
Received: 13 April 2021 Revised: 6 August 2021 Accepted: 23 September 2021 IET Control Theory & Applications

DOI: 10.1049/cth2.12206

ORIGINAL RESEARCH PAPER

Gravity compensation and optimal control of actuated multibody

system dynamics

Saeed Rafee Nekoo José Ángel Acosta Anibal Ollero

GRVC Robotics Lab., Universidad de Sevilla, Seville,
Spain

Correspondence

José Ángel Acosta, GRVC Robotics Lab., Universidad
de Sevilla, Seville, 41092, Spain.
Email: jaar@us.es

Funding information

GRIFFIN ERC-2017-Advanced Grant, Action:
788247; AERIAL-CORE; HYFLIERS

Abstract

This work investigates the gravity compensation topic, from a control perspective. The
gravity could be levelled by a compensating mechanical system or in the control law, such
as proportional derivative (PD) plus gravity, sliding mode control, or computed torque
method. The gravity compensation term is missing in linear and nonlinear optimal con-
trol, in both continuous- and discrete-time domains. The equilibrium point of the control
system is usually zero and this makes it impossible to perform regulation when the desired
condition is not set at origin or in other cases, where the gravity vector is not zero at the
equilibrium point. The system needs a steady-state input signal to compensate for the grav-
ity in those conditions. The stability proof of the gravity compensated control law based
on nonlinear optimal control and the corresponding deviation from optimality, with proof,
are introduced in this work. The same concept exists in discrete-time control since it uses
analog to digital conversion of the system and that includes the gravity vector of the sys-
tem. The simulation results highlight two important cases, a robotic manipulator and a
tilted-rotor hexacopter, as an application to the claimed theoretical statements.

1 INTRODUCTION

This paper declares that gravity compensation is necessary for
continuous- and discrete-time optimal control. The common
form of optimal control design considers the total system
dynamics information for constructing the control law, Fig-
ure 1a. This generates a problem for regulation to desired con-
ditions rather than equilibrium points or systems with non-zero
gravity at the equilibrium point. We propose the gravity com-
pensation in control law, Figure 1b, and prove that the stability
of the system will be guaranteed for the total system using a
common form of Lyapunov function, V (x) = xT K(x)x where
K(x) is the optimal gain of the Riccati equation. Then we show
the cost of this compensation and its deviation from optimality.

Gravity compensation is an important subject in robotics and
multibody system dynamics, addressed by case-dependent novel
mechanical designs; or controller-based mechanisms in the lit-
erature [1, 2]. It is usually difficult to compensate for the exact
force [3]. The compensating mechanical design increases the
total weight of the system though the actuation efficiency bal-
ances the cost-effectiveness of this point of view. The com-
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pensation mechanism was applied to counterbalance the con-
stant weight of the system; however, for practical use, a mech-
anism for weight variation is necessary since the moving mech-
anism changes the centre-of-mass (CoM) of different parts [4].
Nakamoto and Matsuhira presented a collaborative manipulator
with a gravity compensation mechanism compatible with the
variation of load [5]. The idea was to use joint driving motors
as counterweights in a compact design. The use of the gravity
compensating mechanisms is quite diverse such as machining
with manipulators [6], cooperative dual-arm robot [7], deploy-
able mesh antenna [8] etc. Yun et al. researched the compensa-
tion mechanism for a dual-arm cooperative manipulator which
was subjected to variable weight due to the change of the waist
of the robot, or in other words, the CoM of the system [7].
Ugartemendia et al. investigated gravity compensation in reha-
bilitation robotics [9]. It was concluded that it is a mandatory
feature in mechatronics systems for rehabilitations to present a
neutral motion feeling for the people subjected to treatment.

On the one hand, it is not always possible to compensate the
gravity with a mechanical mechanism due to space limitation,
increase in the weight of the total system, cost-effectiveness of
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FIGURE 1 Block diagram of pure optimal control and the one with
gravity compensation

the design etc. On the other hand, some systems need gravity
compensation, that is, unmanned aerial vehicles (UAVs), heli-
copters, autonomous underwater vehicles (AUVs) etc. For the
later systems, gravity cannot be compensated mechanically; it
needs additional thrust, force, or input signal. So, the gravity
compensation is studied here, as a control point of view in the
optimal input law. The proportional derivative (PD) control is a
well-established method for independent control of the actua-
tors, as a non-model-based approach. The structure is also sim-
ple, and the constant control gains are responsible for the tuning
of the system in question. Appling a PD for systems working
under gravity effect, that is, a spatial manipulator, requires high
gains for achieving the regulation or trajectory tracking [10]. The
classical nonlinear method, PD plus gravity is a good solution to
address this problem, avoiding high gain selection [11]. Sliding
mode control (SMC) [12], and feedback linearization (FL) [13,
14], are nonlinear controllers with gravity compensation mecha-
nisms, naturally embedded inside the control law; though partic-
ular methods were introduced to study this subject as well. De
Luca and Panzieri presented an iterative scheme for compensa-
tion of the gravity for flexible link manipulators [15]. The learn-
ing part found a feedforward term (a signal for gravity com-
pensation) for cases that the modelling was not precise and the
load at the end-effector was unknown. The same approach was
extended under the input saturation constraint [16]. Bembli et al.
applied terminal sliding mode control on a two-DoF exoskele-
ton limb to gain robust characteristics in gravity compensation
[17].

Optimal control usually considers zero equilibrium point and
constructs Hamiltonian function and applies a cost function
to reach optimal control law. The control law is unified and
includes all the system dynamics. On the contrary to PD plus
gravity, FL and SMC, in optimal control policies, the gravity is
inside the gain and re-scaled (enhanced or weakened). Razmi
and Macnab presented a neural network near-optimal control
with compensated gravity [18]. The performance was shown by
comparison with a linear quadratic regulator (LQR), in which
better results were gained after 400 learning iterations.

Adding feedforward gravity compensator to state-dependent
Riccati equation (SDRE) controller was reported [19–21]; how-
ever, the stability proof only concerned the pure optimal control
part (without feedforward gravity). This made the stability dis-
cussion vulnerable to severe criticism and also deviated from the
results from optimality. So, the works [19–21], were not consid-
ered gravity in the stability proof. Here in this work, the stabil-
ity proof and optimality analysis are addressed with the gravity
compensation mechanism. The same subject is open in discrete-
time control laws which include the gravity in the system in ana-
log to digital (A/D) conversion of the system matrices. More
clarification and the main contribution of this work will be pre-
sented in Section 2.

Section 2 expresses the problem statements. Section 3 reports
the SDRE controller with stability and optimality analysis. Sec-
tion 4 presents the same topic for the discrete-time domain.
Simulation results for continuous- and discrete-time domains
were shown in Section 5. Concluding results are summarized
in Section 6.

2 THE DEFINITION OF THE SYSTEM
AND MOTIVATION

An actuated-dynamical-multibody-mechanical system (robotic
manipulator, multirotor aerial system, underwater vehicle, air-
craft etc.) possesses a general second-order differential equa-
tion, usually in the form of:

M
(
q
)

q̈ + c
(
q, q̇

)
+ d

(
q, q̇

)
+ g

(
q
)
= u, (1)

where q(t ) ∈ ℝN is the generalized coordinate vector, N rep-
resents the degree-of-freedom (DoF) of the system, M(q(t )) ∶
ℝN → ℝN×N represents inertia, c(q(t ), q̇(t )) ∶ ℝN × ℝN →
ℝN is the Coriolis and centrifugal vector, d(q(t ), q̇(t )) ∶ ℝN ×
ℝN → ℝN collects the terms related to friction, aerodynamics,
drag etc., g(q(t )) ∶ ℝN → ℝN is gravity vector and u(t ) ∈ ℝM

includes the input force, moments, thrust, etc. in which M =
N for fully actuated cases and M < N for under-actuated ones.

