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A B S T R A C T

We consider two covering variants of the network design problem. We are given a set of origin/destination
pairs, called O/D pairs, and each such O/D pair is covered if there exists a path in the network from the origin
to the destination whose length is not larger than a given threshold. In the first problem, called the Maximal
Covering Network Design problem, one must determine a network that maximizes the total fulfilled demand
of the covered O/D pairs subject to a budget constraint on the design costs of the network. In the second
problem, called the Partial Covering Network Design problem, the design cost is minimized while a lower
bound is set on the total demand covered. After presenting formulations, we develop a Benders decomposition
approach to solve the problems. Further, we consider several stabilization methods to determine Benders cuts
as well as the addition of cut-set inequalities to the master problem. We also consider the impact of adding
an initial solution to our methods. Computational experiments show the efficiency of these different aspects.
1. Introduction

Network design is a broad and spread subject whose models often
depend on the field in which they are applied. A classification of the
basic problems of network design was done by Magnanti and Wong
(1984) where some classical graph problems as the minimal spanning
tree, Steiner tree, shortest path, facility location, and traveling salesman
problems are included as particular cases of a general mathematical
programming model. Since the construction of a network often costs
large amount of money and time, decisions on network design are a
crucial step when planning networks. Thus, network design is applied
in a wide range of fields: transportation, telecommunication, energy,
supply chain, geostatistics, evacuation, monitoring, etc. Infrastructure
network design constitutes a major step in the planning of a transporta-
tion network since the performance, the efficiency, the robustness and
other features strongly depend on the selected nodes and the way of
connecting them, see Guihaire and Hao (2008). For instance, the main
purpose of a rapid transit network is to improve the mobility of the in-
habitants of a city or a metropolitan area. This improvement could lead
to lower journey times, less pollution and/or less energy consumption
which drives the communities to a more sustainable mobility.
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Since it is generally too expensive to connect all the potential nodes,
one must determine a subnetwork that serves at best the traffic demand.
Depending on the application, different optimality measures can be
considered. In particular, in the field of transportation, and especially in
the area of passenger transportation, the aim is to get the infrastructure
close to potential customers. In this framework, Schmidt and Schöbel
(2014) propose to minimize the maximum routing cost for an origin–
destination pair when using the new network. Alternatively, the traffic
between an origin and a destination may be considered as captured if
the cost or travel time when using the network is not larger than the
cost or travel time of the best alternative solution (not using the new
network). In this case, Perea et al. (2020) and García-Archilla et al.
(2013) propose to select a sub(network) from an underlying network
with the aim of capturing or covering as much traffic as possible for
a reasonable construction cost. This paper is devoted to this problem,
called the Maximum Covering Network Design Problem (𝑀𝐶) as well
as to the closely related problem called, Partial Covering Network
Design Problem (𝑃𝐶). The latter aims to minimize the network design
cost for constructing the network under the constraint that a minimum
percentage of the total traffic demand is covered.
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Covering problems in graphs have attracted the attention of re-
searchers since the middle of the last century. As far as the authors
are aware the first papers on the vertex-covering problem were due
to Berge (1957) and Norman and Rabin (1959) in the late 50s. This
problem is related to the set-covering problem in which a family of
sets is given and the minimal subfamily whose union contains all the
elements is sought for. In Hakimi (1965) the vertex-covering problem
was formulated as an integer linear programming model and solved
by using Boolean functions. Toregas et al. (1971) applied the vertex-
covering problem to the location of emergency services. They assumed
that a vertex is covered if it is within a given coverage distance. Church
and ReVelle (1974a) introduced the maximal covering location problem
by fixing the number of facilities to be located. Each vertex has an
associated population and the objective is to cover the maximum
population within a fixed distance threshold. Since then many variants
and extensions of the vertex-covering and maximal covering problems
have been studied (see García and Marín (2020).)

When designing an infrastructure network, the demand is given by
pairs of origin–destination points, called O/D pairs, and each such pair
has an associated weight representing the traffic between the origin
and the destination. Usually, this demand is encoded using an origin–
destination matrix. When planning a new network, often there exists a
network already functioning and offering its service to the same set
of origin–destination pairs. For example, a new rapid transit system
may be planned in order to improve the mobility of a big city or
metropolitan area, in which there already exists another transit system,
in addition to the private transportation system. This current transit
system could be more dense than the planned one but slower since it
uses the same right-of-way as the private traffic system. Thus, in some
way both systems compete with each other and both compete with the
private system of transportation. A similar effect occurs with mobile
telecommunication operators. Therefore, the traffic between an origin
and a destination is distributed among the several systems that provide
the service.

There are mainly two ways of allocating the share of each system.
The first one is the binary all-or-nothing way where the demand is
only covered by one of the proposed modes. Typically, the demand
is covered if the demand points are served within a range of quality
service, as in Church and ReVelle (1974b). The second one is based on
some continuous function, using, for example, a multi-logit probability
distribution, as in Cascetta (2009). In this case, the demand is shared
between the different systems. Both allocation schemes are based on
the comparison of distances, times, costs, generalized costs or utilities.
In this paper, we consider a binary one, where each O/D pair is covered
only if the time spent to travel from its origin to its destination in the
network is below a threshold. This threshold represents the comparison
between the time spent in the proposed network and a private mode,
assigning the full share to the most beneficial one.

Since most network design problems are NP-hard (see e.g. Perea
et al. (2020)), recent research efforts have been oriented to apply
metaheuristic algorithms to obtain good solutions in a reasonable com-
putational time. Thus, in the field of transportation network design,
Genetic Algorithms (Król and Król, 2019), Greedy Randomized Adap-
tive Search Procedures (García-Archilla et al., 2013), Adaptive Large
Neighborhood Search Procedures (Canca et al., 2017) and Matheuris-
tics (Canca et al., 2019) have been used to solve rapid transit network
design problems and applied to medium-sized instances.

In this paper, after presenting models for problems (𝑀𝐶) and (𝑃𝐶),
we propose exact methods based on Benders decomposition (Benders,
1962). This type of decomposition has been applied to many problems
in different fields, see Rahmaniani et al. (2017) for a recent literature
review on the use of Benders decomposition in combinatorial opti-
mization. One recent contribution applied to set covering and maximal
covering location problems appear in Cordeau et al. (2019). The au-
thors propose different types of normalized Benders cuts for these two
2

covering problems.
Benders decomposition for network design problems has been stud-
ied since the 80s. In Magnanti et al. (1986), the authors minimize
the total construction cost of an uncapacitated network subject to
the constraint that all O/D pairs must be covered. Given the struc-
ture of the problem, the Benders reformulation is stated with one
subproblem for each O/D pair. A Benders decomposition for a multi-
layer network design problem is presented in Fortz and Poss (2009).
Benders decomposition was also applied in Botton et al. (2013) in
the context of designing survivable networks. In Costa et al. (2009),
a multi-commodity capacitated network design problem is studied
and the strength of different Benders cuts is analyzed. In Marín and
Jaramillo (2009) a multi-objective approach is solved through Benders
decomposition. The coverage is maximized and the total cost design is
minimized. To the best of our knowledge, we apply for the first time
a branch-and-Benders-cut approach to network design coverage prob-
lems. We also give a detailed study of some normalization techniques
for Benders cuts in this context, including facet-defining cuts (Conforti
and Wolsey, 2019). These cuts are a stronger version of the cuts
proposed by Ben-Ameur and Neto (2007).

This paper presents several contributions. First, we present new
mathematical integer formulations for the network design problems
(𝑀𝐶) and (𝑃𝐶). The formulation for (𝑀𝐶) is stronger than a previously
proposed one, see e.g. Marín and Jaramillo (2009) and García-Archilla
et al. (2013) (although the proposed formulation was not the main
purpose of the latter), while (𝑃𝐶) was never studied to the best of our
knowledge. Our second contribution consists of polyhedral properties
that are useful from the algorithmic point of view. A third contribu-
tion is the study of exact algorithms for the network design based
on different Benders implementations. We propose a normalization
technique and we consider the facet-defining cuts. Our computational
experiments show that our Benders implementations are competitive
with exact and non-exact methods existing in the literature and even
comparing with the exact method of Benders decomposition existing in
CPLEX.

The structure of the paper is as follows. In Section 2, we present
mixed integer linear formulations for (𝑀𝐶) and (𝑃𝐶). We also study
some polyhedral properties of the formulations and propose a sim-
ple algorithm to find an initial feasible solution for both problems.
In Section 3, we study different Benders implementations and some
algorithmic enhancements. Also, we discuss some improvements based
on cut-set inequalities. A computational study is detailed in Section 4.
Finally, our conclusions are presented in Section 5.

2. Problem formulations and some properties

In this section we present mixed integer linear formulations for the
Maximal Covering Network Design Problem (𝑀𝐶) and the Partial Set
Covering Network Design Problem (𝑃𝐶). We also describe some pre-
processing methods and finish with some polyhedral properties. We
first introduce some notation.

We consider an undirected graph denoted by  = (𝑁,𝐸), where 𝑁
and 𝐸 are the sets of potential nodes and edges that can be constructed.
Each element 𝑒 ∈ 𝐸 is denoted by {𝑖, 𝑗}, with 𝑖, 𝑗 ∈ 𝑁 . We use the
notation 𝑖 ∈ 𝑒 if node 𝑖 is a terminal node of 𝑒. Let 𝛿(𝑖) be the set of
edges incident to node 𝑖.

The mobility patterns are represented by a set 𝑊 ⊂ 𝑁 ×𝑁 of O/D
pairs. Each 𝑤 = (𝑤𝑠, 𝑤𝑡) ∈ 𝑊 is defined by an origin node 𝑤𝑠 ∈ 𝑁 ,
a destination node 𝑤𝑡 ∈ 𝑁 , an associated demand 𝑔𝑤 > 0 and a
utility 𝑢𝑤 > 0. This utility translates the fact that there already exists a
different network competing with the network to be constructed in an
all-or-nothing way. In other words, an O/D pair (𝑤𝑠, 𝑤𝑡) will travel on
the newly constructed network if it contains a path between 𝑤𝑠 and 𝑤𝑡

of length shorter than or equal to the utility 𝑢𝑤. We then say that the
O/D pair is covered. In terms of the transportation area, the existing

network represents a private transportation mode, the planned one
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represents a public transportation mode and the parameter 𝑢𝑤, 𝑤 ∈ 𝑊 ,
refers to the utility of taking the private mode.

