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Abstract. Some software agents need information that is provided by
some web sites, which is difficult if they lack a query API. Information
extractors are intended to extract the information of interest automati-
cally and offer it in a structured format. Unfortunately, most of them rely
on ad-hoc techniques, which make them fade away as the Web evolves.
In this paper, we present a proposal that relies on an open catalogue of
features that allows to adapt it easily; we have also devised an optimi-
sation that allows it to be very efficient. Our experimental results prove
that our proposal outperforms other state-of-the-art proposals.
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1 Introduction

Since the Web is currently the wealthiest source of data, many authors have 
worked on proposals whose goal is to help engineers create information extractors 
as automatically as possible.

Our focus is on learning a set of rules that can be used to extract the data 
of interest (positive examples) and discard the spurious data (negative exam-
ples) from semi-structured deep-web documents. There are many proposals that 
address this problem, but most of them are ad-hoc, that is, they rely on specific-
purpose machine-learning techniques that were specifically tailored to the prob-
lem of extracting semi-structured web data [7,29,35]; many of them are even 
specific to a kind of layout, e.g., lists, tables, or search engine results [1,24]. 
This makes it difficult to adapt them as the Web evolves, since the features 
of the documents on which they rely and the techniques used to analyse them 
are built into the proposals. Consequently, extracting web data and structuring 
them has become quite an active research field for years, since existing proposals 
fade away quickly as the Web evolves. Only a few researchers have tried to use 
open catalogues of features to design their information extractors. Such open 
catalogues are appealing insofar they ease adapting the proposals as the Web 
evolves. Instead of devising a new algorithm to deal with the evolutions of the 
Web, one can focus on the features that capture the essence of such evolutions.



Fig. 1. Sample training document.

The few existing proposals in this category include SRV [13], Irmak and Suel’s
proposal [18], L-Wrappers [5], and Fernández-Villamor et al.’s proposal [12].

In this paper, we present a proposal to learn rules that are based on an open
catalogue of attributive and relational features. By using relational features, our
system is able to learn very expressive rules, since they consist of conditions that
rely on first-order predicates with which we can model arbitrary properties of a
web source. By using an open catalogue of features, our system can evolve as
the Web does, which makes it very flexible and adaptable to changes. It follows
a top-down covering approach, that is, it starts with the most general rule, and
it iteratively adds conditions that are based on the features of the catalogue
until the rule does not match any negative examples. The process finishes when
every positive example is matched. Otherwise, the process continues to learn
new rules. Our proposal also provides mechanisms not to produce very complex
or too specific rules. To avoid the former, it includes a version of the Minimum
Description Length principle; to avoid the latter, it tries not to include the
most promising conditions only, but also conditions that can spread the search
space and produce good rules in the forthcoming steps. Our proposal has to
search through a typically large search space and the cost of evaluating candidate
conditions is high if there are many positive and negative examples. To tackle
this problem, we have incorporated a simple technique to discard some negative
examples that has proven to work very well in practice.

The rest of the paper is organised as follows: Sect. 2 describes our proposal;
Sect. 3 reports on our experimental analysis; Sect. 4 discusses on the related work;
finally, Sect. 5 concludes the paper.

2 Description of Our Proposal

2.1 Training Sets

Our proposal works on a training set that is composed of positive examples,
negative examples, and feature instantiations. To assemble it, we recommend
downloading at least six documents that account for as much variability as
possible, e.g., permuted or missing attributes, alternate formats, and so on.



Fig. 2. A sample DOM tree.

Table 1. Partial catalogue of features. (W = word, N = DOM node, V = value.)

Figure 1 shows a very simple document that a user has annotated, that is, he or
she has specified which the positive examples are and has labelled them; Fig. 2
shows its corresponding DOM tree view. This document must be transformed
into a training set by computing the features of every node. Table 1 shows a
partial view of our open catalogue, which includes lexical, HTML, rendering or
semantic features, to mention a few categories, and Table 2 shows an excerpt of
our sample training set.



Table 2. An excerpt of a training set.

Fig. 3. The main procedure.

2.2 The Main Procedure

Figure 3 shows our main procedure. It works on a collection of documents and
iterates through the labels in the user annotations. In each iteration, it creates
a training set and pre-processes it in order to reduce the number of negative
examples, which speeds up the learning process since there are typically many
such examples. By repeated experimentation we found that the best alternative
was to remove 40 % of the negative examples randomly. Finally, this procedure
returns a map in which each of the labels in the input documents is associated
with a rule set that is specifically tailored to identifying positive examples of the
corresponding types.

Learning a Rule Set : Figure 4 shows our procedure to learn a rule set.
It works on a training set and a label, and it returns a set of rules. It first cre-
ates an empty set of rules and proceeds to create a single rule in each iteration.



Fig. 4. Procedure to learn a rule set.

If it succeeds, then the rule set is updated with the new rule, and the training set
is subtracted the positive examples that it matches. The loop finishes when no
new rule can be learnt or no positive examples remain in the training set. Finally,
the rule set is post-processed to remove subsumed rules and useless conditions.

