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Abstract. This research presents the mining of quantitative association rules based on evolutionary computation techniques.
First, a real-coded genetic algorithm that extends the well-known binary-coded CHC algorithm has been projected to determine
the intervals that define the rules without needing to discretize the attributes. The proposed algorithm is evaluated in synthetic
datasets under different levels of noise in order to test its performance and the reported results are then compared to that of
a multi-objective differential evolution algorithm, recently published. Furthermore, rules from real-world time series such as
temperature, humidity, wind speed and direction of the wind, ozone, nitrogen monoxide and sulfur dioxide have been discovered
with the objective of finding all existing relations between atmospheric pollution and climatological conditions.
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1. Introduction

Predicting a chronological sequence of observations
on a variable, commonly known as time series fore-
casting, has been traditionally performed by the appli-
cation of statistical methods [8]. The results obtained
from such methods for synthetic data are usually satis-
factory. Furthermore, the inherent simplicity shown by
statistical-based methods makes their use popular and
widespread. However, when dealing with real-world
time series the accuracy of the predictions are not as
expected since these datasets often present non-linear
features that the classical Box-Jenkins approaches are
unable to model.

The temporary evolution of most variables is usually
influenced by the changes occurring in other time se-
ries. In other words, the correlation between different
time series is a frequent phenomenon. For instance,
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when a rainfall forecast is required, the analysis of other
variables such as temperature, humidity or atmospheric
pressure is mandatory. Consequently, a diligent analy-
sis of the correlated variables may lead to the discovery
of how the variable in question may behave in the near
future.

The goal of the association rules (AR) extraction
process precisely consists of discovering the presence
of pair conjunctions (attribute (A) – value (v)) that
appear in a dataset with a certain frequency in order to
formulate the rules that outline the existing relationship
among attributes. Formally, an association rule is a
relationship between attributes in a database such that
C1 ⇒ C2, where C1 and C2 are pair conjunctions
such as A = v if A ∈ Z or A ∈ [v1, v2] if A ∈ R.
Generally, the antecedent C1 is formed by a conjunction
of multiple pairs and the consequent C2 is usually a
single pair.

The main motivation of this research is to develop
a genetic algorithm (GA) capable of finding quantita-
tive association rules in databases with continuous at-
tributes avoiding the discretization as a prior step of the



process. Thus, a real-coded genetic algorithm (RCGA)
that expands the general scheme of the CHC binary-
coded evolutionary algorithm [15] is proposed in this
work. The approach provides numeric association rules
establishing relationships among all attributes of the
datasets.

For evaluating the performance of the RCGA, two
different kind of datasets are analyzed. On one hand,
its application over synthetic datasets is reported. On
the other hand, an attempt to forecast real-world time
series is made by means of the extracted quantitative
association rules.

With regard to the real-world time series, three en-
vironmental agents responsible for pollution are eval-
uated: ozone (O3), sulfur dioxide (SO2) and nitrogen
monoxide (NO). The tropospheric ozone is an atmo-
spheric particle typically identified as a pollutant when
it overlaps some threshold. The variation in concentra-
tion of this agent in the air is continuously studied, as
the noxious effects caused in all living beings is well
known [30]. Both sulfur dioxide and nitrogen monox-
ide are usually formed in various industrial process-
es, and its concentration in the air has dramatically in-
creased during the last decade. Higher concentrations
may cause what experts usually call acid rain, which
causes damage to living beings and infrastructures [17].

The search of AR in ozone time series must not be
mistaken with the Subgroup Discovery (SD) issue [13].
The AR are a non-supervised learning tool, while the
SD performs supervised learning. Both AR and SD
search for rules but SD searches for conditions of a
single attribute. Nevertheless, AR can deal with multi-
ple attributes in the antecedent and in the consequent.
Moreover, the AR do not preset the range to which the
attributes of the consequent can vary.

The rest of the paper is divided as follows: Section 2
describes the state of the art. Section 3 provides the
methodology used in this work. The results of the ap-
proach applied to synthetic data are discussed in Sec-
tion 4. Section 5 refers to the results obtained for the
atmospheric datasets. Finally, Section 6 discusses the
resulting conclusions.

2. State of the art

There are many efficient algorithms that find AR.
Genetic algorithms have been used profusely to gener-
ate rules in many learning problems [2,9,24]. Also, ge-
netic algorithms are used as a tool in many real-world
problems, such as scheduling [14], forecasting [35], de-

sign [26] or classification [10]. Finally, hybridization
with fuzzy logic [31], neural networks [20] or simula-
tion [11] are common strategies in evolutionary com-
putation.

However, many researchers focus on databases with
discrete attributes while most real-world databases es-
sentially contain continuous attributes, as in the case
with time series analysis [6]. Moreover, the majority
of the tools said to work in the continuous domain just
discretize the attributes using a specific strategy and
later, handle these attributes as if they were discrete [1,
33].

A review of recently published literature reveals
that the amount of works providing metaheuristics and
search algorithms relating to AR with continuous at-
tributes is scarce. Thus, the authors of [25] proposed
an evolutionary algorithm to discover numeric associa-
tion rules, dividing the process in two phases. The first
one determined the frequent itemsets, that is, the set
of features appearing with a certain frequency within a
dataset. In the second phase, the rules were extracted
from the itemsets previously calculated.

The work presented in [32] studied the conflict
between minimum support and confidence problems.
They proposed a method to find quantitative AR by
clustering the transactions of a database. Afterwards,
such groupings were projected into the domains of the
attributes in order to create meaningful intervals which
could be overlapped.

Hydrological time series were studied in [36]. First,
the numeric attributes were transformed into intervals
by means of clustering techniques. Then, the AR were
generated making use of the well-known Apriori algo-
rithm [1].

A classifier system was presented in [28] with the
purpose of extracting quantitative AR over unlabeled
(both numerical and categorical) data streams. The
main novelty of this approach was the efficiency and
adaptability to data gathered on-line.

A metaheuristic optimization based on rough par-
ticle swarm techniques was presented in [3]. In this
case, the singularity was the obtention of the values that
determine the intervals for the AR instead of frequent
itemsets. In synthetic data, several new operators such
as rounding, repairing and filtering were evaluated and
tested.

MODENAR is a multi-objective pareto-based genet-
ic algorithm that was presented in [4]. The fitness func-
tion was composed of four different objectives: Sup-
port, confidence, comprehensibility of the rule (to be
maximized) and the amplitude of the intervals that con-
stitutes the rule (to be minimized).



The work published in [38] exhibited a new approach
based on three novel algorithms: value-interval clus-
tering, interval-interval clustering and matrix-interval
clustering. Their application was found especially use-
ful when mining complex information.

Another GA was used in [37] in order to obtain nu-
meric AR. However, the unique objective to be opti-
mized in the fitness function was the confidence. To
fulfill this goal, the authors avoided specifying the ac-
tual minimum support, which is the main contribution
to this work.

