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We propose an adaptive random quantum algorithm to obtain an optimized eigensolver. Specifically, we
introduce a general method to parametrize and optimize the probability density function of a random number
generator, which is the core of stochastic algorithms. We follow a bioinspired evolutionary mutation method to
introduce changes in the involved matrices. Our optimization is based on two figures of merit: learning speed
and learning accuracy. This method provides high fidelities for the searched eigenvectors and faster convergence
on the way to quantum advantage with current noisy intermediate-scaled quantum computers.
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I. INTRODUCTION

The emulation of biological systems has always led to
disruptive bioinspired technologies. During the last decades,
machine learning (ML) has emerged as an innovative tech-
nique that imitates the learning abilities of humans [1–4],
where reinforcement learning (RL) occupies an important
role. In simple terms, these protocols optimize their perfor-
mance by the use of trial and error methods [5,6]. This class of
algorithms has achieved impressive results as master players
for board and video games [7–9]. On the other hand, the
development of quantum computing provides a theoretical
framework to break fundamental limits of classical computing
[10–13]. With the experimental advances in quantum comput-
ing in platforms like trapped ions [14–16], superconducting
circuits [17–20], and photonics [21], quantum supremacy was
recently reached [22–24]. Nevertheless, full-fledged fault-
tolerant quantum computers are still far from reach. The
development of another class of algorithms is needed.

In this manner, quantum computers were able to surpass
the performance of current supercomputers for a specific task,
be it quantum speckle or boson sampling. Along these lines,
quantum machine learning (QML) [25–28] is considered a
natural application to surpass current classical protocols to
create intelligent machines. In the last years, QML has been
a fruitful area, producing faster algorithms for several tasks
such as linear and nonlinear algebraic problems, data classifi-
cation, and variational algorithms [29–33]. As in classical ML
methods, also in QML the RL paradigm has received great
attention, especially for quantum control [34–37], quantum
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tomography [38,39], state preparation [40,41], as well as op-
timization of quantum compilers [42], among others [43,44].
This quantum computing revolution of intelligent algorithms
has opened the door to develop bioinspired quantum tech-
nologies and quantum artificial life protocols [45–48]. In this
context, random changes as mutations seem a good starting
point for quantum evolutionary algorithms.

A semiautonomous quantum eigensolver has been recently
developed theoretically and experimentally [49,50] for the
calculation of eigenvectors. This algorithmic method is based
on random changes on quantum states handled by single-shot
measurements and feedback loops. This can be seen as a
mimicking of a natural selection process, where a system
evolves due to mutations (random changes) plus an abiotic
environment (single-shot measurements). Since this class of
algorithms employs only single-shot measurements in each
feedback loop, they save a large amount of resources. To
reduce the number of copies of the quantum system to be
measured is indeed important, in particular when compar-
ing to algorithms relying on expectation values such as the
variational quantum eigensolver (VQE) [51–53]. In Ref. [50],
it was shown that, for a single-qubit operator, the semiau-
tonomous quantum eigensolver needs only 200 single-shot
measurements, while the VQE needs more than 50 times
more measures for similar fidelity. Random algorithms, in
general, look more robust to noise if we compare with other
hybrid algorithms [38,49]. On the other hand, random meth-
ods are designed to approach but not to match exact solution,
at variance with other hybrid classical-quantum algorithms
which might do that if fault-tolerant quantum computers were
available. Consequently, the simplicity of semiautonomous
quantum algorithms makes them more suitable for current
noisy intermediate-scale quantum (NISQ) processors, where
noise is just part of the computations.
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In this paper, we propose a bioinspired adaptive random
quantum eigensolver (ARQE), which is strong under stochas-
tic noise present in the gates in a quantum device. This
characteristic makes our proposal suitable for NISQ devices,
where the circuit depth is limited by the error of the gates
among others sources. We use adaptive random mutations
in the eigensolver matrices for getting high fidelities in the
eigenvectors of given operators. To this end, we parametrize
an arbitrary probability distribution function (PDF), where
mutations are selected from. Then, we optimize with two
criteria: (i) maximizing the fidelity of the learning accuracy
and (ii) maximizing the learning speed via minimization of
the number of iterations. The introduced ARQE algorithm
is able to deliver high fidelities with faster approximations
than variational methods, making it useful for approaching
quantum advantage in the NISQ era.

II. SEMIAUTONOMOUS QUANTUM EIGENSOLVER

An arbitrary quantum observable is mathematically de-
scribed by a Hermitian operator O, defined by

O =
∑

j

λ j |ψ j〉〈ψ j |, (1)

where λ j and |ψ j〉 are the jth eigenvalue and eigenvector,
respectively. A d-dimensional quantum system, which we
will call quantum individual (QI), is characterized by its
quantum state |I (�θt )〉, which depends on a set of parameters
�θt = (θ0,t , θ1,t , . . . , θn,t ) at time t , with n = 2(d − 1). The set
of parameters (�θt ) can be considered as the QI’s genotype.
The role of the abiotic environment is given by a quantum
evolution UE = e−iO, which reads

UE =
∑

j

e−iλ|ψ j〉〈ψ j |. (2)

At time t , we generate the QI described by |I j (�θt )〉 =
G(�θt )| j〉, where G(�θt ) is the codification gate and | j〉 is
the initial state provided by the quantum processor in the
computational basis, which define our jth solution for the
eigenvectors. This codification gate plays the role of a varia-
tional ansatz, as in hybrid classical-quantum algorithms like
the VQE. This gate can also be decomposed in two level
unitary gates as shown in Ref. [38]. After the codification, the
QI interacts with the abiotic environment, changing its state
as

|Fj (�θt )〉 = UE |I j (�θt )〉 = α j,t |I j (�θt )〉 + β j,t |I⊥
j (�θt )〉

= α j,t |I j (�θt )〉 + β j,t

∑
k �= j

ck, j,t |Ik (�θt )〉, (3)

while satisfying the expressions
∑

k �= j c2
k, j,t = 1,

〈I⊥
j (�θt )|I⊥

j (�θt )〉 = 1, and 〈I j (�θt )|I⊥
j (�θt )〉 = 0. Now, we

collapse the wave function in the basis {|I j (�θt )〉}
(measurement process) or, equivalently, we perform first
the gate G(�θt )† and then a measurement in the computational
basis {| j〉}. This measurement process takes the role of a dead
or alive (DOA) event. As the goal is to adapt the QI state to
one of the eigenvectors of O (therefore eigenvectors of UE ),

FIG. 1. Scheme of a bioinspired adaptive random quantum al-
gorithm. The individual is mapped on the encoding gate G(�θt ), the
abiotic environment is represented by gate E , and the dead-alive
probability is given by the decoding gate G†(�θt ) and a measurement
in the computational basis {| j〉}. We introduce changes in the encod-
ing and decoding matrix (mutations) using a classical feedback loop
(green lines) which depends on the classical communication of the
measurement outcome (purple line).

we consider that the QI dies if we obtain, in the measurement
process, the state |m〉 with m �= j. This means that if β j,t �= 0,
therefore |I j (�θt )〉 cannot be an eigenvector of O. In the other
case, if we measure the state | j〉, then the QI survives to
the DOA event, and it is a candidate for eigenvector. In the
following iteration, t + 1, we create the QI described by
|I j (�θt+1)〉 = G(�θt+1)| j〉, where we define

�θt+1 = (θ0,t+1, θ1,t+1, . . . , θn,t+1),

θk,t+1 = θk,t + πεk,t (1 − δm, j ). (4)

Here, m is the measurement outcome of the previous iteration
t , δm, j = 1 ⇐⇒ m = j, and δm, j = 0 for m �= j, while εk,t is
a random number in the range [−1, 1] with a PDF Dt+1.

