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ABSTRACT

In this work, fretting fatigue tests available in the literature are modeled using the extended finite element method (X-
FEM). The aim is to numerically evaluate the stress intensity factors (SIFs) for cracks of different lengths emanating at
the end of the contact zone and to estimate the propagation life corresponding to each of the tests. This propagation life
is combined with the initiation life calculated analytically using a multiaxial fatigue criterion (Fatemi-Socie), following a
initiation-propagation approach for life estimation. Thepredicted lives are then compared with the reported experimental
lives. It is shown that the consideration of the crack-contact interaction through the numerical models tends to improve
the life estimation when compared with a fully analytical approach for the calculation of both initiation and propagation
lives.
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1 INTRODUCTION

In the analysis of the fretting fatigue life and other fatigue
problems, two stages are usually distinguished: initiation
of the crack and its subsequent propagation. In recent
years, methods have been proposed to predict the total
life as a combination of the life spent during the initiation
phase and the life associated with the propagation phase.
The point at which the initiation phase finishes and the
propagation phase begins cannot be precisely defined and
some authors propose a certain transition crack length on
a rather heuristic basis. In this work, we use a variable
initiation length model proposed in [1, 2], in which the
transition length is not previously fixed, but it depends on
the particular load conditions and material properties of
the analyzed problem.

The initiation life can be estimated by means of mul-
tiaxial fatigue criteria, such as the McDiarmid and the
Fatemi-Socie criteria, which are reported to give good
results [2]. The propagation life can be analyzed us-
ing a crack growth law of the type da/dN = f(∆K),
e.g. Paris law or other variations based on linear elas-
tic fracture mechanics assumptions (LEFM). The correct
calculation of the stress intensity factors (SIFs) plays a
crucial role when predicting the life associated with the
crack propagation stage. This can affect the estimated to-
tal life, especially for problems in which the propagation
life is a significant part of the total life, for example in
certain fretting problems in which the steep gradients in
the vicinity of the contact induce a rapid crack initiation.

On the other hand, the propagation stage in a fretting-
fatigue problem is substantially different from that of
plain fatigue only during the phase in which the crack
length is less than the characteristic dimension of the
contact zone. Analytical approaches have been used [1]
based on the weight function method for estimating the
SIF. However, these methods do not take into account the
influence of the crack-contact interaction (i.e. alteration
of the contact fields due to the crack presence) which can
be important at the beginning of the propagation stage.

For extracting realistic values of the SIFs including the
crack-contact interaction, the numerical modelling of
the problem becomes necessary and the finite element
method (FEM) or the more advanced extended finite el-
ement method (X-FEM) can be applied. To compute the
propagation life, the SIFs must be calculated for a rela-
tively wide range of crack lengths. This means that the
mesh generation process needed in the classical FEM is
very cumbersome, as it must conform to both relatively
small contact zones and cracks of small size in their vicin-
ity.

On the other hand, in recent years the X-FEM [3] has
proved to be a very efficient tool for the numerical
modelling of cracks in linear elastic fracture mechanics
(LEFM). Compared to the standard FEM, the X-FEM
presents great advantages for the numerical modelling of
cracks. The main advantage is that it is not necessary to
generate a mesh that conforms to the crack boundaries
(faces) to account for the geometric discontinuity. There-
fore only a single mesh, often generated easily, can be



used for any crack length and orientation, which enor-
mously expedites the computation process. In addition,
the method includes crack-tip enrichment functions that
provide accurate estimations of the SIFs when using do-
main independent integrals, such as theJ-integral or the
interaction integral.

In this work, the use of the X-FEM is combined with the
initiation-propagation model proposed in [1, 2] to assess
the total life of fretting fatigue problems. The models an-
alyzed correspond to 2D problems with cylindrical con-
tact pressed onto flat specimens subjected to a variable
bulk load. The predicted life is compared with the ex-
perimental results reported in the literature [4, 5] for fret-
ting tests with cylindrical indenters and flat specimens.
The propagation analyses have been performed by means
of the X-FEM implementation carried out by the authors
[6] in the framework of the commercial code ABAQUS.
The results show that the use of the X-FEM to predict
the propagation lives tends to improve the life estimation
when compared to an analytical approach using weight
functions.

