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Abstract—This paper presents the design of a power-scalable
digital predistorter (DPD) for transmitter architectures. The
target is to accomplish the joint compensation of impairments
due to the I/Q modulator and nonlinearities associated with the
power amplifier (PA), and procure a maintained linearization
performance in a range of average working operation levels. The
identification method for the linearizer parameters enriches the
standard least-squares procedure with a synergistic integration
with sparsity-based model pruning strategies. The method has
been tested with a general complex-valued Volterra model applied
to the linearization of two communications transmitters operating
at 3.6 GHz. The linearizers designed for the two transmitters
effectively provide the joint compensation of the nonlinear
behavior. In addition to their good performance in terms of
adjacent channel power ratio, the DPDs exhibit a wide range
of power-varying adaptation.

Index Terms—Behavioral modeling, Volterra series, power
amplifiers, nonlinear model identification, digital predistortion.

I. INTRODUCTION

The evident interest of the current published work about the
linearization of wireless communications transmitters reveals
the convenience of adequate behavioral models for the design
of digital predistorters (DPD). The conventional baseband
Volterra models, such as the full Volterra (FV) [1], the memory
polynomial (MP) [2], or the generalized MP (GMP) [3],
are specific for power amplifiers (PA), and have insufficient
accuracy to represent more general nonlinear systems with
complex-valued input signals.

To comply with the objective of linearizing a transmitter,
designers address several challenging issues. In particular,
the joint compensation of the I/Q-modulator and the PA
impairments [4]–[7], and the problem of concurrent dual-band
PAs [8] have been subject of concern in the last years. Another
important goal is the design of a DPD that is capable of
following the changes in the PA operating conditions. This
has been performed by updating the DPD parameters in order
to follow the power level changes [9]–[10].

Joint compensation of the I/Q modulator impairments and
the PA nonlinearities are addressed in [5] by using a structure
composed of a MP model dependent on the signal x(k) and
a filter, augmented with a similar second branch dependent
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on the image signal x∗(k). A similar approach is presented
in [6] for the case of a multiple-input multiple-output (MIMO)
transmitter. The generalized twin-box model [7] incorporates
parallel-Hammerstein (PH)-based branches that ignore the out-
of-diagonal kernels and may contain non-significant diagonal
terms. In these approaches, some terms belonging to the GMP
or the FV models, which can be important, are not included.

In [9], a power-scalable DPD based on a two-box architec-
ture with a set of precalculated memoryless look-up table and
a MP function to compensate the memory effects is proposed.
The need of a power-adaptive DPD to compensate distortion
in level-variable conditions was solved in [10] by adjusting
the model parameters in accordance with the changes in the
input power level. The procedure introduces extended scaling
factors to track the varying signal power with an interpolation
approach. The model extraction in both proposals requires PA
measurements at multiple power levels and the number of
coefficients is fixed independently of the varying PA nonlinear
operation.

In this paper, we focus on a DPD design to linearize the
transmitter in a range of output power levels incorporating a
model with a complete set of parameters to jointly compensate
the I/Q modulator impairments and the PA nonlinearities.
The mathematical deduction of the general complex-valued
Volterra series (CVS) representation [11] is based on Wirtinger
calculus by considering the nonlinear system dependent on the
input x(k) and its complex-conjugate x∗(k), operating these
variables as real-valued. Then, the transmitter can be viewed as
a two-input system and analyzed using a double Volterra series
approach. Under the assumption of a Volterra representation,
the CVS model is able to describe the nonlinear behavior of
a wireless communications transmitter. The present proposal
requires signal acquisition at only a single power operating
point and the identified model is directly extended to a wide
range of power levels. The rise of the number of coefficients
in the CVS model makes necessary a suitable procedure
to identify the model parameters in an efficient and robust
manner, as in [12]–[13], where a technique for model reduction
using the sparse structure of Volterra kernels was introduced. A
thresholding procedure contributes to the model effectiveness
by reducing the number of coefficients as the system enters
into weakly nonlinear modes. In [14], the authors confirmed
the robustness of the procedure by verifying that the set of
parameters identified at a given power level are applicable
to the accurate estimation of the system output over a wide
dynamic range. Here, the proposed approach is applied to
the design of a DPD to accomplish the joint linearization of



2

transmitter I/Q modulator and PA impairments, under power-
varying conditions.