Learning a Rule: Figure 5 presents the procedure to learn a rule. It works on
a label and a training set, and it starts with an empty rule. Then, it generates
a set of possible refinements. Each refinement is a condition that consists in an
instantiated feature or a built-in comparator. A refinement of the first type is
a feature defined in the catalogue in Fig. 1, but the arguments are instantiated
with variables of the corresponding types. The variables can be new variables
that expand the search space or bound variables that have been introduced in
the head of the rule or in previous conditions of the body of the rule. The only
constraint is that there must exist a bound variable in every possible refinement.
A built-in comparator is a binary condition that compares two variables or a
variable and a constant, as long as they both are of the same type. The types
with which a built-in comparator works can be numeric or discrete. We use five
built-in comparators, namely: =, >, >=, <, and <=. When the variables to
compare are discrete, only the comparator = is available.

In each iteration it attempts to refine the rule by adding conditions, so that
it matches as many positive examples as possible and as few negative exam-
ples as possible. To do that, it implements an outer loop that iterates until no
more refinements can be added or until the rule being learnt is a solution or too
complex; in every iteration of the inner loop, it first computes a set of possi-
ble refinements for the current rule, that is, a set of conditions that might be
added to the rule; then it evaluates each condition, that is, it computes a score
that allows to compare its goodness to others, and it checks whether it is bad
enough to be pruned immediately. Refinements that are not pruned are stored
in a candidate set together with their scores. A candidate rule is the result of
adding a candidate refinement to the current rule. The inner loop is executed as
long as the current rule can be refined and it is not a solution; a rule is a solu-
tion when it matches some remaining positive examples and no negative ones.



Fig. 5. Procedure to learn a single rule.

Once the set of candidates is computed, the best ones are selected and added to
the rule being constructed. When the outer loop finishes, the algorithm checks if
the candidate rule is too complex, in which case, it returns nil to indicate that
no good rule was found.

2.3 Output Rules

Next, we illustrate the rules that our proposal learnt to extract the data in Fig. 1.
First, we learnt the following rule to identify book records:

book(X) :– children(X,Y ), not(firstSibling(Y,Z)),
tagName(Y, V ), V = “img”,
containsBracketedNumber(X),
containsCurrencySymbol(X).

It means that a book is a node whose first child is an image node and that some
of its descendants has a number in brackets and a currency symbol.



Table 3. Labelled information on the first group of datasets

The rule to identify the titles is as follows:

title(X) :– not(firstSibling(X,Y )),
tagName(X,Z), Z = “h1”.

It means that a title is a node that does not have a left sibling and is within an
H1 header.

The rule for the author label is as follows:

author(X) :– tagName(X,Y ), Y = “a”,
firstSibling(X,Z),
firstWord(Z, V ), V = “by”.

It means that an author is a hyper-link node whose first sibling starts with the
word “by”.

Finally, the rule for the price label is as follows:

price(X) :– isPrice(X), fontWeight(X,Y ),
Y = “bold”, fontSize(X,Z), Z = “18.7px”.

It means that a price is an element node whose text matches a price format,
whose font weight is “bold”, and whose font size is “18.7px”.

3 Experimental Analysis

We used a computer that was equipped with an Intel Core i7-2600 that ran at
3.34 GHz, had 8 GiB of RAM, Windows 7 Pro 64-bit, Oracle’s Java Development
Kit 1.7.0 09, and SWI-Prolog 6.2.3. We used a collection of 25 datasets that pro-
vides a total of 657 documents. We gathered them from 20 real-world web sites
and the remaining were downloaded from the RoadRunner and the RISE pub-
lic repositories. For the first group of datasets, we downloaded 30 documents
from each web site and handcrafted a set of annotations with the data that we
wished to extract from each document, namely, data on books, cars, conferences,
doctors, jobs, movies, real estates, and sport players. The information labelled
from these web sites is shown in Table 3. The second group contains some of
the datasets available at the RoadRunner and the RISE repository that provide



Table 4. Experimental results.

semi-structured documents. From every web site, we selected six documents for
training purposes and the remaining ones were used for validation purposes. We
measured three effectiveness measures and two efficiency measures. The effec-
tiveness measures are precision (P ), which is the ratio of true positives of a
rule with regard to the total number of true positives and false positives, that
is, P = tp/(tp + fp); recall (R), which is the ratio of true positives of a rule
with regard to the total number of true positives and false negatives, that is,
R = tp/(tp+ fn); and the F1 measure, which is the harmonic mean of precision
and recall, that is, F1 = 2P R/(P + R). The efficiency measures are the learn-
ing time (LT ) and the extraction time (ET ) as measured in CPU minutes; by
extraction time, we mean the time required to execute a rule so that the data of
interest is extracted from a web document. Since these measures are sensitive to
unexpected experimentation conditions, we repeated the experiments 25 times
and averaged the results after discarding some outliers using the well-known
Cantelli’s inequality.

