
Executing Assertions via Synthesized Logic

Programs

F. J. Galán and J. M. Cañete

Dept. of Languages and Computer Systems. Faculty of Computer Science of Seville
Av. Reina Mercedes s/n 41012 Sevilla, Spain.

phone: (34) 95 455 27 73, fax: (34) 95 455 71 39
e-mail: galanm@lsi.us.es, canete@lsi.us.es

Abstract. Programming with assertions constitutes an effective tool
to detect and correct programming errors. The ability of executing for-
mal specifications is essential in order to test automatically an imple-
mentation against its assertions. However, formal assertions may de-
scribe recursive models which are difficult to identify so current assertion
checkers limit, in a considerable way, the expressivity of the assertion
language. In this paper, we are interested in showing how transforma-
tional synthesis can help to execute “expressive” assertions r of the form
∀x̄(r(x̄) ⇔ QȳR(x̄, ȳ)) where Q is either an existential or universal quan-
tifier and R a quantifier free formula in the language of a formal theory
C we call assertion context. This sort of theories is interesting because
it presents a balance between expressiveness for writing assertions and
existence of effective methods for compiling and executing them.

Key words: assertion, automatic testing, correctness, definite logic program,
formal specification, synthesis, transformation.

1 Introduction

Experience has shown that writing assertions while programming is an effective
way to detect and correct programming errors. As an added benefit, assertions
serve to document programs, enhancing maintainability. Programming languages
such as Eiffel [16], SPARK [2] and recent extensions to the Java programming
language, such as iContract [12], JML [15] and Jass [6], allow to write assertions
into the program code in the form of pre-post conditions and invariants. However,
and due to mechanization problems, current assertion checkers avoid the use of
expressive assertions. In this paper, we write assertions by assuming a set of
free types [18] and a set of (partial) function abs (abstraction functions) to
relate concrete data values in the implementation to abstract data values in the
specification of a free type. We also assume that every free type is reachable by
its implementation. To motivate the problem, we follow the following examples:
Example 1 shows a specification of a free type, Example 2 shows an assertion to
test if n is the number of occurrences of an element e in a (finite) sequence l and

Example 3 shows a Java procedure annotated with a clause assertion to refer to
assertion in Example 2 where free types Nat and Seq have been implemented by
Java types int and List respectively. A mapping between assertion variables and
program variables is established by means of a clause where. By default, program
variables supply values to assertion variables at locations where assertions are
written, however, such a rule can be broken by using expressions such as old(elem)
and old(list) to refer to initial (relative to the starting point of the procedure)
values of elem and list respectively.

Example 1 (Free type Nat. Specification).

Free Type Nat
Data:

0 :→ Nat s : Nat→ Nat
Assertion

Identity: idNat(x: Nat, y: Nat)
Identity Specification:
idNat(0, 0)⇔ true ∀y(idNat(0, s(y))⇔ false)
∀x(idNat(s(x), 0)⇔ false) ∀x, y(idNat(s(x), s(y))⇔ idNat(x, y))

Example 2 (Assertion nocc).

Assertion
Signature: nocc(e: Nat, l: Seq, n: Nat)
Specification:
∀e, n(nocc(e, [], n)⇔ idNat(n, 0))
∀e, x, y(nocc(e, [x|y], 0)⇔ ¬idNat(x, e) ∧ nocc(e, y, 0))
∀e, x, y, z(nocc(e, [x|y], s(z))⇔ (idNat(x, e) ∧ nocc(e, y, z))∨

(¬idNat(x, e) ∧ nocc(e, y, s(z))))

Example 3 (Java procedure annotated with a post-condition).

int numberOfOccurrences(int elem, List list) {
int result = 0; int aux;
while (list.hasNext()){

aux = (int)list.next();
if (aux == elem) result++;

}
// assertion nocc(e: Nat, l: Seq, n: Nat)
// where e is abs(old(elem)), l is abs(old(list)), n is abs(result)
return result;

}

It is important to note that assertions such as nocc are close to functional or logic
programs. Due to this similarity, current assertion checkers are able to execute
this kind of assertions. Example 4 shows a logic program which is able to execute
ground atoms for nocc.

Example 4 (Logic program for assertion nocc).

idNat(0,0).
idNat(s(X),s(Y)):- idNat(X,Y).

nocc(E,[],N):- idNat(N,0).
nocc(E,[X|Y],0):- not(idNat(X,E)),nocc(E,Y,0).
nocc(E,[X|Y],s(Z)):- idNat(X,E),nocc(E,Y,Z).
nocc(E,[X|Y],s(Z)):- not(idNat(X,E)),nocc(E,Y,s(Z)).

Example 5 shows an assertion to test the subset relation. We will refer to
this kind of assertions as expressive assertions due to the presence of infinite
quantification in its definition (i.e. ∀e(. . .)).

Example 5 (Expressive assertion subset).

Assertion
Signature : subset(l : Seq, s : Seq)
Specification :
∀l, s(subset(l, s)⇔ ∀e(member(e, l)⇒ member(e, s)))

Inductive reasoning is needed to execute ground atoms for subset. For in-
stance, Table 1 has been constructed by applying structural induction on e in
subset([0, s(s(0))], [s(0), 0])⇔ ∀e(member(e, [0, s(s(0))])⇒ member(e, [s(0), 0])).
After induction, we are able to know that subset([0, s(s(0))], [s(0), 0]) is false
because induction case (3) is equal to false.

Index Induction case subset([s(s(0))], [s(0)])

(1) e = 0 true

(2) e = s(0) true

(3) e = s(s(0)) false

(4) e = s(s(s(k))) true

Table 1. Example of structural induction.

Current assertion checkers [16], [2], [6], [12], [15] do not implement this kind
of inductive reasoning so they avoid the use of expressive assertions. This fact
limits the expressivity of the assertion language and, therefore, the effectiveness
of testing activities.

Our objective can be summarized in the following question:
Is it possible to extend current assertion checkers to execute expressive asser-

tions? To answer this question we need to characterize a “theory of expressive
assertions”. For us, an expressive assertion r is a relation which is defined by
axioms of the form ∀x̄(r(x̄) ⇔ QȳR(x̄, ȳ)) where Q is either an existential or
universal quantifier and R a quantifier free formula in the language of a formal
theory C we call assertion contexts. Hence, to answer the question affirmatively,
assertion checkers must be able to decide if any ground atom r(t̄) is a logical
consequence of C.

How can we do it? Synthesis methods constitute an important aid to over-
come this problem. Our intention is:

– If Q = ∃ then to synthesize a totally correct (definite) logic program r1 of the
form ∀x̄, ȳ(r1(x̄, ȳ)⇐ P (x̄, ȳ)) from specification ∀x̄, ȳ(r1(x̄, ȳ)⇔ R(x̄, ȳ)).

– If Q = ∀ then to synthesize a totally correct (definite) logic program rneg
1 of

the form ∀x̄, ȳ(rneg
1 (x̄, ȳ)⇐ Pneg(x̄, ȳ)) from specification ∀x̄, ȳ(rneg

1 (x̄, ȳ)⇔
¬R(x̄, ȳ)).

As we will show, a mere inspection of logic programs r1 and rneg
1 will allow to

decide about the existence of executions (i.e. finite derivations) for ∃ȳ(r1(t̄, ȳ))
and ∃ȳ(rneg

1 (t̄, ȳ)) respectively.
How can assertion checkers decide about logical consequences from executions

of logic programs r1 and r
neg
1 ?

– If Q = ∃ then the execution of ∃ȳ(r1(t̄, ȳ)) will compute a set of substitu-
tions {θj} (e.g. Table 1, rows (1), (2) and (4)). Resolution-based systems are
refutation systems, thus:
If {θj} = ∅ then, by total correctness of r1, C |= ¬r(t̄) else C |= r(t̄).

– If Q = ∀ then the execution of ∃ȳ(rneg
1 (t̄, ȳ)) will compute a set of substitu-

tions {θneg
j } (e.g. Table 1, row (3)), thus:

If {θneg
j } = ∅ then, by total correctness of rneg

1 , C |= r(t̄) else C |= ¬r(t̄).

To define our compilation method, we have studied some of the most rel-
evant synthesis paradigms (constructive, transformational and inductive) [5, 7,
8]. In particular, we are interested in transformational mechanisms [4, 17, 13].
Transformation rules are easy to understand and simple to implement but as P.
Flener says in [7]: “A transformation usually involves a sequence of unfolding
steps, then some rewriting, and finally a folding step. The eureka about when
and how to define a new predicate is difficult to find automatically. It is also
hard when to stop unfolding. There is a need for loop-detection techniques to
avoid infinite synthesis through symmetric transformations”. In order to over-
come these problems, we develop transformations within assertion contexts [10].
These theories are interesting because they allow to (1) structure the search
space for new predicates, (2) define a particular notion of similarity between
formulas for deciding when to introduce new predicates. From this notion, a par-
ticular folding rule is defined to answer how to introduce new predicates without
human intervention and (3) define a compilation method where no symmetric
transformations are possible.