Costs for building nodes, 𝑖 ∈ 𝑁 , and edges, 𝑒 ∈ 𝐸, are denoted
by 𝑏𝑖 and 𝑐𝑒, respectively. The total construction cost cannot exceed
the budget 𝐶𝑚𝑎𝑥. For example, in the context of constructing a transit
network, each node cost may represent the total cost of building one
station in a specific location in the network. On the other hand, each
edge cost represents the total cost of linking two stations.

For each 𝑒 = {𝑖, 𝑗} ∈ 𝐸, we define two arcs: 𝑎 = (𝑖, 𝑗) and �̂� = (𝑗, 𝑖).
he resulting set of arcs is denoted by 𝐴. The length of arc 𝑎 ∈ 𝐴

s denoted by 𝑑𝑎. For each O/D pair 𝑤 ∈ 𝑊 we define a subgraph
𝑤 = (𝑁𝑤, 𝐸𝑤) containing all feasible nodes and edges for 𝑤, i.e. that

elong to a path in  whose total length is lower than or equal to
𝑤. We also denote 𝐴𝑤 as the set of feasible arcs. In Section 2.2, we
escribe how to construct these subgraphs. We use notation 𝛿+𝑤(𝑖) (𝛿−𝑤(𝑖)

respectively) to denote the set of arcs going out (in respectively) of node
𝑖 ∈ 𝑁𝑤. In particular, 𝛿−𝑤(𝑤𝑠) = ∅ and 𝛿+𝑤(𝑤

𝑡) = ∅. We also denote by
𝛿𝑤(𝑖) the set of edges incident to node 𝑖 in graph 𝑤.

2.1. Mixed integer linear formulations

We first present a formulation of the Maximal Covering Network
Design Problem (𝑀𝐶), whose aim is to design an infrastructure network
maximizing the total demand covered subject to a budget constraint:

(𝑀𝐶) max
𝒙,𝒚,𝒛,𝒇

∑

𝑤∈𝑊
𝑔𝑤𝑧𝑤 (2.1)

s.t.
∑

𝑒∈𝐸
𝑐𝑒𝑥𝑒 +

∑

𝑖∈𝑁
𝑏𝑖𝑦𝑖 ≤ 𝐶𝑚𝑎𝑥, (2.2)

𝑥𝑒 ≤ 𝑦𝑖, 𝑒 ∈ 𝐸, 𝑖 ∈ 𝑒, (2.3)

∑

𝑎∈𝛿+𝑤(𝑖)

𝑓𝑤
𝑎 −

∑

𝑎∈𝛿−𝑤(𝑖)
𝑓𝑤
𝑎 =

⎧

⎪

⎨

⎪

⎩

𝑧𝑤, if 𝑖 = 𝑤𝑠,
−𝑧𝑤, if 𝑖 = 𝑤𝑡,
0, otherwise,

𝑤 ∈ 𝑊 , 𝑖 ∈ 𝑁𝑤,

(2.4)
𝑓𝑤
𝑎 + 𝑓𝑤

�̂� ≤ 𝑥𝑒, 𝑤 ∈ 𝑊 , 𝑒 = {𝑖, 𝑗} ∈ 𝐸𝑤 ∶ 𝑎 = (𝑖, 𝑗), �̂� = (𝑗, 𝑖),

(2.5)
∑

𝑎∈𝐴𝑤
𝑑𝑎𝑓

𝑤
𝑎 ≤ 𝑢𝑤𝑧𝑤, 𝑤 ∈ 𝑊 , (2.6)

𝑦𝑖, 𝑥𝑒, 𝑧
𝑤 ∈ {0, 1}, 𝑖 ∈ 𝑁, 𝑒 ∈ 𝐸, 𝑤 ∈ 𝑊 , (2.7)

𝑓𝑤
𝑎 ∈ {0, 1}, 𝑎 ∈ 𝐴𝑤, 𝑤 ∈ 𝑊 , (2.8)

where 𝑦𝑖 and 𝑥𝑒 represent the binary design decisions of building node
𝑖 and edge 𝑒, respectively. Mode choice variable 𝑧𝑤 takes value 1 if the
O/D pair 𝑤 is covered and 0 otherwise. Variables 𝑓𝑤

𝑎 are used to model
a path between 𝑤𝑠 and 𝑤𝑡, if possible. Variable 𝑓𝑤

𝑎 takes value 1 if arc
𝑎 belongs to the path from 𝑤𝑠 to 𝑤𝑡, and 0 otherwise. Each variable 𝑓𝑤

𝑎 ,
such that 𝑎 ∉ 𝐴𝑤, is set to zero.

The objective function (2.1) to be maximized represents the demand
covered. Constraint (2.2) limits the total construction cost. Constraint
(2.3) ensures that if an edge is constructed, then its terminal nodes
are constructed as well. For each pair 𝑤, expressions (2.4), (2.5) and
(2.6) guarantee demand conservation and link flow variables 𝑓𝑤

𝑎 with
decision variables 𝑧𝑤 and design variables 𝑥𝑒. Constraints (2.5) are
named capacity constraints and they force each edge to be used only
in one direction at most. Constraints (2.6) referenced as mode choice
constraints, put an upper bound on the length of the path for each pair
𝑤. This ensures variable 𝑧𝑤 to take value 1 only if there exists a path
between 𝑤𝑠 and 𝑤𝑡 with length at most 𝑢𝑤. This path is represented
by variables 𝑓𝑤

𝑎 . Remark that several paths with length not larger than
𝑢𝑤 may exists for a given design solution 𝑥, 𝑦. Then, the values of the
flow variables 𝑓𝑤

𝑎 will describe one of them and the path choice has
no influence on the objective function value (2.1). Finally, constraints
(2.7) and (2.8) state that variables are binary.
3

The Partial Covering Network Design Problem (𝑃𝐶), which mini-
mizes the total construction cost of the network subject to a minimum
coverage level of the total demand, can be formulated as follows:

(𝑃𝐶) min
𝒙,𝒚,𝒛,𝒇

∑

𝑖∈𝑁
𝑏𝑖𝑦𝑖 +

∑

𝑒∈𝐸
𝑐𝑒𝑥𝑒 (2.9)

s.t.
∑

𝑤∈𝑊
𝑔𝑤𝑧𝑤 ≥ 𝛽 𝐺, (2.10)

Constraints (2.3), (2.4), (2.5), (2.6), (2.7), (2.8),

where 𝛽 ∈ (0, 1] and 𝐺 =
∑

𝑤∈𝑊 𝑔𝑤. Here, the objective function (2.9)
to be minimized represents the design cost. Constraint (2.10) imposes
that a proportion 𝛽 of the total demand is covered.

In the previous works by Marín and Jaramillo (2009) and García-
Archilla et al. (2013), constraints (2.5) and (2.6) are formulated in
a different way. For example, in García-Archilla et al. (2013), these
constraints were written as

𝑓𝑤
𝑎 + 𝑧𝑤 − 1 ≤ 𝑥𝑎, 𝑤 ∈ 𝑊 , 𝑒 = {𝑖, 𝑗} ∈ 𝐸𝑤 ∶ 𝑎 = (𝑖, 𝑗), (2.11)
∑

𝑎∈𝐴𝑤
𝑑𝑎𝑓

𝑤
𝑎 +𝑀(𝑧𝑤 − 1) ≤ 𝑢𝑤𝑧𝑤, 𝑤 ∈ 𝑊 , (2.12)

where the design variable 𝑥𝑎 is defined for each arc. Given that 𝑧𝑤−1 ≤
0, expressions (2.5) and (2.6) are stronger than (2.11) and (2.12),
respectively.

In addition, constraint (2.12) involves a ‘‘big-M’’ constant. Our
proposed formulation does not need it, which avoids the numerical
instability generated by this constant. As we will see in Section 4.2,
we observed that our proposed formulation is not only stronger than
the one proposed in García-Archilla et al. (2013), but it is also compu-
tationally more efficient. In consequence, we only focus our analysis on
our proposed formulation.

Another observation is that constraints (2.5) are a reinforcement
of the usual capacity constraints 𝑓𝑤

𝑎 ≤ 𝑥𝑒 and 𝑓𝑤
�̂� ≤ 𝑥𝑒. In most

applications where flow or design variables appear in the objective
functions, the disaggregated version is sufficient to obtain a valid
model as subtours are naturally non-optimal. However, it is not the
case in our model, and there exist optimal solutions with subtours if
the disaggregated version of (2.5) is used. Such a strengthening was
already introduced in the context of uncapacitated network design, see
e.g. Balakrishnan et al. (1989), and Steiner trees, see e.g. Sinnl and
Ljubić (2016) and Fortz et al. (2021).

2.2. Pre-processing methods

In this section we describe some methods to reduce the size of the
instances before solving them. First, we describe how to build each
subgraph 𝑤 = (𝑁𝑤, 𝐸𝑤). Then for each problem, (𝑀𝐶) and (𝑃𝐶), we
sketch a method to eliminate O/D pairs which will never be covered.

To create 𝑤 we only consider useful nodes and edges from  . For
each O/D pair 𝑤, we eliminate all the nodes 𝑖 ∈ 𝑁 that do not belong
to any path from 𝑤𝑠 to 𝑤𝑡 shorter than 𝑢𝑤. Then, we define 𝐸𝑤 as the
set of edges in 𝐸 incident only to the non eliminated nodes. Finally, the
set 𝐴𝑤 is obtained by duplicating all edges in 𝐸𝑤 with the exception of
arcs (𝑖, 𝑤𝑠) and (𝑤𝑡, 𝑖). We describe this procedure in Algorithm 1.

We assume that the cost of constructing each node and each edge
is not higher than the budget.

Next, we focus on (𝑀𝐶). We can eliminate O/D pairs 𝑤 that are too
expensive to be covered. That means, the O/D pair 𝑤 is deleted from
𝑊 if there is no path between 𝑤𝑠 and 𝑤𝑡 satisfying: i. its building cost
is less than 𝐶𝑚𝑎𝑥; and ii. its length is less than 𝑢𝑤.

