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Abstract: This study proposes traffic queue-parameter estimation based on background subtraction, by means of an appropriate
combination of two background models: a short-term model, very sensitive to moving vehicles, and a long-term model capable of
retaining as foreground temporarily stopped vehicles at intersections or traffic lights. Experimental results in typical urban scenes
demonstrate the suitability of the proposed approach. Its main advantage is the low computational cost, avoiding specific motion
detection algorithms or post-processing operations after foreground vehicle detection.
1 Introduction

The growth in traffic congestion has been recognised as a
serious problem in many urban areas. Road transport has
become by far the major source of environmental
degradation in urban centres, where most of the population
live and work. The massive contribution of traffic to the
global environmental problem is likely to become even
more critical in the future, in view of the threat of
continuous growth in the demand for transport [1, 2].
In this context, transport and planning policies may have a
considerable effect on traffic emissions. However, these
policies must be guided by the measurement of traffic
parameters in general and queue parameters in particular [3].
Among the large number of research areas related to

intelligent transportation systems, the vision-based approach
has become one of the main streams of research [4].
A vision-based traffic monitoring system performs
automatic traffic parameter estimation with the help of
image processing techniques, sending this information to
the traffic control centre to provide real-time traffic
information to drivers and to take decisions about traffic
management. The main advantages of computer vision
methods over traditional techniques are flexibility, ease of
installation and maintenance. However, they are very
sensitive to changing ambient light conditions and shadows.
In recent years, a huge research effort has been focused on

the application of image processing techniques to automatic
traffic-parameter estimation. The early works in this field
proposed a window-based edge detection technique to
measure traffic volume, types of vehicles, queue parameters
and movements of vehicles [5, 6]. A feature-based tracking
system for detecting and tracking vehicles was proposed in
[7]. This algorithm can measure many micro-scaled
parameters such as instantaneous state of velocity.
However, the algorithm exhibits some problems when
vehicles are moving in multiple directions through the
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detection region. An entropy-based approach to detect
vehicles and extract traffic parameters was presented in [8].
They used inter-frame differencing to extract the active
pixels of the moving vehicles, and the exponential entropy
as the basic measurement for vehicle detection, whenever its
value exceeds a given threshold. A mixture of texture-based
vehicle segmentation exponential entropy-based vehicle
detection was developed in [9] for a traffic surveillance
system at an urban intersection. Background subtraction is
also a very common technique for detecting moving objects
from image sequences using a static camera. The idea
consists of extracting moving objects as the foreground
elements obtained from the ‘difference’ image between each
frame and the so-called background model of the scene [10,
11]. Background subtraction techniques have also been used
for traffic parameter extraction in [12]. Some refinements of
this technique for achieving computationally efficient
implementations and urban context adapted implementations
can be found in [13, 14], respectively.
Although the majority of works related to traffic parameter

estimation are mainly focused on detection and tracking of
vehicles, a vision-based traffic monitoring system can also
be very useful in determining the length of a traffic queue
(typically, in front of a traffic light or intersection), without
relying on segmenting individual vehicles. In this paper, a
queue estimation algorithm based on the combination of
two background models of the scene is proposed. The first
model is programmed with the aim of being very sensitive
to changes in the scene, so temporarily stopped vehicles are
incorporated to this background, whereas the second one is
programmed with a lower adaptation speed, so temporarily
stopped vehicles remain on the foreground. The proposed
algorithm avoids the use of specific motion detection
algorithms included in previously reported works. The rest
of the paper is organised as follows: next section provides
an overview of previous works related to traffic queue
estimation. Section 3 presents the proposed queue estimator
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algorithm, detailing the short-term and long-term background
models and the set of queue parameters being estimated.
Experimental results are described in Section 4, considering
four sequences coming from both, personal and publicly
available datasets, and including a night-time sequence.
Finally, conclusions are presented in Section 5.