Our work is explained in the following manner. Section 2 introduces the no-
tion of assertion context as a formal frame for interpreting and writing expressive
assertions. Section 3 defines a transformation-based compilation method for ex-
pressive assertions. Finally, in section 4, we conclude.

2 Assertion Contexts

An expressive assertion is a relation whose definition includes axioms of the form
∀x̄(r(x̄) ⇔ QȳR(x̄, ȳ)) where R(x̄, ȳ) is a formula written in the language of a

theory C containing free types and assertions we call assertion context. For each
recursive assertion in C, the specifier must supply the recursive parameters. As we
will show, this information will be needed for ensuring the existence of executions
for expressive assertions in an automatic way. Example 6 shows assertion context
S. Expressive assertion subset in Example 5 has been written in the language of
S.

Example 6 (Assertion context S).

Assertion Context S
Global.

Import Free Types Nat,Seq
Layer 1.
Assertion

Signature: nocc(e: Nat, l: Seq, n: Nat), recursive parameters: l
Specification:
∀e, n(nocc(e, [], n)⇔ idNat(n, 0))
∀e, x, y(nocc(e, [x|y], 0)⇔ ¬idNat(x, e) ∧ nocc(e, y, 0))
∀e, x, y, z(nocc(e, [x|y], s(z))⇔ (idNat(x, e) ∧ nocc(e, y, z))∨

(¬idNat(x, e) ∧ nocc(e, y, s(z))))
Assertion

Signature: member(e: Nat, l: Seq), recursive parameters: l
Specification:
∀e(member(e, [])⇔ false)
∀e, x, y(member(e, [x|y])⇔ (idNat(x, e) ∨member(e, y)))

The following preliminary definitions are needed to formalize the notion of as-
sertion context.

Definition 1 (Patterns). We say that tP is a term pattern for a term t if
tP is obtained by replacing each variable occurrence in t by the symbol .
We say that t1P > t2P if either t1P = and t2P = f(t2,1P , ..., t2,nP

) or
t1P = f(t1,1P , ..., t1,nP

) and t2P = f(t2,1P , ..., t2,nP
) and there exists a non-

empty subset s ⊆ {1..n} such that t1,iP
> t2,iP

for every i ∈ s and t1,jP
= t2,jP

for every j ∈ ({1..n} − s). For instance, s(x)P = s() and s() > s(0).
We say that r(t̄)P is an atom pattern for an atom r(t̄) if r(t̄)P is obtained

by replacing every term occurrence in r(t̄) by its respective term pattern. Let
r(t1,1P , ..., t1,nP

) and r(t2,1P , ..., t2,nP
) be two atom patterns, we say that r(t1,1P ,-

..., t1,nP
) > r(t2,1P , ..., t2,nP

) if there exists a non-empty set s ⊆ {1..n} such that
t1,iP

> t2,iP
for every i ∈ s and t1,jP

= t2,jP
for every j ∈ ({1..n} − s). For

instance, nocc(a, [x|y], n)P = nocc(, [|],) and nocc(, ,) > nocc(, [|],).
We say that lP is a literal pattern for r(t̄) if either lP = r(t̄)P or lP = ¬r(t̄)P .

We say that FP is a formula pattern for a quantifier-free formula F if and only
if it is obtained by replacing every atom in F by its respective literal pattern.

Every axiom in an assertion context is a universally closed formula of the
form ∀(r(x̄) ⇔ R(z̄)) where r(x̄) is called the left-hand side (lhs) of the axiom
and R(z̄) is a quantifier-free formula composed of literals and binary logical
connectives we call right-hand side (rhs) of the axiom.

Definition 2 (Atom Covering). An atom covering for an assertion r, A(r),
is the set of atom patterns defined on symbol r which is induced from its axioms.
A(r) includes patterns from the right-hand sides of its axioms (called “upper pat-
terns”), patterns from the left-hand sides of its axioms (called “lower patterns”)
and “intermediate patterns” which are induced from upper and lower patterns by
means of relation >.

We display atom coverings by means of directed graphs1 where atom pat-
terns are nodes and directed links are instances of relation >. For instance, Fig.
1 shows A(nocc) in S. We say that an atom covering A(r) is complete if and
only if every lower pattern instantiates the same set of parameter positions. As
we will show, complete coverings are needed for constructing formula instantia-
tions. For instance, A(member) is complete (i. e. every lower pattern instantiates
parameter l) and A(nocc) is incomplete. (i.e. lower pattern in first axiom instan-
tiates parameter l and the rest of lower patterns instantiate parameters l and
n). A completion procedure for incomplete coverings is done by deriving new
nodes from lower patterns responsible of incompleteness. In Fig. 1 we show the
completion of A(nocc) by highlighting new nodes and links. In the following, for
every incomplete covering we consider implicitly its completion.

nocc(_,_,_)
(upper pattern)

nocc(_,_,0)
(intermediate pattern)

nocc(_,_,s(_))
(upper pattern)

nocc(_,[_|_],_)
(intermediate pattern)

nocc(_,[],_)

nocc(_,[_|_],0)
(lower pattern)

nocc(_,[_|_],s(_))
(lower pattern)

nocc(_,[],0)
(new)

(new) (new)

nocc(_,[],s(_))
(new)

(new) (new)

lower pattern
(before completion
procedure)
responsible of
incompleteness

lower pattern
(after completion
procedure)

lower pattern
(after completion
procedure)

Fig. 1. Completion of A(nocc).

Definition 3 (Assertion Context). An assertion context C is a first-order
theory C = 〈Global, Layer1, ..., Layerk〉 where Global section is intended to
model data structures by means of free types and Layer1, ..., Layerk sections are
intended to model assertions. Propositions true and false complete the language
of C.

1 These can be either connected or disconnected graphs.

Every relation symbol r defined in Layeri is a symbol of level i. Every identity
symbol in the Global section is a symbol of level 0. To unify, propositions true
and false are symbols of level 0. The level of a formula is equal to the greatest
level induced from its relation symbols.

Definition 4 (Free Type). A free type T = 〈Data, 〈ΣidT
, SpecidT

〉〉 where
Data is a set of constants and functions to model data in a recursive manner
and 〈ΣidT

, SpecidT
〉 is a particular assertion which defines an identity relation

for data T .

Definition 5 (Assertion). Every assertion 〈Σr, Specr〉 is defined by signature
Σr and specification Specr where Σr includes information about which parame-
ters are recursive in r and Specr is a set of axioms of the form ∀(r(x̄)⇔ R(z̄))
for defining r in C with the following restrictions:

– Restriction 1 (Layers): If r is a symbol of level i > 0 then Specr includes
at least an atom of level i − 1. Every positive atom occurring in R(z̄) is of
level i (only recursive atoms, if they exists), i− 1 or 0. Every negative atom
occurring in R(z̄) is of level i− 1 or 0.

– Restriction 2 (Totality): Every ground instance of r must be defined in Specr.
– Restriction 3 (No ambiguity): The left-hand sides of any pair of axioms in
Specr are not unifiable.

– Restriction 4 (No internal variables): z̄ ⊆ x̄ in ∀(r(x̄)⇔ R(z̄)).
– Restriction 5 (Well-formed): Every atom occurring in R(z̄) induces either
intermediate or upper atom pattern in its respective covering.

– Restriction 6 (Well-founded): If r is recursive then Specr must be well-
founded wrt recursive parameters.

The following definitions are needed to formalize the consistency of assertion
contexts.

Definition 6 (Unfolding Step). Let r(ȳ) be an atom in a universally closed
formula ∀(F) and Ax = ∀(r(x̄) ⇔ R(z̄)) an axiom in C with r(x̄)θ = r(ȳ). We
say that unf(∀(F), r(ȳ), Ax) is the unfolding step of r(ȳ) in ∀(F) wrt Ax if and
only if r(ȳ) is replaced in ∀(F) by R(z̄)θ.

Definition 7 (Simplification Rules). In order to simplify formulas in pres-
ence of propositions true and false, we consider the following set of rewrite rules
where H is a formula.

(1) ¬true→ false (2) ¬false→ true (3) true ∨H → true
(4) false ∨H → H (5) true ∧H → H (6) false ∧H → false
(7) false⇒ H → true (8) true⇒ H → H (9) false⇔ H → ¬H
(10) H ⇒ true→ true (11) H ⇒ false→ ¬H (12) true⇔ H → H
(13) ∀(true)→ true (14) ∀(false)→ false

Definition 8 (Execution). We call execution of a ground atom r(t̄) in C to
every terminating derivation for r(t̄) which is constructed by means of unfolding
steps wrt axioms in C and simplifications (Def. 7). We will write C ` r(t̄) if the
execution of r(t̄) in C ends in true and C ` ¬r(t̄) if ends in false.