Equation (4) introduces mutations in the genotype only if
the QI dies (m �= j), which means that we create a new QI
for time t + 1. Moreover, if the QI survives, we replicate the
same QI for time t + 1. Additionally, we change the PDF
in each step according to a suitable reward or punishment
(ROP) criterion [49,50]. In general, the latter will increase the
probability to obtain stronger mutations (major changes) each
time that the local goal is not reached (dead), and decrease the
probability to obtain stronger mutations (minor changes) each
time that we reach the local goal (alive). We have several ROP
criteria to modify the PDF in time to ensure compliance of
the previous requirement, which will be specified later. In the
next section, we will describe a general parametrization of a
symmetric PDF suitable to be optimized and obtain a correct
ROP criterion to find the eigenvectors of O. Figure 1 shows a
scheme of the adaptive algorithm.

We can summarize our protocol as follows for the t th
iteration.

(1) Initialize our quantum device in the state | j〉. In general,
for quantum computers it is usually the state |0〉.

(2) Apply the codification gate G(�θt ) with parameters �θt .
As mentioned above, it can be decomposed in two-level uni-
tary operations.
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(3) Apply the unitary evolution UE given by the environ-
ment.

(4) Apply the gate G†(�θt ) to decode the state.
(5) Measure the resulting state which is given by

|
 j,t 〉 = G†(�θt )UE G(�θt )| j〉 (5)

in the computational basis.
(6) Update the parameters �θt for the iteration t + 1 accord-

ing to the measurement output as is given in Eq. (4).
(7) Repeat the process.
We point out that random algorithms provide a fast ap-

proximation for the eigenspectrum of quantum observables.
The total or partial knowledge of the eigenspectrum of an un-
known operator is a crucial task for efficient classification of
quantum states or to boost quantum optimizers such as the re-
cent proposed algorithms based on digitized-counterdiabatic
quantum computing (DCQC) [54]. Also, for semiautonomous
quantum devices the capability to adapt a quantum state into
an eigenstate could help to develop more sophisticated ma-
chines (see Ref. [49]). Therefore, the enhancement of such
algorithms is worth studying.

III. OPTIMIZATION ALGORITHM

From Eq. (4), we can observe that the core of the algorithm
is the random change given by the random variable εk,t . Then,
to optimize the method described in the previous section, we
need to optimize the PDF that defines εk,t . To do this, we
parametrize the probability cumulative function (PCF) of a
random number generator by means of the inverse transform
sampling technique (ITST). According to the ITST we can
generate a random variable X in the range [−∞,∞] with
PCF FX (x), by the use of another random variable Y in the
range [0,1] with uniform PDF (DY (y) = 1). We know that the
probability for the values of X to be in the range [a, b] is

P(a < X < b) =
∫ b

a
DX (x)dx, (6)

and the relation between the PDF (DX ) and the PCF (FX ) is

FX (x) =
∫ x

−∞
DX (x̄)dx̄ = P(−∞ < X < x). (7)

Finally, using the ITST, we have that the random variable
X with PDF DX (x) is given by X = F−1

X (Y ). Therefore, by
the parametrization of the PCF FX , we are parametrizing the
random number generator.

A. Parametrization of FX

As FX (x) is a PCF of a random variable X , it is a
monotonically increasing function, with FX (−∞) = 0, and
FX (∞) = 1. Moreover, as the random variable represents a
mutation in our algorithm, the PDF needs to be symmetric.
Therefore, we impose the extra condition over the PCF,

FX (x) = 1 − FX (−x), (8)

which implies FX (0) = 1
2 . Finally, as we consider mutations,

we will focus on the generation of a random variable in the
range [−1, 1], which means FX (−1) = 0, and FX (1) = 1.

FIG. 2. Points (x j, y j ) (orange circles), and the monotonic and
symmetric interpolation defined by Eq. (9). The green squares repre-
sent the points p0 = (−1, 0), pn+1 = (0, 0.5), and (1,1), which are
fixed to ensure that the interpolation corresponds to a valid sym-
metric CDF. f j represents the function by parts that interpolates the
points pj and pj+1.

To parametrize the PCF, we consider the vectors
�x = {x0 = −1, x1, . . . , xn, xn+1 = 0} and �y = {y0 =
0, y1, . . . , yn, yn+1 = 0.5} in ascending order. These two
vectors define the points P = {p j = (x j, y j )}. Now, by
considering a monotonic interpolation method through the
points in the set P , we can obtain a parametrized function
F(x, �x, �y), depending on 2n parameters (the end points are
fixed). Using this, we can construct a parametrized PCF
FX (x, �x, �y) as (see Fig. 2)

FX (x, �x, �y) = F(x, �x, �y), x < 0,

FX (x, �x, �y) = 1 − F(x, �x, �y), x > 0. (9)

Here (see Ref. [55]),

F(x, �x, �y) = f j (x), x ∈ [x j, x j+1],

f j (x) = a j (x j − x)3 + b j (x j − x)2 + c j (x j − x) + d j,

(10)

and

a j = y′
j + y′

j+1 − 2s j

h2
j

, b j = 3s j − 2y′
j − y′

j+1

h j
,

c j = y′
j, d j = y j, (11)

where

s j = y j+1 + y j

x j+1 + x j
, h j = x j+1 + x j, (12)

and

y′
j = d

dx
f j |x=x j = d

dx
f j−1|x=x j . (13)

Now, we approximate the derivative of the function f j by

y′
j = 0 if (s j1 s j ) � 0,

y′
j = 2sign(s j )|s|min

j−1, j

if |p j | > 2|s|min
j−1, jy

′
j = p j otherwise, (14)
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where

p j = s j−1h j + s jh j−1

h j−1 + h j
,

|s|min
j−1, j = min(|s j−1, ||s j |). (15)

We note that, according to Eq. (14), we can estimate y′
j only

for j ∈ {1, . . . , n}. We impose the border condition y′
0 = 0,

and the symmetry condition y′
n+1 = s j−1.

Finally, we introduce the ROP criteria that we will use in
the rest of the paper for the ARQE protocol. As we need to
change the PDF of the random number generator, we will
define the PCF as in Eq. (9) but with parameters that will
change in each iteration, namely,

FX = FX (x, �xk, �yk ). (16)

Here, �xk, �yk are defined for the kth iteration of our algorithm
as

�xk = wk · �xk−1 �yk = wk · �yk−1, (17)

with

wk = [p + (r − p)δm, j]wk−1, (18)

where r < 1 is the reward constant, p > 1 is the punishment
constant, m is the measured outcome, and j is the desired
outcome defined in the previous section. Also, we require
for convergence purposes that 1 � r p. We define that the
algorithm converges after N iterations if wN < �, where �

is the tolerance of our algorithm.

