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Abstract

María Angeles JALÓN VICTORI

Alternative Methods for Non-Linearity Estimation in
High-Resolution Analog-to-Digital Converters

Resumen

La medida de la característica de linealidad de un convertidor analógico-
digital (ADC) de alta resolución mediante el método estándar del Histograma
constituye un gran desafío debido los requisitos de alta pureza de la señal
de entrada y del elevado número de datos de salida que deben adquirirse
para obtener una precisión aceptable en la estimación. Estos requisitos en-
cuentran importantes inconvenientes para su aplicación cuando las medidas
deben realizarse dentro de largos flujos de pruebas, múltiples veces y en un
gran número de piezas, y todo bajo un entorno industrial que busca reducir
costes y plazos de entrega como es el caso del sector del Nuevo Espacio. Esta
tesis introduce dos métodos alternativos que consiguen relajar los dos requi-
sitos anteriores para la estimación de los parámetros de no linealidad en los
ADCs. Los métodos se han evaluado estimando el patrón de No Linealidad
Integral (INL) mediante simulación utilizando modelos realistas de ADC de
alta resolución y experimentalmente aplicándolos en ADCs reales.

Inicialmente se analiza el reto que supone la aplicación del método están-
dar del Histograma para la evaluación de los parámetros estáticos en ADCs
de alta resolución y cómo sus inconvenientes se acentúan en la industria del
Nuevo Espacio, siendo un método altamente costoso para un entorno indus-
trial donde se exige la reducción de costes y plazos de entrega. Se estudian
métodos alternativos al Histograma estándar para la estimación de la No Lin-
ealidad Integral en ADCs de alta resolución. Como el número de trabajos es
muy amplio y abordarlos todos es ya en sí un desafío, se han incluido aquel-
los más relevantes para el desarrollo de esta tesis. Se analizan especialmente
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los métodos basados en el procesamiento espectral para reducir el número
de datos que necesitan ser adquiridos y los métodos basados en un doble
histograma para poder utilizar generadores que no cumplen el requisito de
precisión frente al ADC a medir.

En este trabajo se presentan dos novedosas aportaciones para la estimación
de la No Linealidad Integral en ADCs, como posibles alternativas al método
estándar del Histograma. El primer método, denominado SSA (Simple Spec-
tral Approach), busca reducir el número de datos de salida que es necesario
adquirir y se centra en la estimación de la INL mediante un algoritmo basado
en el procesamiento del espectro de la señal de salida cuando se utiliza un
estímulo de entrada sinusoidal. Este tipo de enfoque requiere un número
mucho menor de muestras que el método estándar del Histograma, aunque
la precisión de la estimación dependerá de lo suave o abrupto que sea el pa-
trón de no-linealidad del ADC a medir. En general, este algoritmo no puede
utilizarse para realizar una calibración del error de no linealidad del ADC,
pero puede aplicarse para averiguar entre qué límites se encuentra y cuál
es su forma aproximada. El segundo método, denominado SDH (Simplified
Double Histogram) tiene como objetivo estimar la no linealidad del ADC uti-
lizando un generador de baja pureza. El algoritmo utiliza dos histogramas,
construidos a partir de dos conjuntos de datos de salida en respuesta a dos
señales de entrada idénticas, excepto por un desplazamiento constante entre
ellas. Utilizando un modelo simple de sumador, un enfoque ampliado de-
nominado ESDH (Extended Simplified Double Histogram) aborda y corrige
las posibles derivas temporales durante las dos adquisiciones de datos, de
modo que puede aplicarse con éxito en un entorno de prueba no estacionario.
De acuerdo con los resultados experimentales obtenidos, el algoritmo prop-
uesto alcanza una alta precisión de estimación.

Ambas contribuciones han sido probadas en ADCs de alta resolución
con experimentos tanto simulados como reales en laboratorio, estos últimos
utilizando un ADC comercial con una resolución de 14 bits y una tasa de
muestreo de 65Msps (AD6644 de Analog Devices).
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Abstract

The evaluation of the linearity performance of a high resolution Analog-to-
Digital Converter (ADC) by the Standard Histogram method is an outstand-
ing challenge due to the requirement of high purity of the input signal and
the high number of output data that must be acquired to obtain an accept-
able accuracy on the estimation. These requirements become major appli-
cation drawbacks when the measures have to be performed multiple times
within long test flows and for many parts, and under an industrial envi-
ronment that seeks to reduce costs and lead times as is the case in the New
Space sector. This thesis introduces two alternative methods that succeed
in relaxing the two previous requirements for the estimation of the Integral
Nonlinearity (INL) parameter in ADCs. The methods have been evaluated
by estimating the Integral Non-Linearity pattern by simulation using realis-
tic high-resolution ADC models and experimentally by applying them to real
high performance ADCs.

First, the challenge of applying the Standard Histogram method for the
evaluation of static parameters in high resolution ADCs and how the draw-
backs are accentuated in the New Space industry is analysed, being a highly
expensive method for an industrial environment where cost and lead time
reduction is demanded. Several alternative methods to the Standard His-
togram for estimating Integral Nonlinearity in high resolution ADCs are re-
viewed and studied. As the number of existing works in the literature is very
large and addressing all of them is a challenge in itself, only those most rel-
evant to the development of this thesis have been included. Methods based
on spectral processing to reduce the number of data acquired for the linearity
test and methods based on a double histogram to be able to use generators
that do not meet the the purity requirement against the ADC to be tested are
further analysed.

Two novel contributions are presented in this work for the estimation of
the Integral Nonlinearity in ADCs, as possible alternatives to the Standard
Histogram method. The first method, referred to as SSA (Simple Spectral Ap-
proach), seeks to reduce the number of output data that need to be acquired
and focuses on INL estimation using an algorithm based on processing the
spectrum of the output signal when a sinusoidal input stimulus is used. This
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type of approach requires a much smaller number of samples than the Stan-
dard Histogram method, although the estimation accuracy will depend on
how smooth or abrupt the ADC nonlinearity pattern is. In general, this algo-
rithm cannot be used to perform a calibration of the ADC nonlinearity error,
but it can be applied to find out between which limits it lies and what its
approximate shape is. The second method, named SDH (Simplified Double
Histogram)aims to estimate the Non-Linearity of the ADC using a poor lin-
earity generator. The approach uses two histograms constructed from the
two set of output data in response to two identical input signals except for a
dc offset between them. Using a simple adder model, an extended approach
named ESDH (Extended Simplified Double Histogram) addresses and cor-
rects for possible time drifts during the two data acquisitions, so that it can
be successfully applied in a non-stationary test environment. According to
the experimental results obtained, the proposed algorithm achieves high es-
timation accuracy.