2 Related work

The main challenge of traffic queue estimation is the fact that
vehicles are temporarily stopped. Thus, vehicle segmentation
algorithms have to rely on previous trajectories of individual
vehicles or on three-dimensional (3D) models for this
purpose. To the best of our knowledge, just few works are
specifically devoted to traffic queue parameter estimation.
A combination of vehicle presence and motion detection
algorithms is presented in [6]. A motion-detection operation
based on an edge detection algorithm is first applied, and
then, if the algorithm detects no motion, the vehicle-
detection operation is used to decide whether there is a
queue or not. Next, they used a trained neural network as a
classifier to judge the length of a traffic queue. However,
the adopted neural network has to be trained extensively for
various scenes and situations. A macroscopic method to
detect the length of a traffic queue was proposed in [15].
An average operation is applied to ten consecutive frames
to remove moving vehicles, and then the road section is
divided into several unit areas to decide whether or not
there are vehicles on each, depending on a predetermined
grey value threshold. However, this method exhibits two
major problems. First, averaging frames to detect and
remove moving vehicles would not provide good results in
scenarios with vehicles moving with different speeds.
Second, the decision criterion for vehicles temporarily
stopped based on a grey value threshold is too simple when
considering the variety of scenarios and illumination
conditions in urban scenes. Background subtraction has
been used in [16] to detect traffic light cycle failures, which
happens when one or more queued vehicles are unable to
depart because of insufficient capacity during a signal
cycle. In that work, an initial supervised background
estimation is required during a given training period of
around 60–90 frames (working at a lowered frame rate of 4
fps). A simple median filter is used for background
subtraction, which requires that each background pixel is
clearly visible for at least 50% of the time. The supervision
is required to make sure, by human means, that this
assumption holds during the initial training period. This
same restriction is the reason why this basic algorithm is
unsuitable for urban traffic scenes, in the long term. What
the authors in [16] propose in the long term is to
dynamically update this initial background model by an
elementary forgetting-factor rule. Another critical point of
this algorithm is the estimation of the end-of-queue with
‘motion images’, which are obtained as the plain absolute
difference between two consecutive frames. The motion
image corresponding to the current frame is then combined
with the result of background subtraction with respect to the
dynamically updated background model, in order to detect
the stopped vehicles in the queue. Even assuming that these
simple inter-frame differences succeed extracting objects
moving at different speeds, the whole concept is based on
the idea that the background image is able to avoid merging
the stopped vehicles in a queue. However, this requirement
is in conflict with the need of a background model being
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promptly adaptive to relatively sudden changes in the
illumination conditions of the scene, as the background has
to be updated very slowly.
In this paper, the idea of combining background models

that can be updated with different speeds is exploited to
achieve the detection of temporarily stopped vehicles.
A similar approach has been proposed in [17] but with a
different application: abandoned item and illegally parked
vehicle detection. In this case, both background models are
obtained by a mixture of Gaussians, which has been reported
to have some limitations in dynamic scenes with strong
variations or non-stationary properties [18]. The main
contributions of the paper are (i) the proposal of a queue
detection estimator that makes use of typical methods for
vehicle detection (background subtraction), improving the
detection method proposed in [15]. (ii) The proposed
approach allows the segmentation of temporarily stopped
vehicles, without relying on any subsequent vehicle tracking
algorithm, like in [6]. (iii) The proposed approach, based on
a sigma–delta filter implementation of the background
subtraction algorithm, is very computationally efficient, and
can be easily implemented on embedded processors.

3 Proposed queue detection algorithm

A vehicle queue is characterised by the presence of vehicles
with no motion. The problem with the classical background
subtraction is that temporarily stopped vehicles can be
considered either as foreground or background depending
on the time the vehicle has been stopped and the updating
frequency of the background model [19]. The approach
proposed in this paper considers two background models
with different updating speeds.
A short-term background model must adapt quickly to

changes in the scene. Consequently, those vehicle
temporarily stopped are right away integrated in the
background model. A ‘sigma–delta background subtraction
algorithm has been chosen because of its high
computational efficiency [13].
A long-term background model must adapt to changes

slowly, preserving the background model from those vehicles
which are temporarily stopped. The idea is preserving the
model from being corrupted with slow-moving vehicles or
vehicles that are motionless for a time gap [20, 12].
Bothmodels are combined according to the operations detailed

in the block diagramof Fig. 1. Starting from the current frame, the
basic sigma–delta algorithm provides a background model
for moving vehicles (short-term background), whereas an
enhanced version provides a background for vehicle presence
(long-term background), also signalling as foreground any
temporarily stopped vehicle.
For each new frame, the background subtraction isolates

pixels belonging to the target objects for each algorithm.
A NOT operation is applied to the basic sigma–delta
subtraction, providing all the background objects, including
those recently stopped. The common pixels from this image
and the enhanced sigma–delta background subtraction
(AND operation in the block diagram) provide the so called
‘still-presence image’, which signals any temporarily
stopped object as foreground.