B. Optimization of FX

As the proposed ARQE method achieves the result in a
stochastic way, we optimize the random number generator
using two criteria. In the first one, we define the cost function
as the mean number of iterations needed for convergence (N̄),
obtaining the values of �x0 and �y0 which minimize N̄ . For the
second one, we define the fidelity after � iterations as

F� = |〈ψ j |G(�θ�)| j〉|2. (19)

In this case, we define the mean fidelity after � iterations
(F̄�) as the cost function, obtaining the values of �xopt and �yopt

which maximize F̄�. For the calculation of the mean values
we consider 1000nq independent repetitions of the algorithm,
where nq is the number of qubits involved in the algorithm. We
remark that this optimization process depends on the quantum
operator to be diagonalized. In order to carry out a general
optimization, we consider the optimization of different opera-
tors (100 cases), which means finding �xopt and �yopt for a set of
different cases, which could be used for the prediction of �xopt

and �yopt for new operators.
We note that for the learning accuracy, the estimation of the

fidelity F� requires a tomography process and also the previ-
ous knowledge of the eigenstates |ψ j〉, which means that it is
impractical from an experimental point of view. Nevertheless,
this is interesting to analyze from a pedagogical point of view.
Also, the learning accuracy strategy can be enhanced by the
numerical simulations and extrapolated for complex systems
to avoid experimental limitations.

PCF PCF

FIG. 3. Histogram for mean number of interactions to converge
without (left panel) and with optimization (right panel) for 100 dif-
ferent U (θ, φ, λ). Both panels are for optimization of learning speed.

IV. RESULTS

We consider single-qubit operators of the form

O(aI , ax, ay, az ) = aII + axσx + ayσy + azσz. (20)

In this case, the codification matrix is a general single-qubit
unitary matrix given by

U (θ, φ, λ) =
(

cos(θ/2) −eiφ sin(θ/2)
eiλ sin(θ/2) ei(φ+λ) cos(θ/2)

)
, (21)

which depends on three parameters (genes). We use 100 dif-
ferent sets of genes chosen randomly in the range [0, 2π ]
to cover different situations. We consider �x = [−1, x1, x2, 0]
and �y = [0, y1, y2, 0.5], where we define Xin = [x1, x2] and
Yin = [y1, y2] for the PCF parametrization and optimization.
Here, we optimize the iteration number needed until the
convergence parameter, wN , surpasses a threshold � = 0.9
(learning speed). The 100 results of the different optimiza-
tions are summarized in Fig. 3. From this figure, we can see
that the mean-iteration number decreases; from the data set
of this case (see Table I in Appendix A), we have that the
mean value of the mean-iteration number for the optimized
case is N̄ ≈ 61, while for the case without optimization it is
N̄ ≈ 82, which means a reduction of 25.4%. The case without
optimization refers to a uniform PDF for the mutation process.
We also need to mention that in this case the fidelity of
the obtained solution remains almost constant (see Fig. 9 in
Appendix A), obtaining less iterations to almost converge to
the same solution.

In addition, we also perform the optimization fixing the
number of iterations N = 80 and minimizing the convergence
parameter, which implies maximization of the fidelity (learn-
ing accuracy). We choose again 100 random unitary operators
U (θ, φ, λ) for the environment. Figure 4 summarizes the data
for the mean fidelity with and without optimization for this
case, which shows a clear increase of the fidelity. From the
data set of this case (see Table II in Appendix B), we have
that the mean value of the fidelity increases from F̄ ≈ 0.95
without optimization to F̄ ≈ 0.97 with optimization, increas-
ing the learning accuracy of our protocol.

Figure 5 shows an example for the optimal CDF
and its corresponding PDF for the optimization of the
learning speed. Specifically, the genes are θ = 2, φ =
π
2 , and λ = π , which correspond to τO = σx. The opti-
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PCF PCF

FIG. 4. Histogram for mean fidelity after convergence without
(left panel) and with optimization (right panel) for 100 different
U (θ, φ, λ), for optimization of learning accuracy.

mal parameters are x1 = −0.695 135 35, x2 = −0.398 998 9,

y1 = 0.007 067 57, and y2 = 0.048 423 01. We can see that
the optimal PDF has two symmetric peaks, which means
that the optimal adaptation appears when the most prob-
able mutation is different from zero and approaches zero
when the quantum individual becomes adapted. On the other
hand, Fig. 6 shows the optimal CDF and PDF using the
same genes but for the optimization of the learning accuracy.
Here, the optimal parameters are x1 = −0.343 155 37, x2 =
−0.242 660 87, y1 = 0, and y2 = 0.237 377 31.

Finally, we present two two-qubit examples. For the first
one, we consider a nondegenerate operator given by

τO =

⎛
⎜⎜⎝

π −π
2 −π

4 −π
4−π

2 π −π
4 −π

4−π
4 −π

4
π
2 0

−π
4 −π

4 0 π
2

⎞
⎟⎟⎠, (22)

with the following eigenvectors and eigenvalues:

|E (0)〉 = 1

2
(|00〉 + |01〉 + |10〉 + |11〉), α(0) = 0,

|E (1)〉 = 1√
2

(|10〉 − |11〉), α(1) = π

2
,

P
C
F

FIG. 5. Optimal PDF (solid blue line) and PCF (dashed orange
line) for learning speed for τÔ = σx . Red dots are the points related
to the parametrization; green dots are the fixed points of our PCF.

P
C
F

FIG. 6. Optimal PDF (blue) and PCF (orange) for learning
accuracy for τÔ = σx . Red dots are the points related to the
parametrization; green dots are the fixed points of our PCF.

|E (2)〉 = 1

2
(|00〉 + |01〉 − |10〉 − |11〉), α(2) = π,

|E (3)〉 = 1√
2

(|00〉 − |01〉), α(3) = 3π

2
. (23)

As the eigenvalues of this operator are equidistant, then the
ARQE needs a large number of iterations to converge. It is
due to the fact that the unitary evolution in Eq. (2) is sensitive
to the gap between the eigenvalues, reaching the eigenvectors
with large gap easier than the closer one, accelerating our
algorithm as is shown in Ref. [50] via numerical inspection.
In this case, we use a four points parametrization, which
means that Xin = [x1, x2, x3, x4] and Yin = [y1, y2, y3, y4].
The corresponding PDF and CDF for optimal learning
speed are shown in Fig. 7, while the optimal parame-
ters are x1 = −0.292 852 22, x2 = −0.213 247 7, x3 =
−0.191 246 88, x4 = −0.150 791 98, y1 = 2.857 493 38e −
06, y2 = 0.101 155 582, y3 = 0.268 075 636, and y4 =
0.367 572 655. The mean value of the mean-iteration number
for the optimized case is N̄ ≈ 355 while for the case
without optimization it is N̄ ≈ 654, which means a reduction
of 45.7%. The data are summarized in the histogram of

P
C
F

FIG. 7. Optimal PDF (blue) and PCF (orange) for learning speed
for τO given by Eq (22). Red dots are the points related to the
parametrization; green dots are the fixed points of our PCF.
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PCF PCF

FIG. 8. The histogram comparison of the mean number of iter-
ations to converge without (left panel) and with optimization (right
panel) for Eq (22).