Both contributions have been successfully tested in high-resolution ADCs
with both simulated and real laboratory experiments, the latter using a com-
mercial ADC with 14-bit resolution and 65Msps sampling rate (AD6644 from
Analog Devices).
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Chapter 1

Introduction

1.1 Motivation

In this decade, more than 9,000 new satellites are expected to be launched.
New Space missions such as constellations or nano and small satellites are
growing significantly in recent years. New Space is a commercial space sec-
tor for the development of satellite communication solutions far away from
the classic concept of satellites in geostationary orbit. Some constellations al-
ready have their own name, such as Oneweb, Starlink or Kuiper. The sector is
continuously requiring higher performance systems while at the same time
demanding lower overall costs. For this reason, there is currently an emerg-
ing demand for solutions that allow for fast, high volume supply and easy
qualification and adaptation of Electrical, Electronic and Electromechanical
(EEE) parts to achieve the maximum technological performance. As a conse-
quence, the trend towards the use of Commercial-of-the Shelf (COTS) devices
is strongly growing, but because of their target market, in their origin they
do not require the levels of confidence and reliability that space systems ask,
leading to their having to be subjected to extensive and time consuming ad-
hoc qualification schemes, (European Cooperation For Space Standardiza-
tion, 2013). Since time and cost are key elements in everything surrounding
megaconstellations and New Space, the sector is demanding for new testing
approachs as alternative to the standard techniques traditionally used.

One of the most demanded COTS devices is the Analogue-to-Digital Con-
verter (ADC), a key and ever-present device as part of the mixed-signal sys-
tems, as it is the communication bridge between the analog and the digital
world. The linearity test of an ADC is of great importance to guarantee the
functionality of the device in a given application (Linnenbrink et al., 2006),
being the Integral Non Linearity (INL) parameter one of the most demanded
specifications to be measured by the space industry when qualifying these
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Chapter 1. Introduction

components. The Standard Histogram method is the traditional method used
by the industry to perform the linearity test on an ADC. As technology pro-
gresses and the digital domain increases in performance, higher resolution
ADCs are required. The application of the histogram method in high res-
olution ADCs is very expensive and cost time consuming due to the high
linearity requirements of the excitation signal generators and the long test
times caused by the need to acquire a large number of data.

In this context, the present thesis project aims to develop alternative low-
cost methods to the traditional histogram method for the estimation of the
Integral Nonlinearity in high resolution ADCs, for future application in the
space industry. The alternative methods focus on relaxing the linearity re-
quirement of the test input signal generator and relaxing the requirement
of a high density data acquisition. The work has been executed within the
framework of Finantial support for the trainning of PhDs in companies :Indus-
trial Doctorates of the "Ministerio de Ciencias, Innovación y Universidades"
of the Government of Spain and under the project: Definición de técnicas de en-
sayo de bajo coste de conertidores analógicos-digitales with Reference DI-16-08912
assigned to ALTER TECHNOLOGY TUv NORD company.
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1.2 Structure and contents of the dissertation

The dissertation is divided into five chapters and the appendices. Chapter 1
is the introduction to the work developed in the thesis, where the challenge
of applying the Standard Histogram method for the evaluation of static pa-
rameters in high resolution ADCs is exposed. It is analysed how the draw-
backs of its application in high resolution ADCs are accentuated in the New
Space industry, and makes it an unsuitable and highly costly test method for
an industrial environment where the reduction in costs and delivery times is
demanded. This chapter also introduces alternative methods to the Standard
Histogram to estimate the Integral Non-Linearity in high resolution ADCs,
devised to relax the requirements of purity of the test input signal or the high
number of samples that have to be acquired for its application. The bibliogra-
phy presented is especially focused on methods based on spectral processing
to reduce the number of data acquired for the linearity test and on methods
based on a double histogram to be able use generators that do not meet the
linearity requirement against the ADC to be tested.

Chapter 2 and Chapter 3 are the core of the dissertation. They present
two novel methods developed during this research work for the estimation
of the Integral Non-Linearity in ADCs, as possible alternatives to the Stan-
dard Histogram method. Both chapters follow the same structure to describe
the work developed: a summary of the existing literature on the subject, our
contribution with the algorithms previously discussed, the mathematical for-
mulation of our proposal and its implementation to obtain a estimate of the
Integral Non-Linearity and the simulation results.

Chapter 2 focuses on the estimation of the INL using an algorithm based
on the processing of the output signal spectrum when a sinusoidal input
stimulus is used. This type of approach requires a much smaller number
of samples than the Standard Histogram method, although its estimation ac-
curacy will depend on how smooth or abrupt the Integral Non-Linearity pat-
tern of the ADC is. This algorithm cannot be used to perform a calibration
of the nonlinearity errors of the ADC, but it can be used to know between
which limits it lies and what its approximate shape is.

The algorithms described in Chapter 3 aim to estimate the Integral Non-
Linearity of the ADC using a poor linearity generator. The approaches use
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a double histogram, constructed from the two set of output data in response
to two identical input signals except for a DC offset between them. Using a
simple adder model, our approach addresses and corrects for possible time
drifts during the two data acquisitions, so that it can be successfully applied
in a non-stationary test environment. According to the experimental results
obtained, the proposed algorithm achieves high estimation accuracy.

Chapter 4 describes the experiments carried out at the laboratory to ap-
ply the proposed methods in Chapter 2 and Chapter 3 for the estimation of
the INL of a high-performance commercial ADC: AD6644 from Ananlog De-
vices. The chapter details how to perform a linearity test for ADCs according
to the Standard Histogram method, a non-trivial task. The structure of the
chapter is as follows: obtaining the reference INL by applying the Standard
Histogram method, estimating the INL by the alternative methods proposed
and comparing them with the reference INL. The experimental results ob-
tained evidence the successful application of the different methods proposed
as an alternative to the Standard Histogram according to the objectives to be
achieved, emphasising that the device under test is a high-resolution (14 bits)
and high-speed (65 Msps) ADC.

