
Quality of cloud services determined by the dynamic management of scheduling 
models for complex heterogeneous workloads

Damián Fernández-Cerero,
Alejandro Fernández-Montes

Department of Computer
Languages and Systems

University of Seville, Spain
Emails: damiancerero@us.es,

afdez@us.es

Joanna Kołodziej
Department of Computer Science
Cracow University of Technology

Poland
Email: jokolodziej@pk.edu.pl

Laurent Lefèvre
Univ. Lyon, Inria, CNRS

ENS de Lyon
Univ. Claude-Bernard Lyon 1

LIP, France
Email: laurent.lefevre@ens-lyon.fr

Abstract—The quality of services in Cloud Computing (CC)
depends on the scheduling strategies selected for processing of
the complex workloads in the physical cloud clusters. Using
the scheduler of the single type does not guarantee of the
optimal mapping of jobs onto cloud resources, especially in
the case of the processing of the big data workloads. In this
paper, we compare the performances of the cloud schedulers
for various combinations of the cloud workloads with different
characteristics. We define several scenarios where the proper
types of schedulers can be selected from a list of scheduling
models implemented in the system, and used to schedule the
concrete workloads based on the workloads’ parameters and
the feedback on the efficiency of the schedulers. The presented
work is the first step in the development and implementation
of an automatic intelligent scheduler selection system. In our
simple experimental analysis, we confirm the usefulness of such
a system in today’s data-intensive cloud computing.

Index Terms—Big Data Quality, Big Data, Cloud scheduling,
Dynamic cloud scheduling, Cloud Computing.

1. Introduction

Big data [6] is an emerging field where innovative tech-
nology offers alternatives to resolve the inherent problems
that appear when working with huge amounts of data,
providing new ways to reuse and extract value from informa-
tion. In today’s data intensive computing world, we need a
complete ICT (information and communication technology)
paradigm shift in order to support the development and
delivery of Big data applications, in a way that applications
do not get overwhelmed by incoming data volume, data
rate, data sources, and data types. Dealing with this huge
amount of data requires a new end-to-end data-management
and data-analysis paradigm in which methods need to be
efficient, not just as stove-pipe processes, but as part of a
well-integrated system. Big-Data analysis tools that may be
aware of the significant trade-off that exists between the
Computational Time and the Quality of Result are needed

in this context. This trade-off between time and accuracy
(quality) requires big-data analysis architectures to support
both Batch Data Analysis Processes (for latent but quality
solutions) as well as Streaming Data Analysis (for near real-
time situation awareness).

The deployment and provision of efficient-management
systems for b data applications will greatly benefit from a
cloud-like middleware infrastructure, which could be for-
mulated to create a combined environment consisting of
multiple private (municipalities, enterprises, research or-
ganisations) and public (Amazon, Microsoft) infrastructure
providers to deliver on-demand access to emergency man-
agement applications. Cloud computing (CC) assembles
large networks of virtualised ICT services such as hardware
resources (such as CPU, storage, and network), software
resources (such as databases, application servers, and web
servers) and applications. In industry these services are
referred to as Infrastructure as a Service (IaaS), Platform
as a Service (PaaS), and Software as a Service (SaaS). CC
services are hosted in large data centres, often referred to
as data farms, operated by companies such as Amazon [21],
and Microsoft [8]. Several features of this paradigm, such as
elasticity, thin–client user interface as well as resource pools
for both data and computing, denote that the CC paradigm
is adequate for collecting, hosting and processing complex
workloads as well as the associated data needed for their
executions.

Cloud scheduling remains a challenging problem es-
pecially in the big data era. Although many cluster, grid
and cloud scheduling models have been developed over the
past two decades [24], most of them cannot be successfully
implemented for solving the complex data-intensive realistic
problems. The main reason of that is the lack of a simple
but effective scalable scheduling management mechanism,
which can be the background of the new scheduling adapta-
tion model based on the workload characteristics. In fact, the
main role of such mechanism is the selection of the proper
scheduler from a set of scheduling models and using that
scheduler for the ’proper’ workload based on the analysis of
the workload structure and the parameters of its jobs, such



as the number of tasks in the job, the interrelations among
tasks, and the requirements of the jobs in the workload.
An additional challenge in cloud scheduling are the special
requirements from the end-users related to the privacy and
data protection, which make all the process even more
complex.

The main aim of our research is to define and implement
the intelligent automatic scheduler selection system, which
allows us to apply the proper type of the scheduler to a
given workload just arrived at the cloud cluster. There are
three main stages of our work:

• Stage 1 — preliminary experimental comparison of the
selected classes of cloud schedulers and simple adap-
tation of the schedulers to the workload parameters –
first implementation of the manual scheduler selection
mechanism.

• Stage 2 – development of an automatic system that
can dynamically select and match the proper scheduling
model to the specified type of workload depending on
the workload parameters and cloud cluster architecture.

• Stage 3 – improvement the scheduler selection mech-
anism with machine-learning techniques.

In this paper we present the results achieved in the first
stage. We define a sequence of complex workloads with
different characteristics and we implemented two centralized
scheduling models in a trustworthy cloud simulator. Then we
used separately each scheduler for mapping all workloads
onto the cloud cluster and monitored the execution times
of all jobs in the workloads. Finally, based on the obtained
results for the schedulers, we repeated the experiment but
we changed dynamically the schedulers used for planning
the concrete workflows. The results of such simple experi-
ments show that such scheduler selection mechanism may
significantly improve the performance of the cloud physical
cluster and also improve the quality of the cloud services,
especially for processing the big volumes of data.