Theorem 1 (Ground Decidability). For every ground atom r(t̄) in C either
C ` r(t̄) or C ` ¬r(t̄). (A proof of this theorem can be found in Appendix).

From Theorem 1, we formalize the semantics of assertion contexts. Our pro-
posal is borrowed from previous results in the field of deductive synthesis [3],
[13], [14], [1], [11].

Definition 9 (Consistency). A model for C is defined in the following terms:

C |= r(t̄) iff C ` r(t̄) and C |= ¬r(t̄) iff C ` ¬r(t̄)

for every ground atom r(t̄) in C.

Once we have formalized the notion of assertion context, we formalize the
notion of expressive assertion. Example 5 shows an expressive assertion in S.

Definition 10 (Expressive Assertion). We say that 〈Σr, Specr〉 is an ex-
pressive assertion in C if and only if r is a new symbol not defined in C and
Specr is total, non-ambiguous and, at least, one of its axioms is of the form
∀x̄(r(x̄) ⇔ Q ȳR(x̄, ȳ)) where Q is either an existential or universal quantifier
and R(x̄, ȳ) is a well-formed and quantifier-free formula in the language of C.

3 Compilation Method

The compilation process for an expressive assertion r can be seen as a sequential
activity where, at each step, an axiom of the form ∀x̄(r(x̄) ⇔ QȳR(x̄, ȳ)) in
Specr is compiled. If Q = ∃ then we synthesize a new totally correct recursive
assertion r1 from ∀x̄, ȳ(r1(x̄, ȳ) ⇔ R(x̄, ȳ)) and if Q = ∀ then we synthesize a
new totally correct recursive assertion rneg

1 from ∀x̄, ȳ(rneg
1 (x̄, ȳ) ⇔ ¬R(x̄, ȳ)).

From these recursive assertions, logic programs are derived by a mere translation
method. Example 7 shows the starting point for compiling the unique axiom of
subset in Example 5.

Example 7 (Compiling subset. Starting point2).

Assertion
Signature : subsetneg

1 (a : Nat, l : Seq, b : Nat, s : Seq)
Specification :
∀e, l, s(subsetneg

1 (e, l, e, s)⇔ (member(e, l) ∧ ¬member(e, s)))

The compilation of an axiom is done by a finite sequence of meaning-preserving
transformation steps. Each transformation step is composed of an expansion
phase followed by a reduction phase. Expansion phase is intended to decompose
the original formula into a set of formulas and reduction phase is intended to re-
place sub-formulas by new predicates. As we will show, the set of new predicates
(“recursive predicates”) is computable.

2 To normalize the form of axioms (Def. 12), the compilation of subsetneg
1

starts from
∀(subsetneg

1
(e, l, e, s) ⇔ (member(e, l)∧¬member(e, s))) which is an equivalent for-

mula to ∀(subsetneg
1

(e, l, e, s) ⇔ ¬(member(e, l) ⇒ member(e, s))).

3.1 Expansion Phase

Expansion phase decomposes a formula F into a set of formulas by means of
instantiations and unfolding steps. Our intention is to decomposed a formula
in a guided manner by using a particular rule, we call i-instantiation: If F is
a formula of level i then only atoms of level i are selected to be instantiated.
To implement i-instantiations, we will use atom coverings. If r(ȳ) is a selected
atom to be instantiated in F and r(ȳ)P dominates a subtree in A(r) then lower
patterns in such a subtree induces a set of substitutions for variables in r(ȳ).
Such sets of substitutions will be the basis to construct i-instantiations. In Fig.
2 we show two examples.

nocc(_,_,_)

nocc(_,_,0) nocc(e,s,s(z))�
(root)

nocc(_,[_|_],_) nocc(_,[�],_)

nocc(_,[_|_],0) nocc(e,[v|w],s(z))�
(lower�pattern)

nocc(_,[�],0) nocc(e,[�],s(z))�
(lower�pattern)

Sets�of�substitutions:

����������������������������{�(s,[�])�}
����������������������������{�(s,[v|w])�}

member(e,l)�
(root)

member(e,[�])�
(lower�pattern)

member(e,[x|y])�
(lower�pattern)

Sets�of�substitutions:

����������������������������{�(l,[�])�}
����������������������������{�(l,[x|y])�}

Fig. 2. Substitutions for nocc(a, s, s(z)) and member(e, l) in their respective coverings.

In the following definitions, we consider that F is a formula of the form
∀(ri(x̄)⇔ R(x̄)) with R(x̄) a quantifier-free formula written in (the language of
an assertion context) C and ri a symbol not defined in C.

Definition 11 (i-Instantiation). We say that inst(F, i, r(ȳ)) = {∀(ri(x̄)θ1 ⇔
R(x̄)θ1), ...,∀(ri(x̄)θj ⇔ R(x̄)θj)} is the i-instantiation of r(ȳ) in F if and only
if

1. r(ȳ) is an atom in R(x̄) of level i whose pattern r(ȳ)P dominates a subtree
in A(r) with lower patterns {r(ȳ1)P , ..., r(ȳj)P}.

2. {θ1, ..., θj} is the set of substitutions such that (r(ȳ)θk)P = r(ȳk)P with
k = 1..j.

3. Every atom in R(x̄)θk has a pattern which is included in its respective cov-
ering.

Example 8 (inst(F, 1,member(e, l)) for F equal to the axiom of subsetneg
1 in

Example 7).

∀ (subsetneg
1 (e, [], e, s)⇔ (member(e, []) ∧ ¬member(e, s))) θ1 = {(l, [])}

∀ (subsetneg
1 (e, [x|y], e, s)⇔ (member(e, [x|y]) ∧ ¬member(e, s))) θ2 = {(l, [x|y])}

Definition 12 (Normalization Rules). To avoid negations in front of for-
mulas, we normalize them by using the following set of rewrite rules where G
and H are formulas.

(1) ¬false→ true, (2) ¬true→ false
(3) ¬¬G→ G, (4) ¬(G⇒ H)→ (G ∧ ¬H)
(5) ¬(G ∧H)→ (¬G ∨ ¬H) (6) ¬(G ∨H)→ (¬G ∧ ¬H)
(7) ¬(G⇔ H)→ (¬(G⇒ H) ∨ ¬(H ⇒ G))

Definition 13 (i-Expansion). We say that exp(F, i) is the i-expansion of F
if and only if every formula in exp(F, i) is constructed by applying all the i-
instantiations (at least 1) to F , then all the unfolding steps (at least 1) to each
resulting formula. After unfolding steps, it can appear negative sub-formulas (i.e.
presence of negation in front of unfolded sub-formulas). To avoid negations in
front of such sub-formulas, we normalize them.

Example 9 (exp(F, 1) for F equal to the axiom of subsetneg
1 in Example 7).

(1) ∀ (subsetneg
1 (e, [], e, [])⇔ (false ∧ true))

(2) ∀ (subsetneg
1 (e, [], e, [v|w])⇔ (false ∧ (¬idNat(v, e) ∧ ¬member(e, w))))

(3) ∀ (subsetneg
1 (e, [x|y], e, [])⇔ ((idNat(x, e) ∨member(e, y)) ∧ true))

(4) ∀ (subsetneg
1 (e, [x|y], e, [v|w])⇔ ((idNat(x, e) ∨member(e, y))

∧
(¬idNat(v, e) ∧ ¬member(e, w))))

Once a formula has been “decomposed into a set of simple formulas” (ex-
pansion), we are interested in finding recursive compositions from such formulas.
This can be done by identifying sub-formulas and replacing them by new predi-
cates (reduction). Our intention is to anticipate and organize the search space of
sub-formulas and new predicates in order to manage reductions automatically.

To precise our intentions, we say that D(r) is the transitive closure of relation
symbols used in the definition of r. For instance,D(member) = {member, idNat}.
From this definition, L(r) is the set of all the literal patterns for a relation r which
is constructed from intermediate and upper atom patterns in A(rj) for every rj

in D(r). For instance,

L(member) = { member(,), ¬member(,), idNat(,), idNat(s(),),
idNat(, s()), idNat(0,), idNat(, 0), ¬idNat(,),
¬idNat(s(),), ¬idNat(, s()), ¬idNat(0,), ¬idNat(, 0) }

We say that F(R) is the set of all the formula patterns for a quantifier-free
formula R if it is constructed by replacing each literal defined on rj in R by
elements in {true, false} ∪ L(rj).