Chapter 5 includes the Conclusions and Future Work. The appendices
are divided into: Appendix (A) where a review of the static parameters of
the ADC and their evaluation using the histogram method is provided and
Appendix (B) where a description of the SEIR method is presented.
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1.3 Application of the Standard Histogram Method

in high resolution Analog-to-Digital convert-

ers

The Standard Histogram method (Measurement and Technical, 2011; Linnen-
brink et al., 2006) is one of the methods used to estimate the transition levels
of an ADC and to evaluate the static parameters that characterise its trans-
fer function. An overview of the static parameters and how to perform the
histogram method is described in Appendix(A). The work presented in this
thesis is focused on the evaluation of the static parameter Integral Non Lin-
earity (INL), which measures the deviation of the real transition levels of the
tested actual ADC, hereafter designated as the set {tk}, with respect to the
ideal transition levels of the ideal ADC, hereafter designed as the set {lk}. Its
mathematical expression is:

INLk =
tk − lk

q
, ∀k ∈ [zmin + 1, zmax] (1.1)

where q is the quantum or LSB (Least Significant Bit) of the ideal ADC,
tk and lk are the transition levels where the output changes from code k− 1
to code k in the actual ADC and the ideal ADC respectively, zmin is the mini-
mum code or lower saturating code and zmax is the maximum code or upper
saturating code of the actual ADC. Equation (1.1) is expressed in quantum
or LSB units. Figure 1.1 shows in blue line a hypothetical transfer function
of a 3-bit ADC and in black line the transfer function of its associated ideal
ADC. The analog input domain is bipolar in [−R, R] and the ideal quantum
is q = 2 · R/23. As an example, in the figure the INL error of the code k = 2
and Differential Non linearity (DNL) error of the code k = 4 are represented.
The DNL measures how much the width of each code of the actual ADC, wk,
deviates from the quantum or LSB of the ideal ADC, in LSB units:

DNLk =
wk − q

q
=

tk+1 − tk
q

− 1 = INLk+1− INLk, ∀k ∈ [zmin + 1, zmax− 1]

(1.2)

By definition, the set {INLk} is affected by the offset and gain errors in-
troduced by the test input signal and the ADC. In the work presented in this
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FIGURE 1.1: Transfer function of a 3-bit ADC showing the INL
and DNL error parameters

thesis the final objective is to obtain a INL pattern of the ADC under test cor-
rected for these offset and gain contributions.

In order to evaluate the transition levels of the ADC under test, the Stan-
dard Histogram method performs a statistical procedure based on the con-
struction of the histogram of the output codes of the ADC, in response to an
input signal with a given waveform whose statistical distribution is known.
On the one hand, the probability of occurrence of each output code is ob-
tained from the histogram of the output codes. On the other hand, the prob-
ability distribution that the ADC output will follow is known, which is a
function of the transition levels and the input parameters. From this infor-
mation the transition levels are obtained.

Advantages of the Standard Histogram method:

• It achieves high accuracy regardless of the shape of the transfer function
of the ADC.
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• For its application, any signal waveform with a known amplitude prob-
ability distribution can be used as an input signal to test the ADC.

Requirements for the Standard Histogram method application (Measure-
ment and Technical, 2011):

• Purity of the input signal to the ADC: nolinearities in the input signal
result in errors in the estimation of transition levels. An input signal at
least 3 bits higher than the expected accuracy of the ADC under test is
required.

• Number of samples versus accuracy: there is a dependence between
the accuracy of the obtained ADC transfer function and the number
of output codes or samples computed by the histogram: the larger the
number, the lower the uncertainty. To achive a given confidence, the
number of samples per code that must be computed by the histogram
depends on the noise level of the input signal and the ADC under test.
As the standard (Measurement and Technical, 2011) indicates, the un-
certainty in LSB units in the estimate of a transition level due to noise
is approximated by:

ε ≈
√

σ

H
(1.3)

Where σ is the standard deviation of the noise in LSB units and H is the
average number of histogram samples adquired in each of the code bins
that share the given transition level. Since for a N-bit resolution ADC
the number of different codes is 2N, the number of samples required
to performed the Standard Histogram method with a certain accuracy
increases as a power of two with the resolution N of the ADC under
test.

• Synchronisation between the input signal and the ADC sampling fre-
quency. The input signal should be generated in synchronisation with
the sampling clock. Since the histogram method is based on estimat-
ing the transition levels from the probability of occurrence of each code
according to the ADC excitation signal, it is important that this prob-
ability is not altered because some codes are more excited than others
due to a non-uniform distribution of data caused by poor synchronisa-
tion, giving them a different probability to the one that corresponds to
them according to the input signal waveform.
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In a periodical wave testing, the ratio between the input frequency, f0,
and the sampling frequency, fs, must be such that there must be an in-
teger number of cycles, J, in the acquired data record and that number
of cycles must be relatively prime to the number M of samples in the
record. Mathematically it means that J and M do not have common
factors, that is the Greatest Common Factor is equal one: GCF(J, M) =

1. This guarantees that the samples in each record are uniformly dis-
tributed in phase from 0 to 2π. An input frequency that meets the above
is the one that follows the expression:

f0 = fs
J

M
(1.4)

with J an odd integer and M a power of 2.