The paper is organized as follows. In Section 2 we
define a simple classification of the CC schedulers based
on the task, data and resource management models. We
also survey the examples of the schedulers from each of the
defined class. In Section 3 we define the formal notation and
explain the background of the scheduling models together
with the characteristics of the heterogeneous workloads used
in this paper. In Section 4, we provide a simple experimental
analysis of the selected schedulers for the three scheduling
scenarios. The paper ends with summary of the work and
future research plans in Section 5.

2. Classification of the CC Schedulers

In this section, we present a simple classification of the
most popular CC schedulers used for the complex workloads
generated in big data scenarios. This classification is based
on the workload (jobs), data and resource management
policies. It defines in fact the categories of the schedulers
developed for the cloud physical clusters, which are however
the main infrastructures for the implementation of the cloud

virtual servers. We also overview the recently developed
CC scheduling models related to the defined classification.
The section ends with some critical remarks, which better
illustrate the motivation of our work.

2.1. Taxonomy of CC schedulers

In Fig. 1, we present a simple taxonomy of the CC
schedulers based on the job, resources and data management
policies.

CC Schedulers 

Centralized Distributed Hybrid 

Monolithic Two level Shared State 

hed

ntra

Figure 1: Generic taxonomy of CC schedulers based on the
data and task management policies

There are three main categories of schedulers defined in
that taxonomy, namely:: a) Centralized schedulers; b) Dis-
tributed schedulers; and c) Hybrid schedulers.

In the centralized scheduling model, there is a central
authority with a full knowledge of the system. Such central
scheduler makes the task (job) – machine mapping and data
processing. It may work well for workloads with a low
number of high–demanding jobs. This scheduling model has
usually limited scalability, and some difficulties may occur
in the accommodation of multiple local policies imposed by
the resource owners.

In the distributed scheduling model, there is no central
authority responsible for resource allocation and many local
schedulers work independently to manage the tasks and jobs.
Such distributed schedulers can work optimally for a larger
number of jobs with a low task inter–arrival rates. However,
the local schedulers have the limited knowledge about the
whole system. They usually are able to communicate with
the schedulers of the neighbour cloud clusters. The dis-
tributed scheduling model is highly scalable, fault–tolerant
and easy for reconfiguration of the architectures of the cloud
clusters, but the scheduling decisions in such models may
be sub-optimal, which can be critical for long-running and
high-demanding jobs.

Finally, in the hierarchical scheduling model, there is a
central meta–scheduler (or metabroker), which interacts with
the local job dispatchers. Such meta–scheduler manages the
large sets of jobs and resources while the local job managers
control small local cloud clusters. The local schedulers
have the knowledge about resource clusters, but they cannot
monitor the whole system. The main benefits of using hierar-
chical scheduling is that it incorporates scalability and fault–



tolerance issues while also retaining some of the advantages
of the centralized scheme such as co-allocation.

The above classification is very general. Each class
may consists of several subcategories such as centralized
scheduling model presented in Fig. 1. In the next Section,
we shortly survey the concrete models developed for each of
the presented categories and summarize their functionalities.

2.2. Characteristics of the CC Scheduler Classes

The quality of the cloud services and the efficiency of
the cloud schedulers depend on the workload parameters and
the requirements of the cloud end–users. The main workload
parameters include security and data privacy issues; task
(job) execution deadline constraints; and service utilisation
costs. The delivered data files needed in computation and
the results of the computation of jobs (tasks) are stored and
replicated in the cloud data centers [3]. In order to increase
the utilisation of the local cloud clusters and to optimize the
usage of the data–center servers, the cloud schedulers must
be effective in the processing of the multiple heterogeneous
workloads in the physical and virtual cloud infrastructures.
In the rest of this section, we provide a detailed character-
istics of the schedulers from the classes presented in Fig. 1,
describe their main features and limitations.

2.2.1. Centralized Schedulers. Centralized schedulers can
be divided into three classes, namely: a) monolithic sched-
ulers; b) two-level schedulers; and c) shared-state sched-
ulers.

Monolithic centralized scheduler is the most popular
model of cloud cluster schedulers. Monolithic schedulers
[22] work very well under low job-arrival rate conditions.
The example of such a class is the Map–Reduce model
for long-running jobs [9]. Latencies of seconds or minutes
[14] are acceptable in this context. This kind of scheduler
can perform high-quality scheduling decisions [12], [40] by
examining the whole cluster state. In this process, the best
resources can be assigned to each task, and therefore the
scheduler can determine the negative performance impact
due to hardware heterogeneity and interference because of
the utilisation of shared resources [25], [35], [39], among
others. This approach leads to higher machine utilization
rates [38], shorter execution times, better load balancing,
more predictable performance [13], [41], and increased re-
liability [34]. The scheduling process for the monolithic
centralized scheduler is illustrated in Fig. 2

The increasing need of fast-response jobs led to the parti-
tioning of jobs, which implies that a higher number of small
and fast tasks are to be scheduled. This new situation may
exceed the capabilities of a centralized monolithic scheduler.
In order to face this new challenge, two new centralized
scheduling approaches that parallelize scheduling decisions
were proposed. Two-level centralized schedulers, such as
Mesos [20], and YARN [37], use a centralized coordinator
that blocks the whole cluster every time a scheduler makes a
scheduling decision. Then, this coordinator offers resources
to the different frameworks, such as Hadoop and MPI. Each