We searched the Web and contacted many authors in order to have access
to the implementation of as many proposals as possible. We managed to find an
implementation for SoftMealy [17] and Wien [21], which are classical proposals,
and RoadRunner [11], FivaTech [19], and Trinity [32], which are recent proposals.
Results are presented in Table 4. A dash in a cell means that the correspond-
ing proposal was not able to learn a rule for a given dataset. From this table,



we can confirm that our proposal clearly achieves the best effectiveness. It
achieved an average precision of 0.985±0.026, an average recall of 0.986±0.023,
and an average F1 of 0.984 ± 0.020. Only Trinity can achieve results that are
comparable to ours, although we outperform it: our precision was 0.016 ± 0.091
higher, our recall 0.018±0.088 higher, and our F1 0.018±0.076 higher. Further-
more, the standard deviation of these measures is smaller, which means that our
approach is generally more stable than the others, that is, it does not generally
produce rules whose effectiveness largely deviates from the average.

4 Related Work

The literature provides many rule-based proposals. They build on a generic algo-
rithm that interprets rules that are specific to a web site. These rules range from
regular expressions to context-free grammars, Horn clauses, tree templates, or
transducers, to mention a few. They can be handcrafted [14,26], which is a
tedious and error-prone approach, learnt supervisedly [5,6,8,9,12,13,15–18,20,
21,25,31,33], which requires the user to provide a training set in which he or
she has annotated the positive examples, i.e., the data to extract), or unsu-
pervisedly [2–4,10,11,19,22,23,27,28,30,34,36–38], which does not require an
annotated training set, but a person to interpret the results.

In spite of the fact that learning such rules has historically been considered
a text classification problem, very few proposals have explored using features
of the tokens or the DOM nodes, e.g., their length, their colour, their depth,
the ratio of letters, and the like. Neither have many proposals explored the idea
of using relational features that allow to establish relationships amongst the
examples. One of the main problems with exploring such relational features is
that they cannot rely on a vector-based representation of the examples since the
description of an example may involve features that are also computed from its
neighbours.

Only a few proposals have explored the previous idea, namely: (a) SRV [13]
starts with an overly-general rule and uses a specialisation procedure that is
guided by the Information Gain function to learn a set of rules that can classify
sequences of tokens; (b) Irmak and Suel’s proposal [18] is an active learning app-
roach, i.e., it learns several XPath-based rules that identify a number of records
and then relies on a user to select the most appropriate ones; the procedure is
repeated until the user is satisfied. (c) Bădică et al. [5] suggested to transform
the input documents into a knowledge base and then use FOIL to infer rules that
allow to characterise the DOM nodes that contain positive examples by means
of their tags and the tags of their neighbours; (d) Fernández-Villamor et al.’s
proposal [12] starts with a set of overly-specific rules and generalises them by
combining pairs of rules as long as the overall F1 measure improves.

Our proposal differs in that it relies on an extensive open catalogue of attribu-
tive and relational features whereas others hardly include a few attributive fea-
tures and seldom use rendering features, which have proven to be necessary to



deal with current web documents. Additionally, none of these most-related pro-
posals allow for recursion or negated conditions; ours does, which helps learn
richer and more expressive rules.

Regarding computing negative examples, SRV works on text fragments, which
makes it problematic when computing negative examples since the number of
negative fragments is enormous. The authors included a hard bias so as not to
enumerate the whole set of negative examples. In Irmak and Suel’s proposal, the
user guides the search for rules because negative examples cannot be generated.
In L-Wrappers [5] negative examples are computed by using the well-known
Closed-World Assumption as it is implemented by the FOIL system. In practice,
the authors had to reduce the number of negative examples to roughly 0.1% for
the approach to be manageable; Fernández-Villamor et al.’s and our proposal
work on DOM trees and negative examples are computed as the nodes that were
not annotated by the user.

Regarding the learning algorithm, SRV is more inefficient since when a token
in the neighbourhood helps discern well between positive and negative examples,
it is bound by a relational condition and then the system explores only one of its
attributive features. Thus, a discriminatory token in the neighbourhood has to
be re-bound as many times as attributive features are necessary to be explored.
This worsens the efficiency of the learning process. L-Wrappers is very inefficient
in practice since the authors mention that extracting records with three or more
attributes is infeasible in practice; they resorted to a technique that learns to
extract pairs of attributes and then combine the results.

Only L-Wrappers and our proposal include mechanisms to limit the com-
plexity of the rules, which is a means to avoid producing very-specific rules, to
prune conditions that are not promising enough, which speeds up the learning
process, and to recover from bad decisions by performing backtracking, which
reduces significatively the chances to produce poor-quality rules.

5 Conclusions and Future Work

In this paper, we present a very effective proposal to learn rules that allows to
extract the information of interest from deep-web sources automatically, so that
it can be further processed by software agents. Since the search cost was high,
we devised a technique to reduce the number of negative examples that turned it
into a practical approach. Our results prove that our proposal is more effective
than others in the literature, but, contrarily to them it can be easily evolved
since it relies on an open catalogue of features. In future, we plan on analysing a
series of heuristics to speed up the learning process without loss of effectiveness.
They include exploring new search heuristics and scoring functions to guide the
search, exploring conditions in small chunks, sorting the features so that the
most frequent in the past are explored first, and so on.
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