3.1 Short-term background model

The sigma–delta background estimation algorithm provides a
recursive computation of a valid background model of the
123
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Fig. 1 Block diagram of the proposed queue detection algorithm
scene assuming that, at the pixel level, the background
intensities are present most of the time [18]. Fig. 2
describes the basic sigma–delta algorithm. For readability
purposes, the syntax has been compacted in the sense that
any operation involving an image should be interpreted as
an operation for each individual pixel in that image.
It represents the current input image, Mt represents the

background-model image at frame t and Vt represents the
temporal variance estimator image (or variance image, for
short), holding information about the variability of the
intensity values at each pixel. It is used as an adaptive
threshold to be compared with the difference image. Pixels
with higher intensity fluctuations will be less sensitive,
whereas pixels with steadier intensities will signal detection
upon lower differences.
The only parameter to be adjusted is N, with typical values

between 1 and 4. In particular, N = 4 has been chosen in the
provided experiments. Another implicit parameter in the
algorithm is the updating period of the statistics, which
depends on the frame rate and the number of grey levels.
This updating period can be modified by performing the

Fig. 2 Basic sigma–delta background estimation
124
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loop processing every P frames, instead of every frame.
The same algorithm computes the detection image or
detection mask, Dt. This binary image highlights pixels
belonging to the detected foreground objects (one-valued
pixels) in contrast to the stationary background pixels
(zero-valued pixels). The described algorithm is, in fact, a
slight variation of the basic sigma–delta algorithm, where
the background model is only updated for those pixels
where no detection is signalled, instead of doing it for all
pixels. This selective updating is called ‘relevance
feedback’ and it is usually preferable, as it provides more
stability to the background model.
The main advantage of the sigma–delta algorithm is its

ability of quickly providing valid background models
whenever this background is present on the scene most of
the time. However, this advantage is also its main
disadvantage when objects are temporarily stopped. For
instance, vehicles in front of a traffic light are also promptly
incorporated into the background model.
Fig. 3 illustrates this situation. As vehicles are obtaining

stopped in front of the traffic light, they are integrated into
the background model. Although this is an undesirable
effect for vehicle-detection applications, it will be
advantageous for our purposes. The background subtraction
will only retain as foreground those moving vehicles.

3.2 Long-term background model

The purpose of the long-term background model is to avoid
the problems of the previous algorithm regarding vehicles
which are motionless for a time gap. Basically, it is an
enhanced version of the basic sigma–delta algorithm,
introducing a numerical confidence level attached to each
pixel in the current background model. The algorithm is
detailed in Fig. 4, using the basic sigma–delta algorithm as
a starting point [20].
As we can see, in addition to the same parameter N

described in the previous case, there is now a new set of
IET Intell. Transp. Syst., 2013, Vol. 7, Iss. 1, pp. 122–130
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Fig. 3 Incorporation of stopped vehicles in front of a traffic light (I: current frame, M: background model)
parameters determining thresholds and initial conditions. The
following values have been chosen for them: vini = vmin = 10,
cini = cmin = 10.
In the proposed algorithm, the variance image is intended

to represent the variability of pixel intensities when no
objects are over that pixel. In other words, the variance
image will solely model the background intensities, as a
proper threshold should be chosen from that. A low
variance will be interpreted as having a ‘stable-background
model’, that should be maintained. A high variance will be
interpreted as ‘the algorithm should look for a
stable-background model’. One of the problems of the
previous versions of sigma–delta algorithms in urban traffic
environments is that, as the variance grows when vehicles
are passing by, the detection degrades because the threshold
becomes too high. Then, it is necessary to perform a
selective background and variance update. Both should be
updated only when the traffic conditions are presumed to be
suitable. For this purpose, the algorithm evaluates the
behaviour of each pixel’s intensity during a given period,
called ‘confidence period’. At the end of each period, the
algorithm calculates the number of detections during that
period; the ratio of detections is taken as an estimation of

Fig. 4 Proposed algorithm: sigma–delta with confidence
measurement
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the traffic intensity level over that pixel. Notice that this is
an acceptable assumption if we assume that the threshold
filters out background intensity fluctuations, as intended.
Depending on this ratio, different actions are taken over the
confidence measurement, and a decision about the
convenience of updating the background model at that time
is made. These heuristics are detailed in Fig. 5.
As we can see, for the evaluation of the confidence period,

the key parameters are those used to partition the feasible
range for the detection ratio IDCt /IFCt [ 0..1[ ]( )