2 COMBINED INITIATION-PROGAGATION
MODEL

The model used to estimate life in fretting was proposed
by the authors [1]. It is assumed that two different mech-
anisms act upon a material subjected to fretting: one dur-
ing the initiation phase and another during propagation.
The phenomena produced in either phase are considered
different and are dealt with separately, although the con-
sequence is the same: failure in the material.

Regarding the first phase, there is a calculation of the
number of cycles needed to initiate a crack along the tra-
jectory theoretically followed by it,Ni. This is done by
evaluating the stresses along the assumed crack path and
introducing them in the fatigue curve of the material. Due
to the complexity of the stress field (multiaxial and non-
proportional), a multiaxial fatigue criterion must be em-
ployed. In this case the well known Fatemi-Socie param-
eter is used.

In the second phase, the calculation is for the number of
cycles needed to propagate the crack from each point un-
til failure, using LEFM,Np. This is done by integrating
Paris crack growth law from each crack length to the fi-
nal length, where the fracture of the specimen is assumed
to occur. It will be assumed that the crack is initiated in
the limit of the contact zone and grows perpendicular to
the surface. It can be experimentally proven that these
suppositions are not far from reality [1, 4].

The sum of the two curves obtained,Ni plusNp, renders
the total life associated to each point, considering each
point as the crack length whose growth is governed first
by initiation and then by propagation. The minimum of
that curve is the most unfavourable point in it, which pro-
vides the life of the specimen. The position of the mini-

mum, called initiation length, marks the end of the initi-
ation and the beginning of propagation. This model sup-
poses that before the initiation length the crack is initiated
in each point before it has time to propagate. In contrast,
once the initiation length is surpassed then propagation
dominates over initiation and the evolution is predicted
using fracture mechanics.

3 FUNDAMENTALS OF THE X-FEM

The essential feature of the method is the enrichment of
the FE model with additional degrees of freedom (dof)
for the nodes belonging to the elements geometrically
intersected by the crack location (called enriched nodes
and elements, respectively). Thus, the discontinuity is
included in the numerical model without modifying the
discretization. Fig. 1 shows a portion of the mesh used in
this work, where the enriched nodes are marked. Nodes
located next to the crack faces (encircled nodes in Fig. 1)
are enriched with 2 additional dofs (one for each direc-
tion of the domain space) to represent the physical dis-
placement discontinuity by means of a Heaviside func-
tion H(x). The Heaviside function can only take the
valuesH(x) = ±1, depending on the relative position
of the enriched node with respect to the crack faces.
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Figure 1: Enriched nodes in the X-FEM.

The X-FEM formulation allows for a further type of
enrichment for those nodes that surround the crack-tip.
These nodes (marked as squares in Fig. 1 are enriched
with 8 additional dofs: four crack-tip functionsFj(x)
times the two directions of the domain space. The crack-
tip functions constitute the basis functions that represent
the first term of the LEFM displacement field, and conse-
quently, reproduce the classical stress singular behavior
of the LEFM. These functions are given by:
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with j = 1−4. Thus, for the 2D case, the extended finite
element approximation to the displacements at a point of
the domainx is:



uxfem(x) =

nnM
∑

i=1

Ni(x)ui +

nnH
∑

i=1

Ni(x)H(x)ai+

+

nnCT
∑

i=1

Ni(x)

(

4
∑

j=1

Fj(x)bi,j

) (2)

wherennM is the number of nodes in the mesh, andnnH,
nnCT are the number of Heaviside and crack-tip nodes,
respectively.Ni(x), ui are the standard shape functions
and dof of each nodei, respectively, andai, bi,j are
the additional dof associated with the Heaviside function
H(x) and the crack-tip functionsFj(x). Note that the in-
troduction of the crack-tip functions enhance the quality
of the calculated singular LEFM fields in the vicinity of
the crack-tip, yielding more accurate estimations of the
SIFs. This is a further advantage of the X-FEM over the
standard FEM [3].