Selecting the state-vector as x(t ) = [qT (t ), q̇T (t )]T , the
state-space reduced-order differential equation is obtained:

ẋ = f (x) + B (x) u

=

[
q̇

−M−1
(
q
) (

c
(
q, q̇

)
+ d

(
q, q̇

)
+ g

(
q
))]



NEKOO ET AL. 81

ground level 

start point 
end point 

trajectory h

FIGURE 2 The schematic view of a multirotor UAV in regulation

FIGURE 3 The schematic view of a robotic manipulator in regulation

+

[
0

M−1
(
q
)] u. (2)

Remark 1. It is common to assume that the equilibrium point
of the system (2) is considered zero f (0) = 0. This condition
shows that i.e. an elevator mechanism (without physical weight
compensation) is at an equilibrium point when all the coordi-
nates are zero that results g (0) = 0, which is on the ground. For
other cases such as a multirotor drone, there is always a constant
gravity force applying on the system g which violates the equi-
librium condition f(0) ≠ 0, see Figure 2. For a robotic manipu-
lator, a configuration represents the equilibrium point in which
the same condition holds, zero gravity, although the home posi-
tion is usually a different configuration, see Figure 3. Note that
gravity vector in robotic manipulators is not usually zero even at
the equilibrium point, g(0) ≠ 0, due to existence of trigonomet-
ric functions such as cosine function, cos 0 = 1. So, there exist
systems that correspond to f(0) ≠ 0.

Remark 2. The regulation between two arbitrary points in the
workspace, not necessarily regulation to the equilibrium point,
results in g(qdes) ≠ 0, and consequently f(xdes ) ≠ 0 where index
“des” represents the desired condition.

The error of the system is defined by e(t ) = x(t ) − xdes(t )
and an arbitrary closed-loop negative-feedback control is con-
sidered:

u = −X (⋅) e. (3)

where X(⋅) is linear/nonlinear stable control gain, for example
LQR [22], PD, robust finite-time feedback linearization [23], H-
infinity control [24] etc. To keep the system at rest, after the
regulation to the desired condition, additional input is neces-
sary since for a controllable system lime→0 u(e) = 0, where
limx→xdes

f(x) ≠ 0.
So, a control law:

u = −X (⋅) e + g
(
q
)
, (4)

is required to compensate the gravity of the system after the
regulation, to keep the system in a steady-state condition. PD
plus gravity, computed torque method, feedback linearization,
and sliding mode control have the compensating part in the
design.

Case 1: In continuous-time optimal control, that is, LQR or
the state-dependent Riccati equation, the design, and optimal
control is based on the representation of the System (1) as a
linearized system:

ẋ = Ax + Bu, (5)

for LQR or a state-dependent coefficient (SDC) representation:

ẋ = A (x) x + B (x) u, (6)

for SDRE. The corresponding optimal control law also covers
the gravity inside the overall gain, similar to Equation (3).

Case 2: In discrete-time control, the Z -transform is done
based on the linearized system (5) for the entire time of sim-
ulation or nonlinear SDC representation of the system (6) at
each time step of simulation during the regulation. In the dis-
crete case, the gravity vector is also inside the system matrices
A or A(x(t )) and the control law possesses the digital version of
input law (3).

In both cases 1 and 2, it is clear that the regulation to an arbi-
trary point, except to equilibrium point, results in zero error and
therefore, zero control signal. So, how the system should com-
pensate for the gravity to keep the system there. For the sake
of brevity, the general nonlinear form A(x(t )) will be presented
that includes the linear case A as well.

The main contribution of this work is to answer:

- Could we exclude the gravity from the system and then com-
pensate it in control law, similar to Equation (4), in continuous
optimal control? How does it violate stability or optimality?

- In discrete-time control, could we do the same gravity
compensation? How should we manage it since the Z -
transformed matrices are on the digital scale and the gravity
vector is in the continuous-time domain?

In Section 3, the stability proof and optimality discus-
sion for a control law in the type of (4) are provided
and Section 4 presents the discrete version and its solution
method.
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3 THE CONTINUOUS-TIME SDRE
CONTROLLER

The system in question is mechanical, Equation (2), for imple-
menting nonlinear optimal control with gravity compensation
and proof of stability and optimality. Excluding the gravity from
the system, one could consider a nonlinear autonomous affine-
in-control system as

ẋ = A (x) x + B (x) u + gr (x) , (7)

where u(t ) ∈ ℝm is an input vector and x(t ) ∈ ℝn is a state
vector. gr(x(t )) ∶ ℝn → ℝn includes all terms related to grav-
ity, A(x(t )) ∶ ℝn → ℝn×n and B(x(t )) ∶ ℝn → ℝn×m are state-
dependent coefficient parameterization of a nonlinear system
ẋ (t ) = f(x(t )) + g(x(t ), u(t )) + gr(x(t )) where f(x(t )) ∶ ℝn →
ℝn, g(x(t ), u(t )) ∶ ℝn × ℝm → ℝn, and gr(x(t )) are piecewise-
continuous vector-valued functions that satisfy the Lipschitz
condition:

A(x) =

[
0 I

0 −M−1
(
q
) (

C
(
q, q̇

)
+ D

(
q, q̇

))] ,
B(x) =

[
0

M−1
(
q
)] , gr (x) =

[
0

−M−1
(
q
)

g
(
q
)] ,

in which c (q, q̇) = C(q, q̇)q̇ and d (q, q̇) = D(q, q̇)q̇ are held.
The Lipschitz condition expresses that the components inside
SDC matrices have bounded first derivatives [25], which implies
the dynamic components of the system are limited to linear
growth.

The dimension of the system is n = 2N and m = M . The
cost functional integral of continuous-time optimal control is1:

Jc (⋅) =
1
2

⎧⎪⎨⎪⎩xT (tf ) F (x (tf )) x (tf ) +

tf

∫
0

[
xT Q (x) x

+
(
u − g

(
q
))T

R (x)
(
u − g

(
q
))]

dt

⎫⎪⎬⎪⎭ , (8)

where Q(x(t )) ∶ ℝn → ℝn×n is symmetric positive semi-
definite weighting matrix for states in t ∈ [0, tf ), F(x(tf )) ∈
ℝn×n is symmetric positive semi-definite weighting matrix for
states at t = tf , and R(x(t )) ∶ ℝn → ℝm×m is symmetric posi-
tive definite weighting matrix for inputs in t ∈ [0, tf].

Assumption 1. (Controllability condition, continuous-time
domain). The pair of {A(x(t )),B(x(t ))} is a completely control-
lable parameterization of a nonlinear system (7) [26].

Assumption 2. (Observability condition, continuous-time
domain). The pair of {A(x(t )),Q1∕2(x(t ))} is a completely

1 In cost function and derivation of the control, [g(q)]m×1 should not be confused with
[gr (x)]n×1.

observable parameterization of a nonlinear system (7) [26].