Fig. 8. The mean fidelities for four eigenstates without
optimization are F0 = 0.952, F1 = 0.947, F2 = 0.941, and
F3 = 0.938. The mean fidelities with optimization are
F0 = 0.946, F1 = 0.941, F2 = 0.933, and F3 = 0.930.
Therefore, we do not obtain appreciable changes in the
fidelity but a considerable reduction of the iterations.

An interesting result is that we can see from Figs. 5–7 that
the optimal PDF shows peaks in the mutation probability far
from zero, which approaches zero when the QI starts to be
adapted. It means that in the optimal mutations process the
changes close to zero have almost null probability, favoring
the mutations in discrete regions of values for the random
variable.

The second example is the molecular hydrogen Hamil-
tonian with a bond length of 0.2 [Å]. In this case, the
environment is given by

τO = g0I + g1Z0 + g2Z1 + g3Z0Z1 + g4Y0Y1 + g5X0X1, (24)

with g0 = 2.8489, g1 = 0.5678, g2 = −1.4508, g3 = 0.6799,
g4 = 0.0791, and g5 = 0.0791. The eigenvectors for this case
are

|E (0)〉 = −0.039 095 68|01〉 + 0.999 235 47|10〉,
|E (1)〉 = |00〉,
|E (2)〉 = 0.999 235 47|01〉 + 0.039 095 68|10〉,
|E (3)〉 = |11〉, (25)

and the eigenvalues

α(0) = 0.144 210 33, α(1) = 2.6458,

α(2) = 4.193 789 67, α(3) = 4.4118, (26)

PCF PCF

FIG. 9. Histogram for mean fidelity without (left panel) and with
optimization (right panel) for 100 different U (θ, φ, λ), for the opti-
mization of learning speed.

respectively. If we choose r = 0.9 and the convergence condi-
tion is w < 0.1, we need at least 21 single-shot measurements,
while for three eigenvectors (the fourth one if orthogonal to
the others) we need at least 63 single-shot measurements.
However, in this case, the mean iteration is 65 without op-
timization, which means that the uniform distribution is the
optimal one.

We need to mention that our ARQE algorithm is sensitive
to the number of different eigenvalues, therefore for a degen-
erate case the algorithm will be faster, but, as the degenerate
space defines an eigensubspace instead of a set of eigenvec-
tors, the result is not unique.

Finally, we highlight that in this paper we do not focus
on the implementation of the evolution UE , which in many
platforms can be nontrivial. Our ARQE algorithm mainly
focuses on the efficient extraction, with respect to the number
of single-shot measurements, of relevant information (eigen-
vectors) from a quantum evolution. Moreover, our proposal is
not limited to digital NISQ computers, it can be used in analog
or digital-analog quantum paradigms in order to implement
the evolution UE in a more natural way.

V. CONCLUSIONS

We have developed a random optimization protocol for
proposing bioinspired ARQE algorithms, based on a CDF
parametrization defining a random number generator. The
latter is responsible for the mutation process, allowing the
quantum individual to adapt, and is at the core of this class
of algorithms. We develop these ARQE methods according to
two different criteria, learning speed and learning accuracy.
In this sense, this paper contributes to the search for efficient
strategies for random algorithms, providing good approximate
solutions with fewer resources, with respect to other random
algorithms [38,39,49,50]. These have shown, in turn, im-
provements in the number of single-shot measurements when
compared to hybrid classical-quantum algorithms [50].

Moreover, our algorithm focuses on the eigenvector of
an operator the eigendecomposition of which is unknown.
This can be useful in the characterization of physical inter-
actions, as well as for fast approximations in optimization
algorithms reducing the searching space and therefore speed-
ing up the minimization of Hamiltonians. In addition, the
ARQE algorithm finds the eigenvectors independently of their
eigenenergy, being suitable for the estimation of high-energy
orbitals in quantum chemistry. On the other hand, as we
consider stochastic algorithms, the scalability of our pro-
posal requires a deep study in statistical mechanics which
is out of the scope of the present paper. Finally, we need to
highlight that the goal of this paper is to provide an easy
formulation to parametrize a random number generator, which
is the core of random algorithms like in Refs. [38,39,49,50].
This parametrization allows one to optimize the PDF of the
random variable, enhancing the performance of the mentioned
protocols as is shown by the numerical results.

We expect that this kind of effort contributes to ap-
proaching quantum advantage in available or improved NISQ
devices. It is noteworthy to mention that ARQE proto-
cols may also be used as preprocessing for sophisticated
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algorithms, including VQEs, quantum phase estimation meth-
ods, and DCQC.
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APPENDIX A: LEARNING SPEED DATA

The next table collects all the data for the 100 different
instances for the choice of {θ, φ, λ} and their Xin and Yin

for the optimal CDF. Also the table shows the number of
iterations needed for convergence using a uniform PDF (N)
and the optimal one (Nopt), as well as the fidelity for the
optimal (Fopt) and nonoptimal PDF (F ). In this case we are
optimizing the learning speed.

We note that in this case the fidelity obtained with the
optimal PDF is almost the same as without optimization be-
cause we are not optimizing the accuracy of the result, but the
number of iterations is reduced by more than 20% on average.

Learning speed histogram

In Fig. 9, we summarize the data obtained in Table I. The
left panel shows the data without the optimal PDF, and the

TABLE I. The data for learning speed optimization.