1.3.1 Drawbacks of the application of the Standard Histogram

Method in the high resolution ADCs industrial testing

The requirements of applying the Standard Histogram method to high-resolution
ADCs entails a high cost in terms of expensive measurement instrumenta-
tions, as well as high time cost in terms of measurement setup design and
data acquisition:

1. The requirement to use a more linear input signal than the ADC un-
der test implies the need to be generated by high linearity generators
or Arbitrary Wave Generators (AWGs). For example, to evaluate the
INL pattern of a 16-bit effective resolution ADC, an AWG of at least
19-bit resolution is required. As technology advances and ADCs in-
crease in resolution, meeting the requirement for linearity of the es-
timulus signal is a great challenge and one of the factors that increase
the cost of test. In an industrial test environment, the use of expensive
Automated Test Equipments (ATEs) suitable for mixed-signal testing
facilitates the process of measuring the performance of ADCs, integrat-
ing high-performance AWGs, precise clock generators, control and data
acquisition systems into its instrumentation, and allowing via these in-
strumentations a full synchronisation between signal generation, sam-
pling of the ADC under test and data capture. High linearity AWG gen-
erators use as important elements Digital to Analog Converters (DACs)
structures to achieve the required high resolution, usually at the ex-
pense of other performance factors such as speed, stability or signal
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settling: (1) The frequency limitations of the AWG can make it diffi-
cult to achieve this full synchronisation between the generated signal,
its sampling and the capture of the output data. (2) If the application
of the Standard Histogram method requires the acquisition of a large
number of output samples, the input signal to the ADC under test has
to remain stationary during data capture, thus requiring the use of very
low time drift generators. A solution is taking several records of fewer
output samples and construsct the histogram with them, but the test
time could be increased by waiting times between the data records ac-
quired. Waiting times may be due to the uniform sampling observance
of the Standard Histogram method or due to the capture system it-
self.(3) Long settling times on the input signal increase the test run time
and therefore test time cost.

The implementation of the Standard Histogram method using a sinu-
soidal input signal to the ADC under test is widespread because it
is possible to purify or linearise the signal by applying a filter in the
path signal. Obviously, the degree of linearity achieved will depend on
the type of filtering (low pass filter or band pass filter), the frequency
and bandwidth of the filter and the quality (distortion introduced, fre-
quency selectivity...) of the filter. For high resolution ADCs, the intro-
duction of high quality filters is a new constraint, as it is necessary to
resort to expensive custom-made high quality bandpass filters specially
manufactured for a given frequency and so increasing the test cost.

Another source of cost-increase in industrial test comes from the fact
that the fast advance in technology makes generators obsolete in a few
years for the test of the State-of-the-art ADCs, requiring constant invest-
ment in new expensive generators or expensive ATEs. In fact, future
test instrumentation will be powered by the new generation of mixed-
signal components, so that progress in measurement instrumentation
will lag behind the progress of the new generation to be measured.

2. The requirement on the number of samples acquired for a desired accu-
racy under a test system noise level can lead in high resolution ADCs to
the need to capture a very large number of samples, strongly increasing
the test time cost. For example, in a sine waveform testing that meets
(1.4), for an ideal ADC and in absence of random noise, the minimum
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number of adquired data that ensures a sample of every code bin is
M = π · 2N (Measurement and Technical, 2011). Assuming a 16-bit
ADC and a noise standard deviation of 1LSB, according to (1.3) if 10
samples per code bin are acquired, the uncertainty due to noise will be
about 0.32LSB. 10 samples per code bin implies a minimum number of
samples of 10 · π · 2N ≈ 2.058.874, being M = 221 = 2.097.152 the clos-
est power of 2 number of samples.

Capturing a data record with a very large number of samples implies
some drawbacks as: (1) As discussed above, a very low time drift gen-
erator is needed, so that the input signal to the ADC remains stationary
during data capture. The longer the data record, the longer it will take
the record adquisition and the greater time drift errors. (2) For sinu-
soidal signals testing, with larger number of samples per record higher
accuracy will be required of the signal frequency (Measurement and
Technical, 2011). (3) Possible limitations due to the memory of the cap-
ture system. The solution is to take several records under the same con-
ditions with a smaller number of samples, and construct the histogram
with all of them. This will increase time test, due to the input signal
settling time, the adaptation of the capture system for the acquisition of
the next record (e.g. resetting the data memory) and the uniformity in
the distribution of the acquired samples, that has to be fulfilled when
integrating all records. In a sine wave testing, the records have to be
evenly phase distributed between 0 and 2π.

ADCs COTS Qualification for New Space

New Space is a private initiative area of space industry driven mostly for
commercial purposes, a fact that is leading to the evolution of the space in-
dustry towards a new model that is different from the traditional one. High
costs due to custom-made designs and long development times are being re-
placed by much lower costs and time solutions, while maintaining high per-
formance requirements. One of the sectors most affected by the New Space
approach is that of communication satellites, where the start-up of medium
and low orbit megaconstellations such as Oneweb or Starlink is already a re-
ality.
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One of the solutions to reduce costs and lead times is the use of commer-
cial components that meet the design and performance requirements. These
are the so-called Commercial-of-the Shelf (COTS) devices. The use of COTS
in space systems provides for rapid and high volume procurement of com-
ponents that meet design performance requirements. But COTS are devices
that were not designed and manufactured for use in space flight. For this rea-
son they have to be subjected to a series of tests to qualify them for safe use
in the conditions of the Space environment which, for example, will cause
large temperature fluctuations in the in-flight systems as well as their ex-
posure to space radiation. Evidence of the space industry’s growing com-
mitment to the use of COTS is the increasing acceptance of conferences pa-
pers where their qualification results are presented (Jalon-Victori, Carranza-
Gonzalez, and Ricca-Soaje, 2021; Vargas-sierra et al., 2018), and even the re-
cent emergence of workshops where they are exclusively addressed, such as
ACCEDE (ESA, Alter Technology, 2019), supported by the European Space
Agengy (ESA) and companies of the sector such as Alter Technology com-
pany. Tests to evaluate and qualify the use of COTS in Space can be per-
formed, for example, in accordance with ECSS-Q-ST-60-13C (from the Euro-
pean Space Agency ESA) (European Cooperation For Space Standardization,
2013) or EEE-INST-002 (from the National Aeronautics and Space Adminis-
tration NASA) (Sahu, Leidecker, and Lakins, 2003), which should be used
in conjunction with PEM-INST-001 (Lakins, 2003) for additional and specific
product assurance requirements for plastic components. These standards are
guidelines that can be tailored to each part and mission. Focusing on the
European guide, the Standard ECSS-Q-ST-60-13C is the European Coopera-
tion for Space Standardization (ECSS) standard intended to the commercial
Electrical, Electronic and Electromechanical (EEE) components management,
engineering and product assurance in space projects and applications. The
standard indicates three levels of components classification based on a trade-
off between assurance and risk. Class 1 is the highest assurance and lowest
risk and Class 3 is the lowest assurance and highest risk.

