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A B S T R A C T

Shot peening (SP) is frequently used as a palliative measure against metal fatigue in many engineering
components. The performance of this surface treatment depends on different factors including the material,
shape and loading conditions of the component, as well as process parameters. Fatigue improvement due to
SP depends to a great extent upon the in-depth compressive residual stress profile produced in the specimen.

In this work, we study the optimum shape for a residual stress profile in terms of fatigue behaviour. For
this task, we assume a residual stress profile that is qualitatively similar to that produced by SP in many
metals. Based on this generic profile, we analyse the optimum shape for two simple, but noteworthy, fatigue
cases: plain fatigue and notch fatigue. The analysis is conducted in the ‘‘fatigue damage tolerance design’’
framework, in which a certain initial defect is assumed to be present in the component under study.
1. Introduction

Fatigue is a material damage phenomenon that is present in many
engineered metallic components. It occurs when components are sub-
jected to time-fluctuating loads, and its most recognizable effect is the
appearance of cracks, which, under suitable conditions, can propagate
until the complete fracture of the component, thus causing catastrophic
failure in some cases. Due to this potential risk of component failure,
many palliatives are used in order to mitigate, or even eliminate, the
fatigue process. Shot peening (SP) is widely used as a surface treatment
in order to improve fatigue performance in a wide variety of metals and
situations [1,2]. Its widespread use in the mechanical industry can be
explained by the noticeable enhancement in fatigue behaviour of most
metals, its relatively low price and its ease of use in the majority of
engineering components. Its most attributable and recognizable effect
is to produce an in-depth compressive residual stress field but also a
substantial modification of the surface roughness and the near-surface
material hardness [3,4].

As a rule of thumb, it can be said that SP process parameters depend
on the particular application, i.e., the raw material and type of loading
applied to the treated component. For a certain material, these process
parameters define the shape of the in-depth residual stress profile. The
SP industry has a long history and wide experience in selection of
appropriate parameters for a certain application, but in the majority of
cases this is based on a phenomenological experience and, to the best
of the authors’ knowledge, no analysis concerning how the SP-induced
residual stress profile produced with a particular set of parameters
modifies fatigue behaviour has been conducted in the past.

∗ Corresponding author.
E-mail address: saguado@us.es (S. Aguado-Montero).

Shot peening residual stress profiles are known to adopt a specific
type of spatial configuration which is termed the sinusoidal decay
function, as described in [5]. Section 2 is dedicated to the analysis
of the main aspects concerning the sinusoidal decay function. From
the designer’s point of view, the following difficult questions arise: for
a particular application, which is the optimum shot peening residual
stress profile? Is there a residual stress field that, following a sinusoidal
decay function scheme, maximizes fatigue strength of the specimen? It
is important to define a metric for the optimality of a residual stress
profile, i.e. fatigue strength needs to be properly defined before it is
maximized.

For a typical metallic specimen, fatigue life is composed of two
substantially different stages: crack initiation and propagation. Each of
these phases involves very distinct physical processes, resulting in the
need for different mathematical models to properly capture the whole
specimen’s fatigue life. While crack initiation life is mainly governed by
local stresses in the vicinity of the crack initiation site, crack growth is
controlled by the stress intensity factor, a magnitude that depends on
both the stress level in the region where the crack is developing and
the geometry of this cracked region itself.

From a crack initiation point of view, compressive residual stresses
would lower the stress levels at the crack initiation location, turning
crack formation into a more unlikely event. From a fatigue crack
propagation perspective, the presence of these compressive residual
stresses would result in smaller stress intensity factors associated to the
crack evolution, slowing down or even stopping the process.
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Fig. 1. Two different residual stress configurations.

For these reasons, residual stress configurations achieving higher
ompression are expected to perform better. However, it is not that
lear how those residual stresses should be distributed within the
pecimen’s domain. Should higher compressive stresses be present im-
ediately adjacent to the free surface, or should they be located at
eeper positions so as to be able to affect a more general volume?
f initiation life were to be considered as the main contribution to
atigue life, stresses in the vicinity of the initiation site would need to
e minimized. If one considers that crack initiation usually takes place
t some point of the specimen’s surface, then crack initiation life could
e maximized by adopting a residual stress profile where maximum
ompressions are applied right next to the specimen’s surface, in a re-
ion that is usually denoted as the process zone, where initiation takes
lace. On the contrary, if fatigue crack growth life is considered to be
he main contribution to the specimen’s fatigue life, the residual stress
rofile should be strategically designed in such a way that provides the
tress intensity factors that result in the slowest possible fatigue crack
rowth. A situation where stress intensity factor took values below the
rack growth threshold would be of particular interest, since fatigue
rack growth would be completely stopped and fatigue crack growth
ife would become infinite.

The problem of selecting a proper residual stress profile is sketched
n Fig. 1, in which two typical SP residual stress distributions are
lotted; the material is assumed to be a type of steel with a yield
imit, 𝜎𝑦, of about 800MPa. In addition, to simplify the discussion,
t is assumed that the potential crack mouths will be subjected to a
onstant amplitude loading. In this image, it is clear that for cracks
maller than about 75 μm the residual stress distribution with higher
ompressive stresses near the surface, depicted in blue, will behave
etter against fatigue; however, for cracks between 75 μm and 200 μm,
he residual stress profile that provides higher compressive stresses
t depths ranging from 75 to 200 μm, depicted in orange, might be
xpected to perform better since higher compressive stresses close to
he crack tip might be able to delay or stop crack growth. Finally, it is
ot easy to predict the best profile for cracks longer than 200 μm, so
complete analysis needs to be taken into consideration. The overall

atigue behaviour will depend on the evolution of the mode 𝐼 stress
ntensity factor range, 𝛥𝐾𝐼 , and also – if a Paris type crack growth law
s considered – on the 𝑚 exponent.