θ φ λ Xin Yin N Nopt F Fopt

1 2.83651 2.51483 5.79311 −0.352607301, −9.4996[−05] 1.65031947[−21], 0.499956565 84 61 0.98860 0.98812
2 2.60239 2.91385 1.94757 −0.36580222, −0.25487967 0.01084567, 0.18360378 83 61 0.98875 0.98615
3 1.62294 2.66070 0.16163 −0.64338053, −0.46788155 0.18541396, 0.19697403 75 63 0.98722 0.98714
4 2.29195 1.76471 1.33492 −0.40441636, −0.01719112 0.00343645, 0.49993767 79 61 0.98787 0.98714
5 2.42279 3.18159 5.57723 −0.50313864, −0.03521012 0.04263622, 0.33996168 85 68 0.98565 0.98659
6 2.07221 2.36239 5.79011 −0.419110756, −0.261993043 2.76648[−06], 0.256172562 71 59 0.98885 0.98613
7 2.06019 1.67036 2.73084 −0.302222205, −0.278906844 −1.01643954[−20], 0.234360342 65 57 0.98565 0.98714
8 2.96621 2.51154 2.51168 −0.473367622, −0.413235912 −5.55111512[−21], 0.487328526 88 35 0.98883 0.99666
9 2.26002 1.81584 4.45387 −0.55791953, −0.0460368707 2.85695[−05], 0.475565246 71 61 0.98673 0.98455
10 1.35691 0.61534 5.02339 −0.282913602, −0.0557603837 0.000208365485, 0.5 87 59 0.98860 0.98595
11 2.52209 1.73075 0.40260 −0.23743752, −0.16350079 0.00959416, 0.32915802 83 61 0.98896 0.98652
12 2.74583 2.56126 3.80340 −0.51353766, −0.0883247645 1.03362794[−21], 0.411686847 82 64 0.98887 0.98725
13 3.10688 2.83284 5.32182 −0.46327894, −0.151392808 8.9073[−05], 0.333453602 90 65 0.98894 0.98815
14 1.95288 4.53352 3.46380 −0.433075568, −0.135160185 0.000326574362, 0.473647838 71 56 0.98534 0.98521
15 2.87028 1.87002 3.94885 −0.21353527, −0.0947253 0.11645518, 0.49489148 88 66 0.98923 0.98786
16 2.15739 3.07773 5.71602 −0.25089681, −0.08538334 0.00192315, 0.46304837 78 61 0.98881 0.98542
17 2.79398 5.42806 6.24226 −0.307971979, −0.00695713502 0.000188672339, 0.499968525 86 60 0.98941 0.98679
18 1.78857 0.76770 2.56039 −0.520485426, −0.146095907 2.08166817[−20], 0.374574699 71 61 0.98826 0.98721
19 2.68895 0.81678 2.57334 −0.468694228, −1[−10] 8.30025[−05], 0.5 89 63 0.98873 0.98800
20 2.50068 1.42982 5.42760 −0.564136098, −0.175077687 −2.70483796[−21], 0.374246631 82 66 0.98733 0.98744
21 2.38126 1.40436 5.64973 −0.406232817, −9.85128[−05] −5.55111512[−21], 0.5 79 59 0.98672 0.98627
22 2.14670 1.98890 5.87210 −0.364938465, −0.120608727 0.000128319093, 0.435746907 75 58 0.98755 0.98407
23 2.76371 5.67223 5.18676 −0.41536678, −0.0460577 0.00844998, 0.49991171 87 62 0.98898 0.98857
24 2.35484 2.12405 5.77071 −0.2572922, −0.224169 0.01555949, 0.43364061 83 61 0.98793 0.98660
25 2.14131 3.88017 4.43203 −0.929939457, −0.369182991 −9.7584383[−17], 0.0000850766777 76 60 0.98763 0.98572
26 2.70824 1.78139 4.29155 −0.32973799, −0.13942659 0.13863571, 0.41938758 84 62 0.98851 0.98509
27 1.97566 2.68021 0.50074 −0.383118824, −2[−10] −8.14579432[−20], 0.499902518 76 61 0.98894 0.98525
28 1.73206 0.07675 2.44859 −0.388221058, −0.0573922577 −5.93648842[−21], 0.477696285 70 54 0.98636 0.98677
29 3.11359 2.04632 4.96774 −0.29776454, −0.22670669 0.00052851, 0.31971397 90 59 0.98862 0.98815
30 2.20927 3.00257 3.56097 −0.424833383, −0.284910373 −2.74925531[−21], 0.18220541 74 57 0.98420 0.98325
31 2.12776 6.08943 4.49468 −0.845467863, −1[−10] 6.77626358[−20], 0.496124243 78 68 0.98737 0.98766
32 2.85530 4.67939 4.28628 −0.337961514, −0.0986680445 0.000138723458, 0.5 86 61 0.98848 0.98806
33 2.41524 3.79065 3.00641 −0.432054855, −0.403254422 4.536599[−05], 0.242284549 77 64 0.98751 0.98602
34 2.93550 5.17916 4.46644 −0.34218794, −0.1422061 0.0039324, 0.24517162 84 62 0.98941 0.98724
35 2.69760 4.06237 2.82939 −0.618683055, −0.390404886 −6.19274316[−21], 6936589[−05] 87 61 0.98868 0.98717
36 2.26660 4.60415 4.39647 −0.45970215, −0.13173758 0.00082242, 0.42017257 80 63 0.98841 0.98717
37 2.23500 1.56288 2.13387 −0.45002646, −0.00158542 0.00091409, 0.49977423 79 60 0.98897 0.98729
38 2.77113 4.38132 1.28333 −0.613252871, −0.317785931 6.20192605[−21], 0.0110331927 81 61 0.98847 0.98718
39 2.88243 5.35496 0.00254 −0.428712027, −9.99999034[−11] 2.42861287[−21], 0.5 85 61 0.98904 0.98841
40 2.37142 3.14858 1.06018 −0.499436305, −0.000161631827 3.432516[−05], 0.393702916 80 65 0.98779 0.98525
41 2.21118 4.30358 5.56859 −0.39081709, −0.24157334 0.0050181, 0.19390617 77 59 0.98820 0.98798
42 2.76569 4.78934 3.68815 −0.27655431, −0.09309335 0.05960735, 0.41938602 88 66 0.98993 0.98751
43 2.44340 5.86060 0.66880 −0.78475823, −0.49585084 0, 0.05258665 81 65 0.98731 0.98699
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TABLE I. (Continued.)