. This
partitioning is a way of discriminating between different
qualitative traffic conditions with rather fuzzy boundaries:
‘very light’, ‘light’, ‘moderate’, ‘heavy’ and ‘very heavy’.
After some experimentation, it seemed that an unbiased
partition of the [0..1] interval was fairly appropriate. Some
further experimentation showed that common actions could
be taken in some cases, as in the case of ‘heavy traffic’ and
‘very heavy traffic’ conditions under low variance
circumstances, both leading to the same conservative action
with a slight penalty in the confidence measure, as the
priority is saving the current background. Nevertheless, for
the sake of symmetry, the five-interval subdivision has been
maintained in Fig. 5.
In particular, in a situation where vehicles are stopped

because of a traffic congestion or a red light (high detection
rate), and the current-background model has a high
confidence measurement, the algorithm would decide not to
update the background model and to slightly decrease the
confidence measurement. The latter action is convenient to
avoid the model to obtain indefinitely locked in a wrong or
obsolete background.
The confidence measurement is related to the maximum

updating period. In very adverse traffic conditions, this
period is related to the time the background model is able
to keep untainted from the foreground objects. The detailed
description of the enhanced sigma–delta algorithm can be
found in [20].
With respect to that algorithm, a new mechanism has been

included, with the aim of achieving some degree of
adaptability to global illumination changes, because of a
true variation in the ambient conditions or to the auto-iris
mechanism of the own camera. As a consequence of this
mechanism, the current background image is adapted to the
global illumination level of each new acquired frame,
before performing background subtraction via the sigma–
delta algorithm. This adaptation of the background model is
implemented through a linear intensity mapping. This
mapping is recomputed with each new frame in the
following way: for every pixel signalled as background in
125
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Fig. 5 Heuristics for the evaluation of the confidence period
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the previous frame (zero-valued pixels in the detection image,
Dt), the intensity value of the pixel in the current-background
model and the intensity value of the same pixel in the current
frame are used as coordinates (x and y, respectively) for a
point to be drawn in a 2D plot. Next, a linear regression is
estimated from all those points and used as a transformation
rule for a intensity mapping. Finally, this mapping can be
configured in a look-at table to be applied to every pixel in
the current-background model. Unlike [16], with this
strategy, we decouple and make compatible the requirement
of a long-term background model with relatively low
updating speed and the need of an algorithm being adaptive
to sudden illumination changes in the scene.
Regarding to local illumination changes, mainly because of

moving cast shadows, the eventual problems can be alleviated
in a further step by employing techniques related to shadow
removal, which is beyond the scope of this paper [19, 20].
The behaviour of the enhanced version of sigma–delta

algorithm is illustrated in Fig. 6, based on the scenario
already shown in Fig. 3. In this case, however, the stopped
vehicles in front of the traffic light have not been absorbed
by the background model (image M ).

3.3 Description of the estimated queue parameters

A number of queue parameters are estimated from the
previous queue detection algorithm. The queue regions to
be considered are manually drawn over the image as
polygonal regions, during the scene configuration stage (see
Fig. 7). When the algorithm detects a new queue which
starts building up from the stopping line, the ‘triggered
queue’ signal is switched on. Nevertheless, a hysteresis
mechanism is introduced to avoid false detections caused
by sluggish vehicles and preventing excessive fluctuations
in the estimated queue length.
Starting from the stopping line, a fraction of the region

length is defined as a ‘full-queue threshold’. Whenever the
vehicle queue reaches this point, a ‘full-queue’ signal is
triggered, which is another instantaneous qualitative state of
the queue. On the other side, the ‘instantaneous queue
length’ is defined as a quantitative measure, given in
percentage of the full-queue length. According to this, if at
any given time, the vehicle queue surpasses the full-queue
threshold, the queue length measure will be over 100%.
Fig. 8 illustrates the behaviour of queue detection algorithm.