Another possible adaptation required by COTS for use in space appli-
cations is the re-tinning of their leads. The commercial components com-
ply with the RoHS hazardous substances regulation, so the use of lead (Pb)
in manufacturing is limited, leaving essentially pure tin (Sn) plating. Tin
whiskers are microscopic metal conductive fibers that may cause electrical
short-circuits and grow spontaneously from pure-tinned surfaces (Galyon,
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FIGURE 1.2: A scheme of a possible test flow for COTS based
on ECSS-Q-ST-60-13C

2004). In order to mitigate the growth of these whiskers, a risk mitigation
plan shall be released. One mitigation strategy is, if possible, the re-tinning
of the COTS leads using a tin-lead alloy.

Let’s focus on tests involving electrical measurements. If, for example,
a commercial component wants to be classified as Class 1, Evaluation and
Screening test flows are established customised for part and mission (Alter
Technology, 2021). Figure 1.2 shows a possible test flow based on the ECSS-
Q-ST-60-13C standard. In the hypothetical test chart depicted, all parts except
those to be subjected to the RVT Evaluation have been re-tinned. The Eval-
uation and Screening flows require electrical measurements at three temper-
atures: at room temperature of 25°C and at a maximum and minimum tem-
perature depending on the manufacturer and the future space application.
Each includes environmental testing, where the electrical measurements are
performed before, after and even in between specific tests regulated by the
bias device configuration, the test environment temperature and the time re-
quired for the test execution. The screening flow is performed on 100% of
the parts in the lot, which in some cases may consist of hundreds of sam-
ples. These test flows also include the Radiation Verification Test (RVT), with
Total Ionizing Dose (TID) being one of the tests to be performed. The Euro-
pean Space Components Coordination (ESCC) Basic Specification 22900 (Eu-
ropean Space Agency, 2016) defines the basic requirements applicable to the
steady-state irradiation testing of integrated circuits and discrete semicon-
ductors suitable for space applications. Apart from the initial and the final
electrical measurements at the test, the total ionizing dose is reached by at
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least three intermediate exposure steps that require control electrical mea-
surements, to evaluate the response of the component to the accumulated
irradiation dose up to that moment. These measurements have the draw-
back that they must be performed within two hours, since a maximum of
two hours between consecutive irradiation exposures is allowed so that the
component does not initiate a recovery.

In general, the electrical measurements of a COTS are compared with the
ranges of possible values of the measured parameter which have been estab-
lished by the manufacturers and indicated in the datasheet of the component.
This may establish a pass/fail criterion. In general, the parameter electrical
measurement test conditions are also set by the conditions indicated in the
manufacturer’s datasheet, although they may also be customised to the de-
mands of the design in which it will be integrated.

Assuming that the COTS to be qualified for space application are high-
resolution commercial ADCs whose parameter to be measured is INL. ADCs
are key parts in systems developed for space applications and need the high-
est assurance and lowest risk standarization requirements, so they are usu-
ally test under Class 1 classification. Suppose, for example, that a batch of
100 pieces is screened. Screening involves performing an environmental test
with initial electrical measurements at room temperature and final measure-
ments at room temperature, high temperature and low temperature, that is,
the INL has been measured four times for each part. In other words, the
screening part of the batch alone would involve applying the Standard His-
togram method 400 times. According to the above qualification schemes, the
application of the Standard Histogram method is a handicap to meet the low
cost and time considerations targeted by the New Space. Consequently, al-
ternative test solutions are needed to enable fast and low-cost test procedures
in line with the demands of this sector of the space industry:

1. Signal generator linearity requirements. In view of the drawback ex-
plained in section 1.3.1 about this issue, for the measurement of a spe-
cific ADC, the relaxation of the linearity requirement of the signal gen-
erator increases the number of generators available to perform the lin-
earity test. This allows a faster adaptation between the needs of the in-
put signal to perform the test with high accuracy and synchronisation,
the rest of the instrumentation and the ADC to be measured. It should
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be remembered that tests have to be performed by setting specific mea-
surement conditions that have to be fulfilled with almost no degree of
freedom. Since a space mission may involve more than one COTS ADC
to be qualified, the advantage of having more than one generator is am-
plified, and the choice can be optimised according to the test needs, the
availability of generators and the devices to be measured.

The ability to drive the ADC under test with low-purity sinusoidal sig-
nals also eliminates the need for expensive custom-made filters at the
input signal path of the ADC. If the test requires filters in the input sig-
nal path to reduce the noise level, its requirements will no longer be as
demanding, making it possible to use cheap commercial filters.

Therefore, the relaxation of generator linearity requirements is a clear
advantage that can strongly reduce production test costs, both by us-
ing less expensive instrumentation and by speeding up the design and
assembly of the setup. Obviously, because of the demand for instru-
mentation, is a major advantage when there are qualification test flows
of high-resolution COTS ADCs running in parallel.

2. Large number of samples. Alternative methods that relax the number
of samples acquired for the linearity test would overcome the high time
consuming data acquisition. This drawback is strongly accentuated in
the space industry: (1) by all the times that the same part or sample
has to be measured electrically during its qualification for space. (2)
The test flow has to be performed on a large number of parts. (3) The
time constraints during the Evaluation TID test. The TID test is usually
performed on a set of parts that are biased (called ON parts) and an-
other set of parts whose connections are grounded (called OFF parts)
during the radiation exposure. Generally, the number of parts that are
subjected to this test is 10 (plus a Control sample). The time limitation
between each exposure step of two hours maximum means that these
parts have to be measured within that time. If the electrical measure-
ment testing time of each part is so long, additional actions may have to
be taken for the strict timing comply and also to enable a handling time
in case problems arise during the measure. A solution is to divide the
TID test into two TID tests (ON parts and OFF parts) but complicating
the test procedure and its execution. (4) For issues arising if the parts

14



1.3. Application of the Standard Histogram Method in high resolution
Analog-to-Digital converters

are re-tinned. Re-tinned parts may have poor contact with the measur-
ing socket due to the loss of coplanarity by the re-tinning process. The
test result under these conditions may be a failure and/or false and the
part must be repositioned to retest the electrical measurement. In these
cases, a quick test that requires a short data acquisition but with a reli-
able result would allow to evaluate if the test is running under proper
conditions, without having to wait for a long run time to get the results
of the histogram method.
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1.4 Alternative methods to the Standard Histogram

Method

FIGURE 1.3: Standard Histogram method drawbacks and alter-
native methods

In section 1.3 it has been exposed the challenge that in general implies the
application of the Standard Histogram method for the estimation of the set
of transition levels in high resolution ADCs (set that will allow us to obtain
the parameters of nolinearity) and how it may become a handicap in the in-
dustrial test and in particular for the New Space industry.