θ φ λ Xin Yin N Nopt F Fopt

44 2.34349 5.17034 3.42800 −0.99856133, −0.50502313 0.00258655, 0.00518738 80 62 0.98899 0.98745
45 2.89725 3.25978 2.46404 −0.387278318, −3.44764[−06] −5.58731656[−19], 0.5 88 59 0.98871 0.98685
46 2.22109 3.17582 4.57342 −0.500541647, −0.244572891 −7.09658898[−21], 0.097607618 76 60 0.98709 0.98540
47 2.12925 5.74234 4.16431 −0.771209557, −0.511318543 6.77593[−05], 0.011359187 78 61 0.98965 0.98821
48 2.04236 4.02405 4.75088 −0.36012526, −0.08207992 0.00086559, 0.5 77 59 0.98810 0.98672
49 2.84364 3.51744 2.31714 −0.491466218, −0.210036697 1.15012[−05] 0.15350186 87 62 0.98917 0.98769
50 2.82916 1.62803 2.14790 −0.64864277, −0.24673651 0.00116572, 0.2122708 87 66 0.98852 0.98784
51 2.89071 3.02084 4.21549 −0.546182131, −0.253262929 8.822617[−05], 0.132792954 88 61 0.98970 0.98744
52 2.46587 2.72146 4.64330 −0.297280218, −2[−10] 9.43813[−05], 0.5 84 61 0.98733 0.98507
53 2.08611 1.21178 0.73849 −0.4268411, −0.19888518 0, 0.5 76 59 0.98655 0.98704
54 2.32228 2.97413 0.49990 −0.40492888, −0.02533541 0.03269568, 0.49191016 80 63 0.98892 0.98833
55 2.58994 5.10622 0.32334 −0.39498385, −0.00474822 0.00495389, 0.49998633 85 61 0.98805 0.98648
56 3.12728 2.66350 0.39019 −0.326699117, −0.0739915233 −9.20043811[−22], 0.339481137 87 65 0.98958 0.98674
57 2.47000 5.43223 0.54154 −0.482205587, −7.549212[−05] −5.0491846[−18], 0.5 80 60 0.98714 0.98682
58 2.72399 3.71018 6.01040 −0.303331314, −0.150786279 1.92493278[−20], 0.499955936 84 60 0.98957 0.98678
59 2.90324 4.67714 1.73488 −0.625136304, −0.281968253 5.55111512[−21], 0.00316742482 90 65 0.98831 0.98649
60 2.99424 4.13582 4.91289 −0.560501634, −0.119668925 3.575767[−05], 0.360405124 88 65 0.98958 0.98844
61 2.04922 5.46014 5.29590 −0.639314505, −0.411878255 2.87362[−05], 0.0798711858 74 61 0.98676 0.98593
62 2.41078 2.27029 2.80876 −0.385793183, −0.0907787454 2.74816[−05], 0.499943768 81 60 0.98786 0.98726
63 2.21419 3.89046 5.83689 −0.317419452, −0.224085882 3.83378[−06], 0.0831143443 75 63 0.98874 0.98588
64 2.94148 1.41033 4.49399 −0.270611167, −0.212768941 1.12237808[−20], 0.478865876 84 52 0.98873 0.98986
65 2.15569 3.79110 0.80333 −0.658249637, −0.0313312003 1.27054942[−21], 0.367934754 76 62 0.98641 0.98578
66 2.12855 6.09186 5.37105 −0.344879199, −0.273737253 3.83749[−05], 0.431750646 75 56 0.98511 0.98549
67 2.46317 5.92169 0.92723 −0.9999999999, −0.350759059 −5.20901191[−20], 0.000227563952 82 60 0.98751 0.98583
68 2.57193 3.08012 2.47826 −0.30641164, −0.23576931 0.00577656, 0.29877037 82 58 0.98741 0.98741
69 2.96948 0.51671 4.13995 −0.969678914, −0.318876434 5.55111512[−21], 0.00696480632 87 62 0.98854 0.98628
70 2.70184 0.12106 2.01037 −0.409739807, −0.0117086249 2.22044605[−20], 0.498682579 83 59 0.98916 0.98827
71 2.66267 0.41965 3.55148 −0.33466489, −0.01850706 0.04845566, 0.49860204 84 63 0.98930 0.98762
72 2.98978 1.38898 1.96907 −0.40022605, −1[−10] −6.16297582[−33], 0.499910998 86 66 0.98937 0.98676
73 2.75605 3.05189 4.90998 −0.75059603, −1[−10] 2.02187991[−21], 0.442531917 87 66 0.98894 0.98796
74 2.91441 4.72570 0.86171 −0.45636805, −0.07078021 0.0083545, 0.43573367 86 63 0.98928 0.98744
75 2.27941 5.09299 3.50890 −0.31793731, −0.13291007 0.00156619, 0.46931166 76 57 0.98831 0.98695
76 2.72950 3.56458 0.87768 −0.234274471, −0.221418761 6.227788[−05], 0.499907965 87 53 0.98819 0.98787
77 2.76295 5.11002 0.06402 −0.282738656, −0.1626622 5.0062[−05], 0.32528278 85 61 0.98875 0.98703
78 2.72094 1.39060 3.53269 −0.423759495, −0.310603864 9.50142[−05], 0.113009692 87 62 0.98924 0.98794
79 2.99682 3.00681 2.64991 −0.231924605, −0.177429066 −2.63787115[−20], 0.5 87 53 0.98861 0.98860
80 2.86026 4.39329 3.54436 −0.582593075, −0.362445833 4.50945[−06], 0.00342749573 83 61 0.98938 0.98795
81 2.39940 0.21368 1.29938 −0.32610197, −0.268081307 1.29557[−05], 0.5 82 64 0.98822 0.98711
82 1.89477 2.81396 0.23890 −0.34113826, −0.04654715 0.02214931, 0.49999074 75 57 0.98761 0.98719
83 2.18455 3.97272 1.39291 −0.283828395, −0.201691582 0.00021136743, 0.362781599 80 59 0.98474 0.98371
84 2.49180 2.58583 5.14075 −0.653333749, −0.383343467 1.56079[−05], 0.0658074559 81 63 0.98895 0.98740
85 2.59845 2.37573 3.12417 −0.621529941, −0.56172392 0.000137961341, 0.00064905387 84 66 0.98824 0.98825
86 2.60883 6.17957 2.03449 −0.33353985, −0.00353956 0.00062256, 0.49998387 85 59 0.98831 0.98776
87 2.85977 3.13459 4.87675 −0.735734897, −0.521398633 −2.84750996[−20], 0.0000855691489 83 63 0.98925 0.98889
88 3.05267 2.09009 0.15869 −0.439726034, −0.276376103 8.36074[−05], 0.323169545 88 66 0.98953 0.98892
89 2.65536 1.53336 2.01915 −0.5956152, −0.1775187 0.00273495, 0.26232643 83 64 0.98950 0.98805
90 2.42194 5.35202 1.63601 −0.713680279, −0.32358958 −2.11556797[−20], 0.0460521672 82 61 0.98628 0.98475
91 2.16767 1.66413 1.52262 −0.38479997, −0.174828392 1.11022302[−20], 0.428639597 80 60 0.98895 0.98738
92 2.98966 3.05187 1.47806 −0.42503145, −0.1299089 0.0034686, 0.33280943 86 63 0.98810 0.98760
93 2.80563 4.43216 0.93327 −0.467989285, −9.99999736[−11] 1.77245422[−21], 0.499900008 88 64 0.98872 0.98726
94 2.76116 3.67330 3.58557 −0.483856094, −6.68692[−05] −5.18797705[−18], 0.49997342 88 62 0.98863 0.98729
95 2.86817 4.82626 0.79992 −0.45313733, −2[−10] 3.69508592[−19], 0.499900763 86 65 0.98895 0.98641
96 3.10749 6.05200 0.55580 −0.33922282, −0.0857602356 8.77796[−05], 0.456862679 89 59 0.98866 0.98790
97 2.52530 1.56729 5.60700 −0.32663141, −0.02261459 0.00403472, 0.5 81 63 0.98761 0.98575
98 2.61797 5.00611 4.61394 −0.32243556, −0.12939632 0.00912948, 0.43418299 84 62 0.98958 0.98806
99 2.53796 3.96390 1.80047 −0.26281421, −0.16513112 0.0335583, 0.49467932 78 61 0.98766 0.98604
100 2.31079 5.94527 1.46166 −0.50568839, −0.1482959 0.00892103, 0.45501687 78 63 0.98772 0.98645
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TABLE II. Data for learning accuracy.