This can be checked by solving a shortest path problem with
resource constraints and can thus be done in a pseudo-polynomial
time. Desrochers (1986) shows how to adapt Bellman–Ford algorithm
to solve it. However, given the moderate size of graphs we consider, we
solve it as a feasibility problem. For each 𝑤, we consider the feasibility
problem associated to constraints (2.2) (2.3), (2.4), (2.5), (2.6) and
(2.7), with 𝑧𝑤 fixed to 1. If this problem is infeasible, then the O/D pair
𝑤 is deleted from 𝑊 . Otherwise, there exists a feasible path denoted by

̃𝑤 ̃𝑤 𝑤
Path𝑤. We denote by (𝑁 ,𝐸 ) the subgraph of  induced by Path𝑤.
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Algorithm 1 Pre-processing I
for 𝑤 ∈ 𝑊 do

𝑁𝑤 = 𝑁
for 𝑖 ∈ 𝑁 do

compute the shortest path for the O/D pairs (𝑤𝑠, 𝑖) and (𝑖, 𝑤𝑡)
if the sum of the length of both paths is greater than 𝑢𝑤 then

𝑁𝑤 = 𝑁𝑤 ⧵ {𝑖}
𝐸𝑤 = 𝐸𝑤 ⧵ 𝛿(𝑖)

end if
end for
𝐴𝑤 = {(𝑖, 𝑗) ∈ 𝐴 ∶ {𝑖, 𝑗} ∈ 𝐸𝑤, 𝑗 ≠ 𝑤𝑠, 𝑖 ≠ 𝑤𝑡}

end for
return {𝑤 = (𝑁𝑤, 𝐸𝑤), 𝐴𝑤}𝑤∈𝑊

2.3. Polyhedral properties

Both formulations (𝑀𝐶) and (𝑃𝐶) involve flow variables 𝑓𝑤
𝑎 whose

number can be huge when the number of O/D pairs is large. To
circumvent this drawback we use a Benders decomposition approach
for solving (𝑀𝐶) and (𝑃𝐶). In this subsection, we present properties
of the two formulations that allow us to apply such a decomposition
in an efficient way. The first proposition shows that we can relax
the integrality constraints on the flow variables 𝑓𝑤

𝑎 . Let (𝑀𝐶_𝑅) and
(𝑃𝐶_𝑅) denote the formulations (𝑀𝐶) and (𝑃𝐶) in which constraints
(2.8) are replaced by non-negativity constraints, i.e.

𝑓𝑤
𝑎 ≥ 0, 𝑤 ∈ 𝑊 , 𝑎 ∈ 𝐴. (2.13)

We denote the set of feasible points to a formulation 𝐹 by  (𝐹 ).
Further, let 𝑄 be a set of points (𝒙, 𝒛) ∈ 𝑅𝑞 × 𝑅𝑝. Then the projection
of 𝑄 onto the 𝑥-space, denoted 𝑃𝑟𝑜𝑗𝑥𝑄, is the set of points given by
𝑃𝑟𝑜𝑗𝒙𝑄 = {𝒙 ∈ 𝑅𝑞 ∶ (𝒙, 𝒛) ∈ 𝑄 for some 𝒛 ∈ 𝑅𝑝}.

Proposition 1. 𝑃𝑟𝑜𝑗𝒙,𝒚,𝒛( (𝑀𝐶)) = 𝑃𝑟𝑜𝑗𝒙,𝒚,𝒛( (𝑀𝐶_𝑅)) and
𝑃𝑟𝑜𝑗𝒙,𝒚,𝒛( (𝑃𝐶)) = 𝑃𝑟𝑜𝑗𝒙,𝒚,𝒛( (𝑃𝐶_𝑅)).

Proof. We provide the proof for (𝑀𝐶), the other one being identical.
First,  (𝑀𝐶) ⊆  (𝑀𝐶_𝑅) implies 𝑃𝑟𝑜𝑗𝒙,𝒚,𝒛( (𝑀𝐶)) ⊆ 𝑃𝑟𝑜𝑗𝒙,𝒚,𝒛

( (𝑀𝐶_𝑅)). Second, let (𝒙, 𝒚, 𝒛) be a point belonging to 𝑃𝑟𝑜𝑗𝒙,𝒚,𝒛
( (𝑀𝐶_𝑅)). For every O/D pair 𝑤 ∈ 𝑊 such that 𝑧𝑤 = 0 then 𝒇𝑤 = 0.
In the case where 𝑧𝑤 = 1, there exists a flow 𝑓𝑤

𝑎 ≥ 0 satisfying
(2.4) and (2.5) that can be decomposed into a convex combination of
flows on paths from 𝑤𝑠 to 𝑤𝑡 and cycles. Given that the flow 𝑓𝑤

𝑎 also
satisfies (2.6), then a flow of value 1 on one of the paths in the convex
combination must satisfy this constraint. Hence by taking 𝑓𝑤

𝑎 equal to
1 for the arcs belonging to this path and to 0 otherwise, we show that
(𝒙, 𝒚, 𝒛) also belongs to 𝑃𝑟𝑜𝑗𝒙,𝒚,𝒛( (𝑀𝐶)). □

Note that a similar result is presented in the recent article Ljubić
et al. (2019). Based on Proposition 1, we propose a Benders decom-
position where variables 𝑓𝑤

𝑎 are projected out from the model and
replaced by Benders feasibility cuts. As we will see in Section 3.3, we also
consider the Benders facet-defining cuts proposed in Conforti and Wolsey
(2019). To apply this technique it is necessary to get an interior point of
the convex hull of 𝑃𝑟𝑜𝑗𝒙,𝒚,𝒛( (𝑀𝐶_𝑅)) (resp. 𝑃𝑟𝑜𝑗𝒙,𝒚,𝒛( (𝑃𝐶_𝑅))). The
following property gives us an algorithmic tool to apply this technique
to (𝑀𝐶).

Proposition 2. After pre-processing, the convex hull of 𝑃𝑟𝑜𝑗𝒙,𝒚,𝒛
( (𝑀𝐶_𝑅)) is full-dimensional.

Proof. To prove the result, we exhibit |𝑁| + |𝐸| + |𝑊 | + 1 affinely
independent feasible points:

• The 0 vector is feasible.
4

Table 1
Data in Example 1. We consider 𝛽 = 0.5.
Origin Destination 𝑢𝑤 𝑔𝑤

1 4 15 200
2 4 10 50
3 4 15 50

Fig. 1. Graph of Example 1.

• For each 𝑖 ∈ 𝑁 , the points:

𝑦𝑖 = 1, 𝑦𝑖′ = 0, 𝑖′ ∈ 𝑁 ⧵ {𝑖}, 𝑥𝑒 = 0, 𝑒 ∈ 𝐸, 𝑧𝑤 = 0, 𝑤 ∈ 𝑊 .

• For each 𝑒 = {𝑖, 𝑗} ∈ 𝐸, the points:

𝑦𝑘 = 1, 𝑘 ∈ 𝑒, 𝑦𝑘 = 0, 𝑘 ∈ 𝑁 ⧵ {𝑖, 𝑗},

𝑥𝑒 = 1, 𝑥𝑒′ = 0, 𝑒′ ∈ 𝐸 ⧵ {𝑒}, 𝑧𝑤 = 0, 𝑤 ∈ 𝑊 .

• For each 𝑤 ∈ 𝑊 , the points:

𝑦𝑖 = 1, 𝑖 ∈ �̃�𝑤, 𝑦𝑖 = 0, 𝑖 ∈ 𝑁 ⧵ �̃�𝑤,

𝑥𝑒 = 1, 𝑒 ∈ 𝐸𝑤, 𝑥𝑒 = 0, 𝑒 ∈ 𝐸 ⧵ 𝐸𝑤,

𝑧𝑤 = 1, 𝑧𝑤
′
= 0, 𝑤′ ∈ 𝑊 ⧵ {𝑤}.

Clearly these points are feasible and affinely independent. Thus the
polytope is full-dimensional. □

The proof of Proposition 2 gives us a way to compute an interior
point of the convex hull of 𝑃𝑟𝑜𝑗𝒙,𝒚,𝒛( (𝑀𝐶_𝑅)). The average of these
|𝑁| + |𝐸| + |𝑊 | + 1 points is indeed such an interior point.

This is not the case for (𝑃𝐶) as we show in Example 1.

Example 1. Consider the instance of (𝑃𝐶) given by the data presented
in Table 1 and Fig. 1. We consider the case where at least half of the
population must be covered, that is 𝛽 = 0.5. In order to satisfy the trip
coverage constraint (2.10), the O/D pair 𝑤 = (1, 4) must be covered.
Hence 𝑧(1,4) = 1 is an implicit equality. Furthermore, the only path
with a length less than or equal to 𝑢(1,4) = 15 is composed of edges
{1,2} and {2,4}. Hence, 𝑥{1,2}, 𝑥{2,4}, 𝑦1, 𝑦2 and 𝑦4 must take value 1.
In consequence, the polytope associated to (𝑃𝐶) is not full-dimensional.

We can compute the dimension of the convex hull of 𝑃𝑟𝑜𝑗𝒙,𝒚,𝒛
( (𝑃𝐶_𝑅)) in an algorithmic fashion.

We find feasible affinely independent points and, at the same time,
we detect O/D pairs which must be covered in any feasible solution.
Due to the latter, there are a subset of nodes and a subset of edges
that have to be built in any feasible solution. This means that there
is a subset of design variables 𝑦𝑖, 𝑖 ∈ 𝑁 , 𝑥𝑒, 𝑒 ∈ 𝐸 and mode choice
variables 𝑧𝑤, 𝑤 ∈ 𝑊 that must take value 1. At the opposite to (𝑀𝐶), a
solution to (𝑃𝐶) with all variables set to 0 is not feasible. However, the
solution obtained by serving all O/D pairs and building all nodes and
edges is feasible. Therefore, we start with a solution with all variables
in 𝒙, 𝒚, 𝒛 set to 1 and we check, one by one, if it is feasible to set them
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to 0. By setting one variable 𝑥𝑒 or 𝑦𝑖 to 0, it may become impossible
o cover some O/D pair 𝑤. In this case, we say that edge 𝑒 and node
is essential for 𝑤. To simplify the notation, we introduce the binary
arameters 𝜃𝑤𝑒 and 𝜃𝑤𝑖 taking value 1 if edge 𝑒 (respectively node 𝑖) is

essential for 𝑤. These new points are stored in a set 𝐿. Each time the
algorithm finds a variable that cannot be set to 0, we store it in sets
�̄�, �̄�, �̄� , respectively. At the end of the algorithm, the dimension of
the convex hull of 𝑃𝑟𝑜𝑗𝒙,𝒚,𝒛( (𝑃𝐶_𝑅)) is

dim(𝒙,𝒚,𝒛) = |𝑁| + |𝐸| + |𝑊 | − (|�̄�| + |�̄�| + |�̄� |).