The authors have implemented the X-FEM approach in
ABAQUS by defining a user element that allows 12
dof/node [6]. The combination of the powerful contact
procedures available in ABAQUS with the X-FEM im-
plementation has proved successful, as shown in the next
sections. The SIFs calculation has been done by means
of the path-independent interaction integral [7]. The in-
teraction integral features the same advantages as theJ-
integral for the SIF computation, like good accuracy and
little user intervention. In addition enables the extraction
of KI andKII for mixed-mode problems by using auxil-
iary fields. When the interaction integral is recast as an
equivalent domain integral, it has the following form:
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where (1) are the actual fields of the problem approxi-
mated by the X-FEM solution and(2) are the auxiliary
fields. These fields are chosen to be the asymptotic crack-
tip fields for pure mode I or pure mode II to computeKI

andKII respectively. In (3),x1, x2 are the local direc-
tions with respect to the crack-tip,δ1j is the Kronecker’s
delta andq is an arbitrary and continuous function which
must vanish at the outer boundary of the problem domain
and take the value 1 at the crack-tip. The SIFs of the
problem are then calculated as follows:

KI =
E′

2
I
(1,aux mode I) ; KII =

E′

2
I
(1,aux mode II) (4)

whereE′ = E for plane stress andE′ = E/(1 − ν2) for
plane strain. Theq-function used in this work is an an-
nular function defined by a radiusrq measured from the

crack-tip, in the same fashion as in [3]. Note that the ap-
plication of the interaction integral to the X-FEM results
must include the contribution of both standard elements
and enriched elements where∂q

∂xj
6= 0.

4 APPLICATION TO FRETTING-FATIGUE
TESTS

4.1 Experimental tests used for comparison

Fig. 2 shows a sketch of the fretting fatigue tests mod-
elled in this work. The test rig consists of two cylindrical
fretting pads contacting onto the flat surface of a speci-
men made of the same material. The normal loadP is
held constant during the test originating a contact region
of semi-widtha. A variable bulk stressσB is applied to
the specimen. Due to the coefficient of frictionf , a tan-
gential loadQ is generated on the fretting pad. The val-
ues of the tangential load and the bulk stress on the left
part of the specimen depend on the compliances of both
the specimen and the fretting pad support (in Fig. 2As

denotes the cross-sectional area of the specimen). Under
the loading conditions analyzed in this study, it is well
known [8] that the contact area is divided into an internal
stick zone of semi-widthc and two slip zones. The stick
zone has an eccentricitye measured from the center of
the contact zone (see Fig. 2).
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Figure 2: Sketch of the fretting fatigue tests with cylindri-
cal pads and loads transmitted.

Two sets of fretting fatigue tests are analyzed in this pa-
per. The first one, referred here as S&F [4], uses the ma-
terial Al2024 T351. Not all the tests found in [4] are
studied in this paper, only a sample including the whole
range of lives. In these tests the specimens thickness was
12.7 mm and the friction coefficient 0.65. Different radii
were used for the cylinders, varying between 127 and 229
mm. The test conditions are summarized in Table 1.

The second set of tests analyzed, referred here as A&N
[5], was performed with the aluminium alloy Al4%Cu,
which is very similar to the preceding one. As in the
previous group, only a sample including the whole range
of lives is studied. The specimens thickness was 12.5 mm
and the friction coefficient 0.75. In these tests the radii of
the contact pads were between 50 mm and 150 mm (see
Table 2). The Young’s modulus and Poisson’s ratio is the
same for both materials, 74.1 GPa and 0.33, respectively.
Finally, other parameters needed for the calculations are



shown in Table 3. The crack growth properties are given
for a stress ratio ofR = 0 and cycles/meter, MPa

√
m.

Table 1: Tests and lives reported by S&F in [4]

Test P RadiusR σBulk Q/P Nfailure
(kN) (mm) (MPa) (cycles)

1 (MAF1a) 5.454 229 111.7 0.43 238000
2 (MAF4x) 5.370 127 88.4 0.35 563946
3 (MAF5a) 7.226 127 101.9 0.31 545489
4 (MAF9x) 6.268 229 85.4 0.32 856524
5 (MAF14x) 5.293 229 81.0 0.31 867330
6 (MAF15x) 5.325 229 82.9 0.26 768364
7 (MAF21x) 7.153 229 97.9 0.24 463324
8 (MAF22x) 6.176 178 84.7 0.27 621442

Table 2: Tests and lives reported by A&N in [5]

Test p0 RadiusR σBulk Q/P Nfailure
(MPa) (mm) (MPa) (cycles)

1 157 50 92.7 0.45 1290000
2 157 75 92.7 0.45 670000
3 143 100 92.7 0.45 610000
4 143 50 77.2 0.45 1200000
5 143 100 77.2 0.45 610000
6 120 150 61.8 0.45 1230000

Table 3: Properties of alloys Al2024 T351 and Al4%Cu.

