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Abstract
In this paper we present a model for the realistic simulation of the mechanical behavior of cloth based on the Finite
Elements Method. The use of this method in a material with the elastic properties of cloth has some problems of
convergence to which we propose a solution in this work.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Three–Dimensional Graphics and Realism]:
Animation

Keywords: Animation, Cloth, FEM

1. Introduction

There can be distinguished two different types of models for
cloth simulation, discrete models and continuous models.

In the discrete models cloth is represented by a
set of particles with mass that are linked through
energy equations, as is the case of particle systems
[BHW94, EWS96, BW98], or those based on masses
and springs [Pro95, VMT97, CK02, BMF03, CS04]. These
models produce very good visual results, which is usually
enough for some industries such as cinematography and ani-
mation, although they have some drawbacks, like:

• A simplified use of the mass distribution, leaving out dy-
namic considerations.

• A linear treatment of cloth properties, except in [CS04],
not considering the hysteresis processes.

• A simple model for the weft of the knitted fabrics, not
considering the anisotropic character of some wovens.

• There is no consideration of the singularities in the com-
position of garments: foldings, seams, lining fabrics, etc.

• Simulation parameters are adjusted in order to obtain the
expected visual results, in spite of using values obtained
in dating test.

In the fashion industry, competence has raised the ne-
cessity of tools that allow to reduce costs in the productive
processes [Com03, eT05]. In this sense some solutions have
been proposed for allowing a rapid prototyping in the design
phase [Fas, RI05, Opt05]. For the use in the textile industry

the results of garment simulation must be based in the me-
chanical behavior of fabrics in order to obtain results for a
later analysis. There have been proposed some methods that
apply physical theories considering the cloth as a continuum,
the so–called continuous models.

Within this category of continuous models is framed this
work, in which we apply the Finite Elements Method (FEM),
highly used in diverse engineering disciplines [ZT93]. We
propose solutions to the different problems that its use
presents in the analysis of materials with the characteristics
of clothes, such as [CK02, VMT02, CS04]: high computing
times and the lack of stability of FEM when applied to thin
materials supporting compression forces.

The contribution presented in this work is, on one hand, to
solve the aforementioned problems and, on the other hand,
to apply a more realistic physical model that allows to obtain
results that can be applied in the textile industry sector, spe-
cially in the development of prototype validation tools in the
fashion design sector.

Section 2 shows the main works in computer graphics re-
lated to cloth simulation using FEM. Section 3 explains the
properties that have the clothes when they are considered as
a continuous medium. We present a necessary introduction
to FEM in section 4 to be able to understand the notation
used and our contributions. In section 5 we give a solution
to the problems that usually appear in cloth simulation with
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FEM. Finally we present some results in section 6 and our
conclusions in section 7.

2. Related works

The use of FEM in cloth simulation has been done basically
in two fields: textile engineering and computer graphics.

In textile engineering the main purpose is the analy-
sis of the cloth at microscopic level (fibres and wefts)
[CCCS91, CG95, SL03]. These studies aim at knowing the
mechanical behavior of clothes when facing external actions.
In this sense the graphical simulations serve only as a visual
support of the results. The most studied behavior is ”drap-
ingt’t’.

In computer graphics, instead, a macroscopic treatment
of the cloth is done. In this area, one of the first works is
that of Terzopoulus et al. [TPBF87], which make a physical
treatment of deformable models as a continuum. The model
presented makes uses the elasticity theory and the Lagrange
movement equations, evaluatee with finite differences.

Works using FEM are mainly related to behavior
simulation of flexible materials and deformable solids
[MMDJ01, GHDS03, MNGA04, MG04, ITF04]. Although
these works could be applied to cloth simulation, they do
not have a specific treatment for them.

Following, a revision of those works that have made a
real use of FEM in cloth simulation in the field of computer
graphics is exposed.