This procedure is depicted in Algorithm 2.
Algorithm 2 allows : (i) to set some binary variables equal to 1,

decreasing the problem size; and (ii) to compute a relative interior point
of the convex hull of 𝑃𝑟𝑜𝑗𝒙,𝒚,𝒛( (𝑃𝐶_𝑅)), necessary for the facet-defining
cuts, as explained below in Section 3.3. The relative interior point is
given by the average of the points in set 𝐿.

Example 1 Cont. Regarding the previous example and following Al-
gorithm 2, the O/D pair (1, 4) must be covered, 𝑧(1,4) = 1. Due to
that, as its shortest path in the networks (𝑁 (1,4), 𝐸(1,4) ⧵ {{1, 2}}) and
(𝑁 (1,4), 𝐸(1,4) ⧵ {{2, 4}}) is greater than 𝑢(1,4) = 15, variables 𝑥{1,2}, 𝑥{2,4},
𝑦1, 𝑦2, 𝑦4 are set to 1. Finally, the dimension of this polyhedron is

dim(𝑃𝒙,𝒚,𝒛) = 4 + 4 + 3 − (3 + 2 + 1) = 5.

The relative interior point computed is:

𝑥{1,2} = 1, 𝑥{2,4} = 1, 𝑥{1,3} =
5
6
, 𝑥{3,4} =

2
3
,

1 = 1, 𝑦2 = 1, 𝑦3 =
5
6
, 𝑦4 =

5
6
,

(1,4) = 1, 𝑧(2,4) = 5
6
, 𝑧(3,4) = 1

2
.

2.4. Setting an initial solution

We determine an initial feasible solution for (𝑀𝐶) and (𝑃𝐶) with
a simple greedy heuristic in which we sequentially select O/D pairs
with best ratio demand overbuilding cost. More precisely, given the
potential network  = (𝑁,𝐸), we compute for each O/D pair 𝑤 the
ratio 𝑟𝑤 = 𝑔𝑤

𝐶(Path𝑤)
, where 𝐶(Path𝑤) is the cost of a feasible path for

𝑤. We order these ratios decreasingly. We use this initial order in the
heuristic for both (𝑀𝐶) and (𝑃𝐶). For (𝑀𝐶) the method proceeds as
follows. It starts with an empty list of built nodes and edges, an empty
list of O/D pairs covered, and a total cost set to 0. For each O/D pair 𝑤,
in decreasing order of 𝑟𝑤, the heuristic tries to build Path𝑤 considering
dges and nodes that are already built. If the additional cost plus the
urrent cost is less than the budget 𝐶𝑚𝑎𝑥, nodes and edges in Path𝑤 are
uilt and the O/D pair 𝑤 is covered (i.e. 𝑧𝑤 = 1). The total cost, the lists
f built nodes and edges are updated. Otherwise we proceed with the
ext O/D pair. At the end of the algorithm we have an initial feasible
olution.

To get an initial solution for (𝑃𝐶) we start with a list of all the
O/D pairs covered and the amount of population covered equal to 𝐺.
For each O/D pair 𝑤, in decreasing order of 𝑟𝑤, the algorithm checks
if by deleting the O/D pair 𝑤 from the list, the coverage constraint
2.10) is satisfied. If so, the O/D pair 𝑤 is deleted from the list and

the amount of population covered is updated. Finally, the algorithm
builds the union of the subgraphs (�̃�𝑤, 𝐸𝑤) induced by Path𝑤 for all the
O/D pairs covered. Note that both initial solutions can be computed by
solving |𝑊 | shortest paths problems. These tasks can be executed much
faster than solving (𝑀𝐶) and (𝑃𝐶) to optimality.

Pseudo-codes for both routines are provided in Appendix A. In
Section 4, we will show the efficiency of adding this initial solution
at the beginning of the branch-and-Benders-cut procedure.
5

3. Benders implementations

In the following, we describe different Benders implementations for
(𝑀𝐶) and (𝑃𝐶) obtained by projecting out variables 𝑓𝑤

𝑎 . Given that
(𝑀𝐶) and (𝑃𝐶) share the same subproblem structure the Benders de-
composition applied to (𝑀𝐶) is valid for (𝑃𝐶) and vice versa. Thus, we
will apply the same Benders decomposition for both problems through-
out this manuscript. These implementations are used as sub-routines
in a branch-and-Benders-cut scheme. This scheme allows cutting in-
feasible solutions along the branch-and-bound tree. Depending on the
implementation, infeasible solutions can be separated at any node in
the branch-and-bound tree or only when an integer solution is found.
In the case of (𝑀𝐶), the master problem that we solve is:

(𝑀_𝑀𝐶) max
𝒙,𝒚,𝒛

∑

𝑤∈𝑊
𝑔𝑤𝑧𝑤 (3.1)

s.t. (2.2), (2.3), (2.7)
+ {Benders Cuts (𝒙, 𝒚, 𝒛)}.

The master problem for (𝑃𝐶), named (𝑀_𝑃𝐶), is stated analogously.
In Section 3.1, we discuss the standard Benders cuts obtained by

dualizing the respective feasibility subproblem. Then, in Section 3.2
we discuss ways of generating normalized subproblems, to produce
stronger cuts. We name these cuts normalized Benders cuts. In Sec-
tion 3.3, we apply facet-defining cuts in order to get stronger cuts, as
it is proposed in Conforti and Wolsey (2019). Finally, we discuss an
implementation where, at the beginning, cut-set inequalities are added
o enhance the link between 𝒛 and 𝒙, and then Benders cuts are added.

.1. LP feasibility cuts

Since the structure of the model allows it, we consider a feasibility
ubproblem made of constraints (2.4), (2.5), (2.6) and (2.13) for each
ommodity 𝑤 ∈ 𝑊 , denoted by (𝑆𝑃 )𝑤. We note that each subproblem
s feasible whenever 𝑧𝑤 = 0, so it is necessary (𝑆𝑃 )𝑤 to check feasibility
nly in the case where 𝑧𝑤 > 0. As it is clear from the context, we remove
he index 𝑤 from the notation. The dual of each feasibility subproblem
an be expressed as:

𝐷𝑆𝑃 )𝑤 max
𝜶,𝝈,𝝊

𝑧 𝛼𝑤𝑠 −
∑

𝑒∈𝐸
𝑥𝑒 𝜎𝑒 − 𝑢 𝑧 𝜐 (3.2)

s.t. 𝛼𝑖 − 𝛼𝑗 − 𝜎𝑒 − 𝑑𝑎 𝜐 ≤ 0, 𝑎 = (𝑖, 𝑗) ∈ 𝐴 ∶ 𝑒 = {𝑖, 𝑗},
(3.3)

𝜎𝑒, 𝜐 ≥ 0, 𝑒 ∈ 𝐸,
(3.4)

here 𝜶 is the vector of dual variables related to constraints (2.4), 𝝈
s the vector of dual variables corresponding to the set of constraints
2.5) and 𝝊 is the dual variable of constraint (2.6). Since constraints in
2.4) are linearly dependent, we set 𝛼𝑤𝑡 = 0. Given a solution of the
aster problem (𝒙, 𝒚, 𝒛), there are two possible outcomes for (𝑆𝑃 )𝑤:

1. (𝑆𝑃 )𝑤 is infeasible and (𝐷𝑆𝑃 )𝑤 is unbounded. Then, there exists
an increasing direction (𝜶,𝝈, 𝝊) with positive cost. In this case,
the current solution (𝒙, 𝒚, 𝒛) is cut by:

(𝛼𝑤𝑠 − 𝑢 𝜐) 𝑧 −
∑

𝑒∈𝐸
𝜎𝑒 𝑥𝑒 ≤ 0. (3.5)

2. (𝑆𝑃 )𝑤 is feasible and consequently, (𝐷𝑆𝑃 )𝑤 has an optimal
objective value equal to zero. In this case, no cut is added.

.2. Normalized benders cuts

The overall branch-and-Benders-cut performance heavily relies on
ow the cuts are implemented. It is known that feasibility cuts may
ave poor performance due to the lack of ability of selecting a good
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(

Algorithm 2 Computing the dimension of the polytope of (𝑃𝐶)

Initialization: Set �̄� = ∅, �̄� = ∅, �̄� = ∅ and 𝐿 = ∅
Add to set 𝐿:

(

𝑦𝑖 = 1, 𝑖 ∈ 𝑁, 𝑥𝑒 = 1, 𝑒 ∈ 𝐸, 𝑧𝑤 = 1, 𝑤 ∈ 𝑊
)

.
for 𝑤′ ∈ 𝑊 do
if ∑

𝑤∈𝑊 ⧵{𝑤′}
𝑔𝑤 ≥ 𝛽 𝐺 then

Add to set 𝐿:
(

𝑦𝑖 = 1, 𝑖 ∈ 𝑁, 𝑥𝑒 = 1, 𝑒 ∈ 𝐸, 𝑧𝑤′ = 0, 𝑧𝑤 = 1, 𝑤 ∈ 𝑊 ⧵ {𝑤′}
)

.
else

�̄� = �̄� ∪ {𝑤′}
for 𝑒 = {𝑖, 𝑗} ∈ 𝐸 do

Compute shortest path between 𝑤′𝑠 and 𝑤′𝑡 in the graph (𝑁𝑤′ , 𝐸𝑤′ ⧵ {𝑒}).
if the length of the shortest path is greater than 𝑢𝑤′ or there is no path between 𝑤′𝑠 and 𝑤′𝑡 then

�̄� = �̄� ∪ {𝑒} and �̄� = �̄� ∪ {𝑖, 𝑗}
end if

end for
end if

end for
for 𝑒′ ∈ 𝐸 ⧵ �̄� do

Add to set 𝐿:
(

𝑦𝑖 = 1, 𝑖 ∈ 𝑁, 𝑥𝑒 = 1, 𝑒 ∈ 𝐸 ⧵ {𝑒′}, 𝑥𝑒′ = 0, 𝑧𝑤 = 1 − 𝜃𝑤𝑒′ , 𝑤 ∈ 𝑊
)

.
end for
for 𝑖′ ∈ 𝑁 ⧵ �̄� do

Add to set 𝐿:
(

𝑦𝑖′ = 0, 𝑦𝑖 = 1, 𝑖 ∈ 𝑁 ⧵ {𝑖′}, 𝑥𝑒 = 0, 𝑖′ ∈ 𝑒, 𝑥𝑒 = 1, 𝑖′ ∉ 𝑒, 𝑧𝑤 = 1 − 𝜃𝑤𝑖′ , 𝑤 ∈ 𝑊
)

.
end for
dim(𝒙,𝒚,𝒛) = |𝑁| + |𝐸| + |𝑊 | − (|�̄�| + |�̄�| + |�̄� |).
return �̄�, �̄�, �̄� , 𝐿 and dim(𝑐𝑜𝑛𝑣(𝑃𝒙,𝒚,𝒛)).
extreme ray (see for example Fischetti et al. (2010), Ljubić et al.
(2012)). However, normalization techniques are known to be efficient
to overcome this drawback Magnanti and Wong (1981), Balas and
Perregaard (2002, 2003). The main idea is to transform extreme rays
in extreme points of a suitable polytope. In this section we study three
ways to normalize the dual subproblem described above.