In the present work, we consider a situation where a previously
enerated defect is present in the specimen’s domain. This condition
an represent some type of manufacturing imperfection as the ones
ound in metal welding or additive manufacturing. This already existing
efect can act as a crack whose initiation life can be neglected, thus
onsidering that it will start propagating right away, resulting in fatigue
rack growth life of this specimen being equal to its complete fatigue
ife since the defect already exists and no crack initiation life needs to
2

e taken into account. This kind of analysis is usually termed ‘‘fatigue
amage tolerant design’’ and is of practical interest in disciplines such
s the aforementioned metal welding and additive manufacturing, as
ell as gas turbine blade design. Moreover, fatigue damage tolerant
esign provides the opportunity to focus exclusively in the fatigue crack
rowth phase, resulting in a simpler and more comprehensive analysis,
ith fewer parameters and variables involved.

Now that the problem has been simplified to a point where only
atigue crack growth life is to be calculated, it is possible to define
atigue strength: for those situations where cracks can grow from its
nitial state to final failure of the specimen, fatigue strength equals
atigue crack growth life; if the crack is arrested at some point dur-
ng its growing process, if applied loads are not high enough, then
atigue crack growth becomes infinite and fatigue strength is defined
s a measure of the robustness of the specimen, i.e. the perturbation
equired for the crack to grow up to final failure. The higher the
verload or perturbation needed to make the crack grow, the higher
he fatigue strength associated to the specimen. Section 3 deals with
he mathematical details of fatigue strength quantitative analysis.

Furthermore, and assuming that the shape of the shot peening in-
uced residual stress profile can be properly described with a sinusoidal
decay function, a new set of more comprehensive parameters is first
proposed, and then a nondimensional analysis is developed for the
problem. In this way, we try to obtain the optimum value for the
parameters governing the sinusoidal decay function, thus maximizing
the component’s fatigue strength.

There are only a few works in the bibliography that attempt to
obtain the optimal residual stress configuration for strength against
fatigue, but only shot peening process parameters are investigated: not
the residual stress profile producing the best performance [6,7]. In the
present work we analyse the optimum residual stress profile, based on
the sinusoidal decay function, in two simple, but noteworthy, fatigue
cases: plain fatigue and notch fatigue. In the approach followed here, it
is assumed that the component has an initial crack which, for the sake
of simplicity, is assumed to be perpendicular to the component surface.
According to this, only the fatigue crack growth phase is analysed.
In addition, only surface through cracks are considered. Furthermore,
it is assumed that the fatigue crack growth follows the Paris crack
growth law. All of these elements lead to a significant reduction in
the number of parameters involved in the problem, thus making the
analysis possible and also more comprehensive. Despite these required
simplifications, the analysis performed here can be of great interest
because cracks nucleate at the surface in many actual situations – either
by fatigue or some manufacturing process – and then propagate nearly
perpendicularly to the surface. Also, many surface cracks are more or
less semi-elliptical and shallow, thus having a mode I stress intensity
factor very close to that of a through crack. Finally, it is well known
that the Paris equation is suitable for region II (the linear zone in
the log–log plot of the 𝑑𝑎

𝑑𝑁 − 𝛥𝐾 sigmoidal curve), but extrapolating
it to region I (the near threshold zone) can be either conservative
or non-conservative: moreover, extrapolating it to zone III (the fast
crack growth region) produces non-conservative predictions due to the
sigmoidal shape of the 𝑑𝑎

𝑑𝑁 − 𝛥𝐾 curve. However, the crack growth life
spent in region III is very small as compared to that in zones I and II,
and thus the integration of the Paris crack growth law over zones I, II
and III may be reasonable in many situations.

2. Mathematical modelling of a residual stress profile

A systematic analysis of residual stress profiles produced by shot
peening has been taken into consideration several times in the recent
literature, making use of the sinusoidal decay function, as can be ob-
served in [5] and [8]. In a sinusoidal decay function analysis, the
number of coefficients to fit is always constant, namely 4:

𝜎 (𝑧) = 𝐴𝑒−𝜆𝑧 cos (𝜔𝑧 + 𝜃) (2.1)
𝑟𝑒𝑠
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where 𝐴, 𝜆, 𝜔 and 𝜃 are the aforementioned coefficients that control the
hape of a general residual stress profile and 𝑧 measures depth from
he specimen’s surface. Eq. (2.1) models the compressive fraction of
he residual stress profile, so it is defined only from 𝑧 = 0 to a depth
here 𝜎𝑟𝑒𝑠 = 0. The main benefit of this methodology is its ease of use,
s opposed to a common polynomial fit, which can become arbitrarily
omplex as the degree of the function grows [8].

However, these coefficients do not allow for a straightforward un-
erstanding of the shape of the curve since they do not have a direct
hysical counterpart; i.e. if the values of these four parameters are
nown, then a sketch of the residual stress profile is required to draw
ny conclusion about it. The coefficients on their own are not sufficient
o qualitatively imagine the main aspects of the curve. As a solution to
his issue, a new set of parameters is proposed:

• 𝜎0 represents the absolute value of the stress level at the speci-
men’s surface.

• 𝑧0 controls the location where the residual stress profile transi-
tions from a compressive situation to a tensile regime, i.e. the size
of the compressive residual stressed region.

• 𝜎𝑚𝑎𝑥 denotes the maximum absolute value of the residual stress
profile.

• 𝑧𝑚𝑎𝑥 points to the location where 𝜎𝑚𝑎𝑥 takes place.

ow the new set of parameters completely describes the shape of
he curve can be readily determined, simplifying the analysis of the
roblem.

The next steps in the process involve relating both sets of parameters
nd also constructing a nondimensional version of the sinusoidal decay
unction. If the 𝛱 Buckingham theorem is taken into consideration,
q. (2.1) involves 6 magnitudes with only 2 different dimensions
length and stress), which means that the relation of 4 nondimensional
ariables can be obtained. This observation remains true if the new
et of parameters is used since the number of both magnitudes and
imensions are unchanged. Appendix A explains in detail how the
ollowing expression is obtained:

𝜎𝑟𝑒𝑠
𝜎𝑚𝑎𝑥

=
𝐴𝑒−𝜆𝑧 cos (𝜔𝑧 + 𝜃)

𝐴𝑒−𝜆𝑧𝑚𝑎𝑥 cos (𝜔𝑧𝑚𝑎𝑥 + 𝜃)
(2.2)

Taking into consideration the relations existing between both sets of
parameters developed in Appendix A,