The next sections of this paper are organized as follows:
After this introduction, Section II presents the rationale for
the proposed identification method in regression models. First,
subsection II-A describes the framework of the CVS model
in the context of general discrete-time complex-valued non-
linear systems. Next, subsection II-B gives a detailed theo-
retical justification of the proposed identification procedure,
extending the material presented by the authors in [14], and
establishes the power-scalable law for the model parameters.
Subsection II-C reviews related works for the joint compensa-
tion of I/Q modulator and PA impairments. The application
of the proposed identification procedure to power-adaptive
transmitter linearization is covered in Section III. Two DPDs
are designed and their performance is experimentally charac-
terized: applied to a basic transmitter lacking pre-amplification
in subsection III-A and to a realistic transmitter incorporating
a preamplifier to increase the PA operation working level in
subsection III-B. The power-scalable characteristics of the lat-
ter are compared with a DPD based on [6] in subsection III-C.
The concluding remarks are summarized in Section IV.

II. DPD STRUCTURE AND IDENTIFICATION PROCEDURE

Compensation of transmitter RF impairments, originated
predominantly by I/Q imbalance and nonlinearities, is one
of the most important challenges for DPD designers. This
problem can be approached by following two different points
of view. The first approach is based on the knowledge of
how the different blocks are assembled inside the transmitter
(see Fig. 1a) and an approximate input-output representation
is deduced for the whole system. In this paper an alternative
perspective, where the predistorter is designed considering the
transmitter as a black box, is presented below. For comparison,
the first approach is discussed at the end of this section.

A. Proposed DPD Model for Joint Mitigation in Transmitters

In the context of Volterra series representation, any given
system with complex-valued input can be modeled by the CVS
model [11]. Viewed as a black box, the relationship for the
input and output complex envelopes, x(k) and y0(k), of the
DPD in a wireless communications system can be expressed
as

y0(k) = h0,0+

∞∑
n=1

{
n∑

m=0

Q∑
qn=0

Q∑
pm=0

hn−m,m(qn−m,pm)×

×
n−m∏
r=1

x(k − qr)

m∏
s=1

x∗(k − ps)

}
. (1)

The vector of delays are qn = [q1, q2, · · · , qn]T and pm,
defined in a similar way, with a maximum delay Q for all
indices. The product of the input signal samples is denoted as∏n

r=1 x(k−qr) = x(k−q1)x(k−q2) · · ·x(k−qn) and the same
notation is used for the product of the image samples x∗(k).
For m = 0 and m = n, hn,0(qn) and h0,n(pn) are standard
Volterra kernels and the products do not contain x∗(k − ps)
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Fig. 1. Acquisition model with additive noise (a) and signal segmentation
(b).

and x(k − qr), respectively. The factor hn−m,m(qn−m,pm)
is a Volterra kernel of order n dependent on the two kinds of
indices.

The CVS model (1) with h0,0 = 0 can be viewed
also as a linear combination of the Volterra regressors∏n−m

r=1 x(k − qr)
∏m

s=1 x
∗(k − ps). The M samples of the

input signal can be disposed to form the column vector x =
[x(0), x(1), · · · , x(M − 1)]T and, if the Volterra regressors
are likewise organized to construct the regressor vectors ξi,
the truncated version of (1) can be rewritten as

y0 =

NR∑
i=1

hiξi, (2)

where the ith regression coefficient hi comes from the Volterra
kernels arranged in an ordered-fashion, y0 is a vector with
the output samples disposed in the same way as x, and NR

is the number of regressor vectors of the model. Examples
of Volterra regressor vectors are ξ1 = x, corresponding to the
memoryless linear regressor, and ξi0 = [x(−q)|x(−q)|2, x(1−
q)|x(1−q)|2, · · · , x(M−1−q)|x(M−1−q)|2]T , correspond-
ing to the third-order memory polynomial regressor with a
delay q. The regressor vectors constitute a complete set in the
case of the CVS model. Although ξi are non-orthogonal, a
feasible recursive algorithm to estimate the NR coefficients of
(2) is the Orthogonal Matching Pursuit (OMP) [15].

The so-called observation matrix X and the coefficients
vector h are constructed by stacking all column vectors ξi
and the model coefficients hi, respectively. Therefore, (2) can
be expressed in a compact matrix form [3],[13].