Definition 14 (Search Space). We say that Ω(r) is the search space for an
expressive assertion 〈Σr, Specr〉 if and only if

Ω(r) =
⋃

Ax∈Specr

F(rhs(Ax))

Every element EP in Ω(r) encodes a sort of formulas. Such a codification
depends on the sequence of relation symbols in EP . Our method considers that
every formula pattern EP is equivalent to a fresh atom pattern whose relation
symbol, say rEP

, represents such a codification. In order to establish a precise
codification, a bijection is proposed between term patterns in EP and parameter
positions in rEP

.

We say that Ωext(r) is an extended search space for an expressive assertion
〈Σr, Specr〉 if and only if Ωext(r) is constructed from Ω(r) by including an
element of the form rEP

⇔ EP for each element EP ∈ Ω(r). An extended
search space represents a repository of new predicates and sub-formulas to be
considered at reduction time.

Experimentally, it is important to note that no complete extended search
spaces are needed when compiling expressive assertions. For instance, from a
theoretical point of view, |Ωext(subset

neg
1)| = 196 but only 8 of these patterns

have been needed when compiling subsetneg
1 . Table 2 shows these patterns where

positions for recursive parameters have been highlighted. A practical result is
proposed in [9] where we show that search spaces can be constructed on demand
using tabulation techniques.

(1) subsetneg
1

(1 , 2
, 3 , 4

) ⇔ (member(1 , 2
) ∧ ¬member(3 , 4

))

(2) subsetneg
2

(1 , 2
) ⇔ (false ∧ ¬member(1 , 2

))

(3) subsetneg
3

(1 , 2
) ⇔ (member(1 , 2

) ∧ false)

(4) subsetneg
4

(1 , 2
) ⇔ (true ∧ ¬member(1 , 2

))

(5) subsetneg
5

⇔ (false ∧ true)
(6) subsetneg

6
⇔ (false ∧ false)

(7) subsetneg
7

⇔ (true ∧ false)
(8) subsetneg

8
⇔ (true ∧ true)
Table 2. Ωext(subset

neg
1

) (partial).

In order to automate reductions, we propose a method to decide when a
formula is similar to an element in a search space. We supply “operational”
definitions to justify the mechanization of our proposal.

By tree(RP) we denote the tree representation of a formula pattern RP where
each leaf node contains a literal pattern and each internal node contains a binary
logical connective. We say that a node in tree(RP) is preterminal if it has, at
least, one leaf node.

We say that RP is similar wrt connectives to EP if and only if every bi-
nary logical connective in tree(EP) is located at the same place in tree(RP).
In Fig. 3, we show that RP is similar wrt connectives to EP (but EP is not
similar wrt connectives to RP). Similarity wrt connectives induces a mapping f
from preterminal nodes in tree(EP) to subtrees in tree(RP) (for instance, f in
Fig. 3).

∧

_)(_,member¬

∧

∨ ∧

Formula
Pattern

Formula
Pattern

f

lefte � � � � �e

leftl
rightl

_)(_,member

_)(_,member _)(_,member¬

_)(_,N a tid _)(_,
Nat

id¬

�R�E

Remaining
atom�patterns

Fig. 3. RP is similar to EP .

Definition 15 (Similar Pattern). We say that a formula pattern RP is sim-
ilar to a formula pattern EP if and only if

1. RP is similar wrt connectives to EP via mapping f ,
2. (a) For each preterminal node n ∈ tree(EP) with two leaf nodes, eleftP

and
erightP

, there exist two leaf nodes, lleftP
in the left subtree of f(n) and

lrightP
in the right subtree of f(n), where eleftP

= lleftP
and erightP

=
lrightP

and
(b) For each preterminal node n ∈ tree(EP) with one leaf node, eleftP

/erightP
,

there exists a leaf node lleftP
/lrightP

in the left/right subtree of f(n),
where eleftP

/erightP
= lleftP

/lrightP
.

Fig. 3 shows an example of similarity.

Theorem 2 (Expansion Preserves Correctness). Let {∀(ri(x̄1)⇔Rexp(x̄1)),-
...,∀(ri(x̄j)⇔Rexp(x̄j))} be the set of formulas in the i-expansion of a formula
∀(ri(x̄) ⇔ R(x̄)). For every ground atom ri(x̄)φ there exists a ground atom
ri(x̄k)δ, with k ∈ {1..j}, such that

C |= R(x̄)φ⇔ Rexp(x̄k)δ

(A proof of this theorem can be found in Appendix).

The following result ensures that every expansion can be reduced by new pred-
icates in a (extended) search space.

Theorem 3 (Expansion is an Internal Operation in Ωext). Let F be a
formula in C of the form ∀(ri(x̄) ⇔ R(x̄)). If rhs(F)P is similar to the rhs of
some pattern in Ωext(ri) then for every Fk ∈ exp(F, i), rhs(Fk)P is similar to
the rhs of some pattern in Ωext(ri). (A proof of this theorem can be found in
Appendix).

3.2 Reduction Phase

Reduction phase is intended to replace sub-formulas by new predicates. To iden-
tify and replace sub-formulas by equivalent atoms are two key activities in a
transformation step. When a formula is similar to an element in a search space,
it is rewritten (rewriting step), preserving its semantics, in order to facilitate an
automatic replacement of sub-formulas by new predicates (folding step). In the
following definitions, we consider that F is a formula of the form ∀(ri(x̄)⇔ R(x̄))
with R(x̄) a quantifier-free formula written in (the language of an assertion con-
text) C and ri a symbol not defined in C.

Definition 16 (Rewriting Step). Let {a1, ..., ap, ..., an} be the set of atoms
in R(x̄). By R(a1, ..., ap, ..., an) we denote an alternative representation of R(x̄).
Let PP be a pattern in Ωext(ri) such that R(x̄)P is similar to EP = rhs(PP)
with f as the induced mapping for deciding about similarity wrt connectives and
A = {a1, a2, ..., ap} as the set of atoms in R(a1, ..., ap, ..., an) which have not been
used for deciding about similarity (i.e. remaining atoms). We say rew(F, PP) is
the rewriting step of F wrt PP if and only if

1. We consider the set of all the evaluations for atoms a1, a2, ..., ap in R(x̄) in
the following schematic manner:

rew(F, PP) = ∀(ri(x̄)⇔
(R(true, true, ..., true, ap+1, ..., an) ∧ a1 ∧ a2 ∧ ... ∧ ap) ∨
(R(false, true, ..., true, ap+1, ..., an) ∧ ¬a1 ∧ a2 ∧ ... ∧ ap) ∨
(R(true, false, ..., true, ap+1, ..., an) ∧ a1 ∧ ¬a2 ∧ ... ∧ ap) ∨
... ∨
(R(false, false..., false, ap+1, ..., an) ∧ ¬a1 ∧ ¬a2 ∧ ... ∧ ¬ap))

where each R(c1, c2,..., cp, ap+1, ..., an) represents the replacement in R(x̄) of
the set of atoms {a1, a2, ..., ap} by the combination {c1, c2, ..., cp} of proposi-
tions true and false.

2. We simplify each R(c1, c2,..., cp, ap+1, ..., an) in the following form:
(a) For each preterminal node n ∈ tree(EP) with two leaf nodes, we simplify

(Def. 7) sub-formulas in R(c1, c2,..., cp, ap+1, ..., an) which correspond to
left and right subtrees of f(n) in R(c1, c2,..., cp, ap+1, ..., an)P .

(b) For each preterminal node n ∈ tree(EP) with one left/right leaf node,
we simplify (Def. 7) the sub-formula in R(c1, c2,..., cp, ap+1, ..., an) which
corresponds to left/right subtrees of f(n) in R(c1, c2,..., cp, ap+1, ..., an)P .

This selective simplification is intended to preserve similarity wrt connectives
between R(c1, c2, ..., cp, ap+1, ..., an)P and EP .