B1 

B2 

S1 
S2 

M1 

M9 

M2 

M10 

M3 

M11 

M4 

M12 

M5 

M13 

M6 

M14 

M7 

M15 

M8 

M16 

MMM MM MM M5M

M13M M

MMM

Centralized scheduler 
Monolithic 

B1 

S1 

S2 

B2 

1 

2 

3 

4 

Figure 2: Monolithic centralized scheduling workflow, B -
Short-running Batch task, S - Long-running Service task, M
- Machine

of these frameworks has its own scheduler responsible for
assigning tasks to servers, as shown in Figure 3. In this
approach, scheduling decisions are suboptimal, since the
total cluster state and task requirements are not available for
neither the involved framework scheduler nor the centralized
coordinator.

B1 B3 S1 S3 

M1 

M9 

M2 

M10 

M3 

M11 

M4 

M12 

M5 

M13 

M6 

M14 

M7 

M15 

M8 

M16 M

M

Centralized coordinator 

R1 R2 

M9MM

M2MM

M10M

M

M1 

M9 

M2 

M10 

M1M

M9MM

M2M

M10M

M

M1 

M9 

M2 

M10 

M

M7M

M15M

M7 

M15 

M8 

M16 

M7MM

M15M

M

M

M7 

M15 

M8 

M16 

SA2 SA1 

M1M

M

M8MM

M16M

M8MM

M16M

C1 C2 
O1 O2 

B2 S2 

M

Figure 3: Two-level centralized scheduling workflow, O -
Resource offer, SA - Application Scheduler , R - Resource
Request, C - Scheduling decision Commit transaction

Shared-state centralized schedulers, such as Omega [34],
follow an optimistic approach where a centralized coordina-
tor manages several concurrent schedulers that are able to
operate simultaneously. In this model, each scheduler makes
scheduling decisions by using a stale copy of the whole clus-
ter state. Then, these schedulers commit atomic scheduling
transactions to the centralized cluster. If these transactions



result in a conflict, the local copy of the cluster state used
by the scheduler is then updated and the scheduling process
retried, as illustrated in Figure 4.

B1 B2 S1 S3 

M1 

M9 

M2 

M10 

M3 

M11 

M4 

M12 

M5 

M13 

M6 

M14 

M7 

M15 

M8 

M16 

MM M

U1 U2 U U

SA2 SA1 

M1
M

M

M8MM

M16
M

C1 C2 

Cluster state 

B3 S2 

Figure 4: Shared-state centralized scheduling workflow, U -
Cluster state Update

Even though centralized schedulers simplify the cloud
cluster management, the performance bottleneck caused
by the centralized coordinators that are the path for all
scheduling decisions makes them suboptimal for environ-
ments where tens of thousands or even millions of short,
user-facing and latency-sensitive tasks must be served every
second [28].

2.2.2. Distributed cloud schedulers. Distributed sched-
ulers [16], [28], [30] use simple algorithms that only ex-
amine a small part of the cluster architecture (local niches).
This kind of scheduler achieves high throughput and low-
latency parallel task placement, but the scheduling decisions
are inferior. The distributed scheduling process is illustrated
in Figure 5

2.2.3. Hybrid cloud schedulers. In many realistic cloud
scheduling scenarios, the workload is not homogeneous [7],
[32], but is composed of two main groups of jobs:a) Ap-
proximately 90% of short and latency-sensitive jobs that
consume approximately 15% of the total resources; and
b) Approximately 10% of long-running jobs that consume
approximately 85% of the total resources [2], [31], [33]. In
this environment, the poor placement decisions made by dis-
tributed schedulers impact specially on these long-running
jobs, which may perform even worse than in stressed cen-
tralized scheduling environments.

In order to overcome the above limitations, the hybrid
cloud scheduling models [11], [10], [23] were developed as
the combinations of both centralized and distributed models
in the way presented in Figure 6. The hybrid scheduler
delivers centralized high-quality scheduling decisions for
long-running resource-demanding jobs and sub-optimal fast
scheduling decisions for short and latency-sensitive jobs.

B1 

B2 

S1 
S0 

M1

M9 

M2 

M10 

M3 

M11 

M4 

M12 

M5 

M13 

M6 

M14 

M7 

M15 

M8 

M16 

B0 
B3 

B4 

M1M

M9MM

M2MM

M10M

M

S0 

M3M

M11M

M4M

M12M

M

S1 

M5M

M13M

M6MM

M14MM

M7M

M15M

M8MM

M16M

MM M

S2 S2 

B1

S1

B4B

S0SS

Figure 5: Distributed scheduling workflow, S - Distributed
scheduler

B1 
B2 

S1 

S0 

M1 

M9 

M2 

M10 

M3 

M11 

M4 

M12 

M5 

M13 

M6 

M14 

M7 

M15 

M8 

M16 

B0 B3 

B4 

M1
M

M9MM

M2MM

M10
M

M

DS0 

M3M

M11
M

M4M

M12
M

M

DS1 

M5M

M13
M

M6MM

M14
M

M

M7
M

M15
M

M8MM

M16
M

MM M

DS2 DS3 

B0BB

1

B4B

Centralized Scheduler 

Figure 6: Hybrid scheduling workflow

2.3. Summary of the classification

The summary of the reviewed schedulers is presented in
Table 1.