The Hamiltonian is shaped:

 (x, 𝝀, u) = Jc + 𝝀
T

ẋ =
1
2

{
uT R (x) u − 2gT

(
q
)

R (x) u

+ gT
(
q
)

R (x) g
(
q
)
+ xT Q (x) x

}
+𝝀

T [
A (x) x + B (x) u + gr (x)

]
, (9)

where 𝝀 is the co-state vector. Considering 𝝀 = K(x)x and

applying the stationary condition
𝜕(x,𝝀,u)

𝜕u
= 0 on Hamiltonian

(9) result in the control law

R (x) u − R (x) g
(
q
)
+ BT (x)𝝀 = 0 ⇒

u = −R−1 (x) BT (x) K (x) x + g
(
q
)
, (10)

in which q ∈ x and K(x) ∶ ℝn → ℝn×n is the symmetric posi-
tive definite control gain. The necessary condition for optimal-

ity
𝜕(x,𝝀,u)

𝜕x
= −𝝀̇ = −K̇(x)x − K(x)ẋ and substitution of the

system (7) in that, also delivers:

1
2

xT

[
𝜕Q

𝜕x

]T

x +
1
2

uT

[
𝜕R

𝜕x

]T

u +
1
2

(
𝜕g

𝜕x

)T

Rg +
1
2

gT 𝜕R

𝜕x
g

+
1
2

(
𝜕g

𝜕x

)T

Rg −

(
𝜕g

𝜕x

)T

Ru − uT 𝜕R

𝜕x
g

+

{
xT

[
𝜕A

𝜕x

]T

+ uT

[
𝜕B

𝜕x

]T

+

[
𝜕gr

𝜕x

]T
}

Kx + KBg + Kgr +
(
K̇ + KA + AT K − KBR−1BT K + Q

)
x = 0,

which could be simplified considering gr (x) = −B(x)g(q) as:

1
2

xT

[
𝜕Q

𝜕x

]T

x +
1
2

uT

[
𝜕R

𝜕x

]T

u +
1
2

gT 𝜕R

𝜕x
g +

(
𝜕g

𝜕x

)T

Rg −

(
𝜕g

𝜕x

)T

Ru − uT 𝜕R

𝜕x
g

+

{
xT

[
𝜕A

𝜕x

]T

+ uT

[
𝜕B

𝜕x

]T

+

[
𝜕gr

𝜕x

]T
}

Kx +
(
K̇ + KA + AT K − KBR−1BT K + Q

)
x = 0. (11)

Substituting control law (10), and [g(q)]m×1 =
[G(x)]m×n [x]n×1, into Equation (11), we will find:

1
2

xT

[
𝜕Q

𝜕x

]T

x +
1
2

xT KBR−1

[
𝜕R

𝜕x

]T

R−1BT Kx

−
1
2

xT KBR−1

[
𝜕R

𝜕x

]T
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Gx −
1
2

xT GT

[
𝜕R

𝜕x

]T

R−1BT Kx +
1
2

xT GT

[
𝜕R

𝜕x

]T

Gx +
1
2

xT GT 𝜕R

𝜕x
Gx +

(
𝜕g

𝜕x

)T

RGx +

(
𝜕g

𝜕x

)T

RR−1BT Kx −

(
𝜕g

𝜕x

)T

RGx + xT KBR−1 𝜕R

𝜕x

Gx − xT GT 𝜕R

𝜕x
Gx

+

{
xT

[
𝜕A

𝜕x

]T

− xT KBR−1

[
𝜕B

𝜕x

]T

+ xT GT

[
𝜕B

𝜕x

]T

+

[
𝜕gr

𝜕x

]T
}

Kx +
(
K̇ + KA + AT K − KBR−1BT K + Q

)
x = 0,

which can be rewritten considering [
𝜕R

𝜕x
]T =

𝜕R

𝜕x
and R R−1 =

I:

1
2

xT

[
𝜕Q

𝜕x

]T

x +
1
2

xT KBR−1

[
𝜕R

𝜕x

]T

R−1BT Kx +

(
𝜕g

𝜕x

)T

BT Kx

+

{
xT

[
𝜕A

𝜕x

]T

− xT KBR−1

[
𝜕B

𝜕x

]T

+ xT GT

[
𝜕B

𝜕x

]T

+

[
𝜕gr

𝜕x

]T
}

Kx +
(
K̇ + KA + AT K − KBR−1BT K + Q

)
x = 0. (12)

Since there are matrix derivatives in Equation (12), it should

be rewritten (using xT [
𝜕Q

𝜕x
]T = [

𝜕Q

𝜕x
x]T [27]) to deliver a com-

patible version to the SDRE and avoid having tensor:(
1
2

[
𝜕Q

𝜕x
x

]T

+
1
2

[
𝜕R

𝜕x
R−1BT Kx

]T

R−1BT K

+

(
𝜕g

𝜕x

)T

BT K +

{[
𝜕A

𝜕x
x

]T

−

[
𝜕B

𝜕x
R−1BT Kx

]T

+

[
𝜕B

𝜕x
Gx

]T

+

[
𝜕gr

𝜕x

]T
}

K

)
x +

(
K̇ + KA + AT K − KBR−1BT K + Q

)
x = 0. (13)

Equation (13) is divided into two parts, first one, the “SDRE
necessary condition for optimality” [28]:(

1
2

[
𝜕Q

𝜕x
x

]T

+
1
2

[
𝜕R

𝜕x
R−1BT Kx

]T

R−1BT K +

(
𝜕g

𝜕x

)T

BT K

+

{[
𝜕A

𝜕x
x

]T

−

[
𝜕B

𝜕x
R−1BT Kx

]T

+

[
𝜕B

𝜕x
Gx

]T

+

[
𝜕gr

𝜕x

]T
}

K

)
x ≤ 𝚲 (x) x, (14)

where 𝚲(x) is an upper-bound matrix. The reason for repre-
senting (14) as a matrix is compatibility with the dimension of
the SDDRE as:

𝚲n×n (x) xn× 1 + [SDDRE]
n×n xn× 1 = 0.

The matrix derivatives could be found in Ref. [19]; it was
stated that Equation (14) possesses a negligible value [29]. The
second part of (13) shapes the state-dependent differential Ric-
cati equation [19, 30]:

−K̇ (x) = K (x) A (x) + AT (x) K (x)

−K (x) B (x) R−1 (x) BT (x) K (x) + Q (x) , (15)

with K̇ (x(tf )) = F(x(tf )). For a N -DoF system, N (2N + 1)
equations must be solved to find K(x).

Remark 3. The general form of gravity compensated control
(10) is:

u = −R−1 (x) BT (x) K (x) [x − xdes] + g
(
q
)
,

where limx→xdes
e = 0; similar to Equation (10) when x → 0;

so, for the sake of simplicity in the derivation process, we con-
sider control law (10) in the derivation. Considering Remark 1,
for manipulators with g(0) ≠ 0, and cases in which the desired
condition is shifted from zero to another position, the applica-
tion of the proposed control law (10) preserves the generic view
of the approach.

Remark 4. The gravity compensation was used in the literature,
that is, Refs. [19, 21], however, the stability/optimality proof for
the new form (10) was not presented. Theorem 1 and 2 are
addressing the proofs.

Theorem 1. (Stability) The nonlinear system (7), considering Assump-

tions 1 and 2 and quadratic cost function (8), can be controlled by the

gravity-compensated input law (10) in which K(x) is the symmetric positive

definite solution to SDDRE (15) in finite time t ∈ [0, tf], subjected to

boundary condition K̇ (x(tf )) = F(x(tf )).