The use of AR in bioinformatics is also widely
spread. Hence, the work in [16] analyzed microarray
data using quantitative AR. For this purpose, they chose
a variant of the algorithm introduced in [29] based on
half-spaces or linear combinations of bounded vari-
ables against a constant. Moreover, Gupta et al. mined
quantitative AR for protein sequences [19] and for this
reason they proposed a new algorithm with four steps to
follow. They first equi-depth partitioned the attributes;
second, the partitions were mapped on consecutive in-
tegers, thus representing the intervals; third, they found
the support of all intervals; and, finally, they used the
frequent itemsets to generate AR. On the other hand,
the authors in [27] proposed a novel temporal associ-
ation rule mining method based on the Apriori algo-
rithm. Hence, they identified temporary dependencies
from gene-related time series.

The AR had been applied in fuzzy sets by various
authors. Thus, Kaya and Alhajj first proposed a GA-
based framework for mining fuzzy AR in [21]. To be
precise, they presented a clustering method for adjust-
ing the centroids of the clusters and then, they pro-
vided a different approach based on the well known
CURE [18] clustering algorithm to generate member-
ship functions. Later, they introduced a GA to op-
timize membership functions for fuzzy weighted AR
mining in [22]. Their proposal automatically adjusted
these sets to provide maximum support and confidence.
To fulfill this goal, the base values of the membership
functions for each quantitative attribute were refined
by maximizing two different evaluation functions: the
number of large itemsets and the confidence interval
average of the generated rules. Alternatively, Alcal á-
Fdez et al. [5] presented a new algorithm for extracting
fuzzy AR and membership functions by means of evo-
lutionary learning based on the 2-tuples representation
model.

Finally, Ayubi et al. [7] proposed an algorithm
that mined general rules whose applicability ranged
from discrete attributes to quantitative discretized ones.

Thus, they stored general itemsets in a tree structure in
order for it to be recursively computed. They equally
addressed the association rules in tabular form allowing
a set of different operators.

3. Description of the algorithm

In this work a real-coded [23] genetic algorithm
(hereafter called RCGA) has been used to obtain
AR from quantitative datasets. The proposed RC-
GA follows the general scheme of the CHC binary-
coded evolutionary algorithm proposed by Eshelman
in 1991 [15]. The original CHC presents an elitist
strategy for selecting the population that will make up
the next generation and includes strong diversity in
the evolutionary process through mechanisms of incest
prevention and a specific operator of crossover called
Half Uniform (HUX). Furthermore, the population is
reinitialized when its diversity is poor. Details of these
main features of the CHC algorithm are outlined in the
following points.

– Elitist selection: This kind of strategy guarantees
the survival of the best individuals. Thus, the cur-
rent population and its offspring are joined and the
best individuals (according to the fitness function)
are chosen to compose the population of the next
generation.

– The HUX crossover operator: This operator swaps
exactly half of the nonmatching genes of the par-
ents. Therefore, the Hamming distance divid-
ed by two is the number of genes to be swaped.
This crossover is highly destructive and introduces
some diversity in the population preventing pre-
mature convergence.

– Incest prevention: In the CHC algorithm the
crossover among siblings is forbidden. Therefore,
in order to prevent this, the following function is
applied: Two individuals are only crossed if their
Hamming distance divided by two is greater than
a certain threshold which is set to the length of the
individual, i.e. the number of bits, divided by four.
Consequently, only highly dissimilar parents are
crossed. When there are no parents to be crossed
due to their Hamming distance divided by two is
less than the predetermined threshold, the thresh-
old is decremented by one unit. As such, the key
idea is to avoid the application of the crossover
operator among similar individuals.



– Reinitialization: When the evolutionary process
converges, the individuals are usually similar and
if the iterated threshold becomes negative, the pop-
ulation is restarted in order to provide diversity to
the population. Generally, the population is reini-
tialized with the best individual of the population
and mutations of the best individual that usual-
ly implies flipping 35% of the genes with some
probability.

The proposed RCGA approach for discovering AR
from datasets with real values extends the CHC algo-
rithm detailed below. However, it adopts a more con-
servative reinitialization strategy and a less disruptive
crossover operator than the HUX crossover scheme.
The pseudocode of the CHC algorithm is as follows:

Input: Maximum number of generations (MaxNumGen) and thresh-
old for preventing incest (MinDist)
Output: Population of the last generation
CHC()

numGen← 0
Initialize P (numGen)
Initialize MinDist
while (numGen <= MaxNumGen)

Evaluate P (numGen)
C(numGen)← Crossover(P (numGen))
Evaluate C(numGen)
P (numGen + 1)← SelectBest(P
(numGen) ∪ C(numGen))
if(P (numGen + 1) equals P (numGen))

MinDist ←MinDist − 1
if (MinDist < 0)

Initialize P (numGen + 1)
Initialize MinDist

end if
end if
numGen← numGen + 1

end while
return P (numGen)

In a continuous domain, it is necessary to group
certain sets of values that share the same features and,
as a consequence, it becomes necessary to be able to
express the membership of the values in each group.
Intervals have been chosen to represent the membership
of such values in this work.

The search of the most appropriate intervals is car-
ried out by means of the proposed RCGA. Thus, the in-
tervals are adjusted to find the AR with high values for
both support and confidence as well as other measures
used in order to quantify the quality of the rule.

Within the population, each individual constitutes a
rule. These rules are then subjected to an evolution-
ary process in which both crossover operator with in-
cest prevention and reinitialization of the population
are applied and, at the end of the process, the fittest
individual is designated as the best rule. Moreover,
the fitness function has been provided with a set of pa-

Table 1
Representation of an individual
of the population

i1 s1 i2 s2 ... in sn

t1 t2 ... tn

rameters so that the user can drive the search process
depending on the desired rules. The punishment of the
covered instances allows the subsequent rules found
by the RCGA to try to cover those instances that were
still not covered, by means of Iterative Rule Learning
(IRL) [34].

The following subsections describe the representa-
tion of the individuals, the fitness function, the genetic
operators and how the population is restarted.

3.1. Codification of the individuals

Each gene of an individual represents the upper and
lower limit of the intervals of each attribute. The indi-
viduals are represented by an array of fixed length n,
where n is the number of attributes belonging to the
database. Furthermore, the elements are real-valued
since the values of the attributes are continuous.

Two structures are available for representing an in-
dividual, as is shown in Table 1. Note that all attributes
included in the database are depicted in the first row.
The limits of the intervals of each attribute are stored
in this row, where ij is the inferior limit of the interval
and sj the superior one.

Nevertheless, not all attributes will be present in the
rules that describe an individual. A second row indicat-
ing the type of each attribute (shown in the second row
of Table 1) has been developed to improve the efficien-
cy. Note that ti can have three different values: 0 when
the attribute does not belong to any individual, 1 when
the attribute belongs to the antecedent and 2 when it
belongs to the consequent. Therefore, if an attribute
is retrieved for a specific rule, it can be achieved by
modifying the value equal to 0 of the type by a value
equal to 1 or 2. Analogously, an attribute that appears
in a rule may be removed by changing the type of the
attribute from values 1 or 2 to 0.

