= −
(

q1 − p2M2γ
)

xT (t)x(t) + p2M2φ(t).

Since q1 > p2M2γ, we deduce that

LV (t, x(t)) ≤ −q1 − p2M2γ

p2
V (t, x(t))+p2M2φ(t).

On the other side, recall that t �→ φ(t) is nonnegative
and bounded on R+. Therefore, there exists m > 0,
such that

φ(t) ≤ m, for all t ≥ 0.

Consequently, we obtain

LV (t, x(t)) ≤ −q1 − p2M2γ

p2
V (t, x(t)) + p2m M2

= −
[

q1
p2

− M2γ

]
V (t, x(t)) + p2m M2.
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Dynkin’s formula [18] yields that

E(V (t, x(t))) − V (0, x(0)) =
∫ t

0
E(LV (s, x(s)))ds.

Thus, for all ϑ, t such that 0 ≤ ϑ ≤ t ≤ ∞, it follows
that

0 ≤ E(V (t, x(t))) − E(V (ϑ, x(ϑ)))

≤
∫ t

ϑ

E(LV (s, x(s)))ds

≤
∫ t

ϑ

−
[

q1
p2

− M2γ

]
E(V (s, x(s))) + p2m M2ds.

Using once more the Gronwall lemma (Lemma 4.3),
the previous inequality implies

E(V (t, x(t)))

≤ E(V (0, x(0))) exp

(
−

(
q1
p2

− M2γ

)
t

)

+ p22m M2

q1 − p2M2γ
.

Now, we can estimate the term E(||x(t)||2) as follows:

E(||x(t)||2) ≤ 1

p1
E

(
(E(t)x(t))T P(t)(E(t)x(t))

)

≤ 1

p1
E

(
V (0, x(0))

)
exp

(
−

(
q1
p2

− M2γ

)
t

)

+ p22mM2

p1(q1 − p2M2γ )

= 1

p1
xT (0)ET (0)P(0)E(0)x(0)

exp

(
−

(
q1
p2

− M2γ

)
t

)
+ p22mM2

p1(q1 − p2M2γ )

≤ p2
p1

||x0||2 exp
(

−
(

q1
p2

− M2γ

)
t

)

+ p22mM2

p1(q1 − p2M2γ )
.

Thus, we conclude that for all (0, x0) ∈ W ,

E(||x(t)||2) ≤ p2
p1

||x0||2 exp
(

−
(

q1
p2

− M2γ

)
t

)

+ p22m M2

p1(q1 − p2M2γ )
.

Setting, λ1 = p2
p1

, λ2 =
(

q1
p2

− M2γ

)
, and

r = p22m M2

p1(q1 − p2M2γ )
, we deduce that the stochastic

perturbed singular system (3.1) is practically uniformly
exponentially stable in mean square. ��

Both theorems 4.2 and 4.4 show that the solu-
tion P(·) of (4.3) is not the target of interest, but
ET (·)P(·)E(·). Symmetry, differentiability, and the
boundary conditions are not deserving for P(·), but
for ET (·)P(·)E(·). In the remainder of this section, we
aim to derive an extra requirement upon E(·) under
which one might obtain a sequel, where all conditions
are made on P(·). This means that our target in the
next lemma is to state the relationship between P(·)
and ET (·)P(·)E(·).

To this end, we add the following notation:

ξW := {(t, x) ∈ R+ × R
n : x ∈ E(t)W(t)}.