Proof. A Lyapunov candidate is used, V (x) = xT K(x)x > 0,
concerning V (0) = 0, to prove the stability by computing the
first derivative and following condition V̇ (x) ≤ 0:

V̇ (x) = ẋT K (x) x + xT K̇ (x) x + xT K (x) ẋ. (16)
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Substituting, ẋ from Equation (7) and K̇(x) from Equation
(15) into Equation (16), results in:

V̇ (x) = xT AT (x) K (x) x + uT BT (x) K (x) x

+ gT
r (x) K (x) x − xT K (x) A (x) x − xT AT (x) K (x) x

+ xT K (x) B (x) R−1 (x) BT (x) K (x) x − xT Q (x) x

+ xT K (x) A (x) x + xT K (x) B (x) u + xT K (x) gr (x) ,

which can be simplified as:

V̇ (x) = uT BT (x) K (x) x + gT
r (x) K (x) x

+ xT K (x) B (x) R−1 (x) BT (x) K (x) x − xT Q (x) x

+ xT K (x) B (x) u + xT K (x) gr (x) . (17)

Replacing the control law (10) into Equation (17) provides:

V̇ (x) = gT
(
q
)

BT (x) K (x) x + gT
r (x) K (x) x − xT Q (x) x

− xT K (x) B (x) R−1 (x) BT (x) K (x) x

+ xT K (x) B (x) g
(
q
)
+ xT K (x) gr (x) . (18)

Considering that gr (x) = −B(x)g(q), Equation (18) is
rewritten as:

V̇ (x) = gT
(
q
)

BT (x) K (x) x − gT
(
q
)

BT (x) K (x) x

− xT Q (x) x − xT K (x) B (x) R−1 (x) BT (x) K (x) x

+ xT K (x) B (x) g
(
q
)
− xT K (x) B (x) g

(
q
)

= −xT
(
K (x) B (x) R−1 (x) BT (x) K (x) + Q (x)

)
x ≤ 0,

which is negative definite and that concludes the proof.

Remark 5. The effect of gravity compensation on stability was
checked in Theorem 1 and proved that the gravity compensated
control law (10) guarantees stability similar to the case when the
gravity is inside A(x) matrix. The new form answers the main
intention of this work, to provide the signal after reaching the
desired condition xdes(t ), which was not possible in previous
versions. The use of gravity compensation was reported though
the stability was not discussed with input law (10) substituted
into the Lyapunov function.

The next subject is that how much we deviate from the opti-

mality. The linearized system A =
𝜕f(x)

𝜕x
|x=0, B =

𝜕g(x,u)

𝜕u
|x=0,

and constant weighting matrices R and Q provide the opti-
mal control for the algebraic matrix Riccati equation at equilib-
rium point x = 0 with the constant gain K. The solution K(x)
to the SDDRE tends to the optimal value near the equilib-
rium point f(0) wherein a sufficiently small neighborhood we
are close to optimality [31]. Assumption 3 is an extended form
which was previously stated in Ref. [31], without the excluded

gravity vector gr(x). Theorem 2 is also an extended representa-
tion of asymptotically optimal results, presented for the systems
without gravity compensation [28].

Assumption 3. The matrices A(x), B(x), g(q), Q(x), R(x) and

K(x) and their gradients
𝜕Q(x)

𝜕x
,
𝜕R(x)

𝜕x
,
𝜕A(x)

𝜕x
,
𝜕g(q)

𝜕x
are bounded

in a neighborhood around the equilibrium point.

Theorem 2. (Optimality). Considering Assumption 3 and guaran-

teed gravity-compensated control law (10), for the system (7), limited to

cases with g (0) = 0 and constant g., the necessary condition for optimal-

ity
𝜕(x,𝝀,u)

𝜕x
= −𝝀̇ is asymptotically satisfied near the equilibrium point

when x → 0, with a quadratic rate with respect to x.

Proof. To prove the optimality, the three conditions, obtained
from Pontryagin’s minimum principle, must be held. Consider-
ing Hamiltonian function (9), the first necessary condition for
optimality results in:

𝜕 (x, 𝝀, u)

𝜕𝝀
= A (x) x + B (x) u + gr (x) = ẋ.

The stationary condition also provides:

𝜕 (x, 𝝀, u)

𝜕u
= 0 ⇒ R (x) u − R (x) g

(
q
)
+ BT (x)𝝀 = 0.

(19)

Substituting control law (10) and 𝝀 = K(x)x into stationary
condition, Equation (19), obtains:

R (x)
[
−R−1 (x) BT (x) K (x) x + g

(
q
)]

−R (x) g
(
q
)
+ BT (x) K (x) x = 0,

which verifies
𝜕(x,𝝀,u)

𝜕u
= 0. Based on Theorem 2, the second

necessary condition for optimality must be asymptotically sat-
isfied in a quadratic rate for x. Substituting 𝝀̇ = K(x)ẋ + K̇(x)x

into −𝝀̇ =
𝜕(x,𝝀,u)

𝜕x
results in Equation (11).

Since we solve the SDDRE (15) to obtain the symmetric posi-

tive definite gain K(x),
𝜕(x,𝝀,u)

𝜕x
= −𝝀̇ turns into Equation (14).

Regarding q ∈ x, and using g(x) = G(x)x, also substituting
control law (10) into Equation (14), result in:

1
2

xT

[
𝜕Q

𝜕x

]T

x +
1
2

xT KBR−1

[
𝜕R

𝜕x

]T

R−1BT Kx

+

(
𝜕g

𝜕x

)T

BT Kx +

{
xT

[
𝜕A

𝜕x

]T

− xT KBR−1

[
𝜕B

𝜕x

]T

+ xT GT

[
𝜕B

𝜕x

]T

+

[
𝜕gr

𝜕x

]T
}

Kx ≤ 𝚲 (x) x,
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which can be rewritten as a quadratic form:

xT 𝚷 (x) x ∶= xT

(
1
2

[
𝜕Q

𝜕x

]T

+
1
2

KBR−1

[
𝜕R

𝜕x

]T

R−1BT K

+
(
x†

)T
(
𝜕g

𝜕x

)T

BT K +

{[
𝜕A

𝜕x

]T

−KBR−1

[
𝜕B

𝜕x

]T

+ GT

[
𝜕B

𝜕x

]T

+
(
x†

)T
[
𝜕gr

𝜕x

]T
}

K

)
x, (20)

where x† is generalized-inverse of x and that plays the role of

factorization from the matrices (
𝜕g

𝜕x
)T and [

𝜕gr

𝜕x
]T . Under the

boundedness of matrices and their derivatives, in Assumption 3,
and guaranteed stability in Theorem 1, there is a constant posi-
tive definite matrix such that [30]:

max ||xT 𝚷 (x) x|| ≤ xT 𝚼x, (21)

where 𝚼 is a positive constant matrix and that shows Equation
(7) is asymptotically satisfied (bounded above) with a quadratic

rate, and consequently
𝜕(x,𝝀,u)

𝜕x
= −𝝀̇ holds near x → 0.

There are three possible cases for gravity:

a. g (0) = 0, when g(q) includes direct position coordinate or

sin(⋅) function which results in G (0) = 0, since lim
q =0

sin(q)

q
=

0. In this case, the optimality discussion is straightforward
and is based on the presented proof.

b. g(0) ≠ 0, when g(q) includes i.e. cos(⋅) function (robotic

manipulators). Since limq =0
cos(q)

q
= ∞, the gravity param-

eterized matrix tends to infinity G (0) = ∞, for the system
with f(0) ≠ 0, the necessary condition for optimality, Equa-
tion (20), is not satisfied and 𝚷(0) → ∞, so we cannot find
a upper-bounded matrix 𝚼 for the case of f(0) ≠ 0.

c. Optimality for a special case, flying objects. Theorem 2 stated
that if g(0) ≠ 0, the necessary condition for optimality is not
satisfied; however, there is a special case for systems with
constant g. where we have the optimality. For that case, we
consider constant gravity and put the derivatives equal to
zero, then Equation (20) turns into:

xT 𝚷 (x) x ∶= xT

(
1
2

[
𝜕Q

𝜕x

]T

+
1
2

KBR−1

[
𝜕R

𝜕x

]T

R−1BT K

+

{[
𝜕A

𝜕x

]T

− KBR−1

[
𝜕B

𝜕x

]T

+ GT

[
𝜕B

𝜕x

]T

+
(
x†

)T
[
𝜕gr

𝜕x

]T
}

K

)
x. (22)

Substituting gr into Equation (22) results in

xT 𝚷 (x) x ∶= xT

(
1
2

[
𝜕Q

𝜕x

]T

+
1
2

KBR−1

[
𝜕R

𝜕x

]T

R−1BT K

+

{[
𝜕A

𝜕x

]T

− KBR−1

[
𝜕B

𝜕x

]T
}

K

)
x. (23)

in which (x† )T [
𝜕gr

𝜕x
]T = −(x† )T xT GT [

𝜕B

𝜕x
]T cancels the grav-

ity term and provides the upper-bounded condition (21) similar
to case (a) g (0) = 0. So, for the drones, i.e. one example pre-
sented in Section 5, the optimality condition is satisfied.