The first work is that of Eischen et al. [EDC96], which fo-
cuses specially on curvature starting from the experimental
results of Kawabata [Kaw80], founding the displacements
analysis in differential geometry. They propose a mecha-
nism to overcome the problem of the influence that the fi-
nite elements deformation rate has in the convergence of
the method. They discretize the cloth as a mesh of linear
quadrilateral elements, without facing the problem of irreg-
ular meshes and the local curvature. Their results consider
only the draping behavior and they do not make a nodal pon-
deration of the mass, neither mention the damping treatment,
and for this reason the system presents a harmonic behavior.

In [TWZC99], the authors make a treatment of the non
linearity of cloth elasticity, with a special consideration on
the global curvature. They discretize the cloth with triangu-
lar finite elements and they simplify the model by neglecting
planar deformations and focusing on the draping behavior of
the cloth. They do not address the problem of buckling, nei-
ther the dynamic behavior.

In the work of [EKS03] an analysis of the cloth as a vis-
coelastic material is done. To our concern this is the only
work that shows good visual results. They make an equitable
mass distribution between all the nodes. They use linear tri-
angular elements, which makes it not possible to compute
the local curvature. Global curvature forces are calculated

without the FEM. They do not establish a relation between
acceleration and displacement that allows a correct analysis
of the nodal damping coefficients, making use of an energy
dissipation based technique.

3. Clothes as a continuum

Clothes have some particular properties [Hu04]:

• Anisotropy of the elastic properties, in the weft and warp
directions.

• High deformation rate under relatively low loads.
• Non linear elasticity.
• Hystheresis effects in deformations.
• Reversible plasticity.
• Low compression rate.

The dynamic behavior of the clothes will be determined
by the Lagrange equation particularized for the contin-
uum [Gol50], assuming the application of non conservative
forces, so:

∂V(~r)
∂~r

+ γ
(

∂~r
∂t

)
+µ

(
∂2~r
∂t2

)
= ~Fext (1)

where~r is the position vector of a point of the cloth mesh,
V(~r) is the elastic potential,γ is the damping density,µ is the
mass density and~Fext are the applied external forces.

By applying the elasticity theory [LL59], the deforma-
tions produced in the cloth can be expressed in terms of the
metric tensor. For the in–plane deformations:

εi j =
1
2

(
δui

δx j
+

δu j

δxi

)
(2)

whereui andu j are the displacements in the cloth surface,
andεi j means the deformation. Wheni = j the deformation
is an elongation, whereasi 6= j means a shearing. Non pla-
nar deformations are obtained by applying the curve theory
[dC74], by the following expression:

κi j =
δ2ui

δxiδx j
(3)

When i = j the deformation is a curvature, whereas for
i 6= j it is a torsion.

4. Finite Elements Method

The FEM allow to find the solution of a differential equa-
tions system representing a model of a physical problem in
a continuous medium [ZT93].

Since equation 1 is a particular case of the variational
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principles [Gol50], we can apply the FEM to the cloth con-
sidered as a continuous medium.

The method can be resumed as follows:

1. Discretization of the medium in geometrical units called
finite elements, configuring a topology (a mesh).

2. Definition of ashape functionthat represents the physical
behavior of the finite elements. Shape functions are inter-
polation functions based on control points called nodes,
and whose expression is conditioned by the geometry
of the finite element type and its number of nodes. The
shape function allow to approximate any dynamic mag-
nitude of the element by the value that this magnitude has
in its nodes.

3. Assembly of the equations associated to the finite ele-
ments in order to deal with the whole domain.

4. Application of the contour conditions, the initial condi-
tions and the loads.

5. Simultaneous resolution of the equation set in order to
obtain the magnitude values at the nodes.

The displacements field of a node is computed according
to the following equation:

u =
n

∑
i=1

Niai (4)

whereu is the displacement of any point of the element,
Ni is the shape function andai is the displacement of the
nodei of the element.

By replacing equation 4 in 2, and particularizing it for
a generic node, we obtain a relation between deformations
and nodal displacements associated to the in–plane defor-
mations:




εix
εiy
εixy


 =




δNi
δx 0

0 δNi
δy

δNi
δy

δNi
δx




[
aix
aiy

]
(5)

whereaix andaiy are the displacements of thei node.