It can be observed from the table, that centralized sched-
ulers work quite well for long-running batch workloads,
distributed schedulers are effective in planning the short and
user-facing data analytics workloads and hybrid schedulers
perform optimally for the mixed type (BW and SW ) hetero-
geneous workloads. The results of that simple comparison
analysis shows that the efficiency of the scheduler depends
very much of the type of the workload and jobs [18]. Using
schedulers just from the one class would not guarantee the
high quality of the cloud services offered to the end-users.



Table 1: Evolution of the cluster scheduling strategies

Strategy Optimal environment Suboptimal environments Frameworks

Centralized Low number of long-running Mid and high number of jobs Paragon [12]
Monolithic and non-latency sensitive jobs Mixed workloads Quasar [13]

Borg [38]

Centralized Mid number of diverse YARN [37]
Two-level long-running, non Latency-sensitive workloads

latency sensitive jobs Mesos [20]

Centralized Mid number of heterogeneous High number of short and Omega [34]
Shared-state workloads latency-sensitive jobs

High number of short, Long, resource-demanding Canary [30]
Distributed non resource-demanding, jobs Tarcil [14]

latency-sensitive jobs Mixed workloads Sparrow [28]

Hybrid Mixed workloads composed of Homogeneous workloads Mercury [23]
90% of short, latency-sensitive Other workloads patterns Hawk [11]
jobs and 10% of long-running, Evolving patterns Eagle [10]
resource-demanding jobs

2.4. Adaptive scheduling

The idea of adaptive scheduling has been previously
explored in the literature. In [36], Tumanov et al. propose a
scheduler named TetriSched which is built on top of YARN
and collaborates with the calendaring reservation system to
continuously optimize the immediate-term scheduling plan
for all pending jobs. This scheduler uses a Mixed Integer
Linear Programming (MILP) solver that takes into account
job runtime estimates, placement preferences and changing
cluster conditions for the batch of pending jobs instead of
making job-by-job decisions.

In [29], Polo et al. propose a resource-aware scheduling
technique for MapReduce multi-job workloads that aims to
rise resource utilization across machines while minimiz-
ing the impact in makespan. This scheduler extends the
abstraction of ‘task slot’ to ‘job slot’; explores resource
profiling information to obtain better utilization of resources
and improve application performance; adapts to changes
in resource demand by dynamically allocating resources
to jobs; seeks to meet soft-deadlines via a utility-based
approach; and differentiates between map and reduce tasks
when making resource-aware scheduling decisions.

In [27], Niu et al. propose an adaptive scheduler called
Gemini for Hadoop YARN focused on the balance between
fairness and performance. This scheduler is based on a a
model that uses the regression approach to estimate the
performance improvement and the fairness loss under the
sharing computation compared to the exclusive non-sharing
scenario. Gemini applies this model for tasks allocation
in order to optimize the performance of the cluster given
the user-defined fairness level. Instead of using a static
scheduling policy, Gemini adaptively decides the proper
scheduling policy according to the particular workload and
environment.

In this work, unlike the related work studied, we present
a novel model that works at the resource manager framework
(scheduling model) level instead of the low-level scheduling
algorithms (allocation policies). In addition, our model is
not bound to any particular workload/scenario, but changes
dynamically the scheduling model according to the environ-
ment, cluster and workload under consideration.

3. Scheduling model

In this section we will define the basic notation and
explain the background of the scheduling models we use
in our research.

3.1. Notation and scheduling model backgrounds

Let us denote by j a job arriving to the cloud system
for scheduling.

Definition A job j in the scheduling model is the collection
of atomic tasks submitted by a given (the same) cloud end-
user. Such tasks can be executed independently or present
dependencies between them.

In the simplest case, the cloud job may consists of just a
single task. Formally, the job which is composed of k tasks
is denoted by jk and can be defined as follows:

jk = (t1, . . . , tk) , (1)

where ti denotes the i–th task in the job jk.
In the case of existence of internal relations among tasks

in jk, such job can be modelled by the Directed Acyclic
Graph (DAG) model in the following way:



Definition The Directed Acyclic Graph DAGjk used for
modelling the job jk is defined as the following graph
without cycles:

DAGjk = (Vk;Eek) , (2)

where Vk = {t1, . . . , tk} is the set of vertices which rep-
resents the set of tasks in jk, and Eek is the set of edges,
which defines the tasks dependencies (interrelations).

The cloud jobs can be characterized by a wide set of
parameters [26]. In this work, we focus on the following
two main attributes of the job jk:

• Job inter-arrival time TIjk - is the time needed for
job jk to arrive to the system and to make it ready
for scheduling and execution. This parameter may de-
fine the number of jobs which can be scheduled and
executed in a specified time window.

• Job duration time TDjk - is the completion time of
the jk job in the cloud cluster.

The efficiency of the cloud schedulers is monitored
in the process of mapping many jobs in a specified time
window. This set of jobs is defined as a workflow. The pro-
cessing time of the whole workflow is the main scheduling
quality criterion.

Definition A workflow Ws is the collection of s jobs sub-
mitted to the cloud system.

Usually, the term workload refers to all cloud system
inputs such as applications, services and data transfers. In
cloud computing, these inputs usually correspond to online
interactions of the cloud users with cloud services hosted
in the cloud clusters or to jobs processed in such clusters.
It is also important to mention that cloud workloads almost
never refer to hard real-time applications.