The conclusion is that optimality, based on Theorem 2, is sat-
isfied for systems with f (0) = 0 and systems with the constant
gravity vector. However, stability is guaranteed for all systems
f (0) = 0 and f(0) ≠ 0 since the control law and Lyapunov func-
tion use g(q) without factorization. That concludes the optimal-
ity proof. The deviation from optimality for case (a) is defined
by Equation (20) and for case (c) is computed by Equation (23).
It is clear that lim

x→0
xT 𝚷(x)x = 0.

For linear systems, the LQR problem, the optimality is com-
pletely satisfied since the gradient terms in Assumption 3 are
zero. For the SDRE problem, considering the differential form
of the Riccati equation, the deviation from optimality is found
in the optimality proof, a negligible value; however, this value
avoids naming the SDRE as an optimal controller. For that, the
SDRE/SDDRE controller has been referred to as a suboptimal
controller in the literature [21, 26, 31–33].

4 THE DISCRETE-TIME SDRE
CONTROLLER

To present the discrete-time-control design, system (7) must
be transformed into discrete-time domain by the Z -transform
algorithm and a sampling time Ts (s). Simple systems could be
transformed analytically nevertheless complex ones could be
transformed at each sample time after updating with measured
feedback. Similar to Section 3, putting gravity inside the system
matrices A(x) and B(x) imposes a glitch in implementation on
systems with gravity g(0) ≠ 0 or at arbitrary desired conditions,
xdes ≠ 0. So, the discretization is done on system (7).

Suppose there exists the corresponding discrete-time system:

x [k + 1] = A (x [k]) x [k] + B (x [k]) u [k] , (24)

with appropriate dimensions such as (7). The initial condition,
at t = 0 or first step, is x(0) = x[1] = x0 .

Optimal control intends to minimize the cost function [34]:

Jd (⋅) =
1
2

{
xT [Nd] F (x [Nd]) x [Nd] + min

1∑
k =Nd−1
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×
⎛⎜⎜⎝
[

x [k]

u [k]

]T [
Q (x [k]) S (x [k])

ST (x [k]) R (x [k])

][
x [k]

u [k]

]⎞⎟⎟⎠
⎫⎪⎬⎪⎭ ,

(25)

and finish a control task in a finite predefined time t ∈ [0, tf],

and

[
Q(x[k]) S(x[k])
ST (x[k]) R(x[k])

]
> 0. Here in Equation (25), Nd

is the last step of control loop, Q(x[k]) ∶ ℝn → ℝn×n and
F(x[Nd]) ∈ ℝn×n penalize the states in k ∈ [1,Nd − 1] and
at Nd with respect (both symmetric positive semi-definite);
R(x[k]) ∶ ℝn → ℝm×m weights the inputs and is positive defi-
nite, also symmetric.

Assumption 4. (Controllability Condition, discrete-time
domain). The pair of {A(x[k]),B(x[k])} is a completely control-
lable parameterization of the system (24).

Assumption 5. (Observability Condition, discrete-time
domain). The pair of {A(x[k]),Q1∕2(x[k])} is a completely
observable parameterization of the system (24).

The minimization of Equation (25) starts from Nd, the last
step of control loop backward in time. Introducing a solution
K(x[k]) in a Lyapunov function

V [k] = xT [k] K (x [k]) x [k] ,

and computing the next step, result in:

V [k + 1] = xT [k + 1] K (x [k + 1]) x [k + 1] . (26)

System (24) is substituted in Equation (26)

V [k + 1] = (B (x [k]) u [k] + A (x [k]) x [k])T

×K (x [k + 1]) (A (x [k]) x [k] + B (x [k]) u [k]) ,

and is rewritten as:

V [k + 1] =

[
x [k]

u [k]

]T [
AT (x [k]) K (x [k + 1]) A (x [k]) AT (x [k]) K (x [k + 1]) B (x [k])

BT (x [k]) K (x [k + 1]) A (x [k]) BT (x [k]) K (x [k + 1]) B (x [k])

][
x [k]

u [k]

]
. (27)

Expressing Hamilton-Jacobi-Bellman equation:

V ∗ [k] = min
u[k]

⎧⎪⎨⎪⎩
[

x [k]

u [k]

]T [
Q (x [k]) S (x [k])

ST (x [k]) R (x [k])

][
x [k]

u [k]

]

+V ∗ [k + 1]
}
,

and using Equation (27), one could present:

V ∗ [k] = min
u[k]

{[
xT [k] uT [k]

]
𝝌 (x [k])

[
x [k]

u [k]

]}
,

(28)

where

𝝌 (x [k]) =
⎡⎢⎢⎣
𝝌 11 (x [k]) 𝝌 12 (x [k])

𝝌T
12

(x [k]) 𝝌 22 (x [k])

⎤⎥⎥⎦
=

⎡⎢⎢⎣
AT

k
Kk+1Ak + Qk AT

k
Kk+1Bk + Sk

BT
k

Kk+1Ak + ST
k

BT
k

Kk+1Bk + Rk

⎤⎥⎥⎦ .

To satisfy 𝝌 (x[k]) > 0, both 𝝌 11(x[k]) and 𝝌 22(x[k]) must be
positive. Using Schur complement to force 𝝌 22(x[k]) > 0, one
could find [35]:

xT
k

{
𝝌 11 − 𝝌 12𝝌

−1
22 𝝌

T
12

}
xk = V ∗

k
= xT

k
Kkxk. (29)

Expanding Equation (28) provides:

min
u[k]

(
xT

k
𝝌 11xk + xT

k
𝝌 12uk + uT

k
𝝌T

12xk + uT
k
𝝌 22uk

)
= V ∗

k
.

(30)

Adding and subtracting xT
k
{𝝌 12𝝌

−1
22 𝝌

T
12}xk to Equation (30)

and mathematical manipulation result in a complete square
form:

min
u[k]

(
xT

k
𝝌 11xk +

(
uk + 𝝌−1

22 𝝌
T
12xk

)T
𝝌 22

(
uk + 𝝌−1

22 𝝌
T
12xk

)
− xT

k

{
𝝌 12𝝌

−1
22 𝝌

T
12

}
xk

)
= V ∗

k
. (31)

It is clear that holding Equation (31), similar to Equation
(29), requires uk + 𝝌−1

22 𝝌
T
12 xk = 0, that generates the control

law:

u [k] = −
(
BT

k
Kk+1Bk + Rk

)−1 (
BT

k Kk+1Ak + ST
k

)
xk,

(32)
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where Kk+1 is the positive definite symmetric solution to the
discrete-time SDRE, resulting from Equation (29):

K (x [k]) = AT
k

Kk+1Ak + Qk −
(
AT

k
Kk+1Bk + Sk

)
×
(
BT

k
Kk+1Bk + Rk

)−1 (
BT

k
Kk+1Ak + ST

k

)
. (33)

Considering backward counting of k in Equations (32) and
(33), the current loop is k and gain is updated by the Kk+1 solu-
tion, in the loop k + 1 where k counts from Nd − 1 to 1.