𝜃 = 𝜃(
𝑧𝑚𝑎𝑥
𝑧0

,
𝜎0
𝜎𝑚𝑎𝑥

); 𝜆 = 𝜆(
𝑧𝑚𝑎𝑥
𝑧0

,
𝜎0
𝜎𝑚𝑎𝑥

); 𝜔 = 𝜔(
𝑧𝑚𝑎𝑥
𝑧0

,
𝜎0
𝜎𝑚𝑎𝑥

) (2.3)

The combination of Eqs. (2.2) and (2.3) yields the following qualitative
expression:
𝜎𝑟𝑒𝑠
𝜎𝑚𝑎𝑥

=
𝜎𝑟𝑒𝑠
𝜎𝑚𝑎𝑥

( 𝑧
𝑧0

,
𝜎0
𝜎𝑚𝑎𝑥

,
𝑧𝑚𝑎𝑥
𝑧0

) (2.4)

From now on, nondimensional variables appearing in Eq. (2.4) will be
denoted as the numerator followed by a ‘*’ sign, namely 𝜎∗𝑟𝑒𝑠, 𝑧∗, 𝜎

∗
0 and

∗
𝑚𝑎𝑥, to simplify notation.

Eq. (2.4) cannot be defined in the whole (𝑧∗𝑚𝑎𝑥, 𝜎
∗
0 ) domain. As

iscussed in Appendix A, the numerically consistent domain is mainly
estricted by the relation 𝑧∗𝑚𝑎𝑥 < 0.545. This means that the sinusoidal
ecay function is not able to model a compressive residual stress profile
hose extreme value is deeper than approximately half its size, 𝑧0.

. Optimization criteria

As posed in the introduction, initiation of cracks will not be taken
nto consideration in the present work. This means that the presence
f a previously initiated surface crack (or perhaps a crack-like de-
ect present in the specimen) of length 𝑎𝑖 is assumed, thus enabling
xploration of the ‘fatigue damage tolerance design’ framework.

Crack evolution will be studied via integration of a Paris type
rack growth law, defined by two coefficients, 𝐶 and 𝑚 (as a first
3

o

analysis, neither the crack growth threshold nor crack closure will be
considered).

∫

𝑁𝑓

0
𝑑𝑁 = ∫

𝑎𝑓

𝑎𝑖

𝑑𝑎
𝐶𝐾𝑚 (3.1)

Integration of a Paris type crack growth law, in order to obtain crack
propagation life, is shown in Eq. (3.1). This integration is considered
from the initial state of the defect until a crack length such that the
tip of the crack falls outside the compressive residual stressed region,
i.e., depth 𝑧0. This simplification is supported by the idea that crack
growth will be much faster once the crack tip enters the tensile residual
stress domain, hence reaching failure in a significantly smaller amount
of cycles than that required to reach from the initial state to depth 𝑧0.
Appendix B explains in detail how this integration is calculated and
explores a procedure to obtain a nondimensional result for both stress
intensity factors and fatigue crack growth life. Stress intensity factors
are calculated as follows:

𝐾(𝑎) = ∫

𝑎

0
𝜎(𝑧) 𝑤(𝑧, 𝑎) 𝑑𝑧 (3.2)

here 𝜎 is the applied stress and 𝑤 denotes the weight function. To
larify concepts, let us denote by 𝑁∗ the specimen’s fatigue crack
rowth life in the presence of a particular residual stress profile divided
y the same variable calculated without taking residual stresses into
ccount, i.e. nondimensional fatigue crack growth life measures the
mprovement in fatigue strength for the specimen due to the presence of
certain residual stress configuration. Eq. (3.3), which is explained in
etail in Appendix B, shows the ratio between the fatigue crack growth
ife in the presence of a particular residual stress configuration and the
atigue crack growth life in a situation free from residual stress.

∗ =
∫ 1
𝑎∗𝑖
((𝐾∗

𝑟𝑒𝑠 +𝐾∗
𝑎𝑝𝑝𝑙𝑖𝑒𝑑 )

√

𝑎∗)−𝑚 𝑑𝑎∗

∫ 1
𝑎∗𝑖
(𝐾∗

𝑎𝑝𝑝𝑙𝑖𝑒𝑑

√

𝑎∗)−𝑚 𝑑𝑎∗
(3.3)

here 𝑎∗𝑖 = 𝑎𝑖
𝑧0

, 𝑎∗ = 𝑎
𝑧0

and 𝐾∗ is the stress intensity factor adimen-
ionalized by the reference value 1.12𝜎𝑚𝑎𝑥

√

𝜋𝑎. This reference value is
efined as the stress intensity factor associated to a semiinfinite domain
ontaining a superficial through crack of length 𝑎, subjected to a remote
niform reference stress level 𝜎𝑚𝑎𝑥. Note how 𝑁∗ is a function of initial
rack length 𝑎𝑖, Paris crack growth law exponent 𝑚, applied loads and
eometry.

Now that the main variables governing the problem have been
stablished, it is necessary to define the optimality criteria. The main
oal is to maximize the specimen’s strength for a given initial defect.
ig. 2 summarizes the following analysis in the form of a flowchart. For
very situation that is to be analysed, the following question needs to
e answered: Is there any residual stress configuration that produces
negative stress intensity factor for some crack length ranging from

nitial crack length 𝑎𝑖 to final length 𝑧0? If the answer is negative, then
he crack will eventually outgrow the residual stressed region and this
ill be considered as a catastrophic failure. In this situation, the opti-
um residual stress profile will be chosen as the one that maximizes

he specimen’s fatigue crack growth life until failure. In the opposite
ase; i.e., if there exists at least one residual stress profile that produces
negative stress intensity factor (not necessarily at the initial crack

ength: it can be anywhere from the initial state to a depth 𝑧0), then
he optimum residual stress configuration is the one that minimizes
he stress intensity factor for some crack length in the range from 𝑎𝑖
o 𝑧0. This can be imagined as building the highest possible barrier
or the crack, preserving the specimen from any kind of unexpected
erturbation that could slightly decrease its theoretical strength. It is
mportant to note that we are not minimizing the stress intensity factor
or the initial crack length, but rather allowing for this minimum stress
ntensity factor to occur at any crack length from 𝑎𝑖 to 𝑧0. This means
hat a situation in which the stress intensity factor is positive in the
riginal state (thus making the crack grow) is perfectly possible, but
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Fig. 2. Optimization criteria flowchart.