3.2. Workload classification– batch and service jobs
in Google cloud schedulers

The quality of cloud services, especially for big data
processing, depends on the quality of scheduling process.
The workflows can be organized in the different ways based
on the (i) job configuration (workflow internal architecture)
or (ii) job processing model. In the first case, the workflow
is described by the number and types of services or jobs
being instantiated by a cloud application and their mutual
dependencies. The jobs in this model can be executed as a
pipeline, in parallel or according to the hybrid mode usually
defined as a DAG of jobs [4]. In the second case, there are
two main policies of the cloud job processing:

• Batch workload BW– this workload is defined as a
batch of jobs with specified arrival, start and comple-
tion times.

• Service workload SW – this workload is composed of
the long-running jobs with not determined completion
times.

There are many practical examples of such workflows, such
as typical MapReduce workflows [9] are of BW type, and

Web servers or services like BigTable [5] are good examples
of SW -s.

In this paper, we focus on the analysis of two types of
centralized schedulers mentioned in Section 2.2.1, namely:
(i) two-level schedulers, such as Mesos, and (ii) shared-
state schedulers, such as Omega, developed by Google [34].
We define realistic workflows, which are composed of BW
and SW workloads [1], [15]. A comprehensive simulation
analysis is presented in the next section.

4. Experimental analysis

The main aim of our simple experimental analysis is
to show the effectiveness of the dynamic selection of the
proper cloud scheduler for a given workload depending
on its attributes. We considered the two-level and shared-
state schedulers for the experimental analysis of this work,
namely (i) Omega [34]; and (ii) Mesos [20], since they are
different scheduling strategies inside the centralized schedul-
ing model, which makes them theoretically optimal for the
same scenarios. This simple comparison enables us to easily
analyse the behavioral differences on the same environment.

We created the sequence of workflows of the both types
BW and SW . First, we scheduled all workflows by using
the same considered scheduler, then based on the observed
scheduling results, we mapped the concrete workflows to the
proper scheduler by switching dynamically the scheduling
model for the given workload. We wanted to show in our
experiments how much the quality of cloud service and data
processing depends on the workload attributes (parameters)
and the types of the schedulers used for mapping the work-
load jobs onto the cloud resources.

Our experiments have been conducted for 15 days.

4.1. Simulation tool and environment

The SCORE simulator [17] was used in this work. This
tool allows to generate realistic cloud workloads of different
types and it is prepared for the implementation of various
scheduling models. The SCORE simulator does not simulate
all real-life cluster and data center operations, but it was not
very essential in the research presented in this paper.

The cloud cluster employed to run the simulations is
composed of 10 000 machines of 4 CPU cores and 16 GB
of RAM. In the scheduler model we have one centralized
node and 5 scheduling agents: 4 may work in parallel for
scheduling the BW jobs and 1 is defined for scheduling the
SW jobs.

4.2. Workload settings and scenarios

In order to create realistic cloud scheduling scenarios,
the following workflow parameters were defined:

• Job structure: The number of tasks for each job in
BW is sampled from an exponential distribution with
a mean value is 180, while the number of tasks for each
job in SW is sampled from an exponential distribution
whose mean value is 30.



• Task duration: The duration of BW -jobs tasks is
sampled from an exponential distribution whose mean
value is 90 (seconds). For SW -jobs tasks, this duration
is sampled from an exponential distribution with a
mean value of 2000 (seconds).

• Resource usage: in SW -jobs tasks consume 0.3 CPU
cores and 0.5 GB of memory, in SW -job tasks con-
sume 0.5 CPU cores and 1.2 GB of memory.

.
We consider in our experiments the following four levels

of cloud physical cluster utilization:

1) Low utilization level – in this case, the cluster uti-
lization is very low and the structure of the considered
workloads is as follows: BWL – 17,000 jobs and SWL

– 1,500 jobs.
2) Low-Mid utilization level – in this case, the cluster

utilization is higher than in the previous scenario, and
the workflow structure is: BWLM – 43,000 jobs and
SWLM – 4,300 jobs.

3) Mid-high utilization level – in this case, the cluster
utilization is noticeably higher. The structure of the
workloads to be executed is as follows: BWMH –
52,000 jobs and SWMH – 5,200 jobs.

4) High utilization level – in this case, the demand of
resources of the workload exceeds the total computa-
tional capacity of the cloud cluster. The structure of the
workloads under consideration is as follows: BWH –
130,000 jobs and SWH – 13,000 jobs.

The detailed parameters of these workloads are pre-
sented in Table 2

We consider also the following three scheduling scenar-
ios:

• Scenario 1 – all the workloads defined in Table 2 are
served by a shared-state scheduler, that is, the Omega
scheduler

• Scenario 2 – all the workloads defined in Table 2
are served by a two-level scheduler, that is, the Mesos
scheduler

• Scenario 3 – in this case cloud cluster utilization
fluctuates constantly between a Mid-High usage period
and a Low-usage period every 12 hours during the
whole simulation time (15 days). This kind of resource-
usage pattern can be found in many web applications
where the users are located in one geographical region
and suffer from day-night or weekday-weekend pat-
terns. This scenario is designed for the comparison of
the efficiency achieved by using only one scheduling
model compared to the dynamic application of many
scheduling frameworks.