Remark 6. Control law (32) must be used in the backward solu-
tion to find the gain K(x[k]) over discrete steps, k, that covers
the time span t ∈ [0, tf]. After completing the backward solu-
tion, the control law for the forward (main) control loop is
Equation (32); however, k counts forward from 1 to Nd − 1.

Remark 7. The system Equation (24), for the backward solution,
is changed to:

x [k] = A (x [k + 1]) x [k + 1] + B (x [k + 1]) u [k + 1] ,

where k counts backward from Nd − 1 to 1.

Implementation. It is necessary to use a digital to analog (D/A) con-

verter to bring back the input Equation (32) to the scale of the continuous-

time domain (a continuous step-like signal using, i.e. zero-order hold) and

send the signal to the actuators [36]. Revisiting the main objective of this

work, Equation (32) does not provide the necessary input for the sys-

tem at the steady-state position or arbitrary desired condition, rather than

x[Nd] = 0.

For practical implementation, we add the gravity after D/A
conversion to the control signal:

ugc (t ) = u (t ) + g
(
q (t )

)
,

where ugc(t ) denotes gravity compensated control law and u(t )
is the converted input of u[k] in Equation (32) using zero-order
hold, etc. In that case, the real input signals to the actuators com-
pensate for the gravity and control the system.

For computer simulations, the input Equation (32) is aug-
mented by the gravity g(q(k)), and the system:

x [k + 1] = A (x [k]) x [k] + B (x [k]) u [k]

−B (x [k]) g
(
q (k)

)
,

will cancel the gravity to complete the simulation.

5 SIMULATIONS

5.1 Continuous-time control, robotic
manipulator

Consider a 3-DoF articulated-joint manipulator [37], see Fig-
ure 3 for a schematic view of the system. The second and third

FIGURE 4 Trajectory and configuration of the robot in regulation,
continuous-time control

links of the manipulator are subjected to gravity. The home posi-
tion of the robot requires a steady-state input for maintaining
the robot in that position. The length of the links are d1 = 0.6,
a2 = 0.5 and a3 = 0.4m with respect. The mass of the links and
load are m1 = m2 = m3 = 2 and mp = 0.25 kg; gravity constant
is g = 9.81 m∕s2; the friction terms in the joints are presented
by D = diag(0.05, 0.05, 0.05) kgm∕s; the moment of inertia of
the links are Ic,1 = diag(6.25 × 10−4, 6.25 × 10−4, 0.06) kg m2,
Ic,2 = diag(0.0417, 6.25 × 10−4, 6.25 × 10−4) kg m2 and Ic,3 =

diag(0.0267, 6.25 × 10−4, 6.25 × 10−4) kg m2 with respect.
The complete dynamic equation could be derived by general
codes, presented in Appendix of Ref. [20].

The time of simulation was set tf = 10 s, the start
point and endpoint were also defined A(0, −0.2, 0.2) and
B(0.5, 0.4, 1.2) m which results in initial and final conditions in
joint space:

x (0) = [−1.5708, 0.2419, 2.1235, 0, 0, 0]T ,

x (tf ) = [0.6747, −0.9529, 0.4510, 0, 0, 0]T .

The control parameters were chosen as R = 0.1 × I3×3,
Q = diag(1, 1, 1, 0.5, 0.5, 0.5) and F = 2Q. An increase in Q

increases the precision and reduction in R also enhances the
amplitude of the input signal [21, 38]; an increase in F provides
more accuracy in regulation near the final time. The configu-
ration of the system and the trajectory are presented in Fig-
ure 4, successfully regulated to the desired condition, xdes ≠ 0

and g(xdes ) ≠ 0, with 0.0015mm end-effector error. The input
torque signals to the system are presented in Figure 5. The
steady-state value of the first input was gained zero since it was
not subjected to gravity based on the configuration though the
other two links need gravity compensation. The norm of the
input and gravity vector are illustrated in Figure 6. It is clear that
without gravity compensation, the system would fail to stay at
desired condition since it needs to hold the weight of the sec-
ond and third links in addition to the weight of load at the end-
effector.
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FIGURE 5 The input of the manipulator in regulation, continuous-time
control

FIGURE 6 The norm of the input and gravity vector

Noticing Figure 6 brings up this question that optimizing the
gain for gravity is necessary or not. Considering a system with
precise modelling and lack of disturbance, one knows the value
of gravity in a trajectory. The necessary input for compensa-
tion of the gravity should be the closest value. Enhanced gain
provides excessive use of energy and smaller gains reduce the
performance. The proposed gravity compensated control law
balances the known gravity value and presents an optimal con-
trol policy.

5.2 Discrete-time control, hexacopter with
tilted rotors

Multirotor unmanned aerial vehicles with fixed vertical rotors
can generate a total thrust parallel to the axis of the rotor. The
total thrust on the body frame can be projected to the global
frame providing three components, though the system is under-
actuated. Cascade design is a common way to solve the under-
actuation problem for multirotor UAVs [39]. The method bene-
fits from a virtual constraint to define the desired orientation
of the system for translation control. Rotating the rotor axis
around the connecting rod between the motor and the centre
of mass (CoM) of the UAV generates thrust in all three axes
xc, yc, zc, rather than only zc, for parallel rotors. This new con-
figuration allowed full-actuation for multirotor UAVs [40]. The
schematic view of a multirotor copter with fixed titled rotors is
presented in Figure 7.

The global fixed frame is named [X ,Y ,Z ] and the local
moving body frame is named [xc, yc, zc]. The orientation vari-
ables are [𝜙, 𝜃, 𝜓] rotating around [X ,Y ,Z ] with respect,
considering the right-hand rule. So, the generalized coor-

dinates of the system are selected q(t ) = [𝝃
T

1 (t ), 𝝃
T

2 (t )]T =
[xc(t ), yc(t ), zc(t ), 𝜙(t ), 𝜃(t ), 𝜓(t )]T , (m, rad). The deriva-

FIGURE 7 Schematic view of the multirotor UAV with fixed tilted rotors

tives of them (on the local body frame) are 𝝊1(t ) =
[u(t ), v(t ), w(t )]T (m∕s) and 𝝊2(t ) = [p(t ), q(t ), r (t )]T (rad∕s);
the angular velocities are set on [xc(t ), yc(t ), zc(t )] with respect.
This definition provides the kinematics relations:

𝝃̇ 1 = RZYX

(
𝝃 2

)
𝝊1, (34)

𝝃̇ 2 = T
(
𝝃 2

)
𝝊2. (35)

There is an input torque vector 𝝉B(t ) =
[ 𝜏𝜙(t ) 𝜏𝜃 (t ) 𝜏𝜓 (t ) ]T (N.m), acting against three Euler
angles [𝜙(t ), 𝜃(t ), 𝜓(t )] for the rotational dynamics. Fully-
actuation design also provides three independent forces
FB(t ) = [ fx(t ) fy(t ) fz(t ) ]T (N) acting against body frame
[xc, yc, zc]. To project the local force into the global frame, the
rotation matrix is used F(𝝃 2) =RZYX (𝝃 2)FB. Dynamics equa-
tions of motion for both translation and orientation of the UAV
are found using the Lagrange method:

m𝝃 1 + mg e3 = F(𝝃 2) = RZYX

(
𝝃 2

)
FB, (36)

J
(
𝝃 2

)
𝝃 2 + C

(
𝝃 2, 𝝃̇ 2

)
𝝃̇ 2 = 𝝉B, (37)

where g(m∕s2) is the gravity constant, m(kg) represents total
mass and e3 = [0, 0, 1]T . J(𝝃 2) = WT (𝝃 2)IW(𝝃 2) is an inertial
matrix (in global frame) in which I = diag(Ixx , Iyy, Izz )(kgm2)

is local inertia matrix; T(𝝃 2) = W−1(𝝃 2) and [C(𝝃 2, 𝝃̇ 2)𝝃̇ 2] is a
vector consists of Coriolis and centrifugal terms.

