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Abstract— This paper proposes a behavioral modeling ap-
proach for the description of nonlinearities in wideband wireless
communication circuits with memory. The model is formally
derived exploiting the dependence on frequency of the am-
plifier nonlinear transfer functions and reduce the number
of parameters in a general Volterra-based behavioral model.
To validate the proposed approach, a commercial amplifier
at 915 MHz, exhibiting nonlinear memory effects, has been
widely characterized using different stimuli, including two tones,
QPSK-WCDMA, and 16-QAM signals with rectangular and
root-raised cosine conforming pulses. The theoretical results
have been compared with experimental data demonstrating that
the model performance is comparable to the well-established
memory polynomial model. Calculated and measured baseband
waveforms, signal constellation, spectral regrowth and ACPR are
tightly coincident in all cases, emphasizing the relevance of the
proposed model.

Index Terms— Behavioral models, microwave amplifiers,
Volterra series, nonlinear memory effects.

I. INTRODUCTION

As a fundamental block in wireless communications sys-

tems, the power amplifier (PA) has undergone exhaustive study

of its characteristics, in particular those related with nonlinear

memory effects. Many efforts have been devoted to obtain

behavioral models for microwave PAs, for which the output

of this black-box method is predicted without knowledge of

the nonlinear device internal structure. The goals of these

approaches are, on the one hand, reduction of complexity

maintaining an accuracy comparable to the results obtained

with circuit-level simulations and, on the other hand, a simple

method to extract the model parameters. An indicator of the

importance of these approaches is the valuable work presented

in the last years, for example [1]-[3], and the recent publication

of an extensive revision related to this topic [4].

Exploiting the bandlimited character of wireless signals,

PA description can be translated into an envelope represen-

tation and frequently has been deduced as Volterra series, a

procedure that treats this problem in an strictly and orderly

way. However, one difficulty of amplifier modeling using this

Volterra approach is its high computational complexity [5].

The great number of coefficients required for the description

of systems with a strong nonlinearity and long memory has

steered the work of many researchers in order to reduce the
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number of model parameters. Probably, the most manageable

solution to reduce the number of coefficients is the memory

polynomial model proposed in [1], the structure of which

presents a notable truncation in the number of parameters.

Although the reduction obtained with this simplified Volterra

model is important, the number of coefficients remains high,

particularly in the case of amplifiers with long memory. To

achieve a further reduction, an extension of the memory poly-

nomial model with sparse delay tap structure was proposed in

[2].

It is not clear how the parameter reduction of these parti-

cular structures affects the attainable accuracy of the model

owing to the possible importance of other underestimated

terms. Specifically, the need for considering those neglected

terms was the purpose of the novel structure reported in [3].

That new approach is based on the pruning of redundant

kernels in the full Volterra series model so that the coefficients

with less effect on the output signal are discarded following

an a posteriori procedure. Despite the significance of the

cited models, it is desirable to develop an approach with

an optimized number of coefficients, sustained on theoretical

principles and with no need of a previous empirical selection.

That was the aim of the author’s initial study of an amplifier

with one FET based on its simplified equivalent circuit. A

third-order model was validated with experimental data and

partial results were presented in [6].

In this paper the authors introduce the demonstration of

a fifth order Volterra model for a general amplifier with

bandwidth larger than the RF signal band. The approach

allows the analysis of nonlinear memory effects from a model

based on the transfer functions with no restrictions in the

number or kind of nonlinear devices composing the amplifier.

In the next section the study of a wideband amplifier and

the completion of its behavioral model based on a Volterra

series approach is described. The frequency independence of

the amplifier response inside the RF bandwidth is exploited

to reduce the order model and to reveal the dependence of

coefficients extraction on the sampling rate. Section III is

dedicated to describe the procedure of parameter extraction,

which has been simplified because of order reduction in the

model structure. Application of the method to a commercial

amplifier and comparison with the memory polynomial model,

and also with experimental data using different types of input

signals, is presented to validate the demonstrated theoretical

results. Finally, a generalization of the model to any order is

proposed and some relevant statements are commented.
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Fig. 1. General schematic of a nonlinear circuit.