B. Identification Procedure

In an experimental setup, the vector of the acquired sam-
ples, y, is contaminated by equipment distortion and noise.
Assuming an approximately distortionless setup, for instance
in laboratory conditions with high-performance equipment, the
schematic of the acquisition experiment can be modeled as in
Fig. 1. Therefore, the input-output relationship is

y = Xh + e, (3)
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with a zero-mean additive white Gaussian (AWGN) noise e,
stationary and complex-valued. The model parameters can be
identified by using a direct least-squares (LS) solution, given
by

ĥ =
(
XH X

)−1
XH y + w , (4)

where H represents the Hermitian transpose operation. The
difference between the estimated vector ĥ and the true vector h
is originated by the noise process w. Observe that the selection
of a model with lacking regressors is another important source
of identification error. For example, the FV and the GMP
representations, as particular cases of (1), are insufficient to
model a transmitter with impairments.

The general character of the CVS model provides a com-
plete set of regressors with a high number of coefficients
and, at the same time, an associated suitability for a pruning
procedure without a presumption on the significant regressors.
The application of the Bayesian information criterion (BIC)
was proposed in [13], [14], [16] to select the significant
parameters. Whereas [16] is based on a simulated annealing
algorithm with all the possible variants of the model, the
approach in [13] is based on the application of the OMP
algorithm to represent the PA output as its projection onto the
span of Volterra regressors, and on the BIC rule to discard the
irrelevant coefficients, maintaining only the active regressors.
It is worth noticing that while LS identification is affected
by regressor correlation, the OMP algorithm guarantees the
recovery of the exact value of the coefficients in a noiseless
environment in a given number of iterations [17].

The alternative procedure applied in [14] is mainly a param-
eters detection based on statistical hypotheses testing. Referred
to Fig. 1b), the entire set of acquired samples is divided in
N segments. Focusing on the ith coefficient of the estimated
vector ĥ, each segment returns an independent measurement
of this particular coefficient. We can define the vector h̃i

constructed with the N different realizations of this random
variable to decide whether or not the ith coefficient has to be
incorporated as an active parameter of the model. We use the
Neyman-Pearson (NP) approach to make the decision, based
on two hypotheses [18]:
• The measurement is produced by noise,

H0: if h̃i = wi,

• The measurement is produced by the presence of a model
coefficient plus noise,

H1: if h̃i = hi + wi.

The probability density function under H1 is

p(h̃i;H1) =
1

πNσ2N
e−

1
σ2

(h̃i−hi)H(h̃i−hi) , (5)

where σ2 is the variance of the complex-valued AWGN
wi. Likewise, the probability density function under H0 is
expressed as

p(h̃i;H0) =
1

πNσ2N
e−

1
σ2

h̃Hi h̃i . (6)

For a particular probability of erroneous measurement induced
by noise, the NP theorem states that the probability of true

detection is maximized if the detector decides the hypothesis
H1 when the likelihood ratio L(h̃i) exceeds a given threshold
γ, i.e.,

L(h̃i) =
p(h̃i;H1)

p(h̃i;H0)
> γ. (7)

Substituting (5) and (6) in the likelihood ratio and taking
lnL(h̃i), we obtain

lnL(h̃i) =
2

σ2
Re
(
hH
i h̃i

)
− 1

σ2
|hi|2 (8)

and the decision

Re(hH
i h̃i) = Re

(
N∑
r=1

h∗i (r)h̃i(r)

)
> γ ′ (9)

is equivalent to the likelihood ratio test (7). Under steady
conditions, any coefficient is an unknown constant hi(r) = hi,
with its estimator being the average value

hi ≈ ¯̃
hi =

1

N

N∑
r=1

h̃i(r). (10)

Operating with (9), we can decide H1 if

Re

(
¯̃
h∗i

1

N

N∑
r=1

h̃i(r)

)
= Re

(
¯̃
h∗i

¯̃
hi

)
= |¯̃hi|2 >

γ ′

N
. (11)

There is a trade off between the deficit of model coefficients
(if the threshold is high), and the inclusion of undesired noise
(if the threshold is chosen too low).

The proposed procedure is as follows. Once the set of
coefficients has been estimated by the OMP algorithm for each
segment of the acquired signal (see Fig. 1b), the average ¯̃

hi and
the hypothesis test (11) are computed for all coefficients. The
lower the threshold level, the more coefficients (regressors)
will be incorporated to the model and the BIC criterion is used
to decide the optimum number of regressors nc [13]. Due to
the sparse character of the Volterra kernels, many coefficients
can be discarded without a significant loss in accuracy.