Fig. 3. Two examples of residual stress configurations and resulting mode I stress
intensity factors.

the crack will eventually reach the aforementioned barrier, which is
the highest possible barrier that could be present, thus minimizing the
probability of the crack exceeding this point and reaching the tensile
residual stress domain. In other words, no life optimization is obtained
in this case because life is infinite, and no failure will take place.

Fig. 3 shows an example of this situation in which no catastrophic
failure will take place. The situation considered is as follows: applied
stress (uniform) is 𝜎 = 640 MPa, maximum residual stress is 𝜎𝑚𝑎𝑥 =
800 MPa, superficial residual stress is 𝜎0 = 480 MPa and residual stresses
become zero at depth 𝑧0 = 200 μm. The initial defect has a length
of 𝑎𝑖 = 40 μm and both solid curves represent stress intensity factor
evolution as the crack increases its length for two different residual
stress maximum locations 𝑧𝑚𝑎𝑥. It is clear that both of the residual stress
configurations will stop the crack at some point since both of them
adopt negative 𝐾𝐼 values. More precisely, the configuration depicted
in blue (𝑧𝑚𝑎𝑥 = 30 μm) will not allow the crack to grow at all, whereas
the other configuration, depicted in red (𝑧𝑚𝑎𝑥 = 90 μm), would allow
the crack to grow a distance of about 10 μm before causing it to stop.
From this perspective, the first configuration might seem better, but if
one considers a slight perturbation in the system, then the second one
4

Fig. 4. (a)(b) Nondimensional fatigue crack growth life as a function of the nondimen-
sional residual stress profile parameters for two different initial crack lengths. Marginal
maximum values with respect to 𝑧∗𝑚𝑎𝑥 are also included as a dotted red line, showing
no dependence upon 𝜎∗

0 or 𝑚, but clear variability with 𝑎∗𝑖 . (c) Optimum solution for
𝑧∗𝑚𝑎𝑥 as a function of 𝜎∗

0 , for different values of 𝑚, 𝑎∗𝑖 and 𝜎∗, in the finite life regime.

is more robust due to its smaller minimum, thus preventing the crack
from ever developing beyond the compressive residual stressed domain.
For this reason, this second configuration will be considered as closer
to the optimum solution for this type of situation in which cracks do
not grow to complete failure.

4. Plain fatigue

In this section, a semi-infinite plain specimen, containing a superfi-
cial through crack of length 𝑎𝑖 subjected to uniform constant amplitude
remote load 𝜎, is analysed (the loading ratio 𝑅 = −1 is considered
throughout the whole paper). The main goal is to provide sufficient
information so as to choose the optimum residual stress profile for
the specimen, i.e. the values of the nondimensional variables 𝜎∗0 and
𝑧∗𝑚𝑎𝑥. Notice how applied stress can be nondimensionalized as follows:
𝜎∗ ≡ 𝜎

𝜎𝑚𝑎𝑥
.

Consider the results shown in Figs. 4a and 4b, where nondimen-
sional fatigue crack growth life (i.e. the specimen’s fatigue crack growth
life improvement due to the presence of a certain residual stress profile)
is plotted as a function of the optimization variables for two different
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Fig. 5. (a) Optimum solution for 𝑧∗𝑚𝑎𝑥 in both finite and infinite life regimes, separated
y red line; (b) Optimum solution for 𝑧∗𝑚𝑎𝑥 as a function of 𝜎∗ in the infinite life regime
or different values of parameter 𝜎∗

0 .

nitial crack lengths in a situation where cracks do grow until final
ailure, so that fatigue crack growth life can be optimized. Notice how
nitial crack length can be nondimensionalized as 𝑎𝑖

𝑧0
≡ 𝑎∗𝑖 . The black

rid that is displayed on top of the surfaces represents the numerically
imulated data. A simulation was considered at every intersection point
etween two black lines. A 20 × 20 numerical simulation grid was used.
similar procedure was considered in Figs. 5a, 6a, 6b, and 7.
It can be observed that the shapes of the surfaces in Figs. 4a and 4b

ollow similar trends

• As one increases 𝜎∗0 , 𝑁∗ always increases, regardless of 𝑧∗𝑚𝑎𝑥.
• If 𝜎∗0 is kept constant and 𝑧∗𝑚𝑎𝑥 is modified, then a local maximum

can be found, so there actually exists an optimum value for 𝑧∗𝑚𝑎𝑥
that maximizes the specimen’s fatigue crack growth life for a
particular 𝜎∗0 value.

• The value at which (𝑧∗𝑚𝑎𝑥)𝑜𝑝𝑡 is found does not significantly depend
on 𝜎∗0 , but it does depend on the initial length of the crack 𝑎∗𝑖 .

These three considerations suggest that both optimizing variables 𝜎∗0
and 𝑧∗𝑚𝑎𝑥 can be separated, thus accomplishing two independent single
variable optimizations. Furthermore, optimization with respect to 𝜎∗0
is straightforward since a higher stress level at the specimen’s surface
corresponds with greater strength improvement, so 𝜎∗0 should remain
as high as technically possible in the finite life regime. Fig. 4c shows
a notable dependence on 𝑎∗𝑖 for the optimum 𝑧∗𝑚𝑎𝑥 values, a limited
dependence on 𝜎∗ and marginal variation with respect to 𝑚 and 𝜎∗0 .