Lemma 4.5 Consider the stochastic perturbed singu-
lar system (3.1), and let ET E ∈ C(R+,Rn×n), such
that

∃e1, e2 > 0 : e1xT x ≤ xT ET (t)E(t)x ≤ e2xT x,

∀(t, x) ∈ W. (4.10)

Let also P ∈ C(R+,Rn×n) be a symmetric matrix.
Then,

∃ p̄1, p̄2 > 0 : p̄1xT x ≤ xT P(t)x ≤ p̄2xT x,

∀(t, x) ∈ ξW, (4.11)

if and only if,

∃p1, p2 > 0 :p1xT x ≤ xT ET (t)P(t)E(t)x ≤ p2xT x,

∀(t, x) ∈ W. (4.12)

Proof “ ⇒′′ Let (t, x) ∈ W , that is E(t)x ∈
E(t)W(t).
Based upon (4.10) and (4.11), it follows that

p̄1e1xT x ≤ p̄1xT ET (t)E(t)x ≤ xT ET (t)P(t)E(t)x

≤ p̄2xT ET (t)E(t)x ≤ p̄1e2xT x .
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Hence, for p1 = p̄1e1 and p2 = p̄2e2 condition (4.12)
holds.
“ ⇐′′ Let (t, x) ∈ ξW , so x ∈ E(t)W(t) and therefore
there exists z ∈ W(t), such that x = E(t)z.
Taking into account (4.12) and (4.10), one obtains

p1
e2

xT x ≤ p1
e2

(E(t)z)T (E(t)z) ≤ p1zT z

≤ zT ET (t)P(t)E(t)z

= xT P(t)x ≤ p2zT z

≤ p2
e1

(E(t)z)T (E(t)z) = p2
e1

xT x .

Thus, we have

p1
e2

xT x ≤ xT P(t)x ≤ p2
e1

xT x, ∀(t, x) ∈ ξW.

Setting, p̄1 = p1
e2

and p̄2 = p2
e1

, condition (4.11) holds.
��

Now, we are ready to state the following corollary.

Corollary 4.6 Consider the stochastic perturbed sin-
gular system (3.1).
Assume E ∈ C

1(R+,Rn×n) and satisfies (4.10). Sup-
pose that there exist Q = QT ∈ C(R+,Rn×n) sat-
isfying (4.5) and P ∈ C(R+,Rn×n), fulfilling (4.11),
such that (4.3) holds. In addition, we assume � satisfies
(4.7), f (t, x) satisfies condition (4.8), and the matrix
Q is chosen such that q1 > p2μ2M2.

Then, the stochastic perturbed singular system (3.1)
is uniformly exponentially stable in mean square.

Proof The proof is straightforward. Owing to Lemma
4.5, we have ET P E ∈ C

1(R+,Rn×n) and satisfies
condition (4.12). Hence, all conditions of Theorem 4.2
are fulfilled and the stochastic perturbed singular sys-
tem (3.1) is uniformly exponentially stable in mean
square. ��
Remark 4.7 Under the same assumptions of Corollary
4.6 with f (t, x) satisfying condition (4.9), the stochas-
tic perturbed singular system (3.1) is practically uni-
formly exponentially stable in mean square.

5 Practical exponential stability in mean square of
a class of stochastic singular systems with
uncertainties

In this section, we discuss the problem of stabilization
for a class of stochastic singular systems with uncer-
tainties.
Consider the following system:

{
E(t)ẋ(t) = A(t)x(t) + H(t)(�(t, x, u) + u) + E(t)�(t) f (t, x(t))d Bt ,

x(0) = x0,
(5.1)

where x(t) ∈ R
n represents the state, u ∈ R

m is the
control input, Bt ∈ R is a standard Brownian motion
defined on a complete probability space (�, F, P)with
B0 = 0. (E, A) ∈ C(R+,Rn×n)2 with E being a sin-
gular matrix. � ∈ C(R+,Rn×n), such that im�(t) =
W(t) for all t ∈ R+, H(t) ∈ C(R+,Rn×m), and
the function � : R+ × R

n × R
m → R

m repre-
sents uncertainties in the plant. Assume that the pair
(E, A) is transferable into a standard canonical form,
and f : R+ ×R

n → R
n satisfies both conditions (3.2)

and (3.3).
Let us state now some assumptions which will be

imposed later on:

(H1) There exists a symmetric matrix P ∈ C(R+,Rn×n)

being the solution of the generalized time-
varying Lyapunov equation (4.3), with Q =
QT ∈ C(R+,Rn×n) satisfying condition (4.5).