4.3. Scheduling efficiency measures

For the comparison and evaluation of the performance
of the considered schedulers, we define the following two
scheduling efficiency measures:

• JQTfi –Job queue times until first scheduled: This
parameter represents the time a job needs to wait in
queue until it scheduled for the first time.

• JQTfull – Job queue times until fully scheduled:
This parameter represents the time a job needs to wait
in queue until it is fully scheduled.

4.4. Results

Table 3 presents the results of the experiments in
scheduling Scenarios 1 and 2 and Table 4 shows the results
of the experiment in Scenario 3.

In this work, we only present the results of the batch
workloads BW . The results obtained for SW workloads
show that the influence of such workloads on the perfor-
mance of the whole CC cluster is very minor and can be
ignored.

4.4.1. Scenarios 1 (Omega) and 2 (Mesos). In this sec-
tions, the simulation results are discussed in terms of the
utilization periods:

1) Low-usage period. In this scenario, the pessimistic
blocking approach of Mesos causes an overhead which
leads to higher response times and worse user experi-
ence. On the other hand, Omega scheduler achieves a
10x reduction on average, as shown in Table 3.

2) Low-mid usage period results. In this period, the
Omega scheduler reduce the average time that a job
spend on queue until its first task is scheduled by 40%,
and 20% until all its tasks are scheduled.

3) Mid-high usage period. In this scenario, the optimistic
approach used by Omega causes a high number of
conflicts and the related need to repeat those scheduling
decisions. The user experience is therefore worsened.
It can be observed in Figure 7 that the time a job
needs to wait in queue until it scheduled for the first
time is approximately 20% longer on average in this
period. In the same way, the time a job needs to wait
in queue until it is fully scheduled is approximately
double when the Mesos scheduler is used. These results
differ from those presented in the Low-mid period,
where Omega performs better than Mesos. The time,
when workload pattern fluctuates between Low and
High usage periods, would be the optimal moment for
changing the scheduling models.

4) High-usage period. In this period, the time a job
has to wait in queue until its first task is scheduled
is approximately five times higher on average for the
Omega scheduler. Hence, this result confirms the trend
presented for the mid-high usage period. However, a
much lesser impact can be observed for the time a
job needs to wait until all its tasks are scheduled on
average, where the Omega scheduler is approximately
20% slower.

4.4.2. Scenario 3. In this scenario, it can be noticed
that the utilization of the Omega scheduler for Low
utilization periods and the Mesos scheduler for Mid-
high utilization periods results in important benefits in
terms of performance. Regarding the time for a job
to be fully scheduled, the results delivered by this



Table 2: Workload environments. BW - Batch workload, SW - Service workload.

Workload Load
Inter-arrival #Jobs #Tasks Duration CPU task RAM

time (s) (10^3) per job (s) (core) task (GB)
BW SW BW SW BW SW BW SW BW SW BW SW

Low ∼30% 75 750 ∼17 ∼1.7 180 30 90 2000 0.3 0.5 0.5 1.2
Low-Mid ∼45% 30 300 ∼43 ∼4.3 180 30 90 2000 0.3 0.5 0.5 1.2
Mid-High ∼50% 25 250 ∼52 ∼5.2 180 30 90 2000 0.3 0.5 0.5 1.2
High ∼75% 10 100 ∼130 ∼13.0 180 30 90 2000 0.3 0.5 0.5 1.2

Table 3: Performance indicators for all Batch workload scenarios (BWs) and Scheduling Scenarios (SS) 1 and 2.

BWL BWLM BWMH BWH

Indicator (s)
S1 SS2 SS1 SS2 SS1 SS2 SS1 SS2

JQTfi (avg.) 0.51 6.72 11.18 18.89 28.80 24.00 117,040.50 22,968.87
JQTfi (90p.) 0.01 20.78 39.22 55.49 102.59 69.05 210,608.19 75,633.55
JQTfull (avg.) 0.67 6.95 18.65 20.88 50.45 27.30 193,811.39 158,647.73
JQTfull (90p.) 0.01 21.50 53.47 61.31 139.16 78.31 405,835.29 441,712.19

0

5

10

15

20

25

30

35

Low Low-Mid Mid-High

T
im

e
 (

s)
 u

n
til

 f
irs

t t
a

sk
 s

ch
e

d
u

le
d

Scenario

Omega

Mesos

(a) Average queue time for jobs until their first task is scheduled

0

10

20

30

40

50

60

Low Low-Mid Mid-High

T
im

e
 (

s)
 u

n
til

 a
ll 

ta
sk

s 
sc

h
e

d
u

le
d

Scenario

Omega

Mesos

(b) Average queue time for jobs until all their tasks are scheduled

Figure 7: Performance of Mesos and Omega scheduling frameworks in each scenario. The periods included in blue
background area achieve better results when the Omega scheduler is used, while the orange background area means the
same for Mesos. It can be noticed that, between the Low-Mid and Mid-High period Omega starts to perform worse than
Mesos. Thus, a switch to Mesos would deliver the optimal results. The exact threshold depends on the parameter (objective
function) desired.

scheduler-switching approach are approximately 50%
better on average than those of Mesos or Omega, as
shown in Table 4.

5. Conclusions and Future work

In this work, we tried to confirm the high dependency
of the quality of the cloud services on the results of the
scheduling of complex heterogeneous workloads in the
physical cC clusters. The results of our simple experiments
show the high motivation for development of an intelligent
automated scheduler management system, which allows to
adapt the scheduling model to the concrete workloads based
on their characteristics and the cluster architectures.