First, we note that the feasibility subproblem can be reformulated
as a min cost flow problem in 𝑤 with capacities 𝒙 and arc costs 𝑑𝑎.

𝑁𝑆𝑃 )𝑤 min
𝒙,𝒚,𝒛,𝒇

∑

𝑎∈𝐴
𝑑𝑎 𝑓𝑎 (3.6)

s.t (2.4), (2.5), (2.13).

he associated dual subproblem is:

𝐷𝑁𝑆𝑃 )𝑤 max
𝜶,𝝈

𝑧 𝛼𝑤𝑠 −
∑

𝑒∈𝐸
𝜎𝑒𝑥𝑒 (3.7)

s.t 𝛼𝑖 − 𝛼𝑗 − 𝜎𝑒 ≤ 𝑑𝑎, 𝑎 = (𝑖, 𝑗) ∈ 𝐴 ∶ 𝑒 = {𝑖, 𝑗}, (3.8)

𝜎𝑒 ≥ 0, 𝑒 ∈ 𝐸. (3.9)

Whenever 𝑧𝑤 > 0, the primal subproblem (𝑁𝑆𝑃 )𝑤 may be infeasible.
Subproblems (𝑁𝑆𝑃 )𝑤 are no longer feasibility problems, although
some of their respective dual forms can be unbounded. As the splitting
demand constraint has to be satisfied there are two kind of cuts to add:

1. (𝑁𝑆𝑃 )𝑤 is infeasible and (𝐷𝑁𝑆𝑃 )𝑤 is unbounded. In this case,
the solution (𝒙, 𝒚, 𝒛) is cut by the constraint

𝛼𝑤𝑠 𝑧 −
∑

𝑒∈𝐸
𝜎𝑒 𝑥𝑒 ≤ 0. (3.10)

2. (𝑁𝑆𝑃 )𝑤 is feasible and (𝐷𝑁𝑆𝑃 )𝑤 has optimal solution. Conse-
quently, if their solutions (𝜶,𝝈) and (𝒙, 𝒚, 𝒛) satisfy that 𝛼𝑤𝑠 𝑧 −
∑

𝑒∈𝐸 𝜎𝑒 𝑥𝑒 > 𝑢 𝑧 then, the following cut is added

(𝛼𝑤𝑠 − 𝑢) 𝑧 −
∑

𝑒∈𝐸
𝜎𝑒 𝑥𝑒 ≤ 0. (3.11)

We refer to this implementation as BD_Norm1.
In this situation, there still exists dual subproblems (𝐷𝑁𝑆𝑃 )𝑤 with
6

extreme rays. We refer to BD_Norm2 as second dual normalization
obtained by adding the dual constraint 𝛼𝑤𝑠 = 𝑢 + 1. In this case, every
extreme ray of (𝑆𝑃 )𝑤 corresponds to one of the extreme points of
(𝑁𝑆𝑃 )𝑤. A cut is added whenever the optimal dual objective value is
positive. This cut has the following form:

𝑧 −
∑

𝑒∈𝐸
𝜎𝑒 𝑥𝑒 ≤ 0. (3.12)

We finally tested a third dual normalization, BD_Norm3, by adding
constraints

𝜎𝑒 ≤ 1, 𝑒 ∈ 𝐸, (3.13)

directly in (𝐷𝑆𝑃 )𝑤.
We tested the three dual normalizations described above for (𝑀𝐶)

using randomly generated networks with 10, 20 and 40 nodes, as
described in Section 4.1. As we will see in Section 4.2, only BD_Norm1
results to be competitive.

3.3. Facet-defining Benders cuts

Here we describe how to generate Benders cuts for (𝑀𝐶) based on
the ideas exposed in Conforti and Wolsey (2019), named as 𝐶𝑊 . The
procedure for (𝑃𝐶) is the same. Given an interior point or core point
(𝒙𝑖𝑛, 𝒚𝑖𝑛, 𝒛𝑖𝑛) of the convex hull of feasible solutions and an exterior point
(𝒙𝑜𝑢𝑡, 𝒚𝑜𝑢𝑡, 𝒛𝑜𝑢𝑡), that is a solution of the LP relaxation of the current
restricted master problem, a cut that induces a facet or an improper
face of the polyhedron defined by the LP relaxation of 𝑃𝑟𝑜𝑗𝒙,𝒚,𝒛 (𝑀𝐶)
is generated. We denote the difference 𝒙𝑜𝑢𝑡 − 𝒙𝑖𝑛 by 𝛥𝒙. We define 𝛥𝒚
and 𝛥𝒛 analogously. The idea is to find the furthest point from the core
point, feasible to the LP-relaxation of 𝑃𝑟𝑜𝑗𝒙,𝒚,𝒛 (𝑀𝐶) and lying on the
segment line between the core point and the exterior point. This point is
of the form (𝒙𝑠𝑒𝑝, 𝒚𝑠𝑒𝑝, 𝒛𝑠𝑒𝑝) = (𝒙𝑜𝑢𝑡, 𝒚𝑜𝑢𝑡, 𝒛𝑜𝑢𝑡)−𝜆(𝛥𝒙, 𝛥𝒚, 𝛥𝒛). The problem
of generating such a cut reads as follows:

(𝑆𝑃 _𝐶𝑊 )𝑤 min
𝒇 ,𝜆

𝜆 (3.14)

s.t.
∑

+
𝑓𝑎 −

∑

−
𝑓𝑎 =

{

𝑧𝑜𝑢𝑡 − 𝜆𝛥𝑧, if 𝑖 = 𝑤𝑠,
0, otherwise,

(3.15)

𝑎∈𝛿𝑤(𝑖) 𝑎∈𝛿𝑤(𝑖)
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Table 2
Cycle availability, connectivity and density parameters for the underlying networks in
random instances.

Network Cycle availability Connectivity Density
|𝐸| − |𝑁| + 1

2|𝑁| − 5
|𝐸|

|𝑁|

|𝐸|

3(|𝑁|−2)

N10 0.11 1.05 0.44
N20 0.11 1.12 0.41
N40 0.13 1.22 0.43
N60 0.16 1.29 0.45

Overall 0.12 1.17 0.43

Table 3
Comparing the performance of the two different types of mode choice and capacity
constraints for (𝑀𝐶) within a time limit of 1 h. The majority of N40 instances were
not solved to optimality, then the average gap is shown.

Network Formulation using (2.5)–(2.6) Formulation using (2.11)–(2.12)

t LP gap t LP gap

N10 0.17 43.21 0.26 96.43
N20 5.78 56.33 228.22 106.71

gap LP gap gap LP gap

N40 11.74 68.15 54.85 137.13

Table 4
Comparing the performance of the three dual normalizations within a time limit of
1 h for (𝑀𝐶). N10, N20 and N40 are refereed to networks with 10, 20 and 40 nodes,
respectively. The mark ’*’ indicates that four over five instances were not solved within
1 h.

Network BD_Norm1 BD_Norm2 BD_Norm3

t cuts t cuts t cuts

N10 0.21 44 0.22 47 0.24 104
N20 2.83 362 5.76 595 5.22 1418
N40 687.88 2904 * * * *

𝑓𝑎 + 𝑓�̂� ≤ 𝑥𝑜𝑢𝑡𝑒 − 𝜆𝛥𝑥𝑒, 𝑒 = {𝑖, 𝑗} ∈ 𝐸 ∶ 𝑎 = (𝑖, 𝑗), �̂� = (𝑗, 𝑖),
(3.16)

∑

𝑎∈𝐴
𝑑𝑎 𝑓𝑎 ≤ 𝑢 𝑧𝑜𝑢𝑡 − 𝑢 𝛥𝑧 𝜆, (3.17)

0 ≤ 𝜆 ≤ 1, (3.18)

𝑓𝑎 ≥ 0, 𝑎 ∈ 𝐴. (3.19)

In order to obtain the Benders feasibility cut we solve its associated
dual:

(𝐷𝑆𝑃 _𝐶𝑊 )𝑤 max
𝜶,𝝈,𝝊

𝑧𝑜𝑢𝑡 𝛼𝑤𝑠 −
∑

𝑒∈𝐸
𝑥𝑜𝑢𝑡𝑒 𝜎𝑒 − 𝑢 𝑧𝑜𝑢𝑡 𝜐 (3.20)

s.t. 𝛥𝑧 𝛼𝑤𝑠 −
∑

𝑒∈𝐸
𝛥𝑥𝑒 𝜎𝑒 − 𝑢 𝛥𝑧 𝜐 ≤ 1, (3.21)

𝛼𝑖 − 𝛼𝑗 − 𝜎𝑒 − 𝑑𝑎 𝜐 ≤ 0, 𝑎 = (𝑖, 𝑗) ∈ 𝐴 ∶ 𝑒 = {𝑖, 𝑗},

𝜎𝑒, 𝜐 ≥ 0, 𝑒 ∈ 𝐸.

Given that (𝑆𝑃 _𝐶𝑊 )𝑤 is always feasible (𝜆 = 1 is feasible) and
that its optimal value is lower bounded by 0, then, both (𝑆𝑃 _𝐶𝑊 )𝑤

and (𝐷𝑆𝑃 _𝐶𝑊 )𝑤 have always finite optimal solutions. Whenever the
optimal value of 𝜆 is 0, (𝒙𝑜𝑢𝑡, 𝒚𝑜𝑢𝑡, 𝒛𝑜𝑢𝑡) is feasible. A cut is added if the
ptimal value of (𝐷𝑆𝑃 _𝐶𝑊 )𝑤 is strictly greater than 0. The new cut
as the same form as in (3.5). Note that this problem can be seen as a
ual normalized version of (𝑆𝑃 )𝑤 with the dual constraint (3.21). This

approach is an improvement in comparison with the stabilization cuts
proposed by Ben-Ameur and Neto (2007), where 𝜆 is a fixed parameter.