Whenever the ‘triggered-queue’ state is signalled, the region is
displayed in a dark grey colour. Otherwise, the region remains
Fig. 6 Non-incorporation of stopped vehicles in front of a traffic light (I: current frame, M: background model)
IET Intell. Transp. Syst., 2013, Vol. 7, Iss. 1, pp. 122–130
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Fig. 7 Evaluated urban traffic scenarios

a SE01 sequence
b SE02 sequence
c MIT sequence
d Night-time sequence

Fig. 8 Queue detection for traffic sequences

a SE01 sequence
b SE02 sequence
c MIT sequence
d Night-time sequence
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in its original light grey. If the ‘full-queue’ signal is activated, the
colour of the complete polygonal region is changed to a different
tone of grey, in particular, deep grey for the occupied area.
Apart from the previous instantaneous queue parameters,

aggregated data can also be measured. Unlike instantaneous
parameters, which are given on a frame-by-frame basis, the
aggregated data are computed on a traffic-light cycle basis
(also referred as ‘queue cycle’). In this category, we
consider the ‘peak queue length’, in percentage of the
full-queue threshold, as expected, the ‘queue-building rate’,
given in time units, as it shall be estimated as the time the
vehicle queue requires for reaching half of the full-queue
threshold, measured from the beginning of the cycle (once
the traffic light switches to red). Among the qualitative-type
parameters, we can also register the ‘triggered-queue’ or
‘full-queue’ conditions on a cycle basis. In this case, the
triggered-queue state is switched on for a given cycle (to be
referred as ‘aggregated triggered-queue’ state) if the
instantaneous triggered-queue state has been on, at least on
one frame during that cycle. The same applies to the
full-queue state (referred as ‘aggregated full-queue’ state).
In addition to the previous parameters, if the full-queue

threshold is configured appropriately, according to the
expected traffic flow or traffic dynamics and the traffic-light
period at the particular spot, the full-queue signal could be
used as a probabilistic indicator of ‘cycle failure risk’ (or
even ‘congestion risk’), which also falls in the category of
aggregated data. On top of that, potentially for every cycle,
the ‘queue triggering time’ or ‘full-queue triggering time’ can
be recorded. Table 1 summarises all the described parameters.

4 Performance analysis

Four different sequences have been selected to illustrate the
proposed queue detector algorithm (Fig. 7). The first
sequence, SE01, shows two frontal lanes where queues of
vehicles are formed in front of the traffic light. The second

Table 1 Queue parameter classification

Category Type Parameter States Units

Instantaneous
(frame basis)

qualitative triggered
queue

on/off

full queue on/off

quantitative queue length %

Aggregated
(cycle basis)

qualitative triggered
queue

on/off

full queue on/off

cycle failure
risk

on/off

quantitative peak queue
length

%

queue
building rate

s

queue
triggering
time

s

full-queue
triggering
time

s
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sequence, SE02, provides a rear view of vehicles on a traffic
lane, which is a challenging configuration usually avoided
during the systems’ setup. The third sequence, comprising
three lanes, corresponds to the Massachusetts Institute of
Technology (MIT) traffic data set, which is publicly available
at http://www.ee.cuhk.edu.hk/∼xgwang/MITtraffic.html for
research on activity analysis and crowded scenes [21]. Finally,
the fourth sequence comes from a night-time traffic scene,
covering four lanes. This amounts for ∼5 h and 42 min of
video recording, entailing up to 226 red-light cycles.
The performance of the proposed queue parameter

estimation algorithm is compared with a ground-truth
dataset, based on human visual inspection (around 80 h of
human effort have been required for the whole ground-truth
data gathering).
To evaluate the performance in the estimation of the

qualitative-type parameters, precision and recall measures
are derived. First, we evaluate the qualitative parameters in
the instantaneous category. We start classifying every single
frame as one of the following, according to a given
parameter, for example, ‘full-queue’ state:

† True positives (TP): the algorithm correctly states
full-queue ON for that frame.
† True negatives (TN): the algorithm correctly states
full-queue OFF for that frame.
† False positives (FP): the algorithm incorrectly states
full-queue ON for that frame.
† False negatives (FN): the algorithm incorrectly states
full-queue OFF for that frame.