Let us now focus on computing the optimum value for 𝑧∗𝑚𝑎𝑥 for a
given set of parameters 𝑎∗𝑖 , 𝜎∗, 𝜎∗0 and Paris law coefficient 𝑚. For a
first analysis, 𝑎∗𝑖 is expected to be an important parameter, as shown by
Figs. 4a and 4b, as well as is 𝜎∗ since it will mainly control the transition
from finite to infinite life regime. 𝜎∗0 has been shown to exert very little
influence on 𝑧∗𝑚𝑎𝑥, at least in the finite life regime, so its effects will be
5

analysed later on, just as with Paris law coefficient 𝑚.
Fig. 6. (a) (b) Nondimensional fatigue crack growth life as a function of 𝑧∗𝑚𝑎𝑥 and 𝑅∗

for two different initial crack lengths. Marginal maximum values with respect to 𝑧∗𝑚𝑎𝑥
are also included as a dotted red line, showing no dependence upon 𝑅∗, but a clear
variability with respect to 𝑎∗𝑖 . (c) Evolution of 𝑧∗𝑚𝑎𝑥 with respect to 𝑅∗ for several values
of 𝜎∗

0 , 𝜎∗ and 𝑎∗𝑖 in the finite life regime.

Fig. 7. Optimum solution for 𝑧∗𝑚𝑎𝑥 in the notch fatigue case for a certain 𝑅∗ value.
Finite and infinite life regimes are separated by a red line.
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Fig. 5a shows optimization results for 𝑧∗𝑚𝑎𝑥 as a function of 𝑎∗𝑖
nd 𝜎∗, keeping 𝜎∗0 and 𝑚 as fixed parameters. It is important to

notice the red line that splits the surface into two different parts. For
remote stress levels above 𝜎∗ ≈ 0.95 (left hand side of the diagram),
racks are able to grow until final failure, so finite life optimization
s considered, maximizing the specimen’s fatigue crack growth life. On
he contrary, for remote stress levels below 𝜎∗ ≈ 0.95 (right hand side
f the diagram), cracks are not able to grow until failure because they
ace a negative stress intensity factor at some point, so an infinite life
ptimization has been implemented, minimizing the stress intensity
actor for some crack length ranging from initial crack length 𝑎𝑖 to 𝑧0.

The finite life region (left hand side of the diagram) shows little
ependence on 𝜎∗ and instead varies almost linearly with initial crack
ength 𝑎∗𝑖 . This is coherent with Figs. 4a and 4b, where important
ifferences were observed as 𝑎∗𝑖 was modified. As a general rule of
humb, it can be observed that the maximum residual stress location
ends to follow the initial crack tip.

The infinite life region (right hand side of the diagram) exhibits
ompletely different behaviour. In this situation, almost no dependence
as observed with respect to 𝑎∗𝑖 , but instead 𝜎∗ is now the governing

variable. Dependence with respect to Paris law exponent 𝑚 was not
observed in any of the situations (the infinite life region could not
depend on 𝑚 since no crack growth is considered), so it can be readily
retained as a constant with reference value 𝑚 ≈ 3 without loss of
enerality. In the case of 𝜎∗0 , no variation was expected in the finite
ife regime, as exhibited in Figs. 4a and 4b, but a substantial effect
as produced in the infinite life region. Due to the fact that no 𝑎∗𝑖
ependence is observed in this region, results were projected in the
∗
𝑚𝑎𝑥 − 𝜎∗ plane and shown in Fig. 5b for several 𝜎∗0 values. Notice how
he different curves obtained follow very similar trends. As 𝜎∗0 increases,
he optimum solution for 𝑧∗𝑚𝑎𝑥 is shifted towards higher values.

5. Notch fatigue

In this section, the previous plain fatigue analysis is generalized to a
situation in which a circular notch, with radius 𝑅, is present in the spec-
imen’s domain. For this configuration, cracks are expected to initiate in
the symmetry plane due to the well-known stress concentration factor
of 3 occurring at the root of the notch. From now on, the 𝑧 coordinate
will be measured from this very root of the notch, not from the original
free surface. Additionally, notch radius 𝑅 is nondimensionalized with
𝑧0, and thus 𝑅∗ ≡ 𝑅

𝑧0
.

The first difference to be noticed with respect to the plain fatigue
ituation is that an extra parameter, 𝑅∗, is included in the analysis for

this geometry. Fig. 6a–6b show how nondimensional life, 𝑁∗, varies
with 𝑧∗𝑚𝑎𝑥 and 𝑅∗ in the finite life regime, in a similar manner as in
Fig. 4a–4b in the plain fatigue case, but substituting 𝜎∗0 for the new
variable, 𝑅∗. This can be done without loss of generality since it has
been shown how 𝜎∗0 exerts almost no effect as long as the crack is able
to grow. Indeed, the same conclusion can be drawn from Fig. 6a–6b
since (𝑧∗𝑚𝑎𝑥)𝑜𝑝𝑡 is observed to be almost independent of 𝑅∗ in the finite
life regime, whereas the initial crack length 𝑎∗𝑖 notably impacts the
optimization results, according to Fig. 6c. For these reasons, (𝑧∗𝑚𝑎𝑥)𝑜𝑝𝑡

ill now be studied as a function of 𝑎∗𝑖 and the remote stress level 𝜎∗.
The infinite life regime will also be analysed, where dependencies with
respect to 𝑅∗ and 𝜎∗0 are expected to exist.

Fig. 7 is the direct counterpart of Fig. 5a for a certain 𝑅∗ value
in the notched fatigue case. Even though the surface appears to be
quite similar to the plain fatigue situation, two major differences can
be found when a deeper analysis is taken into consideration.

On the one hand, the minimum stress level required to make cracks
grow, i.e. transitioning stress level 𝜎∗ from infinite to finite life regimes,
shows a significant dependence on notch dimension 𝑅∗, as can be found
in Fig. 8. It can be readily determined that as 𝑅∗ tends to infinity,
stress gradients are negligible and we recover the plain fatigue situation
(with remote stress levels divided by a factor of three, due to the stress
6

Fig. 8. Minimum remote stress level required for an 𝑎∗𝑖 = 0.3 crack to grow, as a
unction of 𝑅∗, for different values of 𝜎∗

0 .

Fig. 9. Infinite life regime solution (𝑧∗𝑚𝑎𝑥)𝑜𝑝𝑡 in the notch fatigue case, as a function of
∗, for different values of 𝑅∗ and 𝜎∗

0 .

oncentration factor). For smaller 𝑅∗ values, the remote stress level
equired to make cracks grow increases, thus restricting the finite life
egime. It can be argued that this is the reason why 𝑅∗ shows no effect
ver (𝑧∗𝑚𝑎𝑥)𝑜𝑝𝑡 in the finite life regime: this can only happen if 𝑅∗ takes a
ather large value, so stress gradients are not significant and we recover
nce again the plain fatigue solution. It can also be observed that 𝜎∗0
oes not exert a significant effect on this transitioning of remote stress
evel from finite to infinite life.