θ φ λ Xin Yin N F Fopt

1 2.83651 2.51483 5.79311 −0.22658129, −0.02628605 6.46642309[−22], 0.499681951 80 0.95489 0.96506
2 2.60239 2.91385 1.94757 −0.38593267, −0.06560765 4.99435[−05], 0.498704474 80 0.95075 0.97406
3 1.62294 2.66070 0.16163 −0.602975987, −1[−10] 0.01540395, 0.49991607 80 0.97004 0.97565
4 2.29195 1.76471 1.33492 −0.52017218, −0.33360453 3.87541[−05], 0.211416718 80 0.95621 0.97061
5 2.42279 3.18159 5.57723 −0.35962401, −0.07388651 0.02790605, 0.5 80 0.95731 0.97164
6 2.07221 2.36239 5.79011 −0.78203655, −0.29764012 −1.28986258[−20], 0.0923301799 80 0.95675 0.96929
7 2.06019 1.67036 2.73084 −0.37643844, −0.01952776 4.5851[−06], 0.499960074 80 0.96556 0.97080
8 2.96621 2.51154 2.51168 −0.98231875, −0.50135792 0.00018449, 0.00037358 80 0.94750 0.97031
9 2.26002 1.81584 4.45387 −0.98949422, −0.5671099 0.01415337, 0.03809302 80 0.95098 0.96492
10 1.35691 0.61534 5.02339 −0.29599157, −0.57327287 0.31984894, 0.4923946 80 0.93653 0.94413
11 2.87028 1.87002 3.94885 −0.45664744, −0.29318509 0.0095358, 0.05159221 80 0.94830 0.96723
12 2.15739 3.07773 5.71602 −0.42998516, −0.24883537 0.13140672, 0.29338095 80 0.95490 0.97120
13 2.52209 1.73075 0.40260 −0.31623152, −0.14464535 0.01684554, 0.33745235 80 0.95596 0.97104
14 2.74583 2.56126 3.80340 −0.50005984, −0.12676685 0.00346618, 0.21540484 80 0.95053 0.96758
15 3.10688 2.83284 5.32182 −0.264065269, −9.999[−11] 0, 0.5 80 0.95043 0.96972
16 1.95288 4.53352 3.46380 −0.388548, −0.17632076 0.01503028, 0.38622965 80 0.96176 0.97168
17 1.73206 0.07675 2.44859 −0.28327408, −0.26619532 0.09564394, 0.35047785 80 0.96741 0.97520
18 2.20927 3.00257 3.56097 −0.32950066, −0.26883062 0.02256158, 0.28228575 80 0.95314 0.96663
19 2.79398 5.42806 6.24226 −0.95830604, −0.38431026 0.00661281, 0.00880922 80 0.95065 0.97053
20 2.38126 1.40436 5.64973 −0.9554078, −0.43829696 0.00012443, 0.02216138 80 0.95351 0.96658
21 2.50068 1.42982 5.42760 −0.50448542, −0.10994467 −6.77626358[−21], 0.49995152 80 0.95049 0.96533
22 1.78857 0.76770 2.56039 −0.0624920122, −3.6113[−05] 0.37509291, 0.5 80 0.96327 0.97092
23 2.68895 0.81678 2.57334 −0.251802237, −1[−10] 0.07207826, 0.5 80 0.95488 0.96392
24 2.76371 5.67223 5.18676 −0.20446587, −0.19910618 −5.55111512[−21], 0.499977945 80 0.95454 0.97839
25 2.35484 2.12405 5.77071 −0.79739122, −0.43221379 0.00517663, 0.06708963 80 0.95573 0.96874
26 2.14670 1.98890 5.87210 −0.22988712, −0.16913267 0.000041023229, 0.5 80 0.95506 0.97596
27 2.14131 3.88017 4.43203 −0.99994708, −0.50247325 −5.36055763[−20], 0.00700035073 80 0.96013 0.97200
28 2.70824 1.78139 4.29155 −0.26922985, −0.07666227 0.0000662211987, 0.5 80 0.94925 0.97055
29 3.11359 2.04632 4.96774 −0.49732798, −0.01685642 0.0000174612887, 0.287787822 80 0.95234 0.96586
30 1.97566 2.68021 0.50074 −0.698348786, −8.94312[−05] 1.96800135[−20], 0.347860102 80 0.96010 0.97122
31 2.12776 6.08943 4.49468 −0.6823936, −0.43406705 −1.49253285[−20], 8.2134[−05] 80 0.96315 0.97325
32 2.85530 4.67939 4.28628 −0.91867228, −0.30253779 1.552483[−05],6.98294[−05] 80 0.95623 0.97096
33 2.41524 3.79065 3.00641 −0.37244503, −0.34949234 0.00355155, 0.04073554 80 0.95088 0.96893
34 2.93550 5.17916 4.46644 −0.65012892, −0.00071334 9.920904[−05], 0.499348973 80 0.95534 0.96503
35 2.69760 4.06237 2.82939 −0.63380379, −0.49980422 2.02733247[−21], 0.0145546481 80 0.95429 0.96918
36 2.26660 4.60415 4.39647 −0.113053973, −2[−10] 0.36858133, 0.4999619 80 0.95881 0.96739
37 2.23500 1.56288 2.13387 −0.45531637, −0.00497668 0.00062212, 0.49991192 80 0.95726 0.97510
38 2.77113 4.38132 1.28333 −0.24967158, −0.15935152 −1.11022302[−20], 0.328961357 80 0.95507 0.97155
39 2.88243 5.35496 0.00254 −0.427704684, −2[−10] 0, 0.49990047 80 0.94829 0.96905
40 2.37142 3.14858 1.06018 −0.4651497, −0.126999 0.000245935043, 0.454376543 80 0.95579 0.97436
41 2.21118 4.30358 5.56859 −0.46724996, −0.14351635 9.56351687[−21], 0.387786874 80 0.96100 0.97322
42 2.76569 4.78934 3.68815 −0.716947108, −9.9999[−11] 0.0000781179353, 0.38177391 80 0.94966 0.96441
43 2.44340 5.86060 0.66880 −0.04856462, −0.01146986 0.39178085, 0.5 80 0.95449 0.96311
44 2.34349 5.17034 3.42800 −0.50962221, −0.10198462 −2.44669142[−21], 0.321459154 80 0.95993 0.97187
45 2.89725 3.25978 2.46404 −0.24073117, −0.14868635 0.23972925, 0.48865284 80 0.95361 0.96456
46 2.22109 3.17582 4.57342 −0.62021665, −0.40811444 −4.32608973[−22], 0.13008986 80 0.96011 0.96776
47 2.12925 5.74234 4.16431 −0.9871146, −0.67280069 2.0287[−05], 7.73143[−05] 80 0.95991 0.96988
48 2.04236 4.02405 4.75088 −0.68862154, −0.01168985 6.60527[−05], 0.499981325 80 0.96238 0.96944
49 2.84364 3.51744 2.31714 −0.32325424, −0.14378023 3.83964[−05], 0.499543956 80 0.94615 0.96817
50 2.82916 1.62803 2.14790 −0.37096935, −0.00577171 −1.47512731[−21], 0.5 80 0.95368 0.97311
51 2.89071 3.02084 4.21549 −0.29921219, −0.00906005 −1.35525272[-20], 0.499257551 80 0.95582 0.97193
52 2.46587 2.72146 4.64330 −0.36316915, −0.17747838 0.04782131, 0.32694109 80 0.95432 0.96942
53 2.08611 1.21178 0.73849 −0.499964682, −9.99999451[−11] −1.79986232[−22], 0.499906444 80 0.96474 0.96976
54 2.32228 2.97413 0.49990 −0.22795569, −0.28454808 0.43776391, 0.06221192 80 0.96224 0.97109
55 2.58994 5.10622 0.32334 −0.31939401, −0.0295772 0.00628181, 0.5 80 0.95194 0.97293
56 3.12728 2.66350 0.39019 −0.632374964, −6.1994[−05] −1.18584613[−20], 0.49994338 80 0.95171 0.96751
57 2.47000 5.43223 0.54154 −0.50496711, −0.48283996 1.25185446[−32], 9.86319[−05] 80 0.95510 0.96737
58 2.72399 3.71018 6.01040 −0.16010373, −0.1469441 0.06064396, 0.5 80 0.95385 0.96758
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TABLE II. (Continued.)