In this paper, we express the BIC rule with its explicit
dependence on the normalized mean square error (NMSE).
If the NMSE is expressed in dB, the variance is given by

σ̂2
e =

(
1

M

M−1∑
m=0

|y(m)|2
)
× 10NMSE/10 (12)

and substituting in (23) of [13], the BIC rule becomes

nc0 = arg min
nc

{
NMSE +

nc
M

10 log(2M)
}
. (13)

This procedure, summarized in Table I, and that published
in [13], start with the OMP, a method that estimates the set
of coefficients by iteratively adding new components to the
coefficients vector. The difference is that in this work the
coefficients computed with several segments of the signal are
averaged and a further thresholding step is implemented to get
the sparse model structure.

According to the results in [14], the normalized coefficients
originated in the nonlinearities of the I/Q branches are not
dependent on level variations at the modulator output and the
coefficients associated to the FV regressors are normalized
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TABLE I
SUMMARY OF THE PROPOSED IDENTIFICATION PROCEDURE

1: Divide the input x(k) and measured output y(k) signal into N segments,
each with M samples.

2: Estimate the parameter vectors ĥ(r), r = 1, . . . , N using the OMP
algorithm with the same pre-defined NR number of components for all
models.

3: For all the CVS components, compute the average coefficients ¯̃
hi.

4: Sweep the thresholding level to apply the hypothesis test to all coeffi-
cients.

5: Take the thresholding level that optimizes the BIC rule.

according to the PA input level [13]. For example, if h(n)
∣∣
Pi0

is a FV nth-order normalized coefficient (n odd) for an input
signal with a power level Pi0 and this level changes to P =
A2Pi0 (A > 0, real-valued), the corresponding normalized
coefficients follow the relation

h(n)
∣∣
P

h(n)
∣∣
Pi0

=

(
1

A

)n

=

(
Pi0

P

)n/2

. (14)

Once the normalized parameters of the DPD have been com-
puted at a given input level, Pi0, they can be straightforwardly
scaled to adapt the coefficients to other level P . Odd-order
normalized parameters shared with the FV model follow an
exponential scaling with the average input power, so that the
magnitudes at Pi0 and P are related as:

h(n)
∣∣∣
P

= h(n)
∣∣∣
Pi0
· 10
−
n ·∆P (dB)

20 , (15)

where ∆P (dB) = P (dBm) − Pi0(dBm) and n is the
coefficient order. Those normalized coefficients not included
in the FV model (e.g., the image or the even-order parameters
associated with impairments of the I/Q modulator), are not
dependent on the power level. In that case, the way the DPD
is adapted to a decrement in power level is by excluding
parameters with values below a given threshold, and not
recalculating the coefficients [9], [10].

C. Preceding DPD Models for Joint Mitigation

In the previous procedure, the transmitter is viewed as
a black box and the CVS model is adopted for the DPD.
Another perspective is to assume the internal architecture of
the transmitter (Fig. 1a) and deduce the DPD structure to join
the mitigation of PA and I/Q-modulator impairments under
reasonable approximations [4]-[6]. In [4], the rationale is to
compensate the impairments in the reverse order that they
appear. Based on the knowledge of the ensemble arranged by
the modulator and the PA, a first MP structure is proposed
for the PA DPD and then the modulator compensation is
implemented with a widely linear (WL) model. This point
of view is further extended to a general FV model [5] and
to the augmented complex conjugate (ACC) model for joint
mitigation of distortion in MIMO transmitters [6]. The output
for the ACC model in a single-input single-output (SISO)
transmitter is written as

y(k) =

N∑
n=1

′
H̄n{x(k)}+

N∑
n=1

′
H̄cn{x∗(k)}+ h0, (16)

Fig. 2. Photograph of the measurement test bench. From left to right:
(back) power supply for the preamplifier, SMU200A on top of PA power
supply, PXA-N9030A; (front) preamplifier, Cree’s CGH40010 evaluation
board, attenuator.

where the prima symbols in the sums indicate that only odd
orders are considered,

H̄n{x} =

Q∑
q=0

hn(q)|x(k − q)|n−1x(k − q) (17)

and H̄cn{x∗(k)} is defined in the same form.
The two viewpoints discussed above have strengths and

weaknesses. When the transmitter composition is exploited,
the principal advantage is the achievement of a simpler a
priori structure for the DPD [6]. This favourable feature is
based on the assumption of the particular modulator model, in
this case a WL transformation. The WL supposition does not
consider the contribution of the nonlinearities in the modulator
baseband [19]-[20], but it is a good approximation in cases
where the modulator nonlinearity can be neglected. On the
other hand, making no assumptions about the internal architec-
ture of the transmitter, the CVS model gives a complete (and
huge) set of regressors. However, many of them are negligible
because of the inherent sparse characteristics of the DPD. If
the CVS representation is complemented with the compressed-
sensing technique described in Section II-B, the result is a
reduced model with only the indispensable number of active
coefficients.