(H2) ET P E ∈ C
1(R+,Rn×n) fulfills condition (4.6).

(H3) There exists a nonnegative continuous function
� : Rn → R+, such that for all
t ∈ R+, x ∈ R

n, u ∈ R
m :

||�(t, x, u)|| ≤ �(x).

(H4) � satisfies (4.7) and there exists a positive con-
stant μ̄, such that

|| f (t, x)|| ≤ μ̄||x ||, a.s. ∀(t, x) ∈ W.

Furthermore, we assume that Q is chosen such that
q1 > p2M2μ̄2.
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Theorem 5.1 Suppose that assumptions (H1)-(H4)

hold, then the feedback law

u(t, x) = − H T (t)P(t)E(t)x�2(x)

||H T (t)P(t)E(t)x ||�(x) + ρ(t)
,

where ρ(t) is a continuous nonnegative bounded func-
tion, uniformly practically exponentially stabilizes sys-
tem (5.1) in mean square.

Proof Consider the following Lyapunov-like function:

V : W → R, (t, x) �→ (E(t)x)T P(t)(E(t)x).

Invoking Itô’s formula to V (·) along the trajectory x(·)
of the stochastic singular system (5.1), we obtain

LV (t, x(t))

= xT (t)
(

AT (t)P(t)E(t) + d

dt
(ET (t)P(t)E(t))

+ ET (t)P(t)A(t)
)

x(t)

+ 2xT (t)ET (t)P(t)H(t)�(t, x, u)

+
(

E(t)�(t) f (t, x(t))
)T

P(t)
(

E(t)�(t) f (t, x(t))
)

= −xT (t)Q(t)x(t)

− 2xT (t)ET (t)P(t)H(t)H T (t)P(t)E(t)x(t)�2(x(t))

||H T (t)P(t)E(t)x(t)||�(x(t)) + ρ(t)

+ 2xT (t)ET (t)P(t)H(t)�(t, x, u)

+
(

E(t)�(t) f (t, x(t))
)T

P(t)
(

E(t)�(t) f (t, x(t))
)
.

Assumption (H3) implies

LV (t, x(t))

≤ −xT (t)Q(t)x(t)

− 2xT (t)ET (t)P(t)H(t)H T (t)P(t)E(t)x(t)�2(x(t))

||H T (t)P(t)E(t)x(t)||�(x(t)) + ρ(t)

+ 2||H T (t)P(t)E(t)x(t)||�(x(t))

+
(

E(t)�(t) f (t, x(t))
)T

P(t)
(

E(t)�(t) f (t, x(t))
)

≤ −xT (t)Q(t)x(t)

+ 2||H T (t)P(t)E(t)x(t)||�(x(t))ρ(t)

||H T (t)P(t)E(t)x(t)||�(x(t)) + ρ(t)

+
(

E(t)�(t) f (t, x(t))
)T

P(t)
(

E(t)�(t) f (t, x(t))
)
.

Owing to the following inequality:

||H T (t)P(t)E(t)x(t)||�(x(t))ρ(t)

||H T (t)P(t)E(t)x(t)||�(x(t)) + ρ(t)
≤ ρ(t).

Thus, we obtain

LV (t, x(t)) ≤ −xT (t)Q(t)x(t) + 2ρ(t)

+
(

E(t)�(t) f (t, x(t))
)T

P(t)
(

E(t)�(t) f (t, x(t))
)
.

Since ρ(t) is a continuous nonnegative bounded func-
tion, then there exists ρ̄ > 0, such that

||ρ(t)|| ≤ ρ̄, ∀t ≥ 0.

Based on the assumptions, it follows that

LV (t, x(t)) ≤ −(q1 − p2M2μ̄2)xT (t)x(t) + 2ρ̄.