θ φ λ Xin Yin N F Fopt

59 2.90324 4.67714 1.73488 −0.28429079, −0.20231022 0.00179217, 0.47709926 80 0.95081 0.97573
60 2.99424 4.13582 4.91289 −0.02108512, −0.01182204 0.4291328, 0.49965538 80 0.95090 0.96142
61 2.41078 2.27029 2.80876 −0.52971722, −2[−10] 0, 0.4999877 80 0.95496 0.96923
62 2.04922 5.46014 5.29590 −0.629668181, −1[−10] 0.00678738, 0.49976816 80 0.95974 0.97135
63 2.21419 3.89046 5.83689 −0.47849604, −0.23786693 0.01470454, 0.1980091 80 0.96645 0.97392
64 2.94148 1.41033 4.49399 −0.91405141, −0.37960688 1.23144[−05], 0.015310517 80 0.95117 0.97334
65 2.15569 3.79110 0.80333 −0.4722672, −0.0008256 2.7606[−05], 0.490354894 80 0.95660 0.96973
66 2.12855 6.09186 5.37105 −0.68386331, −0.02070827 6.78906[−05], 0.445970143 80 0.95647 0.96928
67 2.46317 5.92169 0.92723 −0.40536361, −0.06195646 −9.71500658[−17], 0.5 80 0.95483 0.97081
68 2.57193 3.08012 2.47826 −0.20387137, −0.15862918 3.9381[−05], 0.498799416 81 0.95168 0.97153
69 2.96948 0.51671 4.13995 −0.3304364, −0.25845847 0.16309126, 0.41210785 80 0.95115 0.96170
70 2.70184 0.12106 2.01037 −0.38296615, −0.06624632 9.13122[−05], 0.499907461 80 0.95470 0.97134
71 2.66267 0.41965 3.55148 −0.586690017, −0.000372t 0.0002436, 0.499949076 80 0.95525 0.96859
72 2.98978 1.38898 1.96907 −0.23519674, −0.21290984 0.12852131, 0.30134054 80 0.94986 0.96740
73 2.27941 5.09299 3.50890 −0.23220527, −0.19757706 0.02101817, 0.44517371 80 0.95617 0.97342
74 2.91441 4.72570 0.86171 −0.48678714, −0.00094883 −3.74034123[−22], 0.5 80 0.95442 0.96971
75 2.75605 3.05189 4.90998 −0.81900705, −0.33719561 0.00041039, 0.01351214 80 0.94987 0.97077
76 2.72950 3.56458 0.87768 −0.40243751, −0.00236464 4.45289[−05], 0.499937424 80 0.95567 0.97289
77 2.76295 5.11002 0.06402 −0.29332909, −0.1951465 0.0212047, 0.39766611 80 0.95471 0.97428
78 2.72094 1.39060 3.53269 −0.82801909, −0.26676811 1.5504[−05], 0.201188085 80 0.95052 0.96384
79 2.99682 3.00681 2.64991 −0.70675606, −0.01714809 3.9807[−05], 0.368567782 80 0.95371 0.96678
80 2.86026 4.39329 3.54436 −0.372577823, −1[−10] 6.98153[−08], 0.5 80 0.94878 0.97406
81 2.39940 0.21368 1.29938 −0.45744, −0.1669 −2.8281[−20], 0.38364 80 0.95497 0.97135
82 1.89477 2.81396 0.23890 −0.510694, −0.092163 −1.09101[−19], 0.5 80 0.96706 0.97563
83 2.18455 3.97272 1.39291 −0.508156, −1[−10] 0.00456, 0.49991 80 0.95857 0.96752
84 2.49180 2.58583 5.14075 −0.99610258, −0.34906797 7.73614[−06], 6.6692[−05] 80 0.95209 0.97350
85 2.59845 2.37573 3.12417 −0.441353237, −6.2831[−05] 0.01563258, 0.5 80 0.95124 0.97010
86 2.60883 6.17957 2.03449 −0.21592729, −0.17875946 4.21849[−05], 0.312400669 80 0.95445 0.97418
87 2.85977 3.13459 4.87675 −0.950751522, −1[−10] 1.22478392[−18], 0.499001011 80 0.95092 0.96456
88 3.05267 2.09009 0.15869 −0.553028459, −1[−10] 1.41296829[−19], 0.409878614 80 0.94655 0.96793
89 2.65536 1.53336 2.01915 −0.3610569, −0.10599245 0.00771934, 0.49831975 80 0.95151 0.97561
90 2.42194 5.35202 1.63601 −0.35453141, −0.32129783 0.12163206, 0.13424023 80 0.95596 0.96609
91 2.16767 1.66413 1.52262 −0.98601261, −0.50422059 −9.48289521[−21], 6.12274[−05] 80 0.96180 0.97663
92 2.98966 3.05187 1.47806 −0.529954412, −1.06161[−05] 0.00924164, 0.49999361 80 0.95481 0.96844
93 2.80563 4.43216 0.93327 −0.63947564, −0.01072315 4.78721[−05], 0.461841234 80 0.95126 0.96677
94 2.76116 3.67330 3.58557 −0.28274626, −0.0566703 −3.38813179[−20], 0.499436234 80 0.95401 0.97358
95 2.86817 4.82626 0.79992 −0.3661714, −0.32752026 0.11331283, 0.12163038 80 0.95044 0.96680
96 3.10749 6.05200 0.55580 −0.30965446, −0.24969456 0.00307031, 0.15108169 80 0.95483 0.97068
97 2.52530 1.56729 5.60700 −0.625100171, −2[−10] 5.55111511[−21], 0.4999 80 0.95207 0.96550
98 2.61797 5.00611 4.61394 −0.334751199, −1[−10] 0.03123503, 0.5 80 0.95578 0.97218
99 2.53796 3.96390 1.80047 −0.998360446, −2[−10] 1.21919[−05], 0.48416587 80 0.95285 0.96310
100 2.31079 5.94527 1.46166 −0.44647969, −0.27303986 −3.88578059[−20], 0.150260118 80 0.95846 0.97214

right panel shows the data with the optimal PDF. We note
that both histograms are basically the same, which means that
the learning speed optimization will not affect the fidelity or
accuracy of the final result.

APPENDIX B: LEARNING ACCURACY DATA

The next table collects all the data for the 100 different
instances for the choice of {θ, φ, λ} and their Xin and Yin

for the optimal CDF. Also the table shows the fidelity for
the optimal (Fopt) and nonoptimal PDF (F ) as well as the
number of iterations used (N). In this case we are optimizing
the learning accuracy.

We can see in this case that the fidelity obtained with
optimization increases with respect to the fidelity obtained by
the use of a uniform PDF, which means that the optimization
of the learning accuracy works fine.
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