Assuming that the regulations and tracking cases will
be performed with small changes in orientation of the
UAV, hovering condition, the following assumptions
are valid 𝝃̇ 2(t ) ≃ 𝝊2(t ) and 𝝃̇ 1(t ) ≃ 𝝊1(t ). So, the state-

vector is selected as x(t ) = [𝝃
T

1 (t ), 𝝃
T

2 (t ), 𝝊T
1 (t ), 𝝊T

2 (t )]T =

[xc, yc, zc, 𝜙, 𝜃, 𝜓, u, v, w, p, q, r ]T . Considering the kinematic
Equations (34)–(35) and the dynamics of the system Equations
(36) and (37), the state-space equation is found:

ẋ (t ) =

⎡⎢⎢⎢⎢⎣
𝝃̇ 1 (t )

𝝃̇ 2 (t )
𝝊̇1 (t )
𝝊̇2 (t )

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

RZYX

(
𝝃 2

)
𝝊1

T
(
𝝃 2

)
𝝊2

1∕mI3×3

[
RZYX

(
𝝃 2

)
FB − mge3 − Df𝝃̇ 1

]
J−1

(
𝝃 2

) [
𝝉B − C

(
𝝃 2, 𝝃̇ 2

)
𝝃̇ 2

]
⎤⎥⎥⎥⎥⎥⎦
,

(38)
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FIGURE 8 Illustration of coordinates for tilted rotors; (a) first rotation around zc, (b) second rotation around OOi , (c) third rotation around y2,i

where 𝝊̇1(t ) ≃ 𝝃 1(t ) = ṘZYX (𝝃 2)
⏟⎴⏟⎴⏟

≃0

𝝊1 + RZYX (𝝃 2)
⏟⎴⏟⎴⏟

≃I

𝝊̇1 and

𝝊̇2(t ) ≃ 𝝃 2(t ) hold based on hovering assumption; and
Df = diag(Dx ,Dy,Dz ) (kg∕s) denotes the aerodynamics
effect [41].

Unified SDC: The state-dependent coefficient parameteriza-
tion is structured based on Equation (24) on the system (38).
The SDC design for under-actuated quadrotors was designed in
two separate translation and orientation parts [39]; however, for
the fully-actuated system in this research, a unified SDC design
is proposed:

A (x) =

[
06×6 W1 (x)

06×6 W2 (x)

]
, B (x) =

[
06×6

W3 (x)

]
,

where

W1 (x) =

[
RZYX

(
𝝃 2

)
03×3

03×3 T
(
𝝃 2

)] , (39)

W2 (x) =
⎡⎢⎢⎣
−

1
m
× Df 03×3

03×3 −J−1
(
𝝃 2

)
C
(
𝝃 2, 𝝃̇ 2

)⎤⎥⎥⎦ ,
W3 (x) =

[ 1
m
× RZYX

(
𝝃 2

)
03×3

03×3 J−1
(
𝝃 2

)
]

.

In hovering condition, Equation (39), is almost an iden-
tity matrix W1(x) = I6×6 satisfying the proposed SDC
structure.

The control law is designed based on generalized force
and moments in global coordinates u(t ) = [FT (𝝃 2) 𝝉T

B ]T . To
define the local force vector for applying force limitation, the
following relation is used FB = RT

ZYX
(𝝃 2)F(𝝃 2).

Mixer matrix and actuator limit: The ultimate control inputs
of the multirotor UAV are the voltage signals to the motors,
attached to the propellers. The input voltage signals define the
angular velocity of the rotors. The relation between the input
force/moment vector and the angular velocities of the motor is
indicated by a linear map, a mixer matrix. The mixer matrix for
common quadrotors is straightforward and could be calculated

easily. The mixer matrix for fixed tilted rotors, specifically with
two rotations, is more complex.

To define the mixer matrix, the centre of mass of the UAV is
named O and the position of the i-th motor is named Oi . The
distance between CoM and each motor is OOi = L (m), illus-
trated in Figure 8. The first rotation is around zc axis is defined
by 𝜆i = (i − 1)𝜋∕3 that results in the first rotation matrix. The
second rotation is constant 𝛼i = (−1)i−1 𝛼, around OOi axis
for all six motors; however, the sign is negative for 2, 4, and 6.
The third rotation is constant 𝛽, around y2 axis, for all motors
toward the outside of the UAV:

R1 =

⎡⎢⎢⎢⎣
cos𝜆i −sin𝜆i 0

sin𝜆i cos𝜆i 0

0 0 1

⎤⎥⎥⎥⎦ , R2 =

⎡⎢⎢⎢⎣
1 0 0

0 cos𝛼i −sin𝛼i

0 −sin𝛼i cos𝛼i

⎤⎥⎥⎥⎦ ,

R3 =

⎡⎢⎢⎢⎣
cos𝛽 0 sin𝛽

0 1 0

−sin𝛽 0 cos𝛽

⎤⎥⎥⎥⎦ .
The combination of the rotation matrices is:

RP,i = R1R2R3

=

⎡⎢⎢⎢⎣
c𝛽c𝜆i

− s𝛼i
s𝛽s𝜆i

−c𝛼i
s𝜆i

c𝜆i
s𝛽 + s𝛼i

c𝛽s𝜆i

c𝛽s𝜆i
+ s𝛼i

c𝜆i
s𝛽 c𝛼i

c𝜆i
s𝛽s𝜆i

− s𝛼i
c𝛽c𝜆i

−c𝛼i
s𝛽 s𝛼i

c𝛼i
c𝛽

⎤⎥⎥⎥⎦ .
The third column of RP,i is named RP3,i .
There are three main contributing components in the mixer

matrix. The first is the thrust (force) parallel to z3 axis, presented
by Ti (t ) = k𝜔2

i (t ) where k (Ns2∕rad2) is lift constant or thrust
factor and 𝜔i (t ) is the rotor’s angular velocity of the i-th motor.
Since the thrust only projects on z3 axis, it collects the third
column of the rotation matrix:

⎡⎢⎢⎢⎣
c𝛽c𝜆i

− s𝛼i
s𝛽s𝜆i

−c𝛼i
s𝜆i

c𝜆i
s𝛽 + s𝛼i

c𝛽s𝜆i

c𝛽s𝜆i
+ s𝛼i

c𝜆i
s𝛽 c𝛼i

c𝜆i
s𝛽s𝜆i

− s𝛼i
c𝛽c𝜆i

−c𝛼i
s𝛽 s𝛼i

c𝛼i
c𝛽

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

0

0

k𝜔2
i

(t )

⎤⎥⎥⎥⎦
= RP3,i k𝜔2

i
(t ) .
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The second contributing term is the applied torque by each
rotor, the cross product of thrust, and L:

L

⎡⎢⎢⎢⎣
cos𝜆i

sin𝜆i

0

⎤⎥⎥⎥⎦ × RP3,ik𝜔
2
i

(t ) .