Example 10 (Rewriting Step). Let F be the formula (4) in Example 9, PP the
pattern (1) in Ωext(subset

neg
1) and EP = rhs(PP). In Fig. 3 we can verify that

A = {a1 = idNat(x, e), a2 = idNat(v, e)} is the set of atoms which has not been
used for deciding about similarity (i.e. remaining atoms). After rewriting step,
1 we obtain:

∧

_)(_,member¬

∧

∨ ∧

Formula
Pattern

Formula
Pattern

f

lefte � � 	
 �e

leftl
rightl

_)(_,member

_)(_,member _)(_,member¬

1
c

2
c

�R�E

Left�subtree
of�f(n)

Right�subtree
of�f(n)

Fig. 4. Rewriting step. Sub-formulas to be simpified.

rew(F, PP) = ∀(subset
neg
1 (e, [x|y], e, [v|w])⇔

(true ∨member(e, y)) ∧ (false ∧ ¬member(e, w)) ∧ idNat(x, e) ∧ idNat(v, e) ∨
(false ∨member(e, y)) ∧ (false ∧ ¬member(e, w)) ∧ ¬idNat(x, e) ∧ idNat(v, e) ∨
((true ∨member(e, y)) ∧ (true ∧ ¬member(e, w)) ∧ idNat(x, e) ∧ ¬idNat(v, e) ∨
(false ∨member(e, y)) ∧ (true ∧ ¬member(e, w)) ∧ ¬idNat(x, e) ∧ ¬idNat(v, e)

For preterminal node ∧ in tree(EP), we simplify sub-formulas in R(c1, c2,-
..., cp, ap+1, ..., an) which correspond to left and right subtrees of f(∧) inR(c1, c2,-
..., cp, ap+1, ..., an)P . In Fig. 4 we have highlighted such subtrees. After rewriting
step 2, we obtain:

rew(F, PP) =
∀(subsetneg

1 (e, [x|y], e, [v|w])⇔
true ∧ false ∧ idNat(x, e) ∧ idNat(v, e) ∨
member(e, y) ∧ false ∧ ¬idNat(x, e) ∧ idNat(v, e) ∨
true ∧ ¬member(e, w) ∧ idNat(x, e) ∧ ¬idNat(v, e) ∨
member(e, y) ∧ ¬member(e, w) ∧ ¬idNat(x, e) ∧ ¬idNat(v, e)

To apply automatic folding to formulas, we need to instantiate patterns in
extended search spaces. We say that a quantifier-free formula pi(PP , Ri) is the
pattern instantiation of PP ∈ Ωext(ri) wrt Ri if and only if RiP = rhs(PP) and
pi(PP , Ri) is obtained from PP by replacing every term pattern in PP by its
respective term in Ri. The marks of recursive parameters in PP are propagated
to pi(PP , Ri).

Example 11 (Pattern instantiation in Ωext(subset
neg
1)).

PP = subsetneg
1 (

1
,
2
,

3
,
4
)⇔ (member(

1
,
2
) ∧ ¬member(

3
,
4
))

Ri = member(e, y) ∧ ¬member(e, w)
pi(PP , Ri) = subsetneg

1 (e, y, e,w)⇔ (member(e, y) ∧ ¬member(e,w))

Definition 17 (Folding Step). Let F be a formula in C of the form ∀(ri(x̄)⇔
R(x̄)) and Ri a sub-formula in R(x̄) with RiP = rhs(PP) and PP ∈ Ωext(ri).
We say that fold(F, PP) is the folding step of F wrt PP if and only if it is
obtained by replacing Ri by lhs(pi(PP , Ri)) in R(x̄).

Although search spaces are finite, to identify sub-formulas to be folded con-
stitutes a highly non-deterministic task. In order to guide the automatic iden-
tification of sub-formulas we introduce the notion of encapsulation and explain
how rewriting and folding rules contribute to automate reductions.

We say that a formula/formula pattern R/RP is completely encapsulated in
Layeri in C if and only if every atom/atom pattern in R/RP is defined on
a relation symbol of level i. We say that a formula/formula pattern R/RP is
partially encapsulated in Layeri if and only if some of its atom/atom patterns is
defined on relation symbol of level i and the rest is defined on relation symbols
of lower level.

Definition 18 (i-Reduction). Let Fk ∈ exp(F, i) be a formula of level i. The i-
reduction of Fk wrt Ωext(ri), red(Fk, i, Ωext(ri)), is implemented in the following
steps:

1. (Searching). To search for patterns PP ∈ Ωext(ri) with rhs(PP) as a com-
pletely encapsulated pattern of level i. Literal patterns in rhs(FkP) can be
used to accelerate this search. If this search fails then to continue by search-
ing for partially encapsulated patterns of level i. If this search fails then to
continue in a similar way by searching for patterns of level i− 1 and so on.

2. (Rewriting Step, 1). Let rhs(FkP) be similar to rhs(PP). We fix in rhs(FkP)
those atom patterns which are responsible of similarity. The remaining atoms
A in rhs(Fk) are selected to be evaluated.

3. (Rewriting Step, 2). After evaluating wrt A, we simplify by preserving the
structure of logical connectives in PP .

4. (Folding Step) At this point, we identify sub-formula Ri to be folded (i.e.
RiP = rhs(PP)). In addition, we are able to construct a new predicate (i.e.
lhs(pi(PP , Ri))) and to replace Ri in rew(Fk, rhs(PP)) by this new predicate
automatically.

Example 12 (i-Reduction). Let Fk be the formula (4) in Example 9.
(1) We search for patterns PP ∈ Ωext(subset

neg
1) such that rhs(PP) is a

completely encapsulated pattern of level 1:

PP = subsetneg
1 (

1
,
2
,

3
,
4
)⇔ (member(

1
,
2
) ∧ ¬member(

3
,
4
))

(2) If rhs(FkP) is similar to (the rhs of) several patterns then a non-deterministic
choice must be done. In our example, the choice is deterministic (i.e. PP is the
unique candidate). We fix in rhs(FkP) those atom patterns which are responsible
of similarity.

rhs(FkP) = (idNat(,) ∨member(,)) ∧ (¬idNat(,) ∧ ¬member(,))

The set of remaining atoms A = {a1 = idNat(x, e), a2 = idNat(v, e)} is then
selected to be evaluated.

(3) After evaluating and simplifying:

rew(Fk, PP) =
∀(subsetneg

1 (e, [x|y], e, [v|w])⇔
true ∧ false ∧ idNat(x, e) ∧ idNat(v, e) ∨
member(e, y) ∧ false ∧ ¬idNat(x, e) ∧ idNat(v, e)) ∨
true ∧ ¬member(e, w) ∧ idNat(x, e) ∧ ¬idNat(v, e) ∨
member(e, y) ∧ ¬member(e, w) ∧ ¬idNat(x, e) ∧ ¬idNat(v, e)

(4) At this point, it is easy to identify R1 as a sub-formula in rew(Fk, PP)
whose pattern is equal to the rhs(PP).

rew(Fk, PP) =
∀(subsetneg

1 (e, [x|y], e, [v|w])⇔
true ∧ false ∧ idNat(x, e) ∧ idNat(v, e) ∨
member(e, y) ∧ false ∧ ¬idNat(x, e) ∧ idNat(v, e)) ∨
true ∧ ¬member(e, w) ∧ idNat(x, e) ∧ ¬idNat(v, e) ∨
member(e, y) ∧ ¬member(e, w)
︸ ︷︷ ︸

R1

∧ ¬idNat(x, e) ∧ ¬idNat(v, e)

A new predicate is obtained by pattern instantiation (Example 11):

lhs(pi(PP , R1)) = subsetneg
1 (e, y, e,w)

Finally, the replacement of R1 by the new predicate produces the formula:

fold(rew(Fk, PP), PP) =
∀(subsetneg

1 (e, [x|y], e, [v|w])⇔
true ∧ false ∧ idNat(x, e) ∧ idNat(v, e) ∨
member(e, y) ∧ false ∧ ¬idNat(x, e) ∧ idNat(v, e)) ∨
true ∧ ¬member(e, w) ∧ idNat(x, e) ∧ ¬idNat(v, e) ∨
subsetneg

1 (e, y, e,w)
︸ ︷︷ ︸

lhs(pi(PP ,R1))

∧ ¬idNat(x, e) ∧ ¬idNat(v, e)

We say that an i-reduction red(Fk, i, Ωext(ri)) is complete when all the pos-
sible folding steps have been applied to rew(Fk, PP).

Theorem 4 (Reduction Preserves Correctness). Let ∀(ri(x̄) ⇔ Rred(x̄))
be the i-reduction of an expanded formula ∀(ri(x̄) ⇔ R(x̄)) wrt Ωext(ri). For
every ground atom ri(x̄)φ,

C |= Rred(x̄)φ⇔ R(x̄)φ

(A proof of this theorem can be found in Appendix).

We say that a reduction phase for a formula F is complete when a complete
i-reduction has been applied to each formula in exp(F, i).

3.3 Compilation as an Incremental and Terminating Process

The compilation of an axiom is completed by a finite sequence of meaning-
preserving transformation steps. Each transformation step is composed of an
expansion phase followed by a (complete) reduction phase. Table 3 shows the
axiom of subsetneg

1 after a transformation step.

Theorem 5 (Forms of Compiled Axioms). After a transformation step,
every compiled axiom presents one of the following forms:

1. ∀(ri(x̄)⇔ rj(x̄)) where rj(x̄)P is equal to the lhs of some element in Ωext(ri).
2. ∀(ri(x̄)⇔

∨
rj(x̄)∧Gj(x̄)) where rj(x̄)P is equal to the lhs of some element

in Ωext(ri) and Gj(x̄) a conjunctive formula of literals whose patterns are
included in L(ri).

(A proof of this theorem can be found in Appendix).

