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Abstract 
In this paper, two algorithms for the segmentation of tumors in 
soft tissues are presented and compared. These algorithms are 
applied to the segmentatiion of retroperitoneal tumors. Method: 
The algorithms are based on a continuous convex relaxation 
methodology with the introduction of an accumulated gradient 
distance (AGD). Algorithm 1 is based on two-label convex 
relaxation and Algorithm 2 applies multilabel convex relaxation. 
Results: Algorithms 1 and 2 are tested on a database of 6 CT 
volumes and their results are compared with the manual 
segmentation. The multilabel version performs better, achieving a 
91% of sensitivity, 100% of specificity, 88% of PPV and 89% of 
Dice index. Conclusions: To the best of our knowledge, this is the 
first time that the segmentation of retroperitoneal tumors has been 
addressed. Two segmentation algorithms have been compared and 
the multilabel version obtains very good results. 

Introduction 
The segmentation of tumors in radiological images is a 
challenge. Methods based on active contour are widely used 
for tumors in liver [1], lung [2-4], prostate [5-7] and lymph 
nodes [8,9] in axillaries and pelvic regions. Besides, active 
curve evolution can lead to local optima of the 
minimization energy function and suffers from high 
sensitivity to initialization. Graph cut techniques have the 
advantage of guaranteeing global optima almost in real 
time. Thus, these techniques have been successfully applied 
in recent works [10][11]. In [12-16] the authors also applied 
graph-cut for the segmentation of lung, brain and prostate 
tumors. Also, Zhang et al. [17] used it for cervical lymph 
nodes on sonograms and Feulner et at [18, 19] for lymph 
node detection in the mediastinum. In this paper 
retroperitoneal masses are segmented. They are a diverse 
group of benign and malignant tumors that arise within the 
retroperitoneal space but outside the major organs in this 
space. Among the retroperitoneal masses, 70%–80% are 
malignant [20]. The retroperitoneal space is hidden toward 
the back of the abdomen where organs are quite mobile. 
Thus, retroperitoneal tumors do not have an established 
pattern and can grow quite large, even moving organs out 
of their path, before being discovered. Due to these 
characteristics, well-known methods for the automatic 
segmentation of tumors does not usually perform well when 
they are applied to segment this kind of tumors. 
In this paper, two algorithms for segmentation of 
retroperitoneal tumors are proposed and compared. The 
proposed algorithms are based on continuous convex 
relaxation method [21-24] which shares the advantages of 
both active curves and graph cuts. Some recent studies [25] 

showed that, in 3D, convex relaxation approaches 
outperform graph cuts in terms of speed and accuracy. In 
[26] is used to segment the carotid in 3D MRI images, in 
[27] to extract myocardial scar tissue, in [28] to segment the 
femoral artery lumen and outer wall surfaces,  in [29] for 
lateral ventricles in preterm neonates and in [30,31] to 
delineate 3D prostate. In these algorithms the accumulated 
gradient distance is introduced as novelty in the 
minimization of the energies. A preliminary version based 
on two labels  was published in [32] and tested with only 
three CT images. A second algorithm has been developed, 
that is based on a multilabel convex relaxation. 

Methods 
In this paper, a comparison between two algorithms for the 
segmentation of retroperitoneal tumors using a continuous 
convex relaxation methodology has been carried out. The 
two algorithms consist of four stages: a pre-processing step, 
a second stage to compute the accumulated gradient 
distance image, a continuous convex relaxation stage and a 
final post-processing stage to improve the segmentation 
results. The first algorithm implements a two-label 
segmentation. The second one uses a multi-label strategy to 
implement the segmentation. 

Preprocessing stage 

This stage is common for the two algorithms and it 
implements a contrast enhancement operation. First, the 
tumor is manually segmented in one CT slice. The manual 
segmentation does not need to be performed on a specific 
slice, only on a slice where the tumor is included. 
Furthermore, this segmentation does not have to be very 
precise. The same manual segmentation was used for the 
two algorithms. This manual segmentation is employed to 
estimate the mean Hounsfield level inside the tumor. Then, 
an exponential law is applied to all the slices within the CT 
volumes (see Eq. 1). According to the parameters of this 
exponential law, values close to the mean inside the tumor 
will have an approximate linear mapping whereas those 
values far from the mean will be closely saturated to 0 or 1.  