Over the last few years, a large number of papers have been published
looking at alternative methods to the Standard Histogram method to reduce
test time and/or the cost of demanding expensive test instrumentation. The
proposals presented in this thesis are based on two approaches depicted in
the Figure 1.3: (1) spectral processing to obtain an INL signature acquiring a
lower number of samples than required by the Standard Histogram method
and (2) using the redundant information from two histograms obtained from
the output data in response to the ADC excitation with two signals, with
lower accuracy than the Standard Histogram method required, identical to
each other except for a constant offset between them. In the dissertation, this
method is called Double Histogram (DH) method. Subsections 1.4.1 and 1.4.2
on this section are intended to show different existing works on these subjects
that have contributed to the development of this thesis. Other alternative
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methods to the Standard Histogram method which do not use a spectral pro-
cessing or double histograms as the main test procedure and therefore do not
susceptible to appear in these subsections are introduced in subsection 1.4.3.

1.4.1 Alternative Integral Non-Linearity estimation using the

spectral approach

Alternative methods based on a spectrum processing of the output signal
aim to obtain an estimate of the Integral Nonlinearity INL of the ADC under
test without having to resort the capture of a large number of samples, as
required by the Standard Histogram method. In general, the application of
these methods involve the execution of the following steps:

1. Suitable modelling of the INL. Using an INL expression that can be
related to the harmonics of the spectrum:

INLk ≈ f (k; α1, α2, ..., αn) (1.5)

Where αi are coefficients to be determined that depend on the type of
function f that expresses the INL.

2. ADC under test excitation with a sinusoidal signal.

3. Calculation of the spectrum of the output data.

4. Processing and obtaining the harmonics information needed to evalu-
ate (1.5).

5. Evaluation of (1.5).

Figure 1.4 shows the procedure indicated in the previous points for the
evaluation of the INL using a spectral approach.

Papers (Adamo, Attivissimo, and Giaquinto, 2002; Adamo et al., 2002;
Attivissimo, Giaquinto, and Kale, 2004; Serra et al., 2004; Janik and Fresnaud,
2007; Kerzérho et al., 2006a; Kerzérho et al., 2006b) deal with obtaining f and
evaluating the accuracy obtained depending on how sharp the actual INL
curve of the ADC is and the approximation used to express it mathematically:

Approximation of the INL by a polynomial function of degree n . In this
case the accuracy of the approximation depends strongly on the degree
of the polynomial function. The result is a smooth curve with which
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FIGURE 1.4: Test procedure using a spectral processing method

it is not possible to describe patterns with steep and sharp transitions.
Among this type of polynomial approximations is the Chebyshev test
((Adamo, Attivissimo, and Giaquinto, 2002; Adamo et al., 2002; At-
tivissimo, Giaquinto, and Kale, 2004). In this test the INL is expressed
as a sum of Chebyshev polynomials, whose coefficients are extracted
from the spectral processing of the ADC response to a sinusoidal sig-
nal. In (Adamo, Attivissimo, and Giaquinto, 2002; Adamo et al., 2002)
the coefficients of the Chebyshev polynomials can be directly related to
the Fast Fourier Transform (FFT) of the ADC output. This fact implies
the fulfillment of coherent sampling between the input signal and the
sampling frequency. In (Attivissimo, Giaquinto, and Kale, 2004) a ded-
icated spectral processing is introduced to eliminate the coherent sam-
pling condition. In order to estimate a non-smooth INL pattern with
discontinuities, in (Serra et al., 2004) the INL is modeled as the sum of
a Low Code Frequency component (LCF) and a High Code Frequency
component (HCF). The LCF component corresponds to the smooth part
of the INL pattern and is modeled by a polynomial approximation. The
HCF component corresponds to the discontinuities of the INL pattern
and is estimated using a narrow band histogram test.
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Approximation of the INL based on the Discrete Fourier Series . (Janik and
Fresnaud, 2007; Kerzérho et al., 2006a; Kerzérho et al., 2006b). This ap-
proach apply the Fourier series expansion to develop the INL expres-
sion. The INL curve must be periodic to be expressed with a Discrete
Fourier Series, so a mathematical technique is used consisting of defin-
ing a periodic INL function and using from it only the interval of inter-
est. According to the authors, this technique may work well even for
the estimation of a sharp INL curve with steep transitions.

Our proposal presented in (Peralias and Jalon, 2007; Peralias, Jalon, and
Rueda, 2007; Peralias, Jalon, and Rueda, 2008) consists of obtaining an ex-
pression of the INL by analysing the local behaviour of the transfer function
at the ideal transition levels. The local variation of the transfer function at
ideal transition leves will be obtained by means of the Taylor series approx-
imation using the derivatives of the function at that point. This work uses
a first-order Taylor series expansion. The transfer function thus written and
evaluated at the real transition levels will allow it to be related to the INL:

INLk ≈
k− Z(lk)
q · ∂xZ(lk)

(1.6)

where Z(lk) and ∂xZ(lk) are the ADC transfer function Z(x) and its deriva-
tive evaluated at the kth ideal transition level.

Obviously, an estimation of the INL as in (1.6) requires that the transfer
function Z(x) complies:

• It is a smooth, continuous and derivable function with respect to the
input signal x over the full input range of the ADC.

• It is a strictly increasing function and, therefore, with derivative always
non-zero over the full input range of the ADC.