Each transformation step represents an increment in the overall compilation pro-
cess. Due to Theorem 5, each successive increment compiles either an axiom for
rj from rj(x̄) (e.g. ∀(subset

neg
3 (e, y)⇔ (member(e, y)∧ false))) or an axiom for

a new assertion from a literal in Gj(x̄) (e.g. ∀(subset
neg
9 (x, e)⇔ ¬idNat(x, e))).

(1) ∀ (subsetneg
1

(e, [], e, []) ⇔ subset
neg
5

)
(2) ∀ (subsetneg

1
(e, [], e, [v|w]) ⇔ (subsetneg

6
∧ idNat(v, e) ∨

subset
neg
2

(e,w) ∧ ¬idNat(v, e)))
(3) ∀ (subsetneg

1
(e, [x|y], e, []) ⇔ (subsetneg

7
∧ idNat(x, e) ∨

subset
neg
3

(e, y) ∧ ¬idNat(x, e)))
(4) ∀ (subsetneg

1
(e, [x|y], e, [v|w]) ⇔ (subsetneg

7
∧ idNat(x, e) ∧ idNat(v, e) ∨

subset
neg
3

(e, y) ∧ ¬idNat(x, e) ∧ idNat(v, e) ∨
subset

neg
4

(e,w) ∧ idNat(x, e) ∧ ¬idNat(v, e) ∨
subset

neg
1

(e, y, e,w) ∧ ¬idNat(x, e) ∧ ¬idNat(v, e)))

Table 3. Compiled axioms after a transformation step for the axiom of subsetneg
1

.

Theorem 6 (Termination). The compilation of an axiom is completed in a
finite amount of increments. (A proof of this theorem can be found in Appendix).

For instance, the compilation of the axiom of subsetneg
1 (Example 7) has been

completed by means of 10 increments (subsetneg
1 ,...,subsetneg

10). The complete set
of compiled assertions is shown in Appendix-Table 4.

The form of axioms in compiled assertions (i.e. universal closure, mutually-
exclusive disjunctions of conjunctions and absence of negated atoms) allow to
define a simple translation method to definite logic programs.

Definition 19 (Translation Method). Let 〈Σr, Specr〉 be a compiled asser-
tion. For every axiom Ax ∈ Specr,

1. If Ax is of the form ∀(r ⇔ P) where P is a propositional formula (i.e. it
is composed of propositions true and false only) then two situations are
possible:
(a) If the evaluation of P is equal to false then Ax is translated to an empty

clause.
(b) If the evaluation of P is equal to true then Ax is translated to a clause

of the form r.
2. If Ax is of the form ∀(r(x̄) ⇔

∨

k(r1(x̄) ∧ ... ∧ rn(x̄)) then it is translated
to a set of k clauses of the form r(X̄):- r1(X̄),...,rn(X̄).. Every clause, which
includes an atom occurrence r with axiom of the form ∀(r ⇔ P) and P equal
to false, is deleted.

Example 13 (Translation of assertions in Table 4 (In Appendix)).

subsetneg1(E,[],E,[V|W]):-subsetneg2(E,W), subsetneg10(V,E).
subsetneg1(E,[X|Y],E,[]):-subsetneg3(E,Y), subsetneg9(X,E).
subsetneg1(E,[X|Y],E,[V|W]):-subsetneg3(E,Y),subsetneg9(X,E),subsetneg10(V,E).
subsetneg1(E,[X|Y],E,[V|W]):-subsetneg4(E,W),subsetneg10(X,E),subsetneg9(V,E).
subsetneg1(E,[X|Y],E,[V|W]):-subsetneg1(E,Y,E,W),subsetneg9(X,E),subsetneg9(V,E).

subsetneg2(E,[X|Y]):-subsetneg2(E,Y),subsetneg9(X,E).

subsetneg3(E,[X|Y]):-subsetneg3(E,Y),subsetneg9(X,E).

subsetneg4(E,[]):-subsetneg8.
subsetneg4(E,[V|W]):-subsetneg4(E,W),subsetneg9(V,E).

subsetneg8.

subsetneg9(0,s(Y)).
subsetneg9(s(X),0).
subsetneg9(s(X),s(Y)):-subsetneg9(X,Y).

subsetneg10(0,0).
subsetneg10(s(X),s(Y)):-subsetneg10(X,Y).

In order to decide about the existence of executions for expressive assertions,
we propose a simple method based on the inspection of compiled programs. For
instance, by inspecting logic program code in Example 13, we can verify that
expressive assertion subset is executable because any tuple of ground terms for
parameters 2 and 4 in subsetneg1 (i.e. original parameters of subset) is sufficient
to cover, with ground terms, every occurrence of recursive parameter in the
definition of subsetneg1. To clarify this fact, we have highlighted, in bold letter,
occurrences of recursive parameters.
How can assertion checkers decide about C |= r(t̄) and C |= ¬r(t̄) from exe-

cutions of logic programs r1 and r
neg
1 ?

1. Suppose we want to prove that the formula ∀ȳ(¬rneg
1 (t̄, ȳ)) is a logical con-

sequence of a program ∀x̄, ȳ(rneg
1 (x̄, ȳ) ⇐ Pneg(x̄, ȳ)) which has been com-

piled from ∀x̄, ȳ(rneg
1 (x̄, ȳ)⇔ ¬R(x̄, ȳ)) for an axiom of the form ∀x̄(r(x̄)⇔

∀ȳR(x̄, ȳ)). Resolution theorem provers are refutation systems. That is, the
negation of the formula to be proved is added to the axioms of the program
and a contradiction is derived. If we negate ∀ȳ(¬rneg

1 (t̄, ȳ)), we obtain the
goal ∃ȳ(rneg

1 (t̄, ȳ)).
(a) If the empty clause is derived (i.e. there is no substitutions for ȳ) then

a contradiction has been obtained assuring that ∀ȳ(¬rneg
1 (t̄, ȳ)) is a

logical consequence of the program. Then, by total correctness of the
compilation method (Theorems 2 and 4), ∀ȳ(¬¬R(t̄, ȳ)), or equivalently,
∀ȳ(R(t̄, ȳ)) is a logical consequence of C. Finally, by equivalence, r(t̄) is
also a logical consequence of C.

(b) If some substitution is computed for ȳ then, by total correctness of the
compilation method, ∃ȳ(¬R(t̄, ȳ)), or equivalently, ¬∀ȳ(R(t̄, ȳ)) is a log-
ical consequence of C. Finally, by equivalence, ¬r(t̄) is also a logical
consequence of C.

2. Suppose, this time, we want to prove that the formula ∀ȳ(¬r1(t̄, ȳ)) is a
logical consequence of a program ∀x̄, ȳ(r1(x̄, ȳ) ⇐ P (x̄, ȳ)) which has been
compiled from ∀x̄, ȳ(r1(x̄, ȳ)⇔ R(x̄, ȳ)) for an axiom of the form ∀x̄(r(x̄)⇔
∃ȳR(x̄, ȳ)). If we negate ∀ȳ(¬r1(t̄, ȳ)), we obtain the goal ∃ȳ(r1(t̄, ȳ)).
(a) If the empty clause is derived (i.e. there is no substitutions for ȳ) then a

contradiction has been obtained assuring that ∀ȳ(¬r1(t̄, ȳ)) is a logical
consequence of the program. Then, by total correctness of the compila-
tion method, ∀ȳ(¬R(t̄, ȳ)), or equivalently, ¬∃ȳ(R(t̄, ȳ)) is a logical con-
sequence of C. Finally, by equivalence, ¬r(t̄) is also a logical consequence
of C.

(b) If some substitution is computed for ȳ then, by total correctness of the
compilation method, ∃ȳ(R(t̄, ȳ)) is a logical consequence of C so, by
equivalence, r(t̄) is also a logical consequence of C.

Hence, in summary,

1. If Q = ∀ then the execution of ∃ȳ(rneg
1 (t̄, ȳ)) will compute a set of substitu-

tions {θneg
j } (e.g. Table 1, row (3)).

If {θneg
j } = ∅ then, by total correctness of rneg

1 , C |= r(t̄) else C |= ¬r(t̄).
2. If Q = ∃ then the execution of ∃ȳ(r1(t̄, ȳ)) will compute a set of substitutions
{θj} (e.g. Table 1, rows (1), (2) and (4)).
If {θj} = ∅ then, by total correctness of r1, C |= ¬r(t̄) else C |= r(t̄).