Core points for both formulations can be obtained by computing the
average of the points described in the proof of Proposition 2 for (𝑀𝐶)
and the average of the points in list 𝐿 obtained by applying Algorithm
7

2.
Table 5
Comparing the performance of the Algorithm 3 for (𝑀𝐶). N10, N20 and N40 refer to
networks with 10, 20 and 40 nodes respectively.

Network BD_CW Algorithm 3 + BD_CW

t cuts t cuts

N10 0.23 48 0.15 46
N20 2.47 411 2.53 500
N40 619.31 3486 722.02 3554

3.4. Cut-set inequalities

By projecting out variable vector 𝒇 , information regarding the
link between vectors 𝒙 and 𝒛 is lost. Cut-set inequalities represent the
information lost regarding the connectivity for the O/D pair 𝑤 in the
solution given by the design variable vector 𝒙. Let (𝑆, 𝑆𝐶 ) be a (𝑤𝑠, 𝑤𝑡)-
artition of 𝑁𝑤 for a fixed O/D pair 𝑤, i.e. (𝑆, 𝑆𝐶 ) satisfies: i. 𝑤𝑠 ∈ 𝑆;
i. 𝑤𝑡 ∈ 𝑆𝐶 , with 𝑆𝐶 = 𝑁 ⧵ 𝑆 its complement. A cut-set inequalities is
efined as

𝑤 ≤
∑

{𝑖,𝑗}∈𝐸𝑤∶
𝑖∈𝑆, 𝑗∈𝑆𝐶

𝑥{𝑖,𝑗}, 𝑤 ∈ 𝑊 , (𝑆, 𝑆𝐶 ) a (𝑤𝑠, 𝑤𝑡)-partition of 𝑁𝑤.

(3.22)

his type of constraints has been studied in several articles, for in-
tance Barahona (1996), Koster et al. (2013), Costa et al. (2009). Note
hat it is easy to see that cut-set inequalities belong to the LP-based
enders family. Let (𝑆, 𝑆𝐶 ) be a (𝑤𝑠, 𝑤𝑡)-partition in the graph 𝑤 for
∈ 𝑊 . Consider the following dual solution:

• 𝛼𝑖 = 1 if 𝑖 ∈ 𝑆; 𝛼𝑖 = 0 if 𝑖 ∈ 𝑆𝐶 .
• 𝜎𝑒 = 1 if 𝑒 = {𝑖, 𝑗} ∈ 𝐸𝑤, 𝑖 ∈ 𝑆, 𝑗 ∈ 𝑆𝐶 ; 𝜎𝑒 = 0, otherwise.
• 𝜐 = 0.

This solution is feasible to (𝐷𝑆𝑃 )𝑤 and induces a cut as in (3.22). In
rder to improve computational performance, we test two approaches
o include these inequalities:

1. We implement a modification of the Benders callback algorithm
with the following idea. First, for each 𝑤 ∈ 𝑊 , using the solution
vector (𝒙, 𝒚) from the master, the algorithm generates a network
(𝑁𝑤, 𝐸𝑤) with capacity 1 for each edge built. Then, a Depth-
First Search (DFS) algorithm is applied to obtain the connected
component containing 𝑤𝑠. If the connected component does not
contain 𝑤𝑡, a cut of the form (3.22) is added. Otherwise, we
generate a Benders cut as before. This routine is depicted in
Algorithm 3.

Algorithm 3 Callback implementation with cut-set inequalities.
Require: (𝑥𝑒, 𝑒 ∈ 𝐸, 𝑧𝑤, 𝑤 ∈ 𝑊 ) from the master vector solution

(𝒙, 𝒚, 𝒛).
for 𝑤 ∈ 𝑊 do

Build graph (𝑁𝑤(𝒙), 𝐸𝑤(𝒙)) induced by the solution vector 𝒙 from
the master.
Compute the connected component 𝑆 in (𝑁𝑤(𝒙), 𝐸𝑤(𝒙)) containing
𝑤𝑠.
if 𝑤𝑡 is included in 𝑆 then

Add the cut 𝑧𝑤 ≤
∑

{𝑖,𝑗}∈𝐸𝑤∶
𝑖∈𝑆, 𝑗∈𝑆𝐶

𝑥{𝑖,𝑗}

else
Solve the corresponding subproblem ((𝐷𝑆𝑃 )𝑤, (𝐷𝑁𝑆𝑃 )𝑤,
(𝐷𝑆𝑃 _𝐶𝑊 )𝑤) and add cut if it is necessary.

end if
end for
return Cut.
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Table 6
Comparing the performance of the three algorithms for (𝑀𝐶) and (𝑃𝐶).

Network CPLEX Auto_BD BD_Trd BD_Norm BD_CW

t t cuts t cuts t cuts t cuts

(𝑀𝐶)

w.o. CS
N10 0.18 0.43 27 0.25 92 0.24 91 0.19 94
N20 6.77 4.51 273 3.89 620 3.18 590 3.34 641
N40 1646.93 617.85 1967 1095.25 3990 541.03 3677 457.81 4137

+CS
N10 – 0.32 12 0.21 49 0.28 52 0.23 54
N20 – 3.94 178 2.29 382 2.50 383 1.85 416
N40 – 484.95 1248 637.49 2378 575.87 2530 272.39 3186

(𝑃𝐶)

w.o. CS
N10 0.18 0.29 16 0.24 92 0.28 89 0.20 91
N20 6.73 4.87 305 3.55 607 4.68 681 2.15 606
N40 2153.15 504.06 1752 657.59 4470 514.42 4246 837.41 4412

+CS
N10 – 0.28 11 0.16 56 0.20 57 0.145 54
N20 – 4.12 213 3.11 497 3.43 495 2.070 461
N40 – 439.23 1527 261.74 3528 323.21 3583 197.55 3949
Table 7
Instances N40 solved for (𝑀𝐶) and (𝑃𝐶) within a time limit of 1 h.

CPLEX Auto_BD BD_Trd BD_Norm BD_CW

(𝑀𝐶) Without CS 3 10 9 8 8
+CS – 10 10 10 10

(𝑃𝐶)
Without CS 3 9 8 8 8
+CS – 10 10 10 10

We tested this implementation with subproblems (𝐷𝑆𝑃 _𝐶𝑊 )𝑤.
We observe that by using Algorithm 3 with 𝐶𝑊 the convergence
is slower and we generate more cuts. These preliminary results
are shown in Table 5.

2. We add to the Master Problem the cut-set inequalities at the origin
and at the destination of each O/D pair 𝑤 ∈ 𝑊 at the beginning
of the algorithm. These valid inequalities have the form:

⎧

⎪

⎨

⎪

⎩

𝑧𝑤 ≤
∑

𝑒∈𝛿(𝑤𝑠)
𝑥𝑒,

𝑧𝑤 ≤
∑

𝑒∈𝛿(𝑤𝑡)
𝑥𝑒.

(3.23)

This means that for each O/D pair to be covered, there should
exist at least one edge incident to its origin and one edge incident
to its destination, i.e. each O/D pair should have at least one arc
going out of its origin and another one coming in its destination.

4. Computational results

In this section, we compare the performance of the different families
of Benders cuts presented in Section 3 using the branch-and-Benders-cut
algorithm (denoted as B&BC).

All our computational experiments were performed on a computer
equipped with a Intel Core i5-7300 CPU processor, with 2.50 GHz 4-
core, and 16 gigabytes of RAM memory. The operating system is 64-bit
Windows 10. Codes were implemented in Python 3.8. These experi-
ments have been carried out through CPLEX 12.10 solver, named
CPLEX, using its Python interface. CPLEX parameters were set to their
default values and the models were optimized in a single threaded
mode.

For that, t denotes the average value for solution times given in
seconds, gap denotes the average of relative optimality gaps in percent
(the relative percent difference between the best solution and the best
bound obtained within the time limit), LP gap denotes the average
of LP gaps in percent and cuts is the average of number of cuts
generated.
8

Fig. 2. Example of underlying networks with |𝑁|=20 and |𝑁|=40.

4.1. Data sets: benchmark networks and random instances

We divide the tested instances into two groups: benchmarks instances
and random instances. Our benchmarks instances are composed by the
Sevilla (García-Archilla et al., 2013) and Sioux Falls networks (Hell-
man, 2013).

The Sevilla instance is composed partially by the real data given by
the authors of García-Archilla et al. (2013). From this data, we have
used the topology of the underlying network, cost and distance vector
for the set of arcs and the demand matrix. This network is composed of
49 nodes and 119 edges. Originally, the set of O/D pairs 𝑊 was formed
by all possible ones (49 ⋅ 48 = 2352). However, some entries in the
demand matrix of this instance are equal to 0 and we thus exclude them
from the analysis. Specifically, 630 pairs have zero demand, almost
the 27% of the whole set. We consider a private utility 𝑢 equal to
twice the shortest path length in the underlying network. Each node
cost is generated according to a uniform distribution  (7, 13). The
available budget has been fixed to 30% of the cost of building the
whole underlying network and the minimum proportion of demand to
be covered to 𝛽 = 0.5.

For the Sioux Falls instance, the topology of the network is described
by 24 nodes and 38 edges. Set 𝑊 is also formed by all possible O/D pairs
(38 ⋅ 37 = 1406). The parameters have been chosen in the same manner
as for the random instances.

We generate our random instances as follows. We consider planar
networks with a set of 𝑛 nodes, with 𝑛 ∈ {10, 20, 40, 60}. Nodes are
placed in a grid of 𝑛 square cells, each one of 10 units side. For each
cell, a point is randomly generated close to the center of the cell. For
each setting of nodes we consider a planar graph with its maximum
number of edges, deleting each edge with probability 0.3. We replicated
this procedure 10 times for each 𝑛, so that the number of nodes is the
same while the number of edges may vary. Therefore, there are 40
different underlying networks. We name these instances as 𝑁10, 𝑁20,
𝑁40 and 𝑁60. We provide the average cycle availability, connectivity
and density for random instances networks in Table 2. A couple of them
are depicted in Fig. 2.
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Table 8
Computing gaps to solve N60 for (𝑀𝐶) and (𝑃𝐶) instances comparing the performance of three families of Benders cuts.