As q1 > p2M2μ̄2, assumption (H1) implies that

LV (t, x(t)) ≤ −q1 − p2M2μ̄2

p2
V (t, x(t)) + 2ρ̄.

Thanks to Dynkin’s formula [18], it follows that

E(V (t, x(t))) − V (0, x(0)) =
∫ t

0
E(LV (s, x(s)))ds.

Thus, for all ϑ, t such that 0 ≤ ϑ ≤ t ≤ ∞, we obtain

0 ≤ E(V (t, x(t))) − E(V (ϑ, x(ϑ)))

≤
∫ t

ϑ

E(LV (s, x(s)))ds

≤
∫ t

ϑ

−
[ q1

p2
− M2μ̄2

]
E(V (s, x(s)))ds + 2ρ̄.

By applying the Gronwall Lemma 4.3,

E(V (t, x(t)))

≤ E(V (0, x(0))) exp
(

− (
q1
p2

− M2μ̄2)t
)

+ 2ρ̄ p2
q1 − p2M2μ̄2 .
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Now, we aim to derive an estimate for E(||x(t)||2),

E(||x(t)||2)
≤ 1

p1
E

(
(E(t)x(t))T P(t)(E(t)x(t))

)

≤ 1

p1
E

(
V (0, x(0))

)
exp

(
−

(
q1
p2

− M2μ̄2
)

t

)

+ 2ρ̄ p2
p1(q1 − p2M2μ̄2)

= 1

p1
xT (0)ET (0)P(0)E(0)x(0)

× exp

(
−

(
q1
p2

− M2μ̄2
)

t

)
+ 2ρ̄ p2

p1(q1 − p2M2μ̄2)

≤ p2
p1

||x0||2 exp
(

−
(

q1
p2

− M2μ̄2
)

t

)

+ 2ρ̄ p2
p1(q1 − p2M2μ̄2)

.

Indeed, we have derived that for all (0, x0) ∈ W ,

E(||x(t)||2) ≤ p2
p1

||x0||2 exp
(

−
(

q1
p2

− M2μ̄2
)

t

)

+ 2ρ̄ p2
p1

(
q1 − p2M2μ̄2

) .

Hence, we conclude that the uncertain closed-loop
stochastic singular system (5.1) is uniformly practically
exponentially stable in mean square. ��
Corollary 5.2 If we consider the special case with
ρ(t) = α

2 e−γ t , where α > 0 and γ > 0, one obtains
that the uncertain closed-loop stochastic singular sys-
tem (5.1) is uniformly exponentially stable in mean
square, such that for all (0, x0) ∈ W , we have

E(||x(t)||2)

≤

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p2
p1

||x0||2e−̃λt + α

p1
te−̃λt , if γ = λ̃,

p2
p1

||x0||2e−̃λt + α

p1 (̃λ − γ )

(
e−γ t − e−̃λt

)
, if γ �= λ̃,

where λ̃ = q1 − p2M2μ̄2

p2
.

Proof Consider the following Lyapunov-like function:

V : W → R, (t, x) �→ (E(t)x)T P(t)(E(t)x).

Based on Theorem 5.1 we have

LV (t, x(t)) ≤ −̃λV (t, x(t)) + 2ρ(t),

where λ̃ = q1 − p2M2μ̄2

p2
. In particular, for ρ(t) =

α
2 e−γ t one obtains

LV (t, x(t)) ≤ −̃λV (t, x(t)) + αe−γ t .