(1) 

In Eq. (1) ov is the Hounsfield gray level of the original 
image and level is the average Hounsfield value inside the 
tumor in the slice manually segmented.  
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Computation of the Accumulated Gradient Distance 
Volume stage 

The second step that both algorithms share is the 
computation of the accumulated gradient distance for each 
CT volume. In this stage the gradient of the volume GV is 
first computed in the three directions x, y and z. Once the 
gradient has been obtained we proceed to compute the 
accumulated gradient distance volume (AGDV) or gradient 
distance from the manually segmented tumor in one slice to 
the rest of the volume. To do this, the generalized distance 
function algorithm (GDF) described in [33] is used.  
Let )( pN   be the 13 neighbors in the 26-connected

neighborhood of p which are scanned before p in a raster 
scan. Similarly, )( pN   are the 13 neighbors of p which are

scanned before p in an antiraster scan. Let GV be the 
gradient volume computed in the previous step. And let 

)()(),( qGVpGVqpC f   be the associated cost of two 

neighboring voxels p and q. The GDF algorithm proceeds 
as follows: 

1) Initialize the accumulated gradient distance, fd , of 

pixel p as: 0)( pd f  , if p belongs to the tumor in the 

manually segmented slice and )( pd f  otherwise. 

2) Iterate until stability, for each pixel p:

Scan image in raster order: 
  .)(),,()(min),(min pNqqpCqdpdd ffff

 (2) 
Scan image in anti-raster order: 

  .)(),,()(min),(min pNqqpCqdpdd ffff
     (3) 

The accumulated gradient distance provides low values in 
the tumor area and high values outside the tumor. Figure 1 
illustrates the preprocessing and the information contained 
in the Gradient Distance Image. 

(a) (b) (c) 

Figure 1. a) A slice of the patient before the enhancement 
operation, b) same slice after the contrast enhancement operation, 
c) Gradient Distance Image.

Two-label Segmentation (Algorithm 1) 

In this stage, the accumulated gradient distance image 
(AGDV) will be utilized to carry out the segmentation. In 
the two algorithms, the segmentation has been implemented 
using the fast continuous max-flow method (CMF) 
proposed by J. Yuan et al [21][23].  In the two-label 
implementation [32], the continuous convex relaxation 
algorithm solves the segmentation as the following 
minimization problem: 

   
 


 dxxuxCdxxCxudxxCxu ts

xu
)()()()()())(1(min

1,0)(
(4) 

Where sC and tC are regional terms,  1,0)( xu  is the

labeling function and C(x) is a penalty function. The most 
right term of Eq. (4) is the regularization term and )(xu

is the absolute gradient of the labeling function u(x), thus 
indicating the boundary of the segmented region.  
If the minimization problem is well defined, the cost 
function )(xCs  should take high values outside the tumor 

and low values inside the tumor. Similarly, )(xCt  should 

take low values outside the tumor and high values inside 
the tumor.  
In our implementation, the terms sC  and tC are computed 

using the information provided by the TAGD as follows: 

(5) 
The constant 0.16 in Eq. (5) has been fixed experimentally. 
It corresponds to the average mean value of AGDV outside 
the tumor for the different cases that have been analyzed. 

Multi-label Segmentation (Algorithm 2) 

In Algorithm 2, the AGD 3D volume is thresholded in order 
to form a mask to be applied to the preprocessed image. 
The resultant 3D image after applying this mask to the 
preprocessed image is called TAGD (Thresholded by 
Accumulated Gradient Distance) image and it is used as 
input to the continuous convex relaxation segmentation 
Differently to the two-label algorithm, in the multi-label 
segmentation algorithm the minimization function in Eq. 
(4) is substituted by: 

  
  






n

i
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xu
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1

1,0)(
)()()())()((min  (6) 

s.t. )()(...)()(1 110 xuxuxuxu nn    

where  1,0)( xui  and the regional terms )(xi  must take 

low values within region iI . As retroperitoneal tumors are 

usually composed by different ranges of gray levels, several 
labels are required to select them. Some experimental tests 
were done and the best option was to use four labels: one 
for the background, one for different tissues not belonging 
to the tumor , and two labels for the tumor. In this sense, 

)(xi  was defined as: 


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(7) 