Auto_BD BD_Trd BD_Norm BD_CW

gap cuts gap cuts gap cuts gap cuts

(𝑀𝐶)

Without{CS, IS, RNC} 38.54 6545 45.68 14068 44.53 13340 43.77 16707
+CS 30.06 3729 24.27 8754 22.17 8912 25.76 11378
+CS+IS 32.90 4987 27.23 9038 26.94 9469 22.27 11151
+CS+IS+RNC – 37.88 8054 37.92 8230 33.58 10834

(𝑃𝐶)

Without{CS, IS, RNC} 20.49 7009 20.40 14784 21.41 15501 19.93 15116
+CS 15.92 5109 14.89 12354 14.09 11687 14.50 11744
+CS+IS 15.86 4372 11.06 8961 10.47 8490 10.44 9683
+CS+IS+RNC – 20.93 10971 21.28 11449 19.94 11053
n
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Table 9
Sensitivity analysis for (𝑀𝐶) with |𝑁| = 40.

a.

𝐶𝑚𝑎𝑥 BD_Norm + CS BD_CW + CS

t cuts t cuts

0.3 𝑇𝐶 1053.56 1580 873.58 2017
0.5 𝑇𝐶 622.45 2634 375.30 3358
0.7 𝑇𝐶 151.24 3970 177.90 5035

b.

𝑢 BD_Norm + CS BD_CW + CS

t cuts t cuts

1.5 𝑆𝑃𝑎𝑡ℎ 802.05 2792 495.84 3041
2 𝑆𝑃𝑎𝑡ℎ 622.46 2634 375.30 3358
3 𝑆𝑃𝑎𝑡ℎ 591.02 2674 490.28 3173

Construction costs 𝑏𝑖, 𝑖 ∈ 𝑁 , are randomly generated according to a
niform distribution  (7, 13). So, each node costs 10 monetary units in
verage. Construction cost of each edge 𝑒 ∈ 𝐸, 𝑐𝑒, is set to its Euclidean

length. This means that building the links cost 1 monetary unit per
length unit. The node and edge costs are rounded to integer numbers.
We set 𝐶𝑚𝑎𝑥 equal to 50% of the cost of building the whole underlying
network considered. We denote this total cost as 𝑇𝐶, so 𝐶𝑚𝑎𝑥 = 0.5 𝑇𝐶.

To build set 𝑊 , we randomly pick each possible O/D pair of nodes
with probability 0.5. In consequence, this set has 𝑛(𝑛−1)

2 pairs in average.
Parameter 𝑢𝑤 is set to 2 times the length of the shortest path between 𝑤𝑠

and 𝑤𝑡, named as 𝑆𝑃𝑎𝑡ℎ𝑤. Finally, the demand 𝑔𝑤 for each O/D pair 𝑤
s randomly generated according to the uniform distribution  (10, 300).

4.2. Preliminary experiments

Before presenting an extensive computational study of the algo-
rithms, we provide some preliminary results to: i. analyze the efficiency
of the formulation presented in García-Archilla et al. (2013); ii. the
efficiency of the cut normalizations described in Section 3.2 and, iii. the
performance of the cut-set based Branch-and-cut procedure described
in Section 3.4.

We first show that our formulation using (2.5)–(2.6) is not only
stronger than the one formulated with (2.11)–(2.12) but also more effi-
cient. Table 3 shows some statistics for the two formulations discussed
at the end of Section 2.1, for instances with 10 and 20 nodes. We also
tested instances with 40 nodes but most of them were not solved to
optimality within one hour. In that case, we provide the optimality gap
instead of the solution time. We consider 5 instances of each size. Note
that constraints (2.12) are equivalent to constraints (2.6) by setting
𝑀 = 0. We tested several positive values for 𝑀 .

Secondly, we tested the three dual normalizations described in Sec-
tion 3.2 for (𝑀𝐶). Table 4 shows average values obtained for solution
time in seconds and number of cuts needed for this experiment. The
only one that seems competitive is BD_Norm1. We observed that cut
coefficients generated with BD_Norm1 are mainly 0’s or 1’s. In the case
of BD_Norm2 and BD_Norm3 we observe that coefficients generated
9
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Table 10
Sensitivity analysis for (𝑃𝐶) with |𝑁| = 40.

a.

𝛽 BD_Norm + CS BD_CW + CS

t cuts t cuts

0.3 640.28 2675 744.95 2848
0.5 697.87 3673 387.40 3914
0.7 273.53 3873 242.04 4460

b.

𝑢 BD_Norm + CS BD_CW + CS

t cuts t cuts

1.5 𝑆𝑃𝑎𝑡ℎ 653.47 3625 620.79 3613
2 𝑆𝑃𝑎𝑡ℎ 697.87 3673 387.40 3914
3 𝑆𝑃𝑎𝑡ℎ 561.43 3521 378.11 3643

Table 11
Sensitivity analysis for GRASP algorithm García-Archilla et al. (2013) for the Sevilla
instance.
𝐶𝑚𝑎𝑥 𝑢 GRASP BD_CW + CS

t Best value gap t v(ILP)

0.2 𝑇𝐶
2 𝑆𝑃𝑎𝑡ℎ

110.829 48629 6.97 1036.11 52274
0.3 𝑇𝐶 260.220 59828 3.96 313.07 62294
0.4 𝑇𝐶 396.226 63546 0.72 21.36 64011

0.3 𝑇𝐶
1.5 𝑆𝑃𝑎𝑡ℎ 267.275 55778 6.97 2243.83 59958
3 𝑆𝑃𝑎𝑡ℎ 225.312 62049 0.99 113.88 62670

are larger than the ones generated by BD_Norm1, so they may induce
umerical instability. This situation is similar for the case of (𝑃𝐶).

Finally, we tested the cut-set inequalities implementation described
n Section 3.4 with subproblems (𝐷𝑆𝑃 _𝐶𝑊 )𝑤. We observe that by
sing Algorithm 3 with 𝐶𝑊 the convergence is slower and we generate
ore cuts. This might be due to the fact that these cuts do not include

nformation about the length of the path in the graph, but only informa-
ion regarding the existence of the path. These preliminary results are
hown in Table 5, which provides average values obtained for solution
imes in seconds and the number of cuts added.

In conclusion, all these three implementations, with the exception
f BD_norm1, are excluded from further analysis.

.3. Branch-and-Benders-cut performance

Our preliminary experiments show that including cuts only at inte-
er nodes of the branch and bound tree is more efficient than including
hem in nodes with fractional solutions. Thus, in our experiments
e only separate integer solutions unless we specify the opposite.
e used the LazyConstraintCallback function of CPLEX to

eparate integer solutions. Fractional solutions were separated using
he UserCutCallback function. We study the different implemen-
ations of B&BC proposed in Sections 3.1–3.3. We use the following
omenclature:



Computers and Operations Research 137 (2022) 105417V. Bucarey et al.

a
C
m
d
b
a
C
s
o

Table 12
Sensitivity analysis for the Sevilla network with (𝑀𝐶).
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• BD_Trd: B&BC algorithm using the feasibility subproblems struc-
ture (𝐷𝑆𝑃 )𝑤, and its corresponding feasibility cuts (3.5).

• BD_Norm: B&BC algorithm using the normalized subproblems
structure (𝐷𝑁𝑆𝑃 )𝑤, and its corresponding cuts (3.10) and (3.11).

• BD_CW: B&BC algorithm using the subproblems structure
(𝐷𝑆𝑃 _𝐶𝑊 )𝑤, and feasibility cuts (3.5).

We compare our algorithms with the direct use of CPLEX, and the
utomatic Benders procedure proposed by CPLEX, noted by AUTO_BD.
PLEX provides different implementations depending on the infor-
ation that the user provides to the solver: i. CPLEX attempts to
ecompose the model strictly according to the decomposition provided
y the user; ii. CPLEX decomposes the model by using this information
s a hint and then refines the decomposition whenever possible; iii.
PLEX automatically decomposes the model, ignoring any information
upplied by the user. We have tested these three possible settings, and
nly the first one is competitive.
10

Furthermore we have tested the following features:
• CS: If we include cut-set inequalities at each origin and destination
as in (3.23).

• IS: If we provide an initial solution to the solver.
• RNC: If we add Benders cuts at the root node.

.4. Performance of the algorithms on random instances

All the experiments have been performed with a limit of one hour
f CPU time considering 10 instances of each size. Tables in this
ection show average values obtained for solution times in seconds,
elative gaps in percent, and number of cuts needed. To determine these
verages, we only consider the instances solved at optimality by all the
lgorithms.

First, we compare the performance of CPLEX for formulations (𝑀𝐶)
and (𝑃𝐶) and the three different B&BC implementations described

above (BD_Trd, BD_Norm and BD_CW). We also study the impact
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Table 13
Sensitivity analysis for the Sevilla network with (𝑃𝐶).
of the initial cut set inequalities (CS) in the efficiency of the pro-
posed algorithms. Table 6 shows the performance of the algorithms for
networks N10, N20 and N40. All the algorithms are able to solve at
optimality N10 and N20 instances in less than 7s for (𝑀𝐶) and (𝑃𝐶).
For (𝑀𝐶) without CS, the fastest algorithm is BD_CW in sets N10,
N20 and N40 for the instances solved at optimality. This is not the
case for (𝑃𝐶), since we can observe that AUTO_BD is slightly faster.
In general, when CS is included, the solution time and the amount of
cuts required decrease. Specifically, for (𝑀𝐶) in N40, the most efficient
algorithm is BD_CW+CS which gets the optimal solution 43.8% faster
than Auto_BD+CS. For (𝑃𝐶), it seems to be also profitable, since for
N40 BD_CW+CS gets the optimal solution using 55% less time than
Auto_BD. These results are shown in the second and fourth block of
Table 6.

Table 7 shows the instances in N40 solved in one hour. Without
CS, some instances in set N40 cannot be solved to optimality nei-
ther for (𝑀𝐶) nor for (𝑃𝐶). Nevertheless, by including CS, Benders
11
implementations can solve all the instances in N40 in the one hour
limit.