On the other hand, the infinite life regime depends not only on 𝜎∗0
which was the case in a plain fatigue configuration), but also on 𝑅∗.

This evolution of (𝑧∗𝑚𝑎𝑥)𝑜𝑝𝑡 when superficial stress level 𝜎∗0 and notch
dimension 𝑅∗ vary is shown in Fig. 9. Again, 𝑎∗𝑖 does not appear in this
analysis because no effect of this variable is observed in the infinite
life regime, according to Fig. 7. Notice how a small 𝑅∗ value (approxi-
mately less than 10) does not allow for a satisfactory optimization. This
happens because the optimal solution for 𝑧∗𝑚𝑎𝑥 is found somewhere over
𝑧∗𝑚𝑎𝑥 ≈ 0.545, which is the limit for the consistent region in which the
proposed set of parameters can be properly related to the original one,
as explained in Appendix A.

6. Conclusions

A new set of parameters [𝜎𝑚𝑎𝑥, 𝜎0, 𝑧0, 𝑧𝑚𝑎𝑥] for the exponential
decay function was proposed. This set of parameters was successfully
related to the original one [𝐴, 𝜆, 𝜔, 𝜃] for a certain range of the
new parameters. Particularly, no physically consistent relation could
be obtained for values of 𝑧∗𝑚𝑎𝑥 greater than approximately 0.545.

A dual optimality criterion has been implemented for the finite-
infinite life domains. For those situations in which stress intensity
factors would become negative, a SIF minimization algorithm was
implemented so as to prevent crack growth to final failure due to
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unexpected perturbations. In the case of finite life, the specimen’s
fatigue crack growth life maximization was taken into consideration.

For every possible situation, the specimen’s strength was monoton-
ically increasing with 𝜎∗0 , so it is suggested that this variable be set as
igh as technically possible. Since optimization with respect to 𝜎∗0 is

straightforward, we focus our attention on optimizing the specimen’s
strength with respect to 𝑧∗𝑚𝑎𝑥.

In the finite life domain for plain fatigue, the optimum value for
𝑧∗𝑚𝑎𝑥 was shown to depend almost linearly on 𝑎∗𝑖 and slightly on 𝜎∗, but
a marginal dependence was found with respect to 𝜎∗0 or the Paris law
xponent 𝑚. In the infinite life domain for plain fatigue, 𝑧∗𝑚𝑎𝑥 is now a

function of both 𝜎∗ and 𝜎∗0 . No dependence was observed with respect
to 𝑎∗𝑖 . Paris law exponent 𝑚 is not present in this particular analysis
since no crack growth takes place.

In the case of plain fatigue, the transition from infinite to finite life
domain takes place for a remote stress level 𝜎∗ ≈ 0.95, and this value
was almost independent of every other variable present in the model.
This was not the case in the notched situation, where transitioning
remote stress level 𝜎∗ was shown to depend on the size of the notch, 𝑅∗.
The finite life domain in the notched specimen showed no difference
with respect to the plain fatigue situation. This is explained by the fact
that the finite life domain in the notched situation is very restricted
(very high loads are required for cracks to grow, considering that
we are not allowing any point in the domain to experience inelastic
behaviour, excluding the crack tip) and can only take place for very
large 𝑅∗ values, leading to negligible stress gradients in the notch and
thus recovering the plain fatigue results (with a factor of 3 for applied
stresses, due to stress concentration). In the infinite life domain for
the notched specimen, 𝑧∗𝑚𝑎𝑥 was observed to depend on 𝜎∗0 , 𝜎∗ and 𝑅∗.
Again, no dependence with respect to 𝑎∗𝑖 was observed in this regime.
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Appendix A. Relating both sets of parameters in the exponential
decay function

The new set of parameters [𝑧0, 𝑧𝑚𝑎𝑥, 𝜎0, 𝜎𝑚𝑎𝑥] can be mathematically
defined in terms of the original set [𝐴, 𝜆, 𝜔, 𝜃] as follows:

𝜎𝑟𝑒𝑠(0) = 𝜎0 = 𝐴 cos (𝜃) (A.1)

𝜕𝜎𝑟𝑒𝑠
𝜕𝑧

|

|

|

|𝑧𝑚𝑎𝑥
= −𝜆𝐴𝑒−𝜆𝑧𝑚𝑎𝑥 cos (𝜔𝑧𝑚𝑎𝑥 + 𝜃) − 𝜔𝐴𝑒−𝜆𝑧𝑚𝑎𝑥 sin (𝜔𝑧𝑚𝑎𝑥 + 𝜃) = 0

(A.2)

𝜎𝑟𝑒𝑠(𝑧𝑚𝑎𝑥) = 𝜎𝑚𝑎𝑥 = 𝐴𝑒−𝜆𝑧𝑚𝑎𝑥 cos (𝜔𝑧𝑚𝑎𝑥 + 𝜃) (A.3)

𝜎𝑟𝑒𝑠(𝑧0) = 𝐴𝑒−𝜆𝑧0 cos (𝜔𝑧0 + 𝜃) = 0 (A.4)

To derive the nondimensional version of the residual stress profile,
he following can be written:
𝜎𝑟𝑒𝑠 =

𝐴𝑒−𝜆𝑧 cos (𝜔𝑧 + 𝜃) (A.5)
7

𝜎𝑚𝑎𝑥 𝐴𝑒−𝜆𝑧𝑚𝑎𝑥 cos (𝜔𝑧𝑚𝑎𝑥 + 𝜃)
Additionally, we rewrite some of the terms in the previous expression
and define the following nondimensional parameters: 𝜎∗𝑟𝑒𝑠 ≡

𝜎𝑟𝑒𝑠
𝜎𝑚𝑎𝑥

, 𝜆∗ ≡
𝜆𝑧0, 𝑤∗ ≡ 𝜔𝑧0, 𝑧∗ ≡ 𝑧

𝑧0
, 𝑧∗𝑚𝑎𝑥 ≡ 𝑧𝑚𝑎𝑥

𝑧0
and 𝜎∗0 ≡ 𝜎0

𝜎𝑚𝑎𝑥
.