The relation that appears in equation 5 can be expressed
asε = Biai , whereBi is called theoperator matrix. For nodal
rotations and the curvature deformation this matrix is:

Bc
i =




δ2Ni
δx2 + δ2Ni

δy2 0 0

0 δNi
δx 0

0 0 δNi
δy


 (6)

Equation 1 particularized for FEM can be expressed in a
matricial manner as:

K ·U +C ·U̇ +M ·Ü = Fext (7)

whereK is thestiffness matrix, U is the matrix containing
the nodal displacements,C is thedamping matrix, U̇ is the
velocity matrix,M is themass matrix, Ü is the acceleration
matrix andFext is the matrix of external forces.

Each element is associated to a local or intrinsic reference
system, withξ, η andζ components (see figure 1). The posi-
tion of the nodes remains constant in the intrinsic reference
system.

Figure 1: Deformed Finite Element.

In order to relate the local reference system with the
global one (that of the system), with~ex, ~ey and~ez compo-
nents, theJacobianmatrix is used:

J =




δx
δξ

δy
δξ

δz
δξ

δx
δη

δy
δη

δz
δη

δx
δζ

δy
δζ

δz
δζ




where




x
y
z


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n

∑
i=1

Ni




xi
yi
zi


+

n

∑
i=1

Ni
ζ
2
~V3i (8)

and where~V3i is a normal vector to the element particu-
larized for nodei.

All the matrices that participate in equation 7 are condi-
tioned by the displacements that appear at the nodes of the
elements which compose the cloth mesh. We represent these
displacements in the displacements matrix:

Ui =
[

ui vi wi θix θiy
]T
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whereui , vi andwi are the displacements in directions~ex,
~ey and~ez respectively, andθix andθiy are the rotation angles
around~ex and~ey.

The velocity matrixU̇ is made up of linear and angular
velocity components. The same applies to the acceleration
matrixÜ , with respect to the accelerations.

The stiffness matrixK “contains” the material properties,
through theYoungmodule (E) and thePoissoncoefficient
(ν) [LL59]. Their components are obtained according to the
equation:

Ki j =
∫ ∫

BT
i DeB j ϒ |J|dηdζ (9)

whereDe is the elasticity matrix of elemente which con-
tains the nodesi and j. ϒ is the cloth thickness and|J| is the
Jacobian.

The mass matrixM contains information about the inertia
of the medium, whereas the damping matrixC is responsi-
ble for stabilizing the system towards equilibrium positions,
having their components the following expressions:

Mi j =
∫ ∫

NiρeNj ϒ |J|dηdζ (10)

Ci j =
∫ ∫

Niµ
eNj ϒ |J|dηdζ (11)

whereρe is the mass density andµe is the damping den-
sity, associated to the elemente to which nodesi and j be-
long.

5. Proposed model

As we have already mentioned, we propose a model based
on the treatment of the cloth as a continuous medium, where
the dynamic is analyzed with the FEM, to which we impose
some modifications in order to take into account the particu-
lar properties of the clothes.

5.1. Shape functions

In order to discretize the cloth dominium we apply a triangle
mesh generation technique based inDelaunay[MTTW95].
This technique is adequate, together with the FEM, if the
shapes and sizes of the triangles satisfy certain restrictions,
mainly those due to the deformation adjust criteria that we
shall see in section 5.5.

Each triangle represents one finite element in which ver-
tices we put nodes that we call “main nodes”. We put other
three nodes at the middle point of each edge of the finite
element, having thus a total of six nodes (see figure 1).

The expressions for the shape functions are:

N1 = L1 (2L1−1) N2 = 4L1L2

N3 = L2 (2L2−1) N4 = 4L2L3

N5 = L3 (2L3−1) N6 = 4L3L1

whereL1 = 1−ξ−η, L2 = ξ andL3 = η.

5.2. Dynamics

We consider the cloth has directional isotropy, which main
directions are associated to the weft and the warp [Hu04].
For this reason, the elasticity matrices that we use for com-
puting the stiffness matrix (equation 9) are, for planar defor-
mations:

De
p = A




Etr
Eur

Etr
Eur

νur 0
Etr
Eur

νur 1 0
0 0 Q


 (12)

where

A = Eur
(1−νtr

√
s)(1+νur

√
s)

Q = (1−νtr
√

s)(1+νur
√

s)

and whereEtr is the Young module for the weft,Eur is the
Young module for the warp,νtr is the Poisson coefficient for
the weft andνur is the Poisson coefficient for the warp.