We now concentrate on N60 instances. Table 8 compares the per-
formance by adding cutset inequalities CS, setting an initial feasible
solution IS and adding cuts at the root node RNC. We perform this
experiment by computing the optimality gap after one hour. Without
any of the features mentioned above, the trend on Table 6 is confirmed
in (𝑀𝐶) for instances in set N60 where the optimality gap obtained
after one hour is smaller in AUTO_BD, see the first row in Table 8.
However, for (𝑃𝐶) the gap after one hour is slightly better for BD_CW
than for the other methods in this family (see the fifth row in Table 8).
With respect to adding an initial solution, we observe that for (𝑀𝐶)
is only profitable for BD_CW+CS, obtaining in average a 3.5% better
optimality gap than without it. The impact of adding an initial solution
for (𝑃𝐶) is significant for BD_Trd+CS, BD_Norm+CS and BD_CW+CS
obtaining in average solutions with a gap around 4% smaller. However,
this improvement is not significant for BD_Auto for (𝑃𝐶) (see third
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Table B.14
Sensitivity analysis for the Sioux Falls network with (𝑀𝐶).
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row of both blocks in Table 8). Besides, We note that we obtain worse
solutions by adding also RNCin both problems with all the algorithms
tested. In summary, for the set of instances N60 we have that the
best algorithm is BD_CW+CS+IS for (𝑀𝐶). It decreases the solution
gap by around 8% comparing with the best option of Auto_BD,
which is Auto_BD+CS. With regard to (𝑃𝐶), the best options are
BD_CW+CS+IS and BD_Norm+CS+IS, since their solution gaps are
around 5.5% smaller than the ones returned by Auto_BD+CS.

In the following, we analyze the performance of algorithms
BD_Norm+CS BD_CW+CS when changing parameters 𝐶𝑚𝑎𝑥, 𝛽 and 𝑢
in the corresponding models. In Tables 9 and 10, we report average
solution times and number of cuts needed to obtain optimal solutions
for N40 for different values of these parameters. The instances are
grouped by the three different increasing values of the available budget
𝐶𝑚𝑎𝑥 (Table 9.a) or 𝛽 (Table 10.a) and private utility 𝑢 (Tables 9.b and
10.b). For (𝑀𝐶), it is observed that the bigger the value of 𝐶𝑚𝑎𝑥 is, the
shorter the average solution time is. Table 9.b. shows that the larger
the parameter 𝑢 is, the shorter the solution time for BD_Norm+CS is.
This behavior seems to be different if we are using BD_CW+CS.

For (𝑃𝐶), Table 10.a shows that both algorithms take less time to
solve the problem to optimality for 𝛽 = 0.7 than for 𝛽 = 0.3 and 𝛽 = 0.5.
12

t

D_CW+CS is 5 min faster in average than BD_Norm+CS with 𝛽 = 0.5.
or 𝛽 = 0.3 the result is the opposite, BD_Norm+CS is 100 s faster
n average than BD_CW+CS. By varying 𝑢, we observe that the less the
ifference between public and private mode distances in the underlying
etwork is, the longer it takes to reach optimality.

.5. Performance of algorithms on benchmark instances

We start by analyzing the Sevilla instance. Tables 12 and 13 show
ome results for this instance solved with BD_CW+CS. Based on this
ase, figures in Tables 12 and 13 show the solution graphs for different
arameter values. Points not connected in these graphs refer to those
odes that have not been built. The O/D pairs involving some of these
odes are thus not covered. They have been drawn to represent these
ot covered areas. Data corresponding to each case is collected at the
ottom of its figure, in which v(ILP) refers to the objective value.
or model (𝑀𝐶), parameter cost represents the cost of the network
uilt, and, for (𝑃𝐶), 𝐺𝑐𝑜𝑣 makes reference to the demand covered. For
𝑀𝐶), we observe that smaller values of 𝐶𝑚𝑎𝑥 carry larger solution
imes as in random instances. For (𝑃𝐶), as opposite to random instances,
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Table B.15
Sensitivity analysis for the Sioux Falls network with (𝑃𝐶).
higher values of 𝛽 are translated in larger solution times. Besides, in this
instance, for both models, the shorter the parameter 𝑢 is, the larger the
solution times are.

Furthermore, we compare the performance of the GRASP algorithm
from García-Archilla et al. (2013) and our implementation BD_CW+CS.
The goal of this experiment is to compare our implementation with a
state-of-the-art heuristic for network design problems. We implemented
the GRASP algorithm to run 5 times and return the best solution.
Table 11 shows solution times, best value for GRASP (Best Value),
the optimality gap, and the optimal value computed with BD_CW+CS.
On the one hand, we observed that the more time BD_CW+CS takes
to compute the optimal solution, the larger the gap of the solution
returned by GRASP is. This happens for smaller values of the budget
𝐶𝑚𝑎𝑥 and utility 𝑢. On the other hand, for problems where GRASP
obtains small optimality gap, BD_CW+CS is more efficient to compute
the optimal solution. In other words, since GRASP is a constructive
algorithm, it is not competitive for instances whose optimal solution
captures most of the demand.

We discuss the results for the Sioux Falls instance, summarized in
Tables B.14 and B.15 in Appendix B. We observe for (𝑀𝐶), as in the
Sevilla network, that the smaller the values of 𝐶 and 𝑢 are, the larger
13

𝑚𝑎𝑥
the solution time is. The same is true when varying 𝛽 in (𝑃𝐶), but not
for 𝑢. It takes less time if the difference between both modes of transport
is smaller or larger than 2𝑆𝑃𝑎𝑡ℎ.

Our exact method is able to obtain the best quality solution, with a
certificate of optimality in reasonable times. Given that network design
problems are strategic decisions, having the best quality decision is
often more important than the computational times. However, having
efficient exact methods as the ones proposed in this article, allows deci-
sion makers to perform sensitivity analysis with optimality guarantees
in reasonable times.

We also tested our algorithms on benchmark instances Germany50
and Ta2 form SNDLib (http://sndlib.zib.de/). We observed that adding
cuts at the root node is beneficial for Germany50. We think that this
behavior is due to the fact that Germany50 has a denser potential
graph (in particular, Germany50 is not a planar graph). The rest of
the results obtained for these instances are aligned with the results
obtained for Sevilla and Sioux Falls instances. For the sake of shortness,
this analysis is included in the supplementary material in http://github.
com/vbucarey/network_design_coverage/.

http://sndlib.zib.de/
http://github.com/vbucarey/network_design_coverage/
http://github.com/vbucarey/network_design_coverage/
http://github.com/vbucarey/network_design_coverage/


Computers and Operations Research 137 (2022) 105417V. Bucarey et al.

b

5. Conclusions

In this paper, we have studied two variants of the Network Design
Problem: Maximal Covering Network Design Problem where we maximize
the demand covered under a budget constraint; and Partial Set Covering
Network Design Problem where the total building cost is minimized
subject to a lower bound on the demand covered. We propose mixed
integer linear programming formulations that are stronger than existing
ones for both problems. We provide some polyhedral properties of these
formulations, useful from the algorithmic point of view. We develop
exact methods based on Benders decomposition. We also discuss some
pre-processing procedures to scale-up the instances solved. These pre-
processing techniques play a key role in order to obtain information
about the instances and to derive a better algorithmic performance.
Our computational results show that the techniques developed in this
article allow obtaining better solutions in less time than the techniques
in the existing literature. Further research on this topic will focus on the
synergy of sophisticated heuristics to find good feasible solutions and
decomposition methods, such as the ones presented in this article, to
get better bounds and close the optimality gap. Finally, we remark that
objectives of (𝑀𝐶) and (𝑃𝐶) can be included in a bicriteria optimiza-
tion model. An interesting extension is to exploit the decomposition
methods described in this manuscript to the multiobjective setting.
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Appendix A. Pseudo-code for initial feasible solutions

In this section we provide the pseudo-codes to determine an initial
feasible solution for (𝑀𝐶) and (𝑃𝐶) described in Section 2.4. We denote
y 𝑁𝑠, 𝐸𝑠 and 𝑊𝑠 the set of indices of design and mode choice variables
14

set to 1 at the end of each algorithm.
Algorithm 4 Initial Feasible Solution for (𝑀𝐶)

Initialization: Set 𝑁𝑠 = ∅, 𝐸𝑠 = ∅ and 𝑊𝑠 = ∅ and 𝐼𝐶 = 0.
Compute ratio 𝑟𝑤 = 𝑔𝑤

𝐶(Path𝑤)
:

for 𝑤 ∈ 𝑊 in decreasing order of 𝑟𝑤 do
�̄� = 𝐶(Path𝑤) −

∑

𝑒∈𝐸𝑠∩𝐸𝑤 𝑐𝑒 −
∑

𝑖∈𝑁𝑠∩�̃�𝑤 𝑏𝑖
if 𝐼𝐶 + �̄� ≤ 𝐶𝑚𝑎𝑥 then

𝑊𝑠 ← 𝑊𝑠 ∪ {𝑤}
𝐸𝑠 ← 𝐸𝑠 ∪ 𝐸𝑤

𝑁𝑠 ← 𝑁𝑠 ∪ �̃�𝑤

𝐼𝐶 ← 𝐼𝐶 + �̄�
end if

end for
𝑥𝑒 = 1 for 𝑒 ∈ 𝐸𝑠, 0 otherwise.
𝑦𝑖 = 1 for 𝑖 ∈ 𝑁𝑠, 0 otherwise.
𝑧𝑤 = 1 for 𝑤 ∈ 𝑊𝑠, 0 otherwise.
return (𝑥, 𝑦, 𝑧)

Algorithm 5 Initial Feasible Solution for (𝑃𝐶)

Initialization: Set �̄�𝑠 = 𝑊 and 𝑍𝑠 = 𝑍𝑡𝑜𝑡𝑎𝑙.
Compute ratio 𝑟𝑤 = 𝑔𝑤

𝐶(Path𝑤)
:

for 𝑤 ∈ 𝑊 in decreasing order of 𝑟𝑤 do
if 𝑍𝑠 − 𝑔𝑤 ≥ 𝛽 𝑍𝑡𝑜𝑡𝑎𝑙 then
𝑊𝑠 ← 𝑊𝑠 ⧵ {𝑤}
𝑍𝑠 ← 𝑍𝑠 − 𝑔𝑤

end if
end for
𝑥𝑒 = 1 if 𝑒 ∈ ⋃

𝑤∈𝑊𝑠
𝐸𝑤, 0 otherwise.

𝑦𝑖 = 1 if 𝑖 ∈ ⋃

𝑤∈𝑊𝑠
�̃�𝑤, 0 otherwise.

𝑧𝑤 = 1 for 𝑤 ∈ 𝑊𝑠, 0 otherwise.
return (𝑥, 𝑦, 𝑧)

Appendix B. Results for SIOUX Falls networks

See Tables B.14 and B.15.
Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.cor.2021.105417.
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