The following expression is obtained:

∗
𝑟𝑒𝑠 = 𝑒−𝜆

∗(𝑧∗−𝑧∗𝑚𝑎𝑥)
cos (𝜔∗𝑧∗ + 𝜃)
cos (𝜔∗𝑧∗𝑚𝑎𝑥 + 𝜃)

(A.6)

hich is completely nondimensional. The next step involves relating 𝜃,
𝜆∗ and 𝜔∗ with the other set of nondimensional parameters.

Eq. (A.4) provides a direct relation between 𝜔∗ and 𝜃:

𝜔∗ + 𝜃 = 𝜋
2

(A.7)

hile Eq. (A.2) governs the relation between 𝜆∗ and 𝜔∗:
𝜆
𝜔

= 𝜆∗

𝜔∗ = − tan (𝜔∗𝑧∗𝑚𝑎𝑥 + 𝜃) (A.8)

hich can be combined with Eq. (A.7):
∗ = −𝜔∗ tan−1 (𝜔∗(1 − 𝑧∗𝑚𝑎𝑥)) (A.9)

here tan−1 (𝑥) ≡ 1
tan (𝑥) is implied.

Taking Eqs. (A.1) and (A.3) into consideration:
𝜎0
𝜎𝑚𝑎𝑥

= 𝜎∗0 = 𝑒𝜆
∗𝑧∗𝑚𝑎𝑥

cos (𝜃)
cos (𝜔∗𝑧∗𝑚𝑎𝑥 + 𝜃)

(A.10)

hich is again combined with Eq. (A.7):

∗
0 = 𝑒𝜆

∗𝑧∗𝑚𝑎𝑥
sin (𝜔∗)

sin (𝜔∗(1 − 𝑧∗𝑚𝑎𝑥))
(A.11)

Next, Eqs. (A.9) and (A.11) are combined, yielding an implicit function
of 𝜔∗ and the nondimensional parameters of interest:

𝜎∗0
sin (𝜔∗(1 − 𝑧∗𝑚𝑎𝑥))

sin (𝜔∗)
− 𝑒−(𝜔

∗ tan−1 (𝜔∗(1−𝑧∗𝑚𝑎𝑥))𝑧
∗
𝑚𝑎𝑥) = 𝑓 (𝜔∗, 𝜎∗0 , 𝑧

∗
𝑚𝑎𝑥) = 0

(A.12)

t this point, Eq. (A.12) yields a value for 𝜔∗ provided that 𝜎∗0 and
𝑧∗𝑚𝑎𝑥 are fixed. Eqs. (A.7) and (A.9) then allow one to calculate 𝜆∗ and
𝜃, respectively. Eq. (A.6) then evaluates the nondimensional residual
stress profile at a certain depth.

To solve the implicit 𝜔∗ function derived in the previous section,
the Newton–Raphson algorithm will be applied. To do so, the function
derivative with respect to 𝜔∗ needs to be calculated as follows:

𝜕𝑓
𝜕𝜔∗ = 𝑧∗𝑚𝑎𝑥

[

tan−1 (𝜔∗(1 − 𝑧∗𝑚𝑎𝑥)) − 𝜔∗ 1 − 𝑧∗𝑚𝑎𝑥
sin2 (𝜔∗(1 − 𝑧∗𝑚𝑎𝑥))

]

× 𝑒−(𝜔
∗ tan−1 (𝜔∗(1−𝑧∗𝑚𝑎𝑥))𝑧

∗
𝑚𝑎𝑥)

+ 𝜎∗0

[

cos (𝜔∗(1 − 𝑧∗𝑚𝑎𝑥))(1 − 𝑧∗𝑚𝑎𝑥) −
sin (𝜔∗(1 − 𝑧∗𝑚𝑎𝑥))

tan (𝜔∗)

]

1
sin (𝜔∗)

(A.13)

Additionally, if one closely observes Eq. (A.12), then it can be
determined that 𝑓 is unbounded as 𝜔∗(1 − 𝑧∗𝑚𝑎𝑥) tends to 𝜋−. This
can be clearly observed in Fig. A.1. An 𝜔∗ value close (from the left)
to the critical value is a natural starting point to iterate with the
Newton–Raphson algorithm.

Fig. A.2a shows the results obtained with the Newton–Raphson
algorithm. For 𝑧∗𝑚𝑎𝑥 values higher than 0.545, the Newton–Raphson al-
gorithm does not yield a satisfactory result after the maximum number
of iterations is reached. For that reason, we will keep our nondimen-
sional variables within the well-behaved region, i.e. 𝑧∗𝑚𝑎𝑥 < 0.545. This
situation is shown in Fig. A.2b, where a zero valued 𝜔∗ region is now
observed. This situation is also unrealistic, so once again it will be
necessary to avoid it. It is interesting to elucidate the boundary of the
allowed region. This can be calculated by computing the limit of 𝑓 as
𝜔∗ tends to zero since this allowed region boundary is a zero 𝜔∗ valued
curve. L’Hopital’s rule was used to compute the limit:

lim 𝑓 (𝜔∗, 𝜎∗, 𝑧∗ ) = 𝜎∗(1 − 𝑧∗ ) − 𝑒
− 𝑧∗𝑚𝑎𝑥

1−𝑧∗𝑚𝑎𝑥 = 𝑔(𝜎∗, 𝑧∗ ) = 0 (A.14)

𝜔∗→0+ 0 𝑚𝑎𝑥 0 𝑚𝑎𝑥 0 𝑚𝑎𝑥
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Fig. A.1. Example of implicit 𝑓 function solved for 𝜔∗.

Fig. A.2. (a) 𝜔∗ for every possible value for nondimensional parameters 𝑧∗𝑚𝑎𝑥 and 𝜎∗
0 ;

(b) 𝜔∗ in a more restricted range for 𝑧∗𝑚𝑎𝑥.

which yields an implicit function of the two nondimensional variables.
This curve represents the boundary for the allowed region of analysis,
and can be observed in Fig. A.2b. Figs. A.3a, A.3b and A.3c show
the final results of translating one set of nondimensional parameters
into the other, well within the allowed, physically consistent region
bounded by 𝑧∗𝑚𝑎𝑥 = 0.545 and Eq. (A.14).