Now, for any B > 0, we define the following stopping
time:

τB = inf{t ≥ 0 : ||x(t)|| ≥ B}.
Obviously τB → ∞, as B → ∞ almost surely. By
Itô’s formula, it follows that for t ≥ 0

E

(
ẽλ(t∧τB )V (t ∧ τB, x(t ∧ τB))

)

= V (0, x(0)) + E

(∫ t∧τB

0
ẽλs [̃

λV (s, x(s))

+LV (s, x(s))] ds)

≤ V (0, x(0)) + E

(∫ t∧τB

0
ẽλs (̃

λV (s, x(s))

−̃λV (s, x(s)) + αe−γ s) ds
)

≤ V (0, x(0)) + E

(∫ t∧τB

0
αe(̃λ−γ )sds

)
.

That is,

E

(
ẽλ(t∧τB )V (t ∧ τB, x(t ∧ τB))

)

≤ V (0, x(0)) + E

(∫ t∧τB

0
αe(̃λ−γ )sds

)
.

Taking, into account assumption (H2), it follows that

p1E
(

ẽλ(t∧τB )‖x(t ∧ τB)‖2
)

≤ V (0, x(0)) + αE

(∫ t∧τB

0
e(̃λ−γ )sds

)

≤ p2||x0||2 + αE

(∫ t∧τB

0
e(̃λ−γ )sds

)
.

Hence, we obtain

E

(
ẽλ(t∧τB )‖x(t ∧ τB)‖2

)

≤ p2
p1

||x0||2 + α

p1
E

(∫ t∧τB

0
e(̃λ−γ )sds

)
.

Letting B → ∞ yields that

E

(
ẽλt‖x(t)‖2

)
≤ p2

p1
||x0||2 + α

p1

∫ t

0
e(̃λ−γ )sds.
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Thus,

E(‖x(t)‖2) ≤ p2
p1

||x0||2e−̃λt + α

p1
e−̃λt

∫ t

0
e(̃λ−γ )sds.

Finally, we obtain for all (0, x0) ∈ W ,

E(||x(t)||2) ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p2
p1

||x0||2e−̃λt + α

p1
te−̃λt , if γ = λ̃,

p2
p1

||x0||2e−̃λt + α

p1 (̃λ − γ )

(
e−γ t − e−̃λt

)
, if γ �= λ̃.

��

6 Example

We provide the following illustrative examples to show
the applicability of our abstract theory.

Example 6.1 Consider the following time-varying
stochastic singular system:

E(t)dx(t) = A(t)x(t)dt + E(t)�(t) f (t, x(t))d Bt ,

(6.1)

where x = (x1, x2) ∈ R
2, Bt is a one-dimensional

Brownian motion.

E(t) =
(
1 0
0 0

)
, A(t) =

(−t 0
0 1

)
,

f (t, x) =
(

f1(t, x)

f2(t, x)

)
,

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(t, x) = 1

6

x21

1 +
√

x21 + x22

f2(t, x) = 1

6

x22

1 +
√

x21 + x22

.

System (6.1) can be regarded as a singular perturbed
system of the following linear time-varying singular
system:

E(t)dx(t) = A(t)x(t)dt. (6.2)

It is clear that (E, A) is transferable into a standard
canonical form with S(·) = T (·) = I2. Subsequently,
based upon Proposition 2.1, we obtain W = R+ ×
im

(
1
0

)
.

Let p̃(·) : R+ → R+, t �→ et2
∫ +∞

t
e−s2ds, and

P(t) =
(

p̃(t) 0
0 0

)
, Q(t) =

(
1 0
0 1

)
.

One can verify that P(·) and Q(·) solve Eq. (4.3). Then,
by some easy computations, we can check that p2 =√

π

2
, q1 = q2 = 1.

Since im�(t) = W(t), then we may choose �(t) =(
1 0
0 0

)
.

Hence, we obtain E� f =
(

f1
0

)
, and

|| f (t, x)||2 = f 21 (t, x) + f 22 (t, x),

where ||.|| represents the Euclidean norm.
Thus, for all (t, x) ∈ W, we have

|| f (t, x)||2 ≤ 1

36
||x ||2.

We can easily check that assumptions in Theorem 4.2
hold with M = 1, μ = 1

6 .