3.2. Generation of the initial population

The number of attributes is randomly generated for
each individual taking into consideration the desired
structure for the rules, the maximum and minimum
number of allowed antecedents and consequents and the
maximum and minimum number of attributes forming
an individual.
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Fig. 1. Crossover and distance for the individuals x and y (attribute ranges: a1 ∈ [15, 35], a2 ∈ [5, 20] and a3 ∈ [85, 150]).

It is important to remark that the generation of the
interval limits is not arbitrary. On the contrary, it is
so that at least one sample of the dataset is covered
and that the size of the intervals is less than a given
maximum amplitude.

3.3. Crossover operator without incest

Two parent individuals, chosen by means of the
roulette selection, are combined to generate a new in-
dividual. However, not all parents are crossed, only
those parents who differ sufficiently. Thus, the dis-
tance between two possible parents is calculated and
the parents are only crossed if the distance is greater
than Dmax/4 [12] where Dmax is the maximum pos-
sible distance between two individuals and it is defined
by:

Dmax = 2 ·
n∑

i=1

(MAXi − MINi) (1)

where MAXi and MINi are the maximum and mini-
mum of the range in which the attribute i varies and n
is the number of attributes in the dataset. When there
are no individuals or potential parents to be crossed due
to a distance less than Dmax/4, this threshold is decre-
mented by a percentage of its initial value [5] (10% in
this work).

Therefore, the parents to be crossed have to be at least
25% different in order to prevent incest. The distance
between two individuals x and y is defined as follows:

distance(x, y) =
∑

jεS

|ixj − iyj | + |sx
j − sy

j | (2)

where ixj , sx
j , iyj and sy

j are the inferior and superior
limits of the interval of the attribute j which is associ-
ated to the individual x and y, respectively. S is the set
of attributes and the type for both parents, tx

j and ti
j ,

may or may not coincide as one of them is 1 and the
other is 0, or viceversa.

When the type of the attribute tj , is zero for an indi-
vidual, the attribute does not form part of the rule repre-
sented by the individual and the interval considered to
calculate the distance is the range in which the attribute
varies. This process is depicted in Fig. 1. However,
when the same attribute is an antecedent for one indi-
vidual and consequent for another one, these two indi-
viduals are considered different enough to be crossed
and it is not necessary to calculate the distance between
them.

Once the distance between the parents has been cal-
culated and it is greater than Dmax/4 the parents are
crossed as follows. First, all the attributes associated to
each parent are analyzed in order to discover their type.
Then, if the same attribute in both parents belonged to
the same type of attribute, this type of attribute would
be assigned to the descendent and the interval would be



obtained generating two random numbers among the
limits of the intervals of both parents. Thus, the lower
interval would be generated by a random number that
belonged to the interval formed by both lower inter-
vals of the parents; the upper interval is analogously
calculated. Otherwise, one of the two types would be
randomly chosen between both parents, without mod-
ifying the intervals of such attribute. Formally, x and
y are the two individuals to be crossed and [lx

i , sx
i ] and

[lyi , sy
i ] are the intervals in which the attributes vary,

respectively. tx
i is the type of the attribute ai that be-

longs to the individual x and finally z is the offspring
obtained by the crossover between x and y. Then,

[lzi , sz
i ] = [random(lxi , lyi ), random(sx

i , sy
i )]

(3)
if txi = tyi

If txi �= tyi , then tz
i is randomly selected to be equal

to txi or tyi and the intervals will be equal to that of any
parent:

[lzi , sz
i ] = [lxi , sx

i ] , if tzi = txi (4)

[lzi , s
z
i ] = [lyi , sy

i ] , if tzi = tyi (5)

3.4. Reinitialization of the population

The population is restarted when the threshold is set
to a negative value in order to introduce diversity in the
population and avoid the well-known premature con-
vergence of genetic algorithms. In this work, the pop-
ulation is reinitialized with 35% of the best individuals
of the population and mutations of the best individual.

The mutation consists in varying one gene of the
individual. The mutation is focused on the intervals, in
which three different cases are possible: equiprobable
of the upper limit or of the lower limit or of both limits
of the interval. To this regard, a random value between
0 and a percentage (10% usually) of the amplitude in
which the attribute varies is generated and is added or
subtracted to the limit of the interval randomly selected.

3.5. The fitness function

The fitness of each individual allows for determining
which are the best candidates to remain in subsequent
generations. In order to make this decision, it is prefer-
able to have high support since this fact implies that
more samples from the database are covered. Never-
theless, to only take into consideration the support is
not enough to calculate the fitness because the algo-
rithm would attempt to enlarge the amplitude of the
intervals until the whole domain of each attribute was

completed. For this reason, it is necessary to include a
measure to limit the growth of the intervals during the
evolutionary process. The chosen fitness function to be
maximized is:

f(i) = ws · sup + wc · conf − wr · recov
(6)

+wn · nAttrib − wa · ampl

where sup is the support, conf is the confidence, recov
is the number of recovered instances, nAttrib is the
number of attributes appearing in the rule, ampl is the
average size of attribute intervals that compose the rule
and ws, wc, wr , wn and wa are weights in order to
drive the search depending on the required rules.

The support prefers the rules with a high value of
support, that is, rules fulfilled by many instances and
the weight ws can increase or decrease its effect.

The confidence together with the support are the most
widely used measures to evaluate the quality of the AR.
The confidence is the reliability grade of the rule. High
values of wc may be used when rules without error are
desired, and viceversa.

The number of recovered instances is used to indi-
cate that a sample has already been covered by a previ-
ous rule. Thus, rules covering different regions of the
search space are preferred. The process of penalizing
the covered instances is now described. Every time the
evolutive process ends and the best individual is chosen
as the best rule, the database is processed in order to
find those instances already covered by the rule. Hence,
each instance has a counter that increases its value by
one every time a rule covers it.

Rules with a high number of attributes provide more
information but also, in many cases, it is difficult to find
rules where a high number of attributes appear. The
number of attributes of a rule can be adjusted by means
of the weight wn.

Finally, the amplitude controls the size of the inter-
vals of the attributes that compose the rules and those
individuals with large intervals are penalized by means
of the factor wa, which allow the rules to be more or
less permissive regarding the amplitude of the intervals.

3.6. The IRL approach

The proposed algorithm is based on the Iterative Rule
Learning (IRL) process, whose general scheme is illus-
trated in Fig. 2.

In each iteration, the CHC takes place. Thus, in each
evolutionary process, the individual that represents the
best rule is chosen. If the maximum number of rules
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Fig. 2. Scheme of IRL.

to be found is not reached, the samples that have been
covered are checked.