II. VOLTERRA MODEL FOR A WIDEBAND AMPLIFIER

A. Volterra-based behavioral model background

Let a general amplifier be represented by the circuit shown

in Fig. 1. Nonlinearities are constituted by their linear compo-

nents, included in the associated linear circuit, and nonlinear

sources which are assumed to be dependent on two control

voltages v(a) and u(a). Let the input x̃(t) be an RF current

excitation and ỹ(t) the output voltage corresponding to the

fundamental frequency zone, centered at ωc. Making use of

the fact that a wireless signal commonly has a bandwidth B
negligible with respect to the carrier frequency fc, the discrete

time-domain complex envelope Volterra model for this general

nonlinear system can be expressed as

y(k) =
∑

q1

h1(q1)x(k − q1)+

+
∑

q3

h3(q3)x(k − q1)x(k − q2)x
∗(k − q3)+

+
∑

q5

h5(q5)x(k − q1)x(k − q2)x(k − q3)×

× x∗(k − q4)x
∗(k − q5) + · · · (1)

where x(k) and y(k) are complex envelope samples of the

input and output RF signals, respectively, hn(qn) represents

the discrete Volterra kernels of order n and qn is an n-

dimensional vector composed of the integer-valued delays qi

(i = 1, · · · , n) [3]. Although a sampling rate equal to the input

signal RF bandwidth is sufficient for memoryless nonlinear

system identification [7], it should be increased according to

the broadening of the output bandwidth Bo if aliasing has to

be avoided. As a consequence, for an adequate representation

of the output y(t), the sampling time has to be reduced

correspondingly to ts = 1/Bo.

Equation (1) is a discrete-time Volterra series derived from

the representation using the multidimensional nonlinear trans-

fer functions (NLTF) H̃n(ω) [8]. In continuous-time form, the

n-th order term of the output signal can be written as

yn(t) =
2

(4π)n

(

n
m

)
∫

∞

−∞

H̃n(ωcn + ω)

m+1
∏

i=1

X(ωi)×

×

n
∏

i=m+2

X∗(ωi) exp(jω′t)dω, (2)

for n = 2m + 1. In (2), ωcn is a vector with its first m + 1
components equal to ωc and the remaining m components are

equal to −ωc, ω = (ω1, · · · , ωn)′ is a column vector having

n baseband frequency components, ω′ is the transpose of ω

and t is a column vector with its n components equal to t.
The bandlimited condition of the input signal allows to

neglect the integral outside two n-dimensional boxes with

length Bo and centered at ±ωcn. Consequently, it is pos-

sible to substitute H̃n(ξ) with an equivalent transfer func-

tion bandlimited into these n-dimensional hypercubes, Ĥn(ξ),
from which the bandlimited equivalent Volterra kernels are

obtained making use of a multidimensional inverse Fourier

transform. This equivalent transfer function and the discrete-

time corresponding kernel ĥn(qn) satisfy the relation

Ĥn(ωn) =
∑

qn

ĥn(qn)

Bn
o

exp(−jω′

nqnts). (3)

Substitution in (2) allows to separate the integrals and to

obtain the output component yn(t). Therefore, after sampling

at instants t = kts, expression (1) is immediately derived.

The Volterra model (1) is a very general result but it has a

high degree of difficulty due to the large number of parameters

and numerical operations involved [5]. The complexity of the

problem is revealed in the fact that the kernels hn(qn) form a

n-dimensional grid defined by the discrete delays in each axis

of the multidimensional space q1, · · · , qn, hence it is desirable

to reduce the number of these delays.

One of the most extended methods proposed to achieve a

more manageable number of parameters is the memory poly-

nomial model described in [1]. For this model the reduction

in the number of coefficients is obtained by selecting only

the delays positioned in the diagonal, i.e. the delays along the

direction defined by q1 = q2 = · · · = qn. Moreover, if a sparse

delay tap structure is adopted and only the most significant

delays are retained following an a posteriori procedure, a

further important cutback in the number of coefficients can be

procured [2]. However, the model precision can be diminished

due to the possible importance of non-diagonal terms. Follow-

ing a more relaxed pruning approach, which also retains the

terms near the diagonal, a more recent model was proposed

with a consequent improvement in precision at the expense of

a moderate increase in the number of coefficients [3].

Although the memory polynomial model has proven to be

effective and the reduction of coefficients is considerable,

the lack of a theoretical justification originates the need of

these empirical-based methods. Additionally, important issues

as the adequate sampling rate or the dependence of the discrete

kernels on this sampling rate in (1), should be addressed by a

behavioral model.