The research presented in this paper is just the first step
in our work on such scheduler management system. The

system should use the feedback of using the implemented
schedulers together with the results of monitoring of the
workload executions in the cloud clusters. We believe that
the machine learning methods, already used for supporting
the cloud resource management [19], would be the proper
tools for solving the scheduler management problem.

Acknowledgement

The research is supported by the VPPI - University of
Sevilla and COST Action IC1406 ”High-Performance Mod-
elling and Simulation for Big Data Applications” (cHiPSet).

References

[1] Abdul-Rahman, O.A., Aida, K.: Towards understanding the usage
behavior of Google cloud users: the mice and elephants phenomenon.



Table 4: Performance indicators for the Batch workload (BW) in Scenario 3.

Indicator (s) Omega fixed Mesos fixed Omega-Mesos
JQTfi (avg.) 14.65 15.36 12.25
JQTfi (90p.) 51.29 44.89 34.75
JQTfull (avg.) 25.56 22.13 13.99
JQTfull (90p.) 69.58 49.90 39.15

In: IEEE International Conference on Cloud Computing Technology
and Science (CloudCom). pp. 272–277. Singapore (Dec 2014)

[2] Ananthanarayanan, G., Ghodsi, A., Wang, A., Borthakur, D., Kandula,
S., Shenker, S., Stoica, I.: Pacman: Coordinated memory caching
for parallel jobs. In: Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation. pp. 20–20. USENIX
Association (2012)

[3] Barroso, L.A., Clidaras, J., Hölzle, U.: The datacenter as a computer:
An introduction to the design of warehouse-scale machines. Synthesis
lectures on computer architecture 8(3), 1–154 (2013)

[4] Calzarossa, M.C., Della Vedova, M.L., Massari, L., Petcu, D., Tabash,
M.I., Tessera, D.: Workloads in the clouds. In: Principles of Per-
formance and Reliability Modeling and Evaluation, pp. 525–550.
Springer (2016)

[5] Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A.,
Burrows, M., Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A
distributed storage system for structured data. ACM Transactions on
Computer Systems (TOCS) 26(2), 4 (2008)

[6] Chen, M., Mao, S., Liu, Y.: Big data: A survey. Mobile networks and
applications 19(2), 171–209 (2014)

[7] Chen, Y., Alspaugh, S., Katz, R.: Interactive analytical processing in
big data systems: A cross-industry study of mapreduce workloads.
Proceedings of the VLDB Endowment 5(12), 1802–1813 (2012)

[8] Corporation, M.: Microsoft azure (2018), https://azure.microsoft.com

[9] Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on
large clusters. Communications of the ACM 51(1), 107–113 (2008)

[10] Delgado, P., Didona, D., Dinu, F., Zwaenepoel, W.: Job-aware
scheduling in eagle: Divide and stick to your probes. In: Proceedings
of the Seventh ACM Symposium on Cloud Computing. No. EPFL-
CONF-221125 (2016)

[11] Delgado, P., Dinu, F., Kermarrec, A.M., Zwaenepoel, W.: Hawk:
Hybrid datacenter scheduling. In: USENIX Annual Technical Con-
ference. pp. 499–510 (2015)

[12] Delimitrou, C., Kozyrakis, C.: Paragon: Qos-aware scheduling for
heterogeneous datacenters. In: ACM SIGPLAN Notices. vol. 48, pp.
77–88. ACM (2013)

[13] Delimitrou, C., Kozyrakis, C.: Quasar: resource-efficient and qos-
aware cluster management. In: ACM SIGPLAN Notices. vol. 49, pp.
127–144. ACM (2014)

[14] Delimitrou, C., Sanchez, D., Kozyrakis, C.: Tarcil: reconciling
scheduling speed and quality in large shared clusters. In: Proceedings
of the Sixth ACM Symposium on Cloud Computing. pp. 97–110.
ACM (2015)

[15] Di, S., Kondo, D., Franck, C.: Characterizing cloud applications on
a Google data center. In: 42nd International Conference on Parallel
Processing (ICPP). Lyon, France (Oct 2013)

[16] Dogar, F.R., Karagiannis, T., Ballani, H., Rowstron, A.: Decen-
tralized task-aware scheduling for data center networks. In: ACM
SIGCOMM Computer Communication Review. vol. 44, pp. 431–442.
ACM (2014)

[17] Fernández-Cerero, D., Fernández-Montes, A., Jakóbik, A., Kołodziej,
J., Toro, M.: Score: Simulator for cloud optimization of resources and
energy consumption. Simulation Modelling Practice and Theory 82,
160–173 (2018), https://doi.org/10.1016/j.simpat.2018.01.004

[18] Gog, I., Schwarzkopf, M., Gleave, A., Watson, R.N., Hand, S.: Fir-
mament: Fast, centralized cluster scheduling at scale. Usenix (2016)

[19] Gondhi, N.K., Gupta, A.: Survey on machine learning based schedul-
ing in cloud computing. In: Proceedings of the 2017 International
Conference on Intelligent Systems, Metaheuristics & Swarm Intelli-
gence. pp. 57–61. ACM (2017)

[20] Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A.D.,
Katz, R.H., Shenker, S., Stoica, I.: Mesos: A platform for fine-grained
resource sharing in the data center. In: NSDI. vol. 11, pp. 22–22
(2011)