4 Conclusions and Future Work

In this paper, we have formalized a class of assertions we call expressive assertions
in the sense that they describe recursive models which are no directly translatable
into programs. Due to this fact, current assertion checkers avoid its use limiting
the expressivity of the assertion language in a considerable way. The existence

of mature studies in the field of transformational synthesis has constituted an
important aid to solve this problem. Recurrent problems in transformational
synthesis have been addressed, for instance, “eureka steps” (i.e. non-automatic
steps) about when and how to define recursive predicates. To overcome them,
we have restricted our attention to a particular class of first-order theories we
call assertion contexts. This sort of theories is interesting because it presents a
balance between expressiveness for writing assertions and existence of effective
methods for compiling them into definite logic programs. Finally, we have shown
that such programs can be used, in testing activities, as a decision criterion for
ground atoms of expressive assertions.

From a practical view point, our work can be used as a tool to extend as-
sertion contexts with expressive assertions in a conservative way without losing
execution capabilities. For instance, S∪〈Σsubset, Specsubset〉 is a more expressive
assertion context than S where subsetneg

1 can be used to execute ground atoms
for subset. We plan to study this issue as a future work.

References

[1] A. Avellone, M. Ferrari and P. Miglioli. Synthesis of Programs in Abstract
Data Types. 8th In (Proceedings of the International Workshop on Logic Pro-
gram Synthesis and Transformation). LNCS 1559, Springer, 1999, pages 81-
100.

[2] J. Barnes. High Integrity Ada: The SPARK Approach. Addison-Wesley, 1997.

[3] A. Bertoni, G. Mauri and P. Miglioli. On the Power of Model Theory in Speci-
fying Abstract Data Types and in capturing their Recursiveness. (Fundamenta
Informaticae), VI(2):27-170, 1983.

[4] R. M. Burstall and J. Darlington. A Transformational System for Developing
Recursive Programs. (Journal of the ACM) 24(1):44-67, 1977.

[5] Y. Deville and K. K. Lau. Logic Program Synthesis. (J. Logic Programming)
19,20:321-350, 1994.

[6] D. Bartetzko, C. Fischer, M. Möller and H. Wehrheim. Jass-Java with As-
sertions. Proc. of the First Workshop on Runtime Verification. Paris, France.
Electronic Notes on Theoretical Computer Science. Elsevier, 1999.

[7] P. Flener. Logic Program Synthesis from Incomplete Information. Kluwer Aca-
demic Publishers, Massachusetts, 1995.

[8] P. Flener. Achievements and Prospects of Program Synthesis. Invited chapter
in: A.C. Kakas and F. Sadri (eds), Computational Logic: Logic Programming
and Beyond; Essays in Honour of Robert A. Kowalski, pp. 310-346. Lecture
Notes in Artificial Intelligence, volume 2407. Springer-Verlag, 2002.

[9] F. J. Galán and J. M. Cañete. Improving Constructive Synthesizers by Tab-
ulation Techniques and Domain Ordering. In David Warren (ed.), Tabulation
and Parsing Deduction, pages 37-49. Vigo-Spain 2000.

[10] F. J. Galán, V. J. Dı́az and J. M. Cañete. Towards a Rigorous and Effec-
tive Functional Contract for Components. In Informatica. An International
Journal of Computing and Informatics. Vol 25, N 4, pages 527-533, November
2001.

[11] F. J. Galán and J. M. Cañete. Compiling (for Validating) Explicit Specifi-
cations into Recursive Specificacions in Linear Stratified Theories. In Pro-
ceedings of the Joint Conference on Declarative Programming. Madrid-Spain,
pages 223-240, 2002.

[12] R. Kramer. iContract-The Java Design by Contract Tool. TOOLS 26: Tech-
nology of Object-Oriented Languages and Systems, IEEE Computer Society
Press, 1998.

[13] K. K. Lau and M. Ornaghi. On Specification Frameworks and Deductive Syn-
thesis of Logic Programs. In (Proceedings of LOPSTR’94 and META’94).
Springer-Verlag, 1994.

[14] K. K. Lau and M. Ornaghi. Towards an Object-Oriented Methodology for
Deductive Synthesis of Logic Programs. In (Proceedings of LOPSTR’95).
Springer-Verlag, 1995.

[15] G. Leavens, A. Baker, and C. Ruby. Preliminary Design of JML. Technical
Report 98-06u, Dept. of Computer Science, Iowa State University, USA, April
2003.

[16] B. Meyer. Eiffel: The Language. Prentice-Hall, 1992.
[17] Tamaki, H. and Sato, T. Unfold/Fold Transformation of Logic Programs. Pro-

ceedings of the Second International Conference on Logic Programming, Upp-
sala, Sweden, 1984, pp. 127-138.

[18] J. Woodcock, J. Davies. Using Z: Specification, Refinement, and Proof. Pren-
tice Hall, International Series in Computer Science, 1996.

5 Appendix

Proof (Theorem 1. Ground Decidability). Let r(t̄) be a ground atom in the lan-
guage of C.

1. By (Totality) and (No ambiguity) in assertions in C. Only one axiom Ax =
∀(r(x̄) ⇔ R(z̄)) in Specr can be used to unfold r(t̄). Let r(t̄) be equal to
r(x̄)θ

2. By (No internal variables) in Ax and definition of unfolding step. r(t̄) is
equivalent to the ground formula R(z̄)θ.

3. By absurdum. There is a non-terminating derivation by unfolding steps in C
for some ground atom rj(t̄) in R(z̄)θ. However, if rj is a recursive symbol then
the existence of such a infinite derivation contradicts the fact that recursive
assertions in C are well-founded and if rj is a non-recursive symbol then
one unfolding step is sufficient to replace rj(t̄) by a formula of lower level.
The number of layers in C is finite so, this reasoning can not be propagated
indefinitely.

4. By 3. In a recurrent way, every ground atom in R(z̄)θ is replaced by a
propositional formula (composed of propositions true and false only) in a
finite amount of unfolding steps. Then, a finite amount of simplifications will
be sufficient to end derivations. Therefore, r(t̄) has an execution in C with
C ` ¬r(t̄) if this ends in false and C ` r(t̄) if this ends in true.

Proof (Theorem 2. Expansion Preserves Correctness). Let {∀(ri(x̄1)⇔Rexp(x̄1)),-
...,∀(ri(x̄j)⇔Rexp(x̄j))} be the set of formulas in exp(F, i) with F = ∀(ri(x̄)⇔
R(x̄)).

1. By completeness of i-instantiations. For every ground atom ri(x̄)φ there exist
k ∈ {1..j} and ground substitution δ such that ri(x̄k)δ = ri(x̄)φ.

2. By definition of unfolding step and normalization rules. Unfolding steps re-
place atoms by equivalent formulas and normalization rules replace formulas
by equivalent formulas. Let Rexp(x̄k)δ be the resulting formula after applying
unfolding steps and then normalization rules to R(x̄k)δ.

3. By ground decidability in C. C ` R(x̄k)δ ⇔ Rexp(x̄k)δ.
4. By consistency of C. C |= R(x̄k)δ ⇔ Rexp(x̄k)δ.
5. By 1. C |= R(x̄)φ⇔ Rexp(x̄k)δ.

Proof (Theorem 3. Expansion is an Internal Operation in Ωext). Let exp(F, i) =
{F1, ..., Fj} be the set of formulas in the i-expansion of F = ∀(ri(x̄)⇔ R(x̄)).

1. By definition of i-instantiation and unfolding steps. These steps have only
effect on atoms in a formula.

2. By definition of normalization rules. These rules are only applied to unfolded
sub-formulas in exp(F, i) so, they have no effect on binary logical connectives
in F .

3. By 1. and 2. Every rhs(Fk)P is similar wrt connectives to rhs(F)P with
k = 1..j.

4. By absurdum. rhs(F)P is similar to the rhs of some pattern in Ωext(ri)
and there is some Fk ∈ exp(F, i) such that rhs(Fk)P is not similar to the
rhs of any pattern in Ωext(ri). However, the following reasoning exposes a
contradiction:
(a) By definition of i-instantiation. Every atom pattern occurring in rhs(Fk)P

must be included in its respective covering.
(b) By (Well-formed) assertions in C. Every atom in the rhs of any axiom

induces an intermediate or upper pattern in its respective covering so,
only intermediate and upper patterns can occur after unfolding steps.

(c) By definition of normalization rules. These rules can not produce new
atom patterns.

5. By 4. and definition of L(ri). Every literal pattern in rhs(Fk)P must be
included necessarily in L(ri).

6. By 3., 5. and definition of Ωext(ri) rhs(Fk)P must be similar to the rhs of
some element in Ωext(ri).

Corollary 1 (Rewriting Step Preserves Correctness). Let rew(F, PP) =
∀(ri(x̄) ⇔ Rrew(x̄)) be the rewriting step of F = ∀(ri(x̄) ⇔ R(x̄)) wrt PP . For
every ground atom ri(x̄)φ,

C |= R(x̄)φ⇔ Rrew(x̄)φ

Proof (Corollary 1. Rewriting Step Preserves Correctness).