III. DPD DESIGN AND EXPERIMENTAL PERFORMANCE

To illustrate the proposed method, the joint compensation
and linearization of two transmitters, with adaptable capability
in a wide dynamic range, is demonstrated.

A. Linearization of a Basic Transmitter

The first case of study is the basic transmitter modeled
in [14], referred to as TUT-1. The TUT-1 was arranged with
the I/Q modulator integrated in the commercial generator
SMU200A of Rohde & Schwarz, and a PA based on Cree’s
board for the evaluation of the power GaN HEMT CGH40010,
operated at a carrier frequency of 3.6 GHz. The test bench was
completed with the vector signal analyzer PXA-N9030A of
Agilent Technologies (see Fig. 2). Later on a DPD linearizer
for a more realistic transmitter (TUT-2) will be tested.
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Fig. 3. Adjacent channel power ratios of the output spectrum with (solid
lines) and without (dashed lines) DPD. First adjacent channel (+ marks) and
second adjacent channel (× marks). Basic transmitter TUT-1.

The probing signal was designed with an OFDM format and
15-MHz bandwidth, according to the LTE-downlink standard.
The input vector x containing over 300000 samples of the
complex envelope was uploaded into the generator and trans-
mitted with a peak power of about +30 dBm, corresponding to
a measured output average level of +19 dBm. Since the peak-
to-average power ratio (PAPR) level is 11 dB, the upper limit
to the transmitter power is fixed by the maximum modulator
peak level, about +15 dBm (+6 dBm of average power).
The samples of the output signal were gathered by averaging
300 acquisitions in the vector signal analyzer. Driven with
this signal, the TUT-1 serves as a first proof of concept
of the proposed linearization approach. To demonstrate the
DPD capability to compensate the nonlinerities as well as the
I/Q impairments, the settings of the modulator were config-
ured with a quadrature error of 1 deg. Whereas commercial
I/Q modulators show quadrature errors in the range of 1–3
deg [21]–[23], the choice of 1 deg was intended to show to
which extent a reduced error can have a significant impact on
the linearization capability of a DPD. The acquired baseband
samples were subsequently off-line postprocessed with Matlab
and used in a conventional indirect learning architecture to
obtain the DPD coefficients at a maximum average output
power of +20.8 dBm (+31.8 dBm of peak output power).

The model parameters were chosen to reduce the error
between y(k)/G, the measured output scaled with the target
gain of the linearized TUT-1, and x(k). The underlying CVS
structure was configured with thirteenth order, a maximum
delay Q = 3 for orders 1 to 5, and memoryless (ML) for
the higher orders, comprising 1370 coefficients. The OMP
algorithm was executed to provide the ordering of 200 coef-
ficients per segment. The synthesized DPD was composed of
22 normalized coefficients above a selected −68 dB threshold.
The results of the linearization produced by the DPD at the
output power of +20.8 dBm are plotted with filled circles
in Fig. 3, where an adjacent channel power ratio (ACPR) of
about −66 dB in the first adjacent channel is satisfactorily

Ouput level (dBm)
8 10 12 14 16 18 20 22

N
M

S
E

 (
dB

)

-42
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-33

-32

w/o DPD
with DPD

Fig. 4. Normalized mean-square error of the output signal without DPD
(dashed line) and with DPD (solid line). Basic transmitter TUT-1.

compared to the value of −46 dB obtained with the non-
linearized transmitter. A reduction of about 10 dB in ACPR
is also observed in the second adjacent channel. Likewise,
about 6 dB of NMSE reduction was achieved with the TUT-1
driven at the maximum level, as it is shown with filled marks
in Fig. 4.