Appendix B. Nondimensional analysis of crack growth

Once residual stresses can be evaluated at a certain depth, provided
that values for 𝜎∗0 and 𝑧∗𝑚𝑎𝑥 are specified, it is possible to compute mode
I stress intensity factors, both associated to residual stresses and to
externally applied loads. In both situations, a weight function method
will be used in order to establish a systematic procedure which is valid
for more general geometries and load configurations:

𝐾𝑟𝑒𝑠(𝑎) = ∫

𝑎

0
𝜎𝑟𝑒𝑠(𝑧)𝑤(𝑧, 𝑎)𝑑𝑧 (B.1)

where 𝑎 is the crack length (considered as a through crack) and 𝑤(𝑧, 𝑎)
is the weight function, which depends on geometry and crack length.
8

As an example, in plain fatigue of a half-plane specimen, the weight
Fig. A.3. (a) 𝜔∗, (b) 𝜆∗ and (c) 𝜃 as a function of nondimensional parameters 𝑧∗𝑚𝑎𝑥 and
𝜎∗
0 in a physically consistent range.

function is as follows [9]:

𝑤(𝑧, 𝑎) = 2
√

𝜋𝑎(1 − ( 𝑧𝑎 )
2)
(1.3 − 0.3( 𝑧

𝑎
)
5
4 ) (B.2)

The weight function for cracks emanating from a circular notch was
obtained from [10].

In order to work with nondimensional variables, mode I stress
intensity factors will be divided by a reference value: for example, the
stress intensity value associated with a uniform normal remote stress
𝜎𝑚𝑎𝑥 applied on a half-plane with a surface through crack of length a:

𝐾∗
𝑟𝑒𝑠(𝑎

∗) =
𝐾𝑟𝑒𝑠(𝑎)

1.12𝜎𝑚𝑎𝑥
√

𝜋𝑎
= −∫

𝑎∗

0

𝜎𝑟𝑒𝑠(𝑧∗)
𝜎𝑚𝑎𝑥

𝑤(𝑧∗, 𝑎∗)
1.12

√

𝜋𝑎
𝑧0 𝑑𝑧∗ (B.3)

where the following non-dimensional crack length and weight function
definitions are established:

𝑎∗ ≡ 𝑎
𝑧0

(B.4)

𝑤(𝑧∗, 𝑎∗)
√

𝑧0 ≡ 𝑤∗(𝑧∗, 𝑎∗) (B.5)

1.12 𝜋𝑎
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w
a

𝐾

resulting in the following nondimensional expression for the mode I
stress intensity factor due to the residual stress:

𝐾∗
𝑟𝑒𝑠(𝑎

∗) = ∫

𝑎∗

0
𝜎∗𝑟𝑒𝑠(𝑧

∗) 𝑤∗(𝑧∗, 𝑎∗) 𝑑𝑧∗ (B.6)

The stress intensity factor associated with externally applied loads can
be obtained in a similar fashion:

𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑 (𝑎) = ∫

𝑎

0
𝜎𝑎𝑝𝑝𝑙𝑖𝑒𝑑 (𝑧) 𝑤(𝑧, 𝑎) 𝑑𝑧 (B.7)

which can also be nondimensionalized, making use of the following
relation:

𝜎𝑎𝑝𝑝𝑙𝑖𝑒𝑑 (𝑧) ≡ 𝜎𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑠(𝑧) (B.8)

ith 𝑠(𝑧) being the stress concentration function, depending on position
nd geometry.

∗
𝑎𝑝𝑝𝑙𝑖𝑒𝑑 (𝑎

∗) = ∫

𝑎∗

0

𝜎𝑎𝑝𝑝𝑙𝑖𝑒𝑑
𝜎𝑚𝑎𝑥

𝑠(𝑧∗) 𝑤∗(𝑧∗, 𝑎∗) 𝑑𝑧∗ (B.9)

Next, fatigue crack growth life can be computed from Paris law inte-
gration:

∫

𝑁𝑓

0
𝑑𝑁 = ∫

𝑎𝑓

𝑎𝑖

𝑑𝑎
𝐶𝐾𝑚 (B.10)

As we mentioned in a previous section, we consider the main
fraction of total fatigue crack growth life to be held within the com-
pressive residual stressed region. For this reason, total compressive
region depth, i.e. 𝑧0, is considered as the final integration length. The
fraction of fatigue crack growth life from this stage on is considered to
be negligible.

Since the aim of the present work is to optimize the residual stress
profile applied to a certain specimen, fatigue crack growth life will be
nondimensionalized by its value when residual stresses are not present.
This means that 𝑁∗ measures the improvement in fatigue strength due
to the presence of a particular residual stress configuration. Fatigue
crack growth life is first expressed in terms of nondimensional stress
intensity factors:
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𝑁 = ∫

1

𝑎𝑖
𝑧0

𝑧0 𝑑𝑎∗

𝐶(𝐾∗
𝑟𝑒𝑠 +𝐾∗

𝑎𝑝𝑝𝑙𝑖𝑒𝑑 )
𝑚(1.12 𝜎𝑚𝑎𝑥

√

𝜋 𝑎
𝑧0
𝑧0)𝑚

(B.11)

If the non-residual-stressed fatigue crack growth life is used to nondi-
mensionalize, then the term 𝑧0

𝐶(1.12 𝜎𝑚𝑎𝑥
√

𝜋𝑧0)𝑚
cancels out, yielding:

𝑁∗ =
∫ 1
𝑎∗𝑖
((𝐾∗

𝑟𝑒𝑠 +𝐾∗
𝑎𝑝𝑝𝑙𝑖𝑒𝑑 )

√

𝑎∗)−𝑚 𝑑𝑎∗

∫ 1
𝑎∗𝑖
(𝐾∗

𝑎𝑝𝑝𝑙𝑖𝑒𝑑

√

𝑎∗)−𝑚 𝑑𝑎∗
(B.12)
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