The goal of this process is to penalize the instances
covered by the best rule in order to cover the remaining
instances in subsequent iterations. Subsequently, cov-
erage of search space regions is attempted and the set
of rules covers all the domain of the consequent. The
iterative process ends when the maximum number of
desired rules are found.

Figure 3 illustrates how the proposed algorithm
works with the CHC inserted as a crucial step of the
IRL process.

First, the population is initialized and the crossover
threshold, MinDist, is set to prevent incest. In each
iteration of the CHC, the population is evaluated and
the fitness of each individual is calculated according
to (6). Then, the crossover operator without incest is
applied to a maximum number of parents (equal to half
the population), as described in Section 3.3. Those
parents that overlap MinDist are crossed to prevent the
incest and generate new offspring. Thus, a maximum
distance between offspring and parents is guaranteed.
Later, the elitist selection takes place. The N best
individuals are chosen from the current generation and
from the offspring. If no new individuals are created
in the current generation, MinDist is decremented. In
case the threshold was less than zero, the population
and the threshold are reinitialized. Finally, the process
has to be carried out as many times as the maximum
number of generations indicates.

4. Application to synthetic datasets

The proposed algorithm has been applied to the same
synthetic dataset used in [4] with the aim of determining

Table 2
Synthetic sets

A1 ∈ [1, 10] ∧ A2 ∈ [15, 30]
A1 ∈ [15, 45] ∧ A3 ∈ [60, 75]
A2 ∈ [65, 90] ∧ A4 ∈ [15, 45]
A3 ∈ [80, 100] ∧ A4 ∈ [80, 100]

if it is possible to find AR with the precise values for
the numeric intervals to which each attribute of the rule
belongs to.

The synthetic dataset is composed of 1000 instances
with four numeric attributes each. The selected inter-
val is [0, 100] and all values are uniformly distributed
according to Table 2. Note that the amplitude of the
intervals is different for each attribute. Furthermore,
the datasets have been generated so that the support is
25% and the confidence is 100%. The generation of
values out of such datasets are carried out so that no
rules better than the ones provided by themselves can
exist.

The main parameters of the proposed RCGA are as
follows: 100 for the size of the population, 100 for the
number of generations and 20 for the number of rules
to be obtained. After an experimental study to test the
influence of the weights on the rules to be obtained, the
weights of the fitness function, 3 for ws, 1 for wc, 1.2
for wr, 0.2 for wn and 1 for wa have been chosen.

Table 3 shows the best AR found by the proposed
RCGA for the sythentic datasets described previously.
The values for support and confidence are also provid-
ed, as well as the percentage of covered instances by
all rules. It can be noted that the rules have a support
of 25% and a confidence of 100%, according to the
real values for both measures on the synthetic datasets
considered.

These rules have been compared to those shown
in Table 4, which have been obtained through a
multi-objective differential evolution algorithm (MOD-
ENAR) that was recently published in [4]. It can be
appreciated that rules obtained by the RCGA share the
same support and confidence to those found by MOD-
ENAR. Nevertheless, the intervals, to which the nu-
meric attributes belong, determined that RCGA is more
precise than MODENAR, since such intervals present
the same range and amplitude as those intervals shown
in Table 2. In conclusion, it can be stated that the rules
found by RCGA are more precise to those found by
MODENAR even if the support and confidence are the
same.

Different levels of noise have been added to the syn-
thetic datasets in order to validate the efficiency of the
RCGA. Thus, values that are not comprised of the in-



Table 3
Association rules found by RCGA

Rule Support (%) Confidence (%) Records (%)

A1 ∈ [1, 10] =⇒ A2 ∈ [15, 30] 25 100 100
A1 ∈ [15, 45] =⇒ A3 ∈ [60, 75] 25 100
A3 ∈ [80, 100] =⇒ A4 ∈ [80, 100] 25 100
A2 ∈ [65, 90] =⇒ A4 ∈ [15, 45] 25 100
A2 ∈ [15, 30] =⇒ A1 ∈ [1, 10] 25 100
A3 ∈ [60, 75] =⇒ A1 ∈ [15, 45] 25 100
A4 ∈ [80, 100] =⇒ A3 ∈ [80, 100] 25 100
A4 ∈ [15, 45] =⇒ A2 ∈ [65, 90] 25 100

Table 4
Association rules found by MODENAR

Rule Support (%) Confidence (%) Records (%)

A1 ∈ [1, 10] =⇒ A2 ∈ [15, 30] 25 100 100
A1 ∈ [15, 45] =⇒ A3 ∈ [60, 75] 25 100
A3 ∈ [80, 100] =⇒ A4 ∈ [80, 98] 25 100
A2 ∈ [65, 90] =⇒ A4 ∈ [15, 43] 25 100
A2 ∈ [15, 30] =⇒ A1 ∈ [1, 10] 25 100
A3 ∈ [60, 75] =⇒ A1 ∈ [15, 45] 25 100
A4 ∈ [80, 98] =⇒ A3 ∈ [80, 100] 25 100
A4 ∈ [15, 44] =⇒ A2 ∈ [65, 89] 25 100

Initialize
population and

MinDist

Evaluate
population

Crossover of N
parents

Selection of the
best N individuals
between parents
and offsrpings

If NO new
individuals,

decrement MinDist
MinDist < 0.0

Reinitialize
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MinDist

no

yes

Generations <
Max Generations

Decrement
GenerationsEND

no

yes
Evaluate Offspring

Fig. 3. Scheme of algorithm CHC.

terval of the second item (A2) of the dataset have been
inserted, that is, a percentage r of instances exist whose
second item does not belong to the preset interval. The
RCGA has been tested with three different levels of
noise (4%, 6% and 8% for the value r).

Table 5 shows the rules obtained by applying RC-
GA to the different synthetic datasets after the noise
addition. The support and confidence values are al-
so provided, as well as the percentage of covered in-
stances by all rules. For the three noise levels, all the

extracted rules (but one) have exact intervals. Equally
remarkable is that for all noise levels the support in
most rules coincides with the real support values which
are 24%, 23.5% y 23%, for noise levels of 4%, 6% and
8% respectively.