Material Al2024 T351 [4] Al4%Cu [5]

Tensile strength σu 470 MPa 500 MPa
Yield strength σy 310 MPa 465 MPa
Fatigue limit σf 230 MPa 206 MPa
Fatigue strength coefficient σ′

f
714 MPa 1015 MPa

Fatigue strength exponent b −0.078 −0.11
Paris law coefficient C 6.529 · 10

−11
1.74 · 10

−10

Paris law exponent n 3.387 4

4.2 Description of the numerical models

A 2D finite element model of the fretting fatigue tests
has been defined, as depicted in Fig. 3. The rectangle
2L × h corresponds to the specimen and has a length of
2L = 40 mm. The half thicknessh and the pad radiusR
is varied according to the test, as well as the friction co-
efficientf considering a Coulomb’s friction model. The
crack modelled with X-FEM is located at the right end of
the contact zone included in the specimen atx = a. Note
that the crack length is denoted asac. Vertical displace-
ments are constrained on the bottom line of the speci-
men. Further restrictions for displacements are applied at
nodes located on the shaded sides shown in Fig. 3. Using
multipoint constraints (MPCs) the displacements in the
x-direction of all nodes located atx = −L andx = L are
forced to be identical. Similarly, displacements at nodes
on the pad top are enforced to be equal. The application
of the forceT produces a bulk stress and the amount of
the tangential forceQ transmitted through the frictional
contact is controlled by the relative stiffness of the equiv-
alent springs. The equivalent compliances of the left por-
tion of the specimen and the pad support are replaced by
spring elements with stiffnessks andkp respectively, as
shown in Fig. 3. The spring stiffnesses have been varied
in order to set the different ratiosQ/fP for each test.

The solution is obtained in two steps. First, the normal
load P is applied. Rigid body motion of the specimen
is avoided by imposing a restriction in thex-direction of
nodes atx = −L and x = L. In a second step this
restriction is eliminated and a monotonically increasing
loadT that generates the bulk stressσB is applied. Since
the contact problem is non-linear, loads must be applied
in small time increments in order to obtain the correct
stress distribution.
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Figure 3: Geometry of the numerical model.
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Figure 4: Von Mises contour plot for the test 1 of the A&N
series for a crack length of 100 µm. Elements in grey are
the X-FEM enriched elements.

Fig. 4 shows an example of one of the analyses carried
out for a crack length of100 µm at the end of the contact
zone with the implementation of X-FEM in ABAQUS.
The locationx = a is estimated for each of the tests by
solving the corresponding FE problem (without a crack)
and verifying that the value is in good agreement with
the analytical estimation for the cylindrical contact on a
half-plane. In Fig. 4, it can be observed that the stress
distribution is both affected by the contact and the crack



presence. A detailed analysis of the crack-contact inter-
action is given in [9]. In order to determine the SIFKI as
a function of crack lengtha, a series of lengthsa has been
analyzed for each test without modifying the underlying
mesh thanks to the versatility of the X-FEM method. The
results are discussed in the following section.

4.3 SIF calculation

Fig. 5 shows the values of the SIFsKI obtained with X-
FEM and the Eq. (4). These results are compared to the
analytical estimation using the weight function method
[10]. In the weight function method (WF), the stress dis-
tribution along the crack location (solved for a configura-
tion with no-crack) is combined with a WFw derived for
a given geometry to yieldK:

KWF
I =

√

2

π

∫ ac

0

σx(x, y)w(y) dy (5)

For the case of a straight crack normal to the surface at
the end of the contact zone, the analytical stressesσx are
evaluated atx = a. These stresses must include the con-
tribution of the normal and shear contact loads plus the
bulk stress. In this work we have used the WFw for a
single-edge crack in tension (SENT) in a strip of finite
width [10]. In Fig. 5, the WF estimations show differ-
ences with the X-FEM values, and can have an over- or
underestimating trend. SIFs computed through X-FEM
include the effect of crack-contact interaction and, there-
fore, are assumed to be more accurate. These differences
have an influence on the predicted propagation life, as
shown below.