Clearly, q1 > p2μ2M2. Finally, we deduce that the
stochastic perturbed singular system (6.1) is uniformly
exponentially stable in mean square, as shown in
Fig. 1.

Example 6.2 Consider the following time-varying
stochastic singular system:

E(t)dx(t) = A(t)x(t)dt + E(t)�(t) f (t, x(t))d Bt ,

(6.3)

where x = (x1, x2) ∈ R
2, Bt is a one-dimensional

Brownian motion.

E(t) =
(
1 0
0 0

)
, A(t) =

(−1 0
0 et

)
,

f (t, x) =
(

f1(t, x)

f2(t, x)

)
,

123



254 T. Caraballo et al.

Fig. 1 The initial response
of the system 6.1, with five
different Brownian motions,
and x0 = [1, 0]T
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with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(t, x) = 1

8

x21

1 +
√

x21 + x22

+ 1√
2
sin(2π t)

f2(t, x) = 1

8

x22

1 +
√

x21 + x22

+ 1√
2

e−t .

System (6.3) can be regarded as a singular perturbed
system of the following linear time-varying singular
system:

E(t)dx(t) = A(t)x(t)dt. (6.4)

Indeed, (E, A) is transferable into a standard canonical
form (SCF) with

S(t) =
(
1 0
0 e−t

)
, T (t) =

(
1 0
0 1

)
.

Taking into account Proposition 2.1, it follows that

W = R+ × im

(
1
0

)
.

We select

P(t) =
( 1

2 0
0 et

)
, Q(t) =

(
1 0
0 1

)
.

One can verify that P(·) and Q(·) solve Eq. (4.3). Thus,
we obtain q1 = q2 = 1 and p1 = p2 = 1

2 .
Since, im�(t) = W(t), then, for instance, we may

choose �(t) =
(
1 0
0 0

)
.

Hence, we obtain E� f =
(

f1
0

)
, and || f (t, x)||2 =

f 21 (t, x) + f 22 (t, x),
where ||.|| represents the Euclidean norm.
Based upon the fact that, (b + c)n ≤ 2n−1(bn +
cn), for all b, c ≥ 0, n ≥ 1, it yields that

|| f (t, x)||2 ≤ 1

32
(x21 + x22 ) + (e−2t + sin2(2π t)).

Consequently, we obtain for all (t, x) ∈ W,

|| f (t, x)||2 ≤ 1

32
||x ||2 + (e−2t + sin2(2π t)).

Then, we can choose constants in Theorem 4.4 as fol-
lows: M = 1, γ = 1

32 , φ(t) = (e−2t + sin2(2π t)).
It is clear that q1 > p2M2γ and φ(t) is a continuous
nonnegative bounded function.
Finally, Theorem 4.4 allows us to conclude that the
time-varying stochastic perturbed singular system (6.3)

123



New stability criteria for stochastic... 255

Fig. 2 The initial response
of the system (6.3), with
five different Brownian
motions, and x0 = [1, 0]T
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is practically uniformly exponentially stable in mean
square, as shown in Figure.2.

7 Conclusion

In this paper, we dealt with the stability analysis of
some classes of stochastic perturbed singular systems,
where their associated unperturbed system is alinear
time-varying singular systems transferable into stan-
dard canonical forms. Some stability criteria for uni-
form exponential stability as well as practical uniform
exponential stability in mean square of stochastic per-
turbed singular systems, under the assumption that
the initial conditions are consistent, have been estab-
lished. The main technical tools for deriving stability
results are generalized Gronwall inequalities and the
direct Lyapunov method. Illustrative examples have
been introduced to validate the developed methods. In
[11], Caraballo et al. investigated the practical uniform
pth moment exponential stability of nonlinear regular
stochastic differential equations with respect to a part
of the variables. For our next prospect research, we
will try to extend our results to the case of pth moment
exponential stability of a certain class of time-varying
stochastic perturbed singular systems.
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