The normalized coefficients of the DPD were extended at
other power levels following the explained procedure, and
those below the threshold were discarded. A second series of
measurements was then performed with the new predistorted
signals calculated according to the model adjusted at the
different output levels, yielding the ACPR displayed with solid
lines in Fig. 3. To have a reference of the DPD performance,
the ACPRs of the transmitter without DPD are also shown
(dashed lines), demonstrating a reduction over 21 dB in the
first adjacent channel at Po = +20.8 dBm. The DPD performs
in all the dynamic range, demonstrating values of ACPR1 and
ACPR2 better than −65 dB and −70 dB, respectively, without
any further adjustment of the coefficients. This capability is
also observed in the results of the NMSE displayed in Fig. 4
for the transmitter without DPD, in dashed line, and with DPD,
in solid line. NMSE levels of about −41 dB in a wide range
of operating powers demonstrate a flexible functioning of the
linearizer.

The results of the DPD performance for the TUT-1 were
encouraging and led to apply the procedure to a new trans-
mitter where the power capability of the output device was
exploited thoroughly.

B. Linearization of a Realistic Transmitter

The objective of this subsection is the joint compensation
and linearization of a transmitter operating near its maximum
level of +40 dBm. In this transmitter, referred to as TUT-2,
a ZHL42W preamplifier of MiniCircuits is connected at the
input of the Cree’s evaluation board to drive it to a higher
nonlinear operating point and delivering a maximum average
output power of +26 dBm (+37 dBm of peak power), with
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Fig. 5. Compression curves of the TUT-2 transmitter for average output levels
of +26 dBm (blue), +23.4 dBm (red), 20.6 dBm (orange), and +17.8 dBm
(magenta). Gain compression (a) and AM/PM (b) characteristics.
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Fig. 6. Normalized output spectrum and spectrum of the error for an average
output level of Po = +26 dBm (+37 dBm, peak), with and without DPD.
Realistic transmitter TUT-2.

a small-signal chain gain of about 46.7 dB. Again, 1 deg of
quadrature error was considered for the I/Q modulator. The
AM/AM and AM/PM characteristics are plotted in Fig. 5,
revealing a gain compression of about 1.6 dB. The output
spectrum is shown in Fig. 6, where we observe an important
spectral regrowth that fails to comply with the standard ACPR
of −45 dB. Let us also remark that not only the PA is
contributing to the nonlinear distortion, but the I/Q modulator
is also driving the preamplifier beyond its linear operation
level. Again, a thirteenth-order CVS structure with 1370 co-
efficients was pruned. After repeating the procedure described
in Section III-A, the corresponding DPD was designed. The
linearization capability is also shown in the same figure,
demonstrating a spectral regrowth reduction of about 20 dB
in the first adjacent channel. Although a second iteration will
usually provide better results, this initial design is adequate
enough for the objectives of the present paper.
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Fig. 7. Measured normalized coefficients at Po = +26 dBm (large marks)
and computed by using (15) (straight lines). (a) Odd-order and (b) even-order
coefficients. The PA input power is represented in the abscissas axis. Realistic
transmitter TUT-2.
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Fig. 8. Adjacent channel power ratios of the output spectrum with and without
DPD. First adjacent channel (solid lines) and second adjacent channel (dotted
lines). Realistic transmitter TUT-2.

The normalized magnitudes of the 23 most relevant coeffi-
cients at Po = +26 dBm (Pi = −20 dBm) are plotted with
large marks in Fig. 7 and, in agreement with our previous
discussion, the values adapted to other levels are displayed
with straight lines. Notice that all the values are referred to
the ML linear coefficient and that the number of parameters
can be reduced as the PA is operated at lower levels. Since
the precision requirements allow neglecting the normalized
coefficients below a −50 dB threshold, the model at a PA
input of Pi = −20 dBm is composed of only 14 coefficients,
a value that is reduced to 8 coefficients at Pi = −30 dBm.
Next, a set of predistorted signals were calculated according
to the extended parameters.

In order to evaluate the performance of the DPD, the ACPR
of the linearized signals are displayed in Fig. 8 with + and ×
marks for the first and second adjacent channels, respectively.
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Fig. 9. Normalized mean-square error of the output signal without DPD
(dashed line) and with DPD (solid line). Realistic transmitter TUT-2.
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Fig. 10. Normalized spectral density of the linearized output for power levels
ranging from +17.8 dBm to +26.6 dBm. As a reference, the trace of the
output spectrum without DPD is also shown. Realistic transmitter TUT-2.