When the input signal to the ADC is an analogue sinusoidal signal, its
response will be a sinusoidal coded signal, but including the errors intro-
duced by the ADC. This is modeled as the sum of a main tone corresponding
to the pure excitation sinusoidal signal plus the harmonics of the main tone
frequency. This description of the ADC response to a sinusoidal signal will
allow to relate the INL in (1.6) to the amplitude, frequency and phase pa-
rameters of the harmonic superposition. The complete information and the

19



Chapter 1. Introduction

development of our novel proposed algorithm, refered in the thesis as Simple
Spectral Approach or SSA, can be found in 2 of this dissertation. As major
contributions of the algorithm SSA proposed in this thesis are:

• The modelling of INL is simple and is obtained from the direct appli-
cation of its traditional definition. No resorting to a polynomial series
parametrisation or approximations based on Discrete Fourier Series are
required. The final INL expression depends directly on the amplitude,
frequency and phase parameters of the harmonics of the output signal
spectrum. This simplifies its application as an INL estimation method
compared to other techniques based on spectral processing.

• Simulation and experimental results show that the SSA algorithm ob-
tains accurate results even with non-smooth and sharp INL patterns.
Abrupt INL patterns are typical of ADCs with Successive Approxima-
tion Register (SAR), pipeline or algorithmic topologies. This makes SSA
a generalised technique independent of the type of topology the ADC
is designed with.

The SSA simulation and experimental results show that it is a very suit-
able method in an industrial test environment with a test protocol where a
very precise estimation of the shape of the INL pattern is not required but
just to evaluate the maximum and minimum values in which it lies, in order
to compare them with the range established by the manufacturer as valid. It
is a trade-off between accuracy and cost. Particularly for the New Space in-
dustry and the estimation of the INL in COTS, the SSA method implies great
advantages in terms of test time reduction (1.3.1):

1. Because of the large number of times the parameter has to be evalu-
ated for the same sample during the test flows and because of the large
number of samples involved.

2. Because of the time constraints of the radiation TID test.

But it can also be very useful if is included in a test protocol to quickly
evaluate if the test is not running under correct measurement setup condi-
tions such as poor contact with the measurement socket, which is very com-
mon in retinned parts, or temperature settling problems during high and low
temperature tests. The final test result would be obtained by the Standard
Histogram method if required by customer conditions, but introducing the
SSA method as an initial check test. This is depicted in Figure 1.5 where the
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FIGURE 1.5: Test protocols using SSA method: On the left side
as a direct INL estimation method, on the right side as an initial

check test

SSA method is applied either to estimate INL directly or as an initial check
test.

In general, methods based on spectral processing must comply with the
recommendations of the EEE Standard (Measurement and Technical, 2011)
to ensure a robust test procedure:

• The sinusoidal input signal must be at least 3 or 4 bits purer or more
accurate than de the ADC under test.

• Coherent sampling compliance. Coherent sampling means that the re-
lationship between the input frequency to the ADC and the sampling
frequency is such that the captured data record contains an integer
number of cycles of the signal.

• Sinusoidal input signal should be within the ADC’s analogue input do-
main, in order to avoid output clipping.

• A stationary test environment must be observed.

• The ADC must be driven by a low-jitter sampling clock.
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Currently there are methods to relax the requirements of the IEEE stan-
dard, as the ones introduced by (Zhuang and Chen, 2018; Sudani et al.,
2015), since compliance with these requirements increases the time and cost
of the test. Sampling coherence compliance in high-resolution ADCs is one
of the biggest challenges, and involves the use of high-resolution and high-
accuracy frequency signal generators and full synchronisation of the test sys-
tem with low jitter clocks. In INL estimation, the sinusoidal signal must span
the maximum range of the ADC’s analogue input domain, to obtain its eval-
uation by covering the maximum possible range of the ADC output code
domain. In order to meet this condition, the range of the input signal must
be slightly lower than the input range of the ADC, demanding a high stabil-
ity of the amplitude input signal for not causing the ADC saturation.

In (Sudani et al., 2015) a comparative study is presented of four State-of-
the-Art application methods for relaxing the coherence sampling and/or the
stability of the amplitude input signal. Windowing (relaxes coherent sam-
pling) is one of the most used methods and is included in(Measurement and
Technical, 2011), but as the resolution of the ADC increases, it becomes more
difficult to find a suitable window function. The Fundamental Identifica-
tion and Replacement (FIRE)(Sudani and Chen, 2013) and the Fundamental
Estimation, Removal and Residue Interpolation (FERARI)(Sudani, Xu, and
Chen, 2013; Xu, Sudani, and Chen, 2014) are more novel methods that pro-
vide accurate and robust spectral results by an accurately estimate of the
non-coherent fundamental and its removing from original data. The FER-
ARI method has the advantage that it can be used even when the input signal
range exceeds the input domain of the ADC and amplitude clipping occurs,
also relaxing the stability of the amplitude input signal requirement.

1.4.2 Integral Non-Linearity estimation using double histogram

based methods

This subseccion is focused on alternative methods based on a double his-
togram obtained by the displacement of an input signal, to estimate the In-
tegral Non-linearity by relaxing the linearity requirements of the generator
used to excite the ADC under test. The method will be referred to in this
dissertation as DH method (Double Histogram method). Figure 1.6 depicts
the DH procedure for the evaluation of the INL using two identical poor ac-
curacy inputs signal, one shifted a constant offset from the other.
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FIGURE 1.6: Test procedure using the DH method

The work presented in (Jin et al., 2005a) is our starting point and is based
on the idea of using two input signals of low accuracy with respect to the
ADC under test 1, identical except for a constant offset or displacement be-
tween them, to identify and remove the non-linearity component introduced
by the generator from the INL calculation. The algorithm is called SEIR
(Stimulus Error Identification and Removal) by its authors. A more detailed
description of the method can be found at Appendix (B). The following con-
siderations are made in (Jin et al., 2005a):

• The algorithm is developed for the particular case of ramp-type input
signals. The real ramp signal is modeled as a function of time that fol-
lows the expresion:

x(t) = xos + ηt + F(t) (1.7)

where xos is the offset voltage and η the slope of the straight line that
defines the linear component of the ramp, and F(t) represents its non-
linear component.