Table 6 shows the AR, the support values, the confi-
dence and the percentage of covered instances obtained
by the MODENAR algorithm for different levels of
noise in synthetic datasets. Note that for the case where
noise level is 4% the range of the intervals are close



Table 5
Rules mined under different noise level (RCGA)

Mined rules Support (%) Confidence (%) Records (%)

r = 4%
A1 ∈ [1, 10] =⇒ A2 ∈ [15, 30] 24.0 96.0 96.0
A1 ∈ [15, 45] =⇒ A3 ∈ [60, 75] 24.0 96.0
A3 ∈ [80, 100] =⇒ A4 ∈ [80, 100] 24.0 96.0
A2 ∈ [65, 90] =⇒ A4 ∈ [15, 46] 24.2 95.0
A2 ∈ [15, 30] =⇒ A1 ∈ [1, 10] 24.0 100
A3 ∈ [60, 75] =⇒ A1 ∈ [15, 45] 24.0 100
A4 ∈ [80, 100] =⇒ A3 ∈ [80, 100] 24.0 98.8
A4 ∈ [15, 45] =⇒ A2 ∈ [65, 90] 24.0 99.0

r = 6%
A1 ∈ [1, 10] =⇒ A2 ∈ [12, 30] 23.7 94.0 94.0
A1 ∈ [15, 45] =⇒ A3 ∈ [60, 75] 23.5 94.0
A3 ∈ [80, 100] =⇒ A4 ∈ [79, 100] 23.6 92.9
A2 ∈ [65, 90] =⇒ A4 ∈ [15, 45] 23.5 92.5
A2 ∈ [15, 30] =⇒ A1 ∈ [1, 10] 23.5 100
A3 ∈ [60, 75] =⇒ A1 ∈ [15, 45] 23.5 100.0
A4 ∈ [80, 100] =⇒ A3 ∈ [80, 100] 23.5 97.5
A4 ∈ [15, 45] =⇒ A2 ∈ [65, 90] 23.5 97.5

r = 8%
A1 ∈ [1, 10] =⇒ A2 ∈ [15, 30] 23.0 92.0 92.0
A1 ∈ [15, 45] =⇒ A3 ∈ [60, 75] 23.0 92.0
A3 ∈ [80, 100] =⇒ A4 ∈ [80, 100] 23.0 89.8
A2 ∈ [65, 90] =⇒ A4 ∈ [15, 45] 23.0 92.0
A2 ∈ [15, 30] =⇒ A1 ∈ [1, 10] 23.0 100.0
A3 ∈ [60, 75] =⇒ A1 ∈ [15, 45] 23.0 100.0
A4 ∈ [80, 100] =⇒ A3 ∈ [80, 100] 23.0 97.8
A4 ∈ [15, 45] =⇒ A2 ∈ [65, 90] 23.0 95.4

Table 6
Rules mined under different noise level (MODENAR)

Mined rules Support (%) Confidence (%) Records (%)

r = 4%
A1 ∈ [1, 10] =⇒ A2 ∈ [15, 29] 24.1 100.0 96.0
A1 ∈ [15, 45] =⇒ A3 ∈ [60, 73] 24.0 100.0
A3 ∈ [80, 100] =⇒ A4 ∈ [80, 96] 23.7 96.7
A2 ∈ [65, 90] =⇒ A4 ∈ [15, 46] 24.2 98.3
A2 ∈ [15, 29] =⇒ A1 ∈ [1, 10] 24.1 100.0
A3 ∈ [60, 73] =⇒ A1 ∈ [15, 45] 24.0 100.0
A4 ∈ [80, 96] =⇒ A3 ∈ [80, 100] 23.7 96.7
A4 ∈ [15, 46] =⇒ A2 ∈ [65, 89] 24.2 98.3

r = 6%
A1 ∈ [1, 11] =⇒ A2 ∈ [14, 31] 23.3 98.9 94.0
A1 ∈ [15, 45] =⇒ A3 ∈ [56, 73] 23.6 99.0
A3 ∈ [80, 100] =⇒ A4 ∈ [84, 95] 23.3 94.5
A2 ∈ [65, 89] =⇒ A4 ∈ [14, 49] 23.8 97.8
A2 ∈ [14, 31] =⇒ A1 ∈ [1, 11] 23.3 98.9
A3 ∈ [56, 73] =⇒ A1 ∈ [15, 45] 23.6 99.0
A4 ∈ [84, 95] =⇒ A3 ∈ [80, 100] 23.3 94.5
A4 ∈ [14, 49] =⇒ A2 ∈ [65, 89] 23.8 97.8

r = 8%
A1 ∈ [1, 11] =⇒ A2 ∈ [14, 29] 22.4 97.6 91.8
A1 ∈ [15, 45] =⇒ A3 ∈ [62, 76] 22.9 98.0
A3 ∈ [79, 100] =⇒ A4 ∈ [82, 98] 22.8 93.4
A2 ∈ [65, 90] =⇒ A4 ∈ [15, 48] 23.7 95.8
A2 ∈ [14, 29] =⇒ A1 ∈ [1, 11] 22.4 97.6
A3 ∈ [62, 76] =⇒ A1 ∈ [15, 45] 22.9 98.0
A4 ∈ [82, 98] =⇒ A3 ∈ [79, 100] 22.8 93.4
A4 ∈ [15, 48] =⇒ A2 ∈ [65, 90] 23.7 95.8



to the real intervals synthetically generated but are not
exact. The support in all cases is close to the real value
being equal in just two rules. For this level the pro-
posed algorithm provided better rules with more exact
intervals than those provided by MODENAR, which
implies better support for such rules. However, the
confidence values for rules found by the RCGA are
slightly lower than those found by MODENAR.

For a noise of 6%, it can be observed that none of
the obtained rules by MODENAR has exactly the same
intervals as those used to generate the synthetic dataset.
Therefore, the support differs from the real value –equal
to 23.5%– for this noise level. Likewise, none of the
cases reach a confidence of 100%. Nevertheless, it can
be observed in Table 5 that in most cases where the
RCGA is applied, exact intervals are obtained. This
fact entails confidence values of 100% for some rules
and a support of 23.5% for most cases, as opposed to
MODENAR.

Analogously for a noise level of 8%, if the rules
shown in Tables 5 and 6 are compared, it can be con-
cluded that the behavior of the proposed algorithm with
noise is similar to that of previous levels. Consequent-
ly, the rules obtained for this level of noise have more
precise intervals than those obtained by MODENAR.
This improvement entails reaching the real value of the
support in the majority of cases. Also, the confidence
achieved with the RCGA is 100% for two rules, where-
as value has never been fully achieved with the rules
obtained from MODENAR.

In conclusion, it can be stated that the RCGA satis-
factorily extracted rules for synthetic datasets contain-
ing noise, since it showed its ability to overcome dif-
ferent levels of noise, even providing an improvement
to the rules provided by MODENAR.

5. Application to atmospheric pollution

The proposed algorithm has been applied in or-
der to discover AR between climatological variables
–temperature, humidity, wind direction, wind speed–,
the hour of the day and day of the week, and three
pollutant agents (ozone, nitrogen monoxide and sulfur
dioxide). Therefore, these variables are forced to be-
long to the consequent. However, the intervals are not
previously fixed which differentiates from Apriori and
the SD issue.

All variables have been retrieved from a meteoro-
logical station placed in the outskirts of Seville city
(Spain), providing hourly records of them. It is worth

mentioning that Seville is a very hot city that frequent-
ly reaches temperatures greater than 40 ◦C during the
summer. The following sections detail the rules ob-
tained for each variable.