B. Nonlinear Transfer Functions for a Wideband Amplifier

A formal reduction in the number of coefficients in (1)

can be obtained under the only assumption of a wideband

amplifier, i.e. an amplifier with a pass band larger than the

RF signal bandwidth. This supposition does not introduce

any important loss of generality since many wireless am-

plifiers presenting nonlinear memory effects, have frequency
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Fig. 2. Illustrative example to show frequency dependence of the nonlinear transfer functions. (a) Elementary nonlinear network. (b) Associated linear
network excited by appropriate nonlinear currents and spectrum of the generated second-order transfer functions. (c) The same associated linear network
producing the third-order transfer functions and their related spectrum.

responses essentially constant in their respective RF signal

bands, see for example [2]. Under this assumption, comple-

tion of the particular frequency dependence of the transfer

functions H̃n(ξ) for a typical circuit can be accomplished

by a combination of the Probing Method and the Nonlinear

Currents Method, a widespread procedure [10], [11].

For the general circuit of Fig. 1, the vector formed with the

nonlinear transfer functions of order n relating the voltages of

the independent ports of the associated linear network can be

obtained by using the following equation

H̃n(ξ) = −Y−1(ξ1 + ξ2 + · · · + ξn)F̃n(in) (4)

where Y(ξ) is the admittance matrix of the associated linear

network and F̃n(in) is a vector with the spectral components

of the nonlinear currents exciting the independent ports. The

bandlimited condition of the wireless signal allows to extend

the wideband amplifier assumption to all the harmonic zones

so that the admittance matrix can be approximated by Y(lωc+
ω) ≈ Y(lωc) for l = 1, 2, · · · , at all relevant values of ω. For

an nth-order approximation the band of interest in the first

harmonic zone should be here supposed to be nB.

For clarity, let consider only K̃n(ξ), the transfer functions

relating the input with the voltage at the port of one nonlinear-

ity, typically a voltage controlled current source, a conductance

or a capacitance. To illustrate the procedure, an elementary

circuit with a nonlinear current source is shown in Fig. 2 and a

sketched summary of the method is attached. In the example, a

nonlinear current source dependent on voltage v is considered

as the main nonlinearity. For each order the associated linear

network is excited by appropriate nonlinear currents in order to

obtain the transfer functions relating voltage v with the input.

Spectra show the prevalent components for orders 2 and 3.

The wideband condition of the amplifier allows to approx-

imate the linear function K̃1(ωc) as a coefficient independent

of baseband frequencies. The same is true for the transfer

function relating the linear part of the output with the input,

H̃1(ωc).
The spectral components function F̃2(ξ) can depend on the

sum of baseband frequencies ωi +ωj , as is the case of a non-

linear capacitance, or is independent of baseband frequencies

for other nonlinearities. In any case, since the components of

the admittance matrix have this same dependence, the second-

order nonlinear transfer function K̃20(ωi + ωj) depends on

ωi + ωj (with ξi = ωc + ωi and ξj = −ωc + ωj) in the

dc zone, and can be considered as a constant coefficient in

the second-harmonic zone (see Table I). Notice that if other

nonlinearities are present, their contribution is superposed at

the same frequencies and therefore, the type of dependence

remains unchanged.

Both in the fundamental frequency and in the third-

harmonic zones, the admittance matrix is a function only

of the carrier frequency, because the baseband frequency

dependence of the third-order transfer function K̃3(ξ) is due

to the spectral components of F̃3(ξ). Taking into account

that this dependence comes from K̃2(ξ), in the fundamental

frequency zone it is possible to determine two types of terms:

a baseband frequency independent term K̃
(1)
31 , and terms of

the form K̃
(2)
31 (ωi + ωj). In the third-harmonic zone this

transfer function does not present dependence on baseband

frequencies. The type of dependence described above is in

agreement with previously published results [12]-[16].