The elasticity matrix for non planar deformations is:

De
c = H




1 sνur 0
sνur 1 0

0 0 1−νtr


 (13)

where

H =
Etr ϒ3

12(1−νtr )(1−νur)

Since the elasticity matrix parameters (Etr , Eur, νtr , νur)
change with the cloth deformation [Kaw80], there are hys-
terical behaviors in the cloth, making it necessary to deal
with this variation in some way. We use two and three–order
exponential curves in order to give a good approximation to
the hysteresis [Lah02].

We solve the instability produced by the little oscillations
in the displacements, consequence of the non–harmonic
characteristics of equation 7, by estimating the value of cons-
tantµe of equation 11 from data appearing in [Gid04]:
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µe = α |K
e|

ρe (14)

whereα is a constant relate to the elastic properties of
medium , and|Ke| is the determinant of the stiffness matrix
associated to the planar deformations of an elemente.

The distribution of terms in each mass submatrix[Mi j ], in
order to include the inertial terms due to the node rotations,
is:

[Mi j ] =




Mi j 0 0 0 0
0 Mi j 0 0 0
0 0 Mi j 0 0
0 0 0 I jx 0
0 0 0 0 I jy




where componentsMi j are the terms obtained from equa-
tion 10, andI jx andI jy are obtained from the following equa-
tions:

I jx =
∫ ∫

M j j (y2
j +z2

j )dydz

I jy =
∫ ∫

M j j (x2
j +z2

j )dxdz

wherex j , y j andzj are the global coordinates of pointj.

5.3. External forces

The external force matrix for each node is formed with the
components of the total resultant force and the rotation mo-
ments caused by this force:

Fi =
[
Fix Fiy Fiz Mθx Mθy

]T

We distinguish two types of forces depending on the con-
text of application in the cloth: elemental and nodal.

If the force is distributed along the whole element, ele-
mental force~Fe, as is the case of air friction, we determine
the contribution of this force has in the nodes with the follo-
wing expression:

Fi =
∫ ∫

Ni ~Feϒ |J|dξdη (15)

The rotation momentums are obtained with the ex-
pression:

Mθi =−Eϒ3

12
δui

δx j
(16)

For nodal forces, the components of the total resultant
force are obtained directly, and their momentums are com-
puted according to~Mi =~r i ×~Fi .

5.4. Curvature

The curvature deformation can be produced whether by
forces located out of the cloth surface or by compression
forces at the cloth surface.

In our model we distinguish between local and global cur-
vature.

Local curvature is the one that appears at the closed sur-
face of the finite elements, and can be measured as a con-
sequence of the type of finite element that we use, as the
shape functions are quadratics. Starting from equation 3 and
particularizing it for the FEM we have:

κii =
∂2Ni

∂x2
i

ui

which is the local curvature rate we use to evaluate the
Bc

i (1,1) term of the matrix from equation 6.

The global curvature appears at the connection between
elements. The reaction forces of the elements that make up
the curvature are forces of a global scope that we estimate
from Kawabata curvature dating tests [Kaw80], throughout
an extrapolation process from data obtained by simulating a
20×5 cm cloth by submitting it to the dynamic restrictions
of a real cloth.

An effect known asbuckling, that appears when compres-
sion forces are applied at the cloth surface, is the bending
produced as a consequence of the non–linearity of the cloth
elastic properties, and in a minor way of the trellising and
the low compression rate of the cloth. In order to consider
this effect we separate the forces which cause the curvature
into pure bending forces and compression forces (buckling
generators). To determine the compression forces we project
the external forces in the plane defined by the three main
nodes of the element. The damping forces are those found
in this plane. Then, we check if they have broken the criti-
cal value established by theEuler loadrelation [KJL04], in
order to distribute the remaining value among the nodes, in-
troducing an almost local force that avoids the value of the
deformations associated to the buckling to be big and to pro-
duce divergence in the resolution of the system. If it is not
the case, the forces are coupled to the rest of forces acting
upon the nodes.