The third contributing term of the mixer is caused by the
drag force of the propellers k𝜓𝜔

2
i (t ) where k𝜓 is drag constant

(Nms2∕rad2). The direction of the propellers is different for
even and odd numbers that make the sign of drag force differ-
ent. To assemble these three contributing components in the
mixer matrix, one could shape [42]:

[
FB

𝝉B

]
6×1

=

⎡⎢⎢⎢⎣
kA

− − − − − − −

kLG + k𝜓H

⎤⎥⎥⎥⎦
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

MX

[
𝝎2 (t )

]
6×1

, (33)

where

A =
[
RP3,1,RP3,2,RP3,3,RP3,4,RP3,5,RP3,6

]
3×6

, (40)

G =
[
GM,1,GM,2,GM,3,GM,4,GM,5,GM,6

]
3×6

, (41)

H =
[
RP3,1, −RP3,2,RP3,3, −RP3,4,RP3,5, −RP3,6

]
, (42)

in which:

GM,i =

⎡⎢⎢⎢⎣
cos 𝜆i

sin 𝜆i

0

⎤⎥⎥⎥⎦ × RP3,i .

Replacing the values into Equations (40)–(42), the compo-
nents of the mixer are defined:

A =
⎡⎢⎢⎣

s𝛽 1∕2s𝛽 −
√

3∕2c𝛽s𝛼

√
3∕2c𝛽s𝛼 − 1∕2s𝛽 −s𝛽 −1∕2s𝛽 −

√
3∕2c𝛽s𝛼 1∕2s𝛽 +

√
3∕2c𝛽s𝛼

−c𝛽s𝛼

√
3∕2s𝛽 + 1∕2c𝛽s𝛼

√
3∕2s𝛽 + 1∕2c𝛽s𝛼 −c𝛽s𝛼 −

√
3∕2s𝛽 + 1∕2c𝛽s𝛼 −

√
3∕2s𝛽 + 1∕2c𝛽s𝛼

c𝛼c𝛽 c𝛼c𝛽 c𝛼c𝛽 c𝛼c𝛽 c𝛼c𝛽 c𝛼c𝛽

⎤⎥⎥⎦ ,
G =

⎡⎢⎢⎣
0

√
3∕2c𝛼c𝛽

√
3∕2c𝛼c𝛽 0 −

√
3∕2c𝛼c𝛽 −

√
3∕2c𝛼c𝛽

−c𝛼c𝛽 −1∕2c𝛼c𝛽 1∕2c𝛼c𝛽 c𝛼c𝛽 1∕2c𝛼c𝛽 −1∕2c𝛼c𝛽
−c𝛽s𝛼 c𝛽s𝛼 −c𝛽s𝛼 c𝛽s𝛼 −c𝛽s𝛼 c𝛽s𝛼

⎤⎥⎥⎦ ,
H =

⎡⎢⎢⎣
s𝛽 −1∕2s𝛽 +

√
3∕2c𝛽s𝛼

√
3∕2c𝛽s𝛼 − 1∕2s𝛽 s𝛽 −1∕2s𝛽 −

√
3∕2c𝛽s𝛼 −1∕2s𝛽 −

√
3∕2c𝛽s𝛼

−c𝛽s𝛼 −
√

3∕2s𝛽 − 1∕2c𝛽s𝛼

√
3∕2s𝛽 + 1∕2c𝛽s𝛼 c𝛽s𝛼 −

√
3∕2s𝛽 + 1∕2c𝛽s𝛼

√
3∕2s𝛽 − 1∕2c𝛽s𝛼

c𝛼c𝛽 −c𝛼c𝛽 c𝛼c𝛽 −c𝛼c𝛽 c𝛼c𝛽 −c𝛼c𝛽

⎤⎥⎥⎦ .

TABLE 1 Parameters of the hexacopter

Par. Values Units Definition

L 0.2 m Dist. motor & CoM

R 0.125 m radius of the propeller

k 2.98 × 10−5 Ns2∕rad2 lift constant - thrust factor

k𝜓 1.14 × 10−6 Nms2∕rad2 drag constant

Ixx 7 × 10−3 kgm2 moment of inertia X axis

Iyy 7.3 × 10−3 kgm2 moment of inertia Y axis

Izz 3.3 × 10−3 kgm2 moment of inertia Z axis

m 1.2 kg mass of the quadrotor

Df [

0.25 0 0

0 0.25 0

0 0 0.25

] kg/s drag matrix

𝜔max 282.83 rad/s Max. Ang. Vel. of rotors

α π/6 rad rotation around OOi axis

β π/6 rad rotation around y2 axis

The angular velocities of the rotors are limited to 𝜔i,max, so
the following constraint is limiting the performance of the sys-
tem if 𝜔2

i (t ) > 𝜔2
i,max, 𝜔

2
i (t ) = 𝜔2

i,max, where

𝝎 (t ) =

√√√√M−1
X

[
FB

𝝉B

]
. (43)

The parameters of the hexacopter are presented in Table 1.
The initial condition of the UAV was set on zero condition,
the equilibrium point, and the desired position was defined as
xdes(tf ) = [−0.5, −0.75, 0.8, 0.1, 0.05, −0.05, 01×6]T . The simu-
lation time was 10 seconds and the weighting matrices were cho-
sen as R = I6×6, Q = diag(0.1 × 11×3, 0.01 × 11×3, 0.2 × 11×3,
0.001 × 11×3), in which 11×3 = [1, 1, 1] and F = 10 × Q. Con-
sidering the number of discretisation Nd = 49, the error of the
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FIGURE 9 Configuration and trajectory of the hexacopter in regulation,
discrete-time control

FIGURE 10 Translation states of the hexacopter, discrete-time control

regulation was found 24 mm. The configuration and trajectory
of the UAV are depicted in Figure 9. The position states of
the hexacopter are demonstrated in Figure 10. The translation
forces of the system are presented in Figure 11. Since the desired
orientation of the UAV is not zero, the translation forces are not
zero in X ,Y directions. The mixer matrix defines the angular
velocities of the system, Figure 12, and reduces to the steady-
state values. The steady-state values of the rotors’ angular veloc-
ities are not similar since we have the desired pose.

FIGURE 11 Input force of the hexacopter, discrete-time control

FIGURE 12 Angular velocity of the rotors, discrete-time control

The angular velocities of the rotors, presented in Figure 12,
are limited between two positive bounds, [2700, 2970]rpm. If
the gravity is not compensated by the control law and one gets
zero error and the end of the simulation, therefore, zero inputs,
Equation (43) fails to deliver a solution. The reason is that all
the control signals tend to zero (without gravity compensation)
and the angular velocities of the rotors will be found around
zero after a couple of oscillations. The second reason for fail-
ure without gravity compensation is that Equation (43) does
not release negative values because of the square root. So, the
steady-state shift in thrust input is necessary for the success-
ful simulation. Optimal control without gravity compensation
is not able to deliver a solution in a unified manner. In other
words, the drone needs around 2830 rpm for hovering in the
desired condition steadily.

6 CONCLUSION

Gravity compensation in the framework of the optimal control
was investigated to check the effect of the modified control law
plus gravity on the stability and the deviation from the opti-
mality. The stability proof was guaranteed using the Lyapunov
method and the optimality was analysed by the implementation
of Pontryagin’s Minimum Principle. The simulation results con-
firmed the proposed structure and showed successful results for
the continuous- and discrete-time control domain. In brief, we
presented a new optimal control that optimized the control sig-
nal around the steady-state value of the gravity vector (see the
introduced cost function (8)) whether it is zero or not. The sta-
bility proof for this special presentation of the systems was pre-
sented for the first time and the deviation from optimality was
shown.

For the systems with the state and input constraint, the sta-
bility and optimality proof, presented in this work, are held.
The state constraint is applied by modification of the weight-
ing matrix Q, preserving the symmetric positive definite form
and observability condition [43]. The input constraint is applied
externally on the input signal [19]; hence, the derivation and sta-
bility/optimality analysis are valid. An example for the input
constraint has been considered in simulation, Section 5, see
Equation (43).
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