Although the extension of the analysis focused to the
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TABLE I

TYPES OF BASEBAND FREQUENCY DEPENDENCE FOR K̃n(ξ)

Frequency zone K̃1(ξ) K̃3(ξ)

1st. harmonic K̃1 K̃
(1)
31

K̃
(2)
31 (ωi + ωj)

3rd. harmonic − K̃33

Freq. zone K̃2(ξ) K̃4(ξ)

dc K̃20(ωi + ωj) K̃
(1)
40 (ω̄)

K̃
(2)
40 = α(ω̄)κ

(2)
40 (ωi + ωj)

K̃
(3)
40 = α(ω̄)κ

(3)
40 (ωi + ωj)×

×κ
(3)
40 (ωi′ + ωj′ )

2nd. K̃22 K̃
(1)
42

harmonic K̃
(2)
42 (ωi + ωj)

4th. harm. − K̃44

The following definitions have been used: ω̄ = ω1 + ω2 + ω3 + ω4,
ξi,i′ = ωc + ωi,i′ and ξj,j′ = −ωc + ωj,j′ , i 6= i′ and j 6= j′.

deduction of closed form expressions for higher order transfer

functions is almost beyond the bounds of possibility, keeping

track of their frequency dependence is a more feasible ex-

ercise. Next, this study is widened to higher order nonlinear

transfer functions.

The cause of frequency dependence in K̃4(ξ) is twofold.

On the one hand, the admittance matrix can be approximated

by Y(ω1 + ω2 + ω3 + ω4) in the dc zone, and by a frequency

independent function in the second-harmonic and fourth-

harmonic zones. On the other hand, the component F̃4(ξ)
presents several terms with products of the transfer functions

K̃1, K̃2 and K̃3.

Summarizing, in the dc zone the fourth-order transfer func-

tion is composed by: one term that can be expressed by

K̃
(1)
40 (ω1 + ω2 + ω3 + ω4), a second type of terms K̃

(2)
40 =

α(ω1 + ω2 + ω3 + ω4)κ
(2)
40 (ωi + ωj), and a third type of

terms with the form K̃
(3)
40 = α(ω1 + ω2 + ω3 + ω4)κ

(3)
40 (ωi +

ωj)κ
(3)
40 (ωi′+ωj′). It has been considered that ξi,i′ = ωc+ωi,i′

and ξj,j′ = −ωc + ωj,j′ , for i = 1, 2 and j = 3, 4 with i 6= i′

and j 6= j′ (see Table I). Note that K̃
(2)
40 is represented as

the product of two separated functions, α and κ
(2)
40 , and in the

same form, K̃
(3)
40 is denoted by the product of the functions α

and κ
(3)
40 . In these expressions, α is a generic function with the

specific dependence on the sum of four baseband frequencies

and κ
(2,3)
40 are generic functions dependent on the sum of

two baseband frequencies. The significance of this particular

frequency dependence is discussed below.

In the second-harmonic zone there are two type of terms,

K̃
(1)
42 and K̃

(2)
42 (ωi + ωj), and in the fourth-harmonic zone

there is only one (frequency independent) term, K̃44. The

explicit dependence has been omitted in the components that

are only functions of the carrier frequency. These arguments

are sufficient to deduce the frequency behavior of the relevant

output transfer functions H̃3(ξ) and H̃5(ξ).

The transfer function H̃3(ξ) has a frequency dependence

similar to K̃3(ξ), discussed above. In the case of H̃5(ξ),

TABLE II

TYPES OF BASEBAND FREQUENCY DEPENDENCE FOR H̃5(ξ)

Type H̃5(ξ)

1 H̃
(1)
51

2 H̃
(2)
51 (ωi + ωj)

3 H̃
(3)
51 = η

(3)
51 (ωi + ωj)η

(3)
51 (ωi′ + ωj′ )

4 H̃
(4)
51 (ωi + ωj + ωi′ + ωj′ )

5 H̃
(5)
51 = α(ω1 + ω2 + ω3 + ω4)η

(5)
51 (ωi + ωj)

6 H̃
(6)
51 = α(ω1 + ω2 + ω3 + ω4)η

(6)
51 (ωi + ωj)η

(6)
51 (ωi′ + ωj′ )

The generic functions η51 have the specific dependence on the sum of two
baseband frequencies.

considering that the admittance matrix does not introduce any

frequency dependence, its behavior is determined by F̃5(ξ), or

equivalently, by the functions K̃1(ξ) to K̃4(ξ). Recalling that

the zone of interest is the fundamental frequency zone, the

relevant transfer functions can be represented by the 6 types

of terms shown in Table II. Observe that now there are four

different types of terms with a complete dependence on all the

frequencies ω1 to ω4.

These results can be exploited to reduce the number of

parameters in the behavioral model (1) without the addition

of any other restriction.