5.5. Distortion

FEM presents some problems when it is applied to low rigid-
ity materials, as is the case of clothes. Finite elements, under
little loads, are highly deformated, thus making relevant the
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errors produced in the approximation and turning the sys-
tem inestable and close to diverge [SL03]. There are several
geometrical bounding techniques in the elements in order to
avoid this “distortion” [Ede01].

We have determined empirically that the operating ranges
in our models are:

• The internodal distance has to be comprised between 0.6
and 1.3 times the initial distance.

• The angle between edges has to be comprised between
30◦ and 85◦.

When the element breaks the limit values of internodal
distance, we make the following:

1. We rectify the node positions to a non distortion situation.
2. We evaluate the displacement increment between the rec-

tified and the distorted positions. This increment repre-
sents the displacement excessU ′.

3. With this displacement excess we introduce internal
forces according to the relationK ·U ′ = F , which are
coupled to those the nodes already have.

In the case of distortion being due to angular excess be-
tween edges, we operate in an analogous manner but intro-
ducing moments instead of forces.

In the case of the distortion being much higher than the
established limit values (> 50%), we reduce the system in-
tegration time step in order to obtain more adjusted values,
going back to the predefined step when we get past the time
instant in which the distortion was produced in a number of
applied steps.

6. Results

In figure 2 we show two images obtained from the simulation
of a poncho shaped cloth wore by a dummy with dress–up
pose. The properties of woven used in both simulations are
shown in table 1.

woven
silk (56%)
poliester (44%)

mass density 70g/m2

νtr 0.125

νur 0.117

Etr 3657 N/m

Eur 3267 N/m

thickness 0.33 mm

Table 1: Properties of the simulated woven.

In order to treat the collisions we distinguish between de-
tection and reaction. The detection process is founded in the

(a) Detail of curvature with hysteresis.

(b) Cloth with a complex contour.

Figure 2: Images from two animations.

calculation of relative distances and including volumes, in a
similar way as that described by Furhmannet al. [FSG04],
but with some improvements in collisions response due to
the operational versatility of FEM when evaluating the dy-
namic variables of any point of a given element. The detec-
tion tolerance that we use is based on a kinematic minimal
distance. During the detection there appear some collisions
between the cloth and the dummy (a non deformable solid),
and between the cloth itself (selfcollisions).

Once the collision is detected, we operate according to
the particle collision dynamic [Gol50], extrapolating the dy-
namic variables and the masses of the collision points from
the values these magnitudes have at the nodes, following
equation 4. We consider the collision to be inelastic, with
a disipative energyEdis = ϑv2

rel , with ϑ depending on the
nature of the collision (we use a value of0.13 for selfcolli-
sions and0.45 for the rest), beingvrel the relative velocity
between the points that collide.

As for the integration method, we use a fourth order
Runge–Kutta with adaptative time step [AP98]. The step
variation is conditioned not only by the error rate which
determines the integration step, but also by the adjustments
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made in the collision management and the control of finite
elements distortion.

Simulations have been made on a PC computer with an
AMD Athlon XP 2600+ processor and a 400 MHz bus, ob-
taining the results shown in table 2.

Animation a b

step 10µs 10µs

time/frames 14.67 s 17.32 s

elements 3325 4712

distortions 300 174

bucklings 285 57

collisions 200 391

size 1.10m×1.10m 1.10m(φ)

Table 2: Comparative table of the simulations.

7. Conclusions

The proposed model presents the following features:

• Considers curvature deformation, whether local of global.
• Considers the directional isotropy of the cloth properties

and its hysterical behaviors.
• Considers the buckling effect.
• Avoids distortions produced in the results when reaching

high deformation levels.
• Considers the relation between mass and rigidity, in

agreement with the damped dynamic processes.
• Considers the distribution at the nodes of the forces ex-

tended to each element.
• Allows for the discretization of clothes with complex geo-

metry, due to the use of triangular geometry finite ele-
ments and quadratic shape functions.
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