[21] Inc., A.: Amazon web services description (2018), https://aws.
amazon.com/es/documentation

[22] Isard, M., Prabhakaran, V., Currey, J., Wieder, U., Talwar, K., Gold-
berg, A.: Quincy: fair scheduling for distributed computing clusters.
In: Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles. pp. 261–276. ACM (2009)

[23] Karanasos, K., Rao, S., Curino, C., Douglas, C., Chaliparambil,
K., Fumarola, G.M., Heddaya, S., Ramakrishnan, R., Sakalanaga,
S.: Mercury: Hybrid centralized and distributed scheduling in large
shared clusters. In: USENIX Annual Technical Conference. pp. 485–
497 (2015)

[24] Kołodziej, J.: Evolutionary hierarchical multi-criteria metaheuristics
for scheduling in large-scale grid systems, vol. 419. Springer (2012)

[25] Mars, J., Tang, L.: Whare-map: heterogeneity in homogeneous
warehouse-scale computers. In: ACM SIGARCH Computer Archi-
tecture News. vol. 41, pp. 619–630. ACM (2013)

[26] Nallakumar, R., Sengottaiyan, N., Priya, K.S.: A survey on scheduling
and the attributes of task scheduling in the cloud. Int. J. Adv. Res.
Comput. Commun. Eng 3(10), 8167–8171 (2014)

[27] Niu, Z., Tang, S., He, B.: Gemini: An adaptive performance-fairness
scheduler for data-intensive cluster computing. In: 2015 IEEE 7th In-
ternational Conference on Cloud Computing Technology and Science
(CloudCom). pp. 66–73 (Nov 2015)

[28] Ousterhout, K., Wendell, P., Zaharia, M., Stoica, I.: Sparrow: dis-
tributed, low latency scheduling. In: Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles. pp. 69–
84. ACM (2013)

[29] Polo, J., Castillo, C., Carrera, D., Becerra, Y., Whalley, I., Steinder,
M., Torres, J., Ayguadé, E.: Resource-aware adaptive scheduling
for mapreduce clusters. In: Proceedings of the 12th International
Middleware Conference. pp. 180–199. Middleware ’11, International
Federation for Information Processing, Laxenburg, Austria, Austria
(2011), http://dl.acm.org/citation.cfm?id=2414338.2414352

[30] Qu, H., Mashayekhi, O., Terei, D., Levis, P.: Canary: A scheduling
architecture for high performance cloud computing. arXiv preprint
arXiv:1602.01412 (2016)

[31] Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.:
Heterogeneity and dynamicity of clouds at scale: Google trace anal-
ysis. In: Proceedings of the Third ACM Symposium on Cloud Com-
puting. p. 7. ACM (2012)

[32] Reiss, C., Wilkes, J., Hellerstein, J.L.: Google cluster-usage
traces: format + schema. Technical report, Google Inc., Mountain
View, CA, USA (Nov 2011), revised 2012.03.20. Posted at url-
http://code.google.com/p/googleclusterdata/wiki/TraceVersion2

[33] Ren, K., Kwon, Y., Balazinska, M., Howe, B.: Hadoop’s adolescence:
an analysis of hadoop usage in scientific workloads. Proceedings of
the VLDB Endowment 6(10), 853–864 (2013)



[34] Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M., Wilkes, J.:
Omega: flexible, scalable schedulers for large compute clusters. In:
Proceedings of the 8th ACM European Conference on Computer
Systems. pp. 351–364. ACM (2013)

[35] Shue, D., Freedman, M.J., Shaikh, A.: Performance isolation and
fairness for multi-tenant cloud storage. In: OSDI. vol. 12, pp. 349–
362 (2012)

[36] Tumanov, A., Zhu, T., Park, J.W., Kozuch, M.A., Harchol-Balter, M.,
Ganger, G.R.: Tetrisched: global rescheduling with adaptive plan-
ahead in dynamic heterogeneous clusters. In: Proceedings of the
Eleventh European Conference on Computer Systems. p. 35. ACM
(2016)

[37] Vavilapalli, V.K., Murthy, A.C., Douglas, C., Agarwal, S., Konar,
M., Evans, R., Graves, T., Lowe, J., Shah, H., Seth, S., et al.: Apache
hadoop yarn: Yet another resource negotiator. In: Proceedings of the
4th annual Symposium on Cloud Computing. p. 5. ACM (2013)

[38] Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E.,
Wilkes, J.: Large-scale cluster management at google with borg. In:
Proceedings of the Tenth European Conference on Computer Systems.
p. 18. ACM (2015)

[39] Yang, H., Breslow, A., Mars, J., Tang, L.: Bubble-flux: Precise online
qos management for increased utilization in warehouse scale comput-
ers. In: ACM SIGARCH Computer Architecture News. vol. 41, pp.
607–618. ACM (2013)

[40] Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S.,
Stoica, I.: Delay scheduling: a simple technique for achieving locality
and fairness in cluster scheduling. In: Proceedings of the 5th European
conference on Computer systems. pp. 265–278. ACM (2010)

[41] Zhang, X., Tune, E., Hagmann, R., Jnagal, R., Gokhale, V., Wilkes,
J.: Cpi 2: Cpu performance isolation for shared compute clusters.
In: Proceedings of the 8th ACM European Conference on Computer
Systems. pp. 379–391. ACM (2013)