C. Kernels of the reduced-order behavioral model.

1) Third order kernel: Based on the previous deductions,

the third-order term of the output voltage is obtained by

substituting in (2) the corresponding components H̃
(1)
31 and

H̃
(2)
31 (ω1 +ω2). The first type generates the memoryless term,

and the second type gives rise to the generic expression

y
(2)
3 (t) =

3

4(2π)2
x(t)

∫

∞

−∞

H̃
(2)
31 (ω1 + ω2)×

× X(ω1)X
∗(ω2) exp(jω1t + jω2t)dω1dω2. (5)

Although this is a double integral, the transfer function is

a one-dimensional function, a fact that can be explicitly

displayed with a change to the new variables ω = ω1 + ω2

and ξ = (ω2 − ω1)/2, for which dω1dω2 = dωdξ, so that

y
(2)
3 (t) =

3

4

1

(2π)2
x(t)

∫

∞

−∞

H̃
(2)
31 (ω)×

× X(ω/2− ξ)X∗(ω/2 + ξ) exp(jωt)dωdξ. (6)

Relying on the bandlimited assumption of x(t), the integral in

ω is negligible outside any bandwidth Bo ≥ 2B, allowing the

definition of an equivalent transfer function Ĥ3(ω) confined

to this band. Making use of the Fourier transform and for

frequencies inside Bo, Ĥ3(ω) can be expressed in terms of its

discrete impulse response

Ĥ3(ω) =
1

Bo

∑

q

ĥ3(q) exp(−jqωts), (7)

so that the sampling time ts = 1/Bo should be, at least, half

the symbol period. Substituting in (6) and changing now to
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the original variables, the two integrals become separable

y
(2)
3 (t) =

3

4Bo

x(t)
∑

q

ĥ3(q)
1

(2π)2
×

×

∫

∞

−∞

X(ω1)X
∗(ω2) exp[jω1(t− qts) + jω2(t− qts)]dω =

=
3

4Bo

x(t)
∑

q

ĥ3(q)|x(t − qts)|
2. (8)

Finally, after adding the memoryless part and sampling at

instants t = kts, the third-order term of the output complex

envelope can be expressed in a discrete-time form

y3(k) =
∑

q

h3(q)|x(k − q)|2x(k). (9)

When the memoryless term is included in (9), we obtain the

following expression for the third-order coefficients

h3(q) =

{

3
4 [H̃

(1)
31 + 1

Bo

ĥ3(0)], for q = 0
3

4Bo

ĥ3(q), for q 6= 0.
(10)

2) Fifth order kernel: According to the previous discussion,

the fifth-order transfer function is composed by 6 different

types of terms which produce a particular set of kernels after

substitution in (2). Like in the third-order transfer function,

one of the five integrals involved gives rise again to x(t),
remaining in this case a quadruple integral, for which the first

type of terms can be computed directly to contribute only

to memoryless nonlinear effects. The second type of terms

depends on ωi+ωj , so that only two integrals can be computed

directly and the other two can be handled as in the third-order

case producing one-dimensional kernels of the type

y
(2)
5 (k) =

∑

q

h
(2)
5 (q)|x(k − q)|2|x(k)|2x(k). (11)

For the other four types it is possible to write a generic fifth-

order transfer function with a frequency dependence given by

H̃5(ω1+ω3, ω2+ω4), where ω1,2 and ω3,4 are defined around

ωc and −ωc, respectively. Let consider the different properties

of symmetry that this function can present, beginning with

the more general condition corresponding to the fifth and

sixth types of terms. At a first glance, the multiple integral

in (2) is negligible outside a four-dimensional cube of length

4B. However, the particular symmetry of H̃5 involves a

bidimensional frequency dependence that is exhibited clearly

after the change of variables ξ1 = ω1 + ω3, ξ2 = ω2 + ω4,

ξ3 = (ω3 − ω1)/2 and ξ4 = (ω4 − ω2)/2:

y
(5)
5 (t) =

5

8

1

(2π)4
x(t)

∫

∞

−∞

dξ3dξ4 · · ·

· · ·

∫

∞

−∞

H̃5(ξ1, ξ2)X(ξ1/2 − ξ3)X(ξ2/2 − ξ4)×

× X∗(ξ1/2 + ξ3)X
∗(ξ2/2 + ξ4) exp(jξ1t + jξ2t)dξ1dξ2.