5.1. Extracting rules for the ozone

AR have been extracted for ozone (O3) in two dif-
ferent time periods: from July to August in both 2003
and 2004, which leads to a dataset composed of 1688
instances. The selection of such periods is due to the
high concentration of ozone present in the aforemen-
tioned summers. For prediction purposes, the clima-
tological time series have been forced to belong to the
antecedent and the ozone to the consequent. As a re-
sult, a prediction of ozone is achieved on the basis of
rules extracted from these variables.

Several experiments have been carried out, in which
the main parameters of the GA were as follows: 100
for the size of the population and 100 for the number of
generations; 20 for the number of rules to be obtained.
After an experimental study to test the influence of the
weights on the rules to be obtained, the weights of the
fitness function, 0.5 for ws, 2 for wc, 6 for wr , 0.2 for
wn and 7 for wa have been selected.

The most relevant rules are the ones that identify high
concentration of ozone. However, this situation is just
under 6.5% of the whole dataset and for this reason, the
value ws has been set low and wa high, since rules with
small amplitudes are desirable. Also, wr has been set
with a high value in order to promote rules that cover
instances with high ozone concentration.

The experimentation carried out is detailed in follow-
ing Tables, in which only the most significative rules
are represented. Also, it must be noted that the confi-
dence is the percentage of instances covered by the rule
in which only the antecedent is covered.

Table 7 outlines the rules obtained when temperature
was the antecedent and ozone the consequent, taking
into consideration only those rules whose consequent
possesses values of high ozone concentration –typically
170 microgrammes per cubic meter, [µg/m3]– to which
citizens must be informed of such situations. It can be
easily concluded that temperature and ozone are direct-
ly related, since an increase in temperature involves an
increase in the ozone. Another remarkable feature is
the perfect division of the temperature ranges regarding
ozone as no overlapping is detected. For temperatures
ranging from 35◦C to 37◦C, ozone values were from
157 µg/m3 to 175 µg/m3 approximately. Likewise,
a temperature in the range [38, 40]◦C entails ozone



Table 7
Association  rules found  by  RCGA  for  temperature  (◦C)  and O3 (µg /m3)

Rule Support (%) Confidence (%)

temperature ∈ [34.9, 37.0] =⇒ O3 ∈ [157.7, 175.8] 9.7 19.4
temperature ∈ [38.6, 40.6] =⇒ O3 ∈ [180.0, 202.3] 8.3 22.6
temperature ∈ [42.8, 44.9] =⇒ O3 ∈ [205.8, 223.5] 1.4 66.6

Table 8
Association rules found by RCGA for humidity (%) and O3 (µg /m3)

Rule Support (%) Confidence (%)

humidity ∈ [14.0, 20.0] =⇒ O3 ∈ [124.2, 163.7] 4.8 77.7
humidity ∈ [38.6, 40.6] =⇒ O3 ∈ [180.0, 202,3] 5.5 19.5

Table 9
Association rules found by RCGA for wind direction (◦) and O3 (µg /m3)

Rule Support (%) Confidence (%)

direction ∈ [91.8, 117.1] =⇒ O3 ∈ [144.0, 161.7] 2.1 33.3
direction ∈ [208.6, 233.8] =⇒ O3 ∈ [127.8, 145.5] 13.8 20.0

Table 10
Association rules found by RCGA for wind speed (m/s) and O3 (µg /m3)

Rule Support (%) Confidence (%)

speed ∈ [18.1, 20.0] =⇒ O3 ∈ [91.2, 160.8] 29.6 89.5

Table 11
Association rules found by RCGA for hour of the day and O3 (µg /m3)

Rule Support (%) Confidence (%)

hour ∈ [11 am, 1:30 pm] =⇒ O3 ∈ [123.5, 141.2] 14.4 17.8
hour ∈ [2 pm, 3:30 pm] =⇒ O3 ∈ [137.3, 157.7] 25.5 30.8
hour ∈ [3 pm, 4:30 pm] =⇒ O3 ∈ [160.3, 178.0] 8.9 21.3
hour ∈ [4 pm, 5:30 pm] =⇒ O3 ∈ [130.7, 166.3] 32.4 38.5
hour ∈ [8 pm, 9:30 pm] =⇒ O3 ∈ [135.9, 153.6] 8.2 19.6

levels of 180 µg/m3 and 200 µg/m3. Finally, when
the temperature reaches 42◦C, the ozone has values
greater than 200 µg/m3. The last rule is of the utmost
importance since the confidence obtained is 66%.

Table 8 shows the rules in which ozone reaches its
highest values when the humidity is the antecedent. As
it can be noted, the humidity triggers considerably high
values of ozone when it reaches values between 14%
and 20%. Equally remarkable is the second rule in
which the ozone exceeds levels of 180 µg/m3 when
the humidity lies between 38.6% and 40.6%.

Table 9 describes the rules in which ozone had high
values when analyzing the wind direction. Ozone levels
start to rise when wind direction varies between 210◦

and 230◦. However, the highest ozone concentration
found in the atmosphere is when the wind direction is
in the range from 90◦ to 120◦, reaching values around
160 µg/m3. The precision of both rules is similar,
since confidence verges on 25% for both situations.

The rules that relate wind speed and ozone are found
in Table 10. With high accuracy, a confidence of 89.5%,

ozone reaches moderate values when wind speed is
between 18 m/s and 20 m/s.

Table 11 presents hours of the day (in the antecedent)
when higher values of ozone (in the consequent) are
detected in the atmosphere. According to the obtained
rules, it can be concluded that these hours coincide with
hours of heavy traffic, that is, the highest concentrations
are found from 2 pm to 4:30 pm and from 8 pm to 9:30
pm. These intervals of time are typically associated
with the end of schooltime and the working day in
Spain. On the contrary, the lowest levels are detected
from 11 am to 1:30 pm, the time in which most people
are working or studying. All the rules share values of
similar confidence, comprising between 20% and 40%.