The following quality measures can be derived:

Correctness: Qcorr =
TP

Total of estimated positives

= TP

TP+ FP

Completeness: Qcompl =
TP

Total of actual positives

= TP

TP+ FN

These are equivalent to the classic concepts known as
‘precision’ and ‘recall’, respectively, but using more
intuitive names, as suggested in [22] and [23].
For a perfect classification or detection problem, values of

Qcorr and Qcompl will reach their maximum value, 1.
We could take this same performance evaluation to the

cycle level, using the qualitative parameters ‘aggregated
full-queue state’ and ‘aggregated triggered-queue’ state.
In this case, we would redefine a true positive as: ‘any
cycle for which the algorithm states ‘aggregated full-queue’
ON, and so does the ground truth, even if the
‘instantaneous full-queue’ event happened at a different
frame with respect to the ground truth or during a different
number of frames’. Similarly for TN, FP and FN, for large
data collection, this less fine-grained evaluation of a
detection algorithm can be perfectly valid.
For the instantaneous and aggregated qualitative

parameters, Table 2 gives the performance analysis,
including both analysis on frame basis and analysis on
cycle basis.
The ‘cycle-failure risk’ has not been included in the table,

since, as stated previously, it is a state that can be readily
IET Intell. Transp. Syst., 2013, Vol. 7, Iss. 1, pp. 122–130
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Table 2 Performance evaluation of the qualitative queue parameters on a frame basis and on a cycle basis

Category Parameter TP TN FP FN Qcorr Qcomp

instantaneous (frame basis) triggered queue 101 033 440 914 29 608 22 882 0.77 0.82
full queue 28 722 546 344 8651 10720 0.77 0.73

aggretated (cycle basis) triggered queue 144 61 18 3 0.89 0.98
full queue 49 163 13 1 0.79 0.98
derived from the ‘aggregated full-queue’ parameter, assuming
that the full-queue threshold has been configured properly.
Regarding to the quantitative parameters, the

corresponding mean errors with respect to the ground truth
measures are used and presented in Table 3. Only relevant
cycles are used in the mean computations. That is, any
cycle with neither true queue built nor queue detected by
the algorithm is considered (although it would reduce the
mean error values if reckoned). These correspond to the
true negatives in the ‘triggered-queue’ state in Table 2
(instantaneous or aggregated, correspondingly with the
category of the quantitative parameter on hand). Another
observation is that, for those parameters given in time units,
the error has to be understood as an absolute delay or time
shift.
In the error column, all the relevant samples have been

evaluated (only excluding TN as explained). For instance,
in the case of the delay in the ‘queue triggering time’, we
can imagine a situation in which, according to the ground
truth, a vehicle queue existed for a given cycle, but the
algorithm detected no queue at all. According to the
‘aggregated triggered queue’ parameter, this will correspond
with a FN. In this case, there is a severe penalisation in the
mean error computation, since the delay is taken as the
remaining traffic-light cycle time, which explains why some
delays are so high. It can be arguable whether or not these
FNs or, similarly, the FP, should be accounted for, as they
have already been accounted for in the analysis of the
qualitative data. In any case, for the sake of completeness,
we also include an error column where only the TP are
considered.
As mentioned in Section 3.3, there is a hysteresis

mechanism, introduced with the aim of avoiding excessive
fluctuations in the queue length or a large number of
irrelevant queue-triggering switches. The downside of this
mechanism is that there will be a certain level of error
inherently bound to it: queue-triggering delays, delayed

Table 3 Performance evaluation of the quantitative queue
parameters

Category Parameter Error
Error
TP Units

instantaneous
(frame basis)

queue length 0.93 0.59 %

aggregated (cycle
basis)

peak queue
length

14.12 8.99 %

queue building
rate

18.27 5.5 s

queue triggering
time

7.23 5.88 s

full-queue
triggering time

8.8 4.28 s
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update in queue-length estimations etc. An exhaustive
analysis of the influence of this factor upon the proposed
performance metrics is beyond the scope and extent of the
present paper.
The algorithm has been implemented on a standard ‘Intel

Core2 Duo CPU’ at 2, 3 GHz, with 3 GB of RAM, under
‘Windows’ operating system. For the software
implementation, C++ programming language has been
chosen. Full resolution, grey-scale images of an average
resolution 728 × 540 pixels are reduced to 1/16th of their
original resolution before being processed. The average
time required for processing each frame is 40 ms, providing
around 25 fps of processing rate.

5 Conclusion

This paper proposes a new algorithm for queue-parameter
estimation using the combination of two background
models with different sensitivity to temporarily stopped
vehicles. The described logical operations between them
allow the segmentation of an image containing these
recently stopped vehicles, precluding those objects either
permanently stopped or undergoing any motion. The
proposed algorithm has been tested on four different
scenarios, during a total number of 226 queue cycles and
evaluated against a human-gathered ground truth. The
provided results demonstrate the accuracy of the proposed
approach, based only on background subtraction techniques,
hence, avoiding the need of subsequent object tracking
strategies.
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