(12)

Therefore, H̃5(ξ1, ξ2) is negligible outside any square of

length Bo ≥ 2B and can be substituted by its equivalent

function. It is possible to express this bandlimited function

as a relation between the corresponding discrete-time kernels

Ĥ
(5)
5 (ξ2) =

1

B2
o

∑

q2

ĥ
(5)
5 (q2) exp(−jq′

2ξ2ts). (13)

Substituting in (12) and changing to the original variables, the

four integrals are now separable and, sampling at instants kts,

the output in discrete-time form can be written as

y
(5)
5 (k) =

∑

q1,q2

h
(5)
5 (q1, q2)|x(k − q1)|

2|x(k− q2)|
2x(k) (14)

with

h
(5)
5 (q1, q2) =

5

8B2
o

ĥ
(5)
5 (q1, q2). (15)

It is immediate to note that h
(3)
5 , related with the third type

H̃
(3)
51 , is a particular case of this result in which the transfer

function is directly separable.

More revealing is the fourth type H̃
(4)
51 , which involves the

sum of all frequencies so that it presents the highest degree

of symmetry and produces terms given by

y
(4)
5 (k) =

∑

q

h
(4)
5 (q)|x(k − q)|4x(k) (16)

with

h
(4)
5 (q) =

5

8Bo

ĥ
(4)
5 (q). (17)

Notice that for this particular coefficients, the sampling rate

should be at least four times the symbol rate.

As a conclusion to this section, let observe that the demon-

strated Volterra behavioral model incorporates a substantial

reduction in the number of parameters, when compared to

(1), with the only assumption of a wideband amplifier. Surpris-

ingly, the described representation exhibits an exclusively “out

of diagonal” structure, different to other well-known published

behavioral models [1],[2].

To corroborate these new results, an amplifier has been

tested and the model parameters have been extracted from

experimental data, as discussed in the next section.

III. MODEL PARAMETERS EXTRACTION AND VALIDATION

The commercial amplifier MAX2430 manufactured by

MAXIM Integrated Products Inc. (Sunnyvale, CA), has been

modeled with the present structure. It is a wideband amplifier

at 915 MHz, however, in the experimental characterization

with two tones separated 2 MHz, the amplifier exhibited an

asymmetry in the IMD products, a clear indication of the

existence of nonlinear memory effects. The measurement setup

used in this study is basically the same as that presented

in [15]. However, the excitations taken into account are

diverse in order to test the proposed model with a wide

variety of signals. In particular, standard two-tone as well

as digitally modulated signals like QPSK-WCDMA, 16-QAM

with rectangular pulses and root-raised cosine pulses have been

used as input stimuli. These signals have been loaded in the

internal memory of an SMIQ02B signal generator with built-in

arbitrary waveform facility and the E4407B spectrum analyzer

with a modulation analysis option has been used to acquire the

baseband signal at the amplifier’s output.
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Fig. 3. Normalized error as a function of the input level. Proposed VBW
model (squares and solid line) and memory polynomial (MP) model (circles
and dot-dash line).

A. 16-QAM signal with rectangular pulses

As was demonstrated in the previous section, it is necessary

to use a sampling rate of about four times the symbol rate

if parameters up to the fifth-order have to be extracted. In

the case of root-raised cosine modulating pulses, each sample

is dependent on previous and future samples, included those

many symbols away. Even in the case of a memoryless

amplifier the output will display memory and it is therefore

reasonable to use for nonlinear characterization modulating

pulses without inter symbol interference, i.e. with length no

longer than a symbol period. Consequently, the use of an

RF signal modulated with rectangular pulses as an input

stimulus guarantees that memory effects, if present in the

output, have been caused by the nonlinear memory of the

device. The modulation format is also relevant because it is

well known that for PSK signals, a third-order model can

capture some of the higher order nonlinear characteristics and

produce degeneration in the parameter extraction process [9].

According to the above considerations, a 915 MHz carrier

modulated with a random train of rectangular pulses at 2

Msymb/s and a 16-QAM format, was selected as the first

sounding signal. The arbitrary waveform generator can handle

up to 40 Msa/s so that the shape of the pulses was rather

rectangular. Since in the recovery part the setup has a sampling

rate of 15 Msa/s, the acquired output signals were sampled

at 7.5 samples per symbol, amply suitable for signal repre-

sentation and fifth-order parameters extraction. A fifth-order

Volterra behavioral model for wideband amplifiers (VBW) was

extracted from the acquired output complex envelope samples

through the minimization of the average normalized mean

square error (NMSE) between measured and modeled outputs.