1. By consistency of C. There exists a combination {c1, ..., cp} of propositions
true and false such that ci = false if C |= ¬aiφ and ci = true if C |= aiφ,
with i = 1..p.

2. By definition of Rewriting Step, 1. Only one disjunction in Rrew(x̄)φ includes
the sub-formula R(c1, ..., cp, ap+1, ..., an).

3. By definition of Rewriting Step, 2. Simplifications replace sub-formulas in
R(c1, ..., cp, ap+1, ..., an) by equivalent sub-formulas.

4. By 1., 2. and 3. C |= Rrew(x̄)φ⇔ R(c1, ..., cp,ap+1, ..., an)φ.
5. By 1. C |= R(a1, ..., ap, ap+1, ..., an)φ⇔ R(c1, ..., cp, ap+1, ..., an)φ.
6. By 4. and 5. C |= R(a1, ..., ap, ap+1, ..., an)φ ⇔ Rrew(x̄)φ, or equivalently,
C |= R(x̄)φ⇔ Rrew(x̄)φ.

Proof (Theorem 4. Reduction Preserves Correctness). Let ∀(ri(x̄) ⇔ Rred(x̄))
be the i-reduction of an expanded formula ∀(ri(x̄)⇔ R(x̄)) wrt Ωext(ri).

1. By Corollary 1. For every ground atom ri(x̄)φ, C |= R(x̄)φ⇔ Rrew(x̄)φ.
2. By definition of folding step. Folding steps replace sub-formulas in Rrew(x̄)

by equivalent atoms. Let Rred(x̄) be the formula obtained from Rrew(x̄) after
folding steps.

3. By 1. and 2. For every ground atom ri(x̄)φ, C |= R(x̄)φ⇔ Rred(x̄)φ.

Corollary 2. Let PP be a pattern in Ωext(ri) such that R(x̄)P is similar to
EP = rhs(PP) with f as the induced mapping for deciding about similarity wrt
connectives and A = {a1, a2, ..., ap} as the set of atoms in R(x̄) which have not
been used for deciding about similarity (i.e. remaining atoms). Every sub-formula
R(c1, ..., cp, ap+1, .., an) in rew(F,EP) is similar to the rhs of some element in
Ωext(ri).

Proof (Corollary 2).

1. By definition of search space Ωext(ri). Every element in Ωext(ri) presents the
same structure of logical connectives so, the rhs of any element in Ωext(ri)
is similar wrt connectives to R(c1, ..., cp, ap+1, ..., an).

2. By 1. and definition of rewriting step, 2. After rewriting step 2, R(c1, ..., cp,-
ap+1, ..., an) is similar wrt connectives to any element in Ωext(ri).

3. By definition of similarity. Every sub-formula to be simplified in R(c1, ..., cp,-
ap+1, .., an) is composed of one literal in L(ri) and, possibly, true/false
propositions and binary logical connectives. Its simplification will produce
either the literal it contains or a proposition true/false.

4. By 2., 3. and definition of search space Ωext(ri). The resulting formula of
simplifying R(c1, ..., cp, ap+1, .., an) will be always included in Ωext(ri).

Proof (Theorem 5. Forms of Compiled Axioms).

1. By Theorem 3. Every expanded formula is similar to an element in the search
space.

2. By 1. and definition of rewriting step.

(a) If the set of remaining atoms is empty in R(c1, ..., cp, ap+1, ..., an) (i.e. p =
0 inR(c1, ..., cp, ap+1, ..., an)) then, by Corollary 2,R(c1, ..., cp, ap+1, ..., an)P
is equal to the rhs of an element in Ωext(ri).

(b) If the set of remaining atoms is not empty (i.e. p > 0 in R(c1, ..., cp,-
ap+1, ..., an)) then, by Corollary 2, R(c1, ..., cp, ap+1, ..., an)P is similar to
the rhs of an element in Ωext(ri) and Gj(x̄) is the conjunctive formula
which has been obtained after evaluating remaining atoms. By (Well-
formed) assertions in C. Every atom in the rhs of any axiom induces an
intermediate or upper pattern in its respective covering so, only interme-
diate and upper patterns can occur after unfolding steps so, remaining
atoms must present patterns which are included in L(ri).

3. By 2.(a) and definition of folding. Reduced formula will be of the form
∀(ri(x̄)⇔ rj(x̄)) where rj(x̄)P is equal to the lhs of an element in Ωext(ri).

4. By 2.(b) and definition of folding. Reduced formula will be of the form
∀(ri(x̄) ⇔

∨
rj(x̄) ∧ Gj(x̄)) where rj(x̄)P is equal to the lhs of an element

in Ωext(ri) and Gj(x̄) a conjunctive formula of literals whose patterns are
included in L(ri).

Proof (Theorem 6. Termination).

1. By Theorem 5. Each successive increment compiles either an axiom for rj

from rj(x̄) or an axiom for a new assertion from a literal in Gj(x̄). No infinite
atoms rj(x̄) are possible due to the finite nature of Ωext(ri) and no infinite
new literals are possible in Gj(x̄) due to the finite nature of atom coverings.

Signature: subset
neg
1

(e: Nat, l: Seq, e: Nat, s: Seq), recursive parameters: l and s

Specification:

(1) ∀ (subsetneg
1

(e, [], e, []) ⇔ subset
neg
5

)
(2) ∀ (subsetneg

1
(e, [], e, [v|w]) ⇔ (subsetneg

6
∧ subset10(v, e) ∨

subset
neg
2

(e,w)∧ subset9(v, e)))
(3) ∀ (subsetneg

1
(e, [x|y], e, []) ⇔ (subsetneg

7
∧ subset10(x, e) ∨

subset
neg
3

(e, y) ∧ subset9(x, e)))
(4) ∀ (subsetneg

1
(e, [x|y], e, [v|w]) ⇔ (subsetneg

7
∧ subset10(x, e) ∧ subset10(v, e) ∨

subset
neg
3

(e, y) ∧ subset9(x, e) ∧ subset10(v, e) ∨
subset

neg
4

(e,w) ∧ subset10(x, e) ∧ subset9(v, e) ∨
subset

neg
1

(e, y, e,w) ∧ subset9(x, e) ∧ subset9(v, e)))
Signature: subset

neg
2

(e: Nat, l: Seq), recursive parameters: l

Specification:

(5) ∀ (subsetneg
2

(e, []) ⇔ subset
neg
5

)
(6) ∀ (subsetneg

2
(e, [x|y]) ⇔ (subsetneg

6
∧ subset10(x, e)∨

subset
neg
2

(e, y) ∧ subset9(x, e)))
Signature: subset

neg
3

(e: Nat, l: Seq), recursive parameters: l

Specification:

(7) ∀ (subsetneg
3

(e, []) ⇔ subset
neg
6

)
(8) ∀ (subsetneg

3
(e, [x|y]) ⇔ (subsetneg

7
∧ subset10(x, e)

subset
neg
3

(e, y) ∧ subset9(x, e)))
Signature: subset

neg
4

(e: Nat, l: Seq), recursive parameters: l

Specification:

(9) ∀ (subsetneg
4

(e, []) ⇔ subset
neg
8

)
(10) ∀ (subsetneg

4
(e, [x|y]) ⇔ (subsetneg

7
∧ subset10(x, e)∨

subset
neg
4

(e, y) ∧ subset9(x, e)))
Signature: subset

neg
5
, recursive parameters:

Specification:

(11) ∀ (subsetneg ⇔ false ∧ true)
Signature: subset

neg
6
, recursive parameters:

Specification:

(12) ∀ (subsetneg
6

⇔ false ∧ false)
Signature: subset

neg
7
, recursive parameters:

Specification:

(13) ∀ (subsetneg
7

⇔ true ∧ false)
Signature: subset

neg
8
, recursive parameters:

Specification:

(14) ∀ (subsetneg
8

⇔ true ∧ true)
Signature: subset

neg
9

(x: Nat, y: Nat), recursive parameters: x or y

Specification:

(15) ∀ (subsetneg
9

(0, 0) ⇔ false)
(16) ∀ (subsetneg

9
(0, s(y)) ⇔ true)

(17) ∀ (subsetneg
9

(s(x), 0) ⇔ true)
(18) ∀ (subsetneg

9
(s(x), s(y)) ⇔ subset

neg
9

(x, y))

Signature: subset
neg
10

(x: Nat, y: Nat), recursive parameters: x or y

Specification:

(19) ∀ (subsetneg
10

(0, 0) ⇔ true)
(20) ∀ (subsetneg

10
(0, s(y)) ⇔ false)

(21) ∀ (subsetneg
10

(s(x), 0) ⇔ false)
(22) ∀ (subsetneg

10
(s(x), s(y)) ⇔ subset

neg
10

(x, y))

Table 4. Compilation of the axiom of subsetneg
1

.