Table 12 makes reference to the highest concentra-
tions of ozone distributed throughout the days of the
week. It can be appreciated that on the first (Mon-
day) and third day of the week, ozone may reach lev-
els greater than 180 µg/m3. In addition, Fridays also
produce elevated concentrations of ozone. Applying a



Table 12
Association rules found by RCGA for day of the week and O3 (µg/m3)

Rule Support (%) Confidence (%)

day ∈ [1, 2] =⇒ O3 ∈ [168.4, 186.1] 8.2 5.6
day ∈ [2, 3] =⇒ O3 ∈ [130.7, 166.3] 9.6 6.9
day ∈ [3, 4] =⇒ O3 ∈ [171.6, 189.3] 6.9 5.0
day ∈ [4, 5] =⇒ O3 ∈ [136.6, 154.2] 13.8 9.9
day ∈ [5, 6] =⇒ O3 ∈ [154.1, 171.8] 7.6 5.1
day ∈ [6, 7] =⇒ O3 ∈ [132.2, 149.9] 13.8 9.3

Table 13
Association rules found by RCGA for temperature (◦C) and NO  (µg /m3)

Rule Support (%) Confidence (%)

temperature ∈ [35.7, 37.7] =⇒ NO ∈ [3.0, 8.0] 4.3 88.8
temperature ∈ [38.3, 40,3] =⇒ NO ∈ [3.0, 6.9] 3.9 96.6
temperature ∈ [40.5, 42.6] =⇒ NO ∈ [3.0, 8.2] 1.1 94.1
temperature ∈ [42.9, 45.0] =⇒ NO ∈ [3.0, 6.9] 0.3 100

Table 14
Association rules found by RCGA for humidity (%) and NO  (µg /m3)

Rule Support (%) Confidence (%)

humidity ∈ [14.0, 19.4] =⇒ NO ∈ [3.0, 6.9] 0.5 100
humidity ∈ [36.1, 41.5] =⇒ NO ∈ [3.0, 7.0] 6.7 73.0

Table 15
Association rules found by RCGA for wind direction (◦) and NO  (µg /m3)

Rule Support (%) Confidence (%)

direction ∈ [88.1, 114.1] =⇒ NO ∈ [3.0, 6.9] 0.6 81.8
direction ∈ [208.3, 233.5] =⇒ NO ∈ [3.0, 7.0] 6.4 93.2

Table 16
Association rules found by RCGA for wind speed (m/s) and NO  (µg /m3)

Rule Support (%) Confidence (%)

speed ∈ [18.1, 20.0] =⇒ NO ∈ [3.0, 6.9] 3.6 100

similar rationale to that of Table 11, it can be concluded
that the highest values are associated with days with
heavy traffic, that is, the first and last working days of
the week. A slight decrease of the ozone is detected
in the middle of the week as well as over the weekend.
All rules present similar levels of confidence, within
5% and 10%.

5.2. Extracting rules for nitrogen monoxide

AR have also been extracted for nitrogen monoxide
(NO). This pollutant agent is typically generated by
the direct combination of nitrogen and oxygen. The
analysis of NO levels in the atmosphere is relevant
since it directly contributes to the generation of nitrogen
dioxide NO2, which is an extremely oxidant agent
resulting from the oxidation of NO. NO2 is one of the
precursors of photochemical smog and it can easily be

recognized in big cities due to the reddish coloration of
the air.

To carry out the experimentation, the climatologi-
cal variables used in the previous section (temperature,
humidity, wind direction, wind speed, hour of the day
and day of the week) have been considered to belong to
the antecedent and the nitrogen monoxide to the con-
sequent. It also needs to be mentioned that the param-
eters as well as the associated weights to each attribute
in the fitness function are the same to the ones used for
the ozone experimentation.

Furthermore, in order to perform comparisons with
results from ozone, rules with antecedents similar to
those of ozone have been chosen, that is, rules in which
ozone presented high levels of concentration.

Tables 13, 14, 15, 16, 17 and 18 show the rules
discovered for the NO and related with temperature,
humidity, wind direction, wind speed, hour of the day
and day of the week, respectively.



Table 17
Association  rules found  by  RCGA  for  hour  of  the  day  andNO (µg/m3)

Rule Support (%) Confidence (%)

hour ∈ [12 pm, 1:30 pm] =⇒ NO ∈ [3.0, 6,9] 6.9 83.1
hour ∈ [2 pm, 3:30 pm] =⇒ NO ∈ [3.0, 6.9] 4.1 100
hour ∈ [3 pm, 4:30 pm] =⇒ NO ∈ [3.0, 6.9] 8.3 100
hour ∈ [4 pm, 5:30 pm] =⇒ NO ∈ [3.0, 6.9] 8.2 99
hour ∈ [8 pm, 9:30 pm] =⇒ NO ∈ [3.0, 6.9] 4.1 100

Table 18
Association rules found by RCGA for day of the week and NO  (µg /m3)

Rule Support (%) Confidence (%)

day ∈ [1,2] =⇒ NO ∈ [3.0,7.0] 12.8 88.4
day ∈ [2,3] =⇒ NO ∈ [3.0, 6.9] 12.8 88.4
day ∈ [3,4] =⇒ NO ∈ [3.0, 6.9] 12.6 87.0
day ∈ [4,5] =⇒ NO ∈ [3.0, 6.9] 12.7 87.5
day ∈ [5,6] =⇒ NO ∈ [3.0, 6.9] 13.8 95.3
day ∈ [6,7] =⇒ NO ∈ [3.0, 6.9] 14.2 98.1

Table 19
Association rules found by RCGA for temperature (◦C) and SO2 (µg /m3)

Rule Support (%) Confidence (%)

temperature ∈ [35.9, 38.0] =⇒ SO2 ∈ [10.8, 13.0] 1.4 27.5
temperature ∈ [37.9, 40.0] =⇒ SO2 ∈ [7.0, 10.3] 2.2 53.2
temperature ∈ [42.9, 45.0] =⇒ SO2 ∈ [3.7, 7.5] 0.3 100

The analysis of the aforementioned Tables reveals
that the values for nitrogen monoxide in each case al-
ways varies in the interval comprising of 3 µg/m3 and
6 µg/m3 with a confidence verging on 100% in all
cases. These values are typically considered to be very
low and, moreover, it remains invariable with indepen-
dence of the values of the intervals appearing in the
antecedent. This feature allows for concluding that ni-
trogen monoxide cannot be predicted by means of any
of the attributes existing in the dataset. That is, these
time series are not correlated enough in regard to NO
(coefficient of correlation equals 0.1233 in comparison
to ozone which equals 0.3777) and, consequently, no
useful information can be extracted from their analysis.

Fortunately, these results are logical because, on one
side, NO oxidizes and creates NO2 and, on the oth-
er, NO2 is dissociated in particles of NO and atom-
ic oxygen (O) in presence of solar light. Besides, O
reacts with molecular environmental oxygen (O2) and
produces ozone (O3). Therefore, low values of nitro-
gen monoxide in the atmosphere are strongly ligated to
high values of ozone in the intervals of interest.

5.3. Extracting rules for sulfur dioxide

The study of sulfur dioxide in the air is a concerning
subject since, apart from being responsible for the gen-
eration of sulfuric acid(H2SO4), it deeply affects peo-

ple’s health, causing respiratory diseases. The atmo-
spheric SO2 may oxidize and generate SO3 and react
with humidity (H2O) by absorption, thus generating
thus the molecules of sulfuric acid. These molecules
can be dispersed in the air, contributing to the acidifi-
cation process of the earth and water particles.

Hence, this section describes the experimentation
carried out to predict sulfur dioxide (SO2) from the
same climatological time series used in the previous
sections. Moreover, all parameters and weights that
take part in the fitness function have been set with the
same values. The time series are only allowed to ap-
pear in the antecedent and sulfur dioxide only in the
consequent. Thus, the forecasting is performed on the
same basis used for rules discovered in previous sec-
tions. Also note that, in order to perform comparisons
with results from ozone and nitrogen monoxide, rules
with antecedents similar to those of ozone have been
chosen, that is, rules in which ozone presented high
concentration levels.