A first result is shown in Fig. 3, where the normalized error is

plotted as a function of the input level. The error is represented

in dotted line for a memoryless model and the dashed line

corresponds to the results for a third-order VBW model with a

memory of Q3 = 30 samples. In both cases the error grows up

as the amplifier enters in a more nonlinear condition indicating
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dots. VBW model: solid line. MP model: dot-dash line.
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in the first case the presence of nonlinear memory and, in the

second case, that not all the nonlinear memory coefficients

have been extracted. On the contrary, the fifth-order VBW

model depicted in solid line shows a very low error, constant in

all the range of input levels, which is an evident confirmation

of a correct parameters identification of the memory nonlinear

model. To corroborate the validity of the present results, the

well-established memory polynomial model (MP) described

in [2] was extracted with a generous number of delays, and

taken as a reliable reference. The error for this model with

seven delays is represented in the same figure (dash-dot line)

demonstrating a similar performance with respect to the VBW

model. Furthermore, in the range of higher levels, the most

relevant to this context, the VBW model outperforms the MP

model.

The corresponding time-domain in-phase component for an

input level of −11 dBm is shown normalized in Fig. 4a). The

acquisitions (dots), the prediction of the MP model (dash-dot
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Fig. 6. Measured and simulated results for IM3 when tone spacing is 2
MHz. Acquired data: triangles. VBW model: solid line.

line) and the prediction of the present VBW model (solid line)

have been represented. The average NMSE of the VBW model

is -30.5 dB, representing 1 dB of improvement compared to the

MP model. The vector representation of the modeled complex

envelope is plotted with dots in Fig. 5 and compared with the

input envelope (squares) and the acquired output (crosses).

B. Two tone signal

Another set of experiments was performed using an input

signal formed by two tones of equal magnitude and phase, with

a frequency separation of 2 MHz, and measuring the upper and

lower third-order IM products. When the amplifier is working

in linear mode the IM products are negligible compared to

the non-systematic errors of the measurement setup, so that

model parameters extracted from acquisitions at low signal

levels are irregular. This is not specially inconvenient, because

the interest is in the range of high signal levels, where the

nonlinear effects are more relevant and model parameters

can be reliably extracted. For that reason, after rejection of

meaningless data, the experimental points represented in Fig.

6 belong to levels near the 1 dB compression point. In Fig. 6a)

the measured output of the fundamental tones and the third-

order intermodulation products (IM3) are represented with

marks. In the same figure the results of the extracted model are

depicted in solid line, reflecting a remarkable correspondence

with the acquired data. According to the previous discussion,

the difference between measured and calculated lower IM3

at −14 dBm is caused by setup limitation at low input

levels. On the contrary, the significant coincidence inside the

faithful range is also revealed when measured and predicted

asymmetries are compared, as it is shown in Fig. 6b).

C. 16-QAM signal with root-raised cosine pulses

Another type of sounding signal employed in the extraction

process has been a carrier at 915 MHz modulated in a

16-QAM format with a 2 Msymb/s train of symbols us-

ing root-raised cosine pulses. The acquired normalized in-

phase component and the corresponding waveform obtained
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VBW model prediction (solid line).
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with the extracted model are represented in Fig. 4b) (dots

and solid line, respectively). For comparison purposes, the

waveform obtained with the memory polynomial model is

also depicted in the same figure (dash-dot line). As a further

test, the extracted model was used to predict the spectrum

of the signal and the adjacent-channel power (ACP) in order

to be compared with other alternative measurements using

the conventional spectrum analyzer without the acquisition

facility. The results are plotted in Figs. 7 and 8 using marks

for the experimental data and solid lines for the modeled

output. It is worth to note that the model was first extracted

from an experimental acquisition of baseband samples and

served to predict the output signal spectrum. Although the

marks represent a measurement process independent of the

acquisition, the prediction is favorably compared in Fig. 7.

The second figure corroborates this outcome showing a good

match between the adjacent channel power measured and

calculated. The prediction is also able to estimate adequately
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the ACP asymmetry between upper and lower channels. As

a reference, the dash-dot line represents the results of the

memory polynomial model.