TAGD image is a 3D gray-level image where ideally, the 
tumor values are around μ, where μ is the average gray-
level of the tumor and σ its standard deviation within the 
manually segmented slice. After the minimization, the 
tumor will be concentrated in the central labels, more 
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specifically, in labels 2 and 3 and labels 1 and 4 will 
include background or other tissue values.  
The penalty function in Eq. 6 is computed as follows: 

)(1
)(

xTAGDa

b
xC


 ,    ba 0,   (8) 

where parameters a and b control the weight of the gradient 
in the penalty function C(x) and )(xTAGD  is the 

absolute value of the gradient of the TAGD volume. The 
values for a and b, obtained experimentally, are 100 and 2 
respectively.  
 

Results 
The algorithm 1 and the algorithm 2 have been 
programmed in MATLAB R2011a (The MathWorks Inc. 3 
Apple Hill Drive. Natick, MA 01760-2098, US) and have 
been validated using 6 CT images of retroperitoneal tumors, 
each one composed by 200 512x512 slices. Some objective 
performance measurements have been calculated: 
Sensitivity (Se), Specificity (Sp), Positive Predictive Value 
(PPV), Jaccard index and Dice index. Both Jaccard and 
Dice coefficients measure the greement between two sets in 
terms of false positive, false negative, true negative and true 
positive counts. In our approach, true positives are those 
voxels classified as tumor both by the algorithm and the 
specialist. False positives are those voxels classified as 
tumor by the algorithm but not by the specialist. True 
negatives are voxels classified as not belonging to the 
tumor both by the tool and the specialist. Finally, false 
negatives are voxels classified as not belonging to the 
tumor by the algorithm but classified as tumor by the 
specialist. Table 1 shows these coefficients for the two 
algorithms in the 6 cases analyzed. 
 

 

 

 
Table 1 Performance of Algorithm 1 and Algorithm 2 

 
 
 
 
 
 
 
 
 

 
 
As shown in Table 1, Algorithm 1, which uses a two-label 
scheme, did not select tumors correctly in 2 out of the 6 
cases analyzed, whereas Algorithm 2 (multilabel) selected 
properly the tumors in all the cases. In Fig. 1 comparisons 
between segmentation results obtained with Algorithm 1 
and Algorithm 2 with respect to the manual segmentation 
(in red) are shown. 
 

Figura 2. Example of segmentation. Left: Result of Algorithm 1 
(in blue) Right: Result of Algorithm 2 (in blue). In red, manual 

segmentation provided by the specialist. 

 

Conclusions 
In this paper the comparison and validation of two 
algorithms for semiautomatic segmentation of 
retroperitoneal tumors is presented. Both algorithms are 
based on continuous convex relation optimization. The first 
one uses a two-label implementation and the second one 
follows a multilabel scheme. Both algorithms have been 
assessed using 6 real cases (200 512x512 CT slices) and 
compared to their manual segmentations were provided by 
one specialist (used as ground truth segmentations). Several 
parameters such as PPV, Sensitivity, Specificity, Jaccard, or 
DICE coefficients were computed to quantify the 
performance and accuracy of both algorithms. The 
multilabel version performs much better than the single-
label version, achieving a 90% of Sensitivity, 100% of 
Specificity, 88% of PPV, 80% of Jaccard index and 89% of 
Dice index. 
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 Algorithm 1 Algorithm 2 

Case Se Sp PPV Jaccard mDice Se Sp PPV Jaccard mDice 

1 0 0 0 0 0 0,96 0,99 0,81 0,78 0,88 

2 0,86 0,99 0,90 0,79 0,88 0,96 0,99 0,93 0,89 0,94 

3 0,74 0,99 0,88 0,68 0,80 0,86 1 0,89 0,77 0,87 

4 0,95 0,99 0,62 0,59 0,74 0,78 1 0,87 0,69 0,81 

5 0,97 0,99 0,63 0,62 0,76 0,94 1 0,92 0,87 0,93 

6 0,003 0,99 0 0,002 0,005 0,93 1 0,87 0,82 0,90 

Mean±Desviation 0,59±0,46 0,83±0.40 0,51±0,41 0,45±0,35 0,53±0,41 0,91±0,07 1±0,01 0,88±0,04 0,80±0,07 0,89±0,05 
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