Table 19 shows rules relating to the temperature (in
the antecedent) and sulfur dioxide (in the consequent),
in which no overlapped intervals exist. From its find-
ings, it can be stated that higher the temperature, the
less sulfur dioxide there is in the air. This statement
may be contradictory since it is reasonable to think that
sulfur dioxide increases along with temperature. How-
ever, the obtained data are what experts expect since



Table 20
Association rules found by RCGA for humidity (%) and SO2 (µg/m3)

Rule Support (%) Confidence (%)

humidity ∈ [14.1, 19.5] =⇒ SO2 ∈ [9.5, 11.6] 0.2 50.0
humidity ∈ [34.2, 39.5] =⇒ SO2 ∈ [3.0, 9.7] 6.2 62.1

Table 21
Association rules found by RCGA for wind direction (◦) and SO2 (µg /m3)

Rule Support (%) Confidence (%)

direction ∈ [44.4, 69.6] =⇒ SO2 ∈ [3.0, 10.7] 1.3 80.0
direction ∈ [125.4, 150.6] =⇒ SO2 ∈ [3.0, 10.0] 8.4 82.3
direction ∈ [185.2, 210.4] =⇒ SO2 ∈ [3.0, 9.2] 6.1 71.8
direction ∈ [245.7, 270.9] =⇒ SO2 ∈ [3.0, 10.2] 2.8 82.3

Table 22
Association rules found by RCGA for wind speed (m/s) and SO2 (µg /m3)

Rule Support (%) Confidence (%)

speed ∈ [0.0, 1.9] =⇒ SO2 ∈ [3.0, 6.9] 8.4 83.4
speed ∈ [17.5, 19.4] =⇒ SO2 ∈ [3.0, 6.9] 2.7 74.5
speed ∈ [25.7, 27.7] =⇒ SO2 ∈ [3.0, 6.9] 0.5 63.6

Table 23
Association rules found by RCGA for hour of the day and SO2 (µg /m3)

Rule Support (%) Confidence (%)

hour ∈ [3 am, 4:30 am] =⇒ SO2 ∈ [3.0, 6.3] 2.3 54.8
hour ∈ [11 am, 12:30 pm] =⇒ SO2 ∈ [8.6, 10.8] 1.9 23.4
hour ∈ [12 pm, 1:30 pm] =⇒ SO2 ∈ [11.6, 13.8] 1.4 17.7
hour ∈ [1 pm, 2:30 pm] =⇒ SO2 ∈ [13.6, 15.8] 0.6 14.5
hour ∈ [4 pm, 5:30 pm] =⇒ SO2 ∈ [6.7, 11.8] 2.2 51.6
hour ∈ [8 pm, 9:30 pm] =⇒ SO2 ∈ [11.3, 13.7] 1.3 16.1

the presence of this particle in the air is inversely re-
lated to the solar radiation, that is, to the temperature.
Therefore, when the temperature increases, the diox-
ide reacts quicker, generating sulfuric acid and reduc-
ing sulfur dioxide concentration. Specifically, when
temperature ranges from 35◦C to 38 ◦C, sulfur dioxide
falls in the interval 10-13 µ/m3 and when temperature
reaches 40◦C, sulfur dioxide reduces its concentration
from 3 µg/m3 to 7 µg/m3. The last rule is especially
reliable due to its high confidence.

Table 20 shows the rules relating to the humidity (in
the antecedent) and sulfur dioxide (in the consequent),
in which no overlapped intervals exist either. As with
temperature, sulfur dioxide is inversely related to hu-
midity. Thus, for humidity between 14% and 19%,
sulfur dioxide levels are in the range of 9–11 µ/m3.
Furthermore, when the temperature nears 40◦C, gas
concentration is reduced to a level of 3 µ/m3. The
explanation for this phenomenon is similar to that of
temperature since the reaction of sulfur dioxide is ac-
celerated by means of humidity absorption, that is, the
more humidity, the less sulfur dioxide.

Table 21 presents the rules extracted when using
the wind direction as antecedent. In this case, the
intervals obtained for sulfur dioxide remain invariable
even if the wind direction varies. Consequently, it can
be concluded that wind direction does not influence
levels of sulfur dioxide in the atmosphere.

Table 22 is devoted to presenting rules extracted
when using wind speed as antecedent. As with wind
direction, the intervals obtained for the consequent do
not vary, independently of the values in the antecedent.
Consequently, it can be concluded that the wind speed
does not influence levels of sulfur dioxide in the atmo-
sphere.

Table 23 shows the rules for the different hours of a
day. As it can be appreciated, high concentrations of
sulfur dioxide are concentrated in Spanish rush hours.
For instance, when considering the interval from 1 pm
to 2:30 pm, the gas reaches values close to 15 µg/m3.
In comparison, the concentration from 3 am to 4:30 am
is no greater than 6 µg/m3.

Table 24 describes the rules associated with the day
of the week that help sulfur dioxide forecasting. The
highest concentrations are on Mondays and Fridays and



Table 24
Association rules found by RCGA for day of the week and SO2 (µg/m3)

Rule Support (%) Confidence (%)

day ∈ [1,2] =⇒ SO2 ∈ [14.2, 16.3] 0.9 6.7
day ∈ [2,3] =⇒ SO2 ∈ [9.8, 12.1] 1.6 11.5
day ∈ [3,4] =⇒ SO2 ∈ [12.4, 14.5] 1 15.2
day ∈ [4,5] =⇒ SO2 ∈ [8.9, 11.0] 2.2 15.2
day ∈ [5,6] =⇒ SO2 ∈ [15.7, 17.8] 0.8 5.5
day ∈ [6,7] =⇒ SO2 ∈ [9.4, 11.5] 2.6 18.0

the explanation of this situation is similar to the one
provided for the hour of the day. Heavy traffic at the
beginning and end of the week causes an increase in
the combustion levels, which leads to a higher concen-
tration of this gas in the atmosphere.

6. Conclusions

A new algorithm has been proposed in this work
in order to discover quantitative AR. The approach is
based on the well-known CHC and works diametral-
ly different as most algorithms do, since it does not
discretize the attributes as a first step of the process.
Moreover, the algorithm has been evaluated over dif-
ferent datasets. On one hand, synthetic data have been
mined and the results were compared with those pro-
vided by the MODENAR algorithm, reporting better
rules in terms of confidence and support. Additionally,
the algorithm has been applied to pollutant agents time
series and shown to be effective for forecasting purpos-
es. The use of these kind of tools with such data is,
to the best of the authors knowledge, unique. Further-
more, the mined rules agreed with chemical processes
associated with these agents.
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