D. QPSK-WCDMA signal

Finally, a carrier at 915 MHz modulated with a WCDMA

signal compliant with the UMTS standard was employed

as input signal. In this case, the condition of four times

the symbol rate to correctly identify fifth-order parameters,

4× 3.84 Msymb/s, just exceeds the sampling rate, 15 Msa/s.1

However, the model has been able to extract adequately the

parameters, as can be verified by comparing the acquired

and modeled spectra, which are shown in Fig. 9 with dots

for the experimental data and solid line for the calculations

with the extracted model. Again, the present approach allows

1Considering that with respect to the modulation format the term chip

ultimately corresponds to a symbol, in this context we use the term symbol

instead of chip.

TABLE III

ACPR FOR A QPSK-WCDMA SIGNAL AT 3.84 MSPS.

Pin = −10 dBm.
Channel Measured (dBc) MP model (dBc) VBW model (dBc)

Upper -21.6 -20.4 -21.0

Lower -24.7 -25.2 -26.1

a reliable prediction of ACP and its asymmetry from the

acquired spectra, as can be confirmed in Fig. 10, in which the

measured data (triangles) and the model results (solid lines)

are represented.

An alternative method was used to measure the ACP with an

input level of −10 dBm and the measured data are presented

in Table III for the two adjacent channels. In the same table

the calculations with the proposed VBW model are shown.

In spite of the fact that the acquisitions were accomplished

beyond the limits of the theoretical accuracy, a satisfactory

agreement is revealed. For sake of comparison, the reference

MP model is also included, attaining equivalent results.

IV. FINAL DISCUSSION AND CONCLUSIONS

This work demonstrates a new Volterra approach to model

wideband amplifiers with nonlinear memory. The main char-

acteristic of the present behavioral model is that it has been

formally derived starting from a conventional nonlinear circuit

analysis and makes possible to propose the extension of its

structure to give the following equation

y(k) = h1x(k)+

∞
∑

m=1

∑

qm

h2m+1(qm)

m
∏

p=1

|x(k−qp)|
2x(k).

(18)

This expression has a remarkable difference with respect to the

memory polynomial model consisting in the absence of the so-

called “diagonal terms”. Although only the assumption of a

frequency independent response has been necessary to obtain

the new model, the huge number of coefficients associated to

the general discrete-time Volterra series has been drastically

reduced. The parameter order reduction can be quantified for

an example in which a fifth-order model with Q = 3 delays is

considered. Taking into account symmetry considerations, 244
coefficients are necessary with the general Volterra model. As

a reference, recall that in the MP model a total of 12 diagonal

coefficients are needed, and a total of 54 or 133 coefficients

form the model with the “near-diagonality” structural restric-

tion l = 1 or l = 2, respectively [3]. Instead, the present

model would need 21 coefficients. It is worth to observe that

a fair comparison between the previous models and the present

VBW would be only possible if some procedure of pruning

to optimize the number of coefficients were also included.

In relation to memoryless nonlinear systems, the introduced

analysis states that identification may be achieved by sampling

at the symbol rate, in accordance with previously published

results [17]. However, it is also demonstrated that in the case

of systems with nonlinear memory, an increase of n−1 in the

sampling rate is necessary to adequately identify nth-order

parameters.
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Another notable conceptual issue is the exhibited relation

of the model coefficients, hn(q), with respect to the adopted

sampling rate, revealing a somewhat involved structure with

terms of the same order showing different dependence on this

parameter, for example eqs. (15) and (17).

To contrast with the theoretical results, a commercial am-

plifier was characterized using four different types of wave-

forms and the coefficients of the model were extracted using

an experimental setup with acquisition facilities. The model

predictions were compared with the well-established memory

polynomial behavioral model and performance is very similar,

indicating the validity of the present procedure. Requiring a

search algorithm for an abundant number or delays, the ref-

erence behavioral model exhibits somewhat better prediction

of the output characteristics in the low power range. On the

contrary, the introduced Volterra-based wideband behavioral

method uses more delays without requiring a search process

and outperforms the polynomial model in the range of powers

where nonlinear effects are more significant.

An important requirement for a Volterra-based model is its

ability to manage different types of signal. It has been revealed

by observing the performance of the demonstrated model with

input stimuli as diverse as a two-tone signal, a 3GPP W-

CDMA signal and 16-QAM signal with rectangular and root-

raised cosine pulses. The results were very satisfactory in all

the cases. Because of space limitations, only the most relevant

preliminary results have been presented. At the moment, the

model is being tested with the experimental data in order to

evaluate consistence at diverse measurement conditions and its

ability to manage input signals with different bandwidths and

power levels.
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