The ACPRs of the transmitter without DPD are also shown,
demonstrating a reduction of 17 dB in the first adjacent
channel at Po = +26 dBm. The DPD linearization makes
the ACPR1 better than −55 dB and the ACPR2 better than
−60 dB, keeping the flexibility of compensating the linear and
nonlinear impairments in the range from Po = +16 dBm to
+26 dBm without any further modification of the coefficients.
This additional capability is also observed in the results of
the NMSE displayed in Fig. 9 for the transmitter without
DPD (dashed line) and with DPD (solid line). NMSE levels
of about −50 dB in a wide range of operating powers
demonstrate a maintained performance of the linearizer. Lastly,
the normalized output spectra of the linearized transmitter are
represented in Fig. 10 for average power levels ranging from
+17.8 dBm to +26.6 dBm (+28.8 dBm to +37.6 dBm of
peak power) in 3 dB steps.
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Fig. 11. Comparison of a) lower and upper ACPR1 and b) NMSE for the
SISO ACC model [6] (circles) and the present proposal with the CVS model
(triangles). The filled marks correspond to performance at the identification
level (Po = +26 dBm). Realistic transmitter TUT-2.

C. Power Adaptability of ACC and CVS Linearizers

For TUT-2, we also implemented the DPD for joint mit-
igation of the modulator and the PA using the ACC model
for SISO transmitters (16). The corresponding DPD was
designed with equivalent settings (i.e, thirteenth order and
Q = 3 for orders 1-5), yielding 32 coefficients that were
estimated following the conventional LS algorithm. For the
PA delivering Po = +26 dBm, the attained ACPR1 shown
with filled circles in Fig. 11 a) has improved from −38.6
dB without DPD (see Fig. 8) to −55 dB. This value is very
similar to that obtained with the present proposal, represented
again here for comparison (triangles). These results indicate
a good optimization of the performance at the operational
point where both models were estimated (filled marks). In
terms of model-order reduction, notice that the CVS DPD
needs 14 coefficients, which compares favourably with the
32 coefficients necessary for a similar performance of the
ACC DPD. When the ACC DPD is extended to other drive
levels, its ACPR1 deteriorates despite the PA is entering into a
weakly nonlinear regime. On the contrary, the ACPR1 of the
CVS DPD shows a progressive reduction with a maximum
improvement of about 9 dB with respect to the ACC DPD,
demonstrating a better adaptability to output power variations.
The NMSE results plotted in Fig. 11 b) repeat the performance
deterioration of the ACC DPD and the adaptability of the CVS
DPD under power level variations.

The ACPR1 and NMSE behavior displayed in the figure
is an example of overfitting in the case of the ACC DPD.
The local character of the optimization is originated by the a
priori assumption of the DPD structure. Therefore, the values
estimated by the LS algorithm for the unneeded coefficients
are ‘coupled’ to the indispensable ones and a variation of
operational conditions disturbs the well functioning of the
DPD at Po = +26 dBm. The flexible performance exhibited
by the CVS DPD is understood recalling that the method
presented in this paper relies on a complete set of non-
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orthogonal regressors, and on the OMP, a recursive algorithm
to compute representations of the system output with respect
to these non-orthogonal regressors. After a selection of the
coefficients that surpass a given threshold, the resultant CVS
DPD structure retains only the indispensable regressors.

IV. CONCLUSIONS

This paper has reported a reliable procedure to identify
the model coefficients of a power-scalable DPD for the joint
compensation of wireless communications transmitters. It has
been applied to a DPD based on the CVS model and has
been approvingly compared with other recent DPD propos-
als that have been advanced to overcome the limitations of
conventional models under the presence of I/Q modulator
impairments. The proposed DPD design uses a regressor
search algorithm and a threshold to limit the number of
parameters, allowing a significant reduction guaranteed by
discarding negligible coefficients. Several causes are behind
the model-order reduction: irrelevant kernel types, truncated
nonlinear order, truncated memory depth, sparse memory
delays, etc. The coefficients were identified at a power level
where the PA is near saturation, and the invariance of the
denormalized kernels in the measured dynamic range was
exploited to estimate the values at other operating conditions
without the need of interpolation or a new series of mea-
surements. Tailoring of the number of parameters at other
levels is performed with a simple rejection of regressors with
normalized coefficients below the predetermined threshold. In
consequence, the number of coefficients is further reduced as
the transmitter enters into the less nonlinear operating range.
In terms of model-order reduction and precision, a better
performance with respect to other alternative approaches has
been demonstrated in a wide range of measured power levels
below the DPD upper operating point.
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