As expected, for very short cracks, the agreement be-
tween the X-FEM and WF solutions is very good because
the influence of the crack on the contact distribution is
small. For longer cracks, the differences between both so-
lutions are about 5%-10%. The cause of these differences
is, in the first place, the consideration or not of crack-
contact interactions. For much longer cracks, where this
interaction is not noticeable, the cause of the difference
is that the bulk stress is assumed uniform in the WF for-
mulation. Indeed, this stress is not uniform in the vicinity
of the contact, since the axial forces in the specimen are
not the same on both sides of the contact (part of the ax-
ial load is diverted through the contact elements as shear
load).

Another aspect that can be analyzed is the influence of
the sticking zone offsete due to the bulk stress. In [9],
it is verified that the eccentricitye tends to decrease as
the crack length increases due to a ”shadow” effect of the
crack. Therefore, the shear stress distribution used in the
analytical estimations ofKI should be corrected to ac-
count for this effect in a variable manner (depending on
the crack length). Fig. 5 show the differences whenKI is
computed through weight functions considering the full
offset of the sticking zone, i.e. no crack effect (e 6= 0),

and zero offset as for a sufficiently long crack (e = 0). As
expected, the calculations with a full offset effecte 6= 0
are in good agreement with the X-FEM values only for
very small cracks, whereas calculations with zero off-
set e = 0 tend to match the X-FEM values for longer
cracks. Note that for longer cracks the dominant source
of discrepancy is due to the non-uniform distribution of
the bulk stress, as explained above. From this analysis
it is clear that the variation of the eccentricity with crack
length cannot be predicteda priori without considering
the crack-contact interaction. Therefore the application
of the weight function technique introduces simplifica-
tions that are overcome by the numerical methodology
proposed here.
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Figure 5: Values of KI vs. crack length for (a) test 7 of
the S&F series[4] and (b) test 4 of the A&N series [5].

4.4 Life prediction and correlation with experimental
lives

Fig. 6 shows the predicted total life for each of the ana-
lyzed tests confronted to the experimental life reported in
[4] and [5]. Two series of results are presented, in which
the propagation life is calculated using the SIFs provided
by X-FEM and by the WF method, respectively. The
initiation life is practically the same in both cases and
is calculated as given in Section 2. It can be observed



that the results given by the X-FEM tend to give slightly
better results for most of the tests, which are closer to
the experimental life. Although the estimated total life is
similar for both approaches, the differences in the prop-
agation life are about 20% (note the logarithmic scale of
the plot). The fact that the initiation life can account for
an important fraction of the total life in fretting tests with
incomplete contacts does not lend itself to exhibit larger
differences. Of course, there are many other factors that
can affect the total real life that are not considered in the
X-FEM or WF models.
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Figure 6: Correlation between the estimated and experi-
mental lives.

It is interesting to observe that most results that are over-
estimated (underestimated) with the WF method are re-
duced (increased) with the X-FEM approach. Most of
the S&F results tend to be overestimated with the WF
method. However, X-FEM estimations tend to yield
larger values ofKI than with WF as shown in Fig. 5(a),
reducing the propagation life. For the A&N results, that
tend to be underestimated, lower SIFs computations via
X-FEM than with WF, Fig. 5(b), provide larger propaga-
tion lives.

5 CONCLUSIONS

In this work, propagation lives in fretting fatigue tests
with cylindrical contacts are calculated numerically using
an X-FEM approach. The advantage of using a numeri-
cal procedure is that the analyses incorporate the crack-
contact interaction effects that cannot be included in ana-
lytical approaches, such as the weight function method.
The use of the X-FEM makes this study feasible, be-
cause no remeshing is needed to study different crack
lengths parametrically. This enables to compute the SIF
as a function of crack length (an interaction integral is
used for this purpose). The propagation lives are com-
bined with an estimation of the initiation life following

a variable-length initiation-propagation model. For a se-
ries of experimental tests reported in the literature, re-
sults show that the use of X-FEM to predict the propa-
gation phase tends to improve the life estimation when
compared to the weight function method.
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