1notice that to test the linearity performance of an ADC, the Standard Histogram method
requires the accuracy of the input signal to be 3 or 4 bits higher than that of the ADC under
test
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• The function F(t) is modeled as a finite series expansion of basis func-
tions {Fj(t), j = 1, 2, 3, ...} in the form:

F(t) =
Mp

∑
j=1

ajFj(t) + e(t) (1.8)

where {aj} con j = 1, 2, 3, ..., Mp is the set of Mp coefficients of the
finite series expansion using Mp basis functions and e(t) represents the
residual due to the unmodeled part of the approximation in Mp terms.
And according to (Jin et al., 2005a) there will always be a number Mp
sufficiently large for the residual to be negligible, obtaining:

F(t) ≈
Mp

∑
j=1

ajFj(t) (1.9)

Once the set of basis functions has been chosen {Fj(t)}, the algorithm
needs to estimate the set of coefficients {aj} in order to identify the non-
linearity introduced by the input signal.

• The method is particularised for a ramp-type input signal, since the
transitions are estimated in time by counting the number of times each
code appears (histogram), making a cumulative sum up to each code
and multiplying it by the time elapsed from sample to sample (or sam-
pling period). To make the method independent of time ranges, a tim-
ing normalisation in [0, 1] is performed. This will establish boundary
conditions for F(t) to define the parameters of the input signal and de-
velop its algorithm, and will establish the domain of definition for the
basis functions used to approximate F(t).

• The obtaining of the coefficients {aj} is performed by applying the
DH and establishing a relation for each code between both data sets
through the true Integral Nonlinearity of the converter under test, re-
sulting in an overconstrained equation system which is solved by the
Least Squared method (LS). The algorithm is applied under the as-
sumption that the two input signals used are identical except for the
constant offset, and this condition is very difficult to meet in a real
measurement setup, with a non-stationary environment, where there
are time drifts that will introduce variations between the first and the
second signal generated as well as in the value of the offset applied,
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causing systematic errors in the estimates obtained. As a partial solu-
tion to this problem a test strategy is proposed by interleaving the two
excitation signals following a "common-centroid" distribution sequence
according to the Thue-Morse series, information which is expanded in
(Jin et al., 2005b).

Based on the work of (Jin et al., 2005a) a large number of extensions and
improved techniques have been developed and summarising them all is a
challenge in itself. Of great interest to help getting to know much of the
existing bibliography on the subject, it is the paper (Schat, 2018) in which a
survey up to the date of publication can be found. Because of the method
developed in this thesis, we will focus on those works that apply a double
histogram and that have most influenced the proposed solutions of some of
its drawbacks.

The algorithm introduced in (Korhonen and Kostamovaara, 2007) is based
on the idea presented in (Jin et al., 2005a) but with a less complex computa-
tion process focused on a Built-In-Self-Test (BIST) solution, without the need
to perform a parametrisation of the non-linear component of the excitation
signal and without using the LS optimisation method as it is costly in hard-
ware resources. The proposed algorithm studies how the slope of the non-
linear input ramp is related to the code widths estimated by the histogram.
The two-point difference forfulae is used for the derivative evaluation, ob-
taining the slope and hence the code width, from which the DNL and INL
are evaluated. (Korhonen and Kostamovaara, 2007) still assumes that the test
takes place in a stationary environment, where the two generated ramps are
identical except for the constant offset, so the test strategy of interleaving the
two signals following the "common centroid" sequence is adopted to reduce
errors due to time drifts in the offset.

(Korhonen and Kostamovaara, 2008) presents an adaptation of (Korho-
nen and Kostamovaara, 2007) but to the case of non-pure sinusoidal input
signals, being necessary to improve the initial algorithm to detect higher de-
gree derivatives. According to (Korhonen and Kostamovaara, 2008), it is re-
quired the use of four (and not two) sinusoidal input signals identical to each
other except for the constant offsets that move them, resorting to the appli-
cation of Lagrange polynomials to generate a derivative formula based on
four points, and not two. (Korhonen and Kostamovaara, 2009; Korhonen
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and Kostamovaara, 2011) address the on-chip generation of the constant off-
set for the application of the DH method.

In (Vasan, Chen, and Geiger, 2010) the SEIR algorithm is adapted to the
use of non-pure sinusoidal signals. Previously in (Jin et al., 2004) the SEIR
algorithm was used for this type of stimulus, but one signal was an atten-
uated version of the other. In (Vasan, Chen, and Geiger, 2010) the authors
also adapt the algorithm proposed in (Korhonen and Kostamovaara, 2007)
for its use with sinusoidal signals without considering the changes in (Ko-
rhonen and Kostamovaara, 2008), by modifying the histogram data obtained
from the two signals and applying it directly to the equations set out in the
method.

In (Jin, Chen, and Geiger, 2007) an improved version of the (Jin et al.,
2005a) SEIR algorithm is shown, to reduce errors when is applied in a non-
stationary test environment. The proposal is to decompose the input ramp
signals into multiple smaller triangular waves and then order them following
a Center Symmetric Interleaving (CSI) pattern. (Zhuang et al., 2015) focuses
on the effect of flicker noise in SEIR with ramps and (Zhuang et al., 2016)
concludes that the use of sinusoidal signals makes the SEIR method more ro-
bust to flicker noise.

In the work presented in (Jalon, Rueda, and Peralias, 2009) we proposed
the Enhanced Double Histogram test (EDH), an algorithm for applying a
double histogram method that:

• Makes no assumptions about the waveform of the input signal.

• Estimates the two sets of transition levels directly from the application
of the histogram on its output data, performing a normalisation process
that allows the two transition sets to be related.

The EDH method is based on a procedure similar to SEIR, and uses a pa-
rameterisation of the generator non-linearity for its description. The EDH
algorithm works in non-stationary test environments but not being required
any time-interleaved technique: it is based under the hypothesis that time
drifts in the input signals can be modeled with an effective offset and an
effective gain introduced by the signal path adder, being different values be-
tween the first and second data acquisition to construct the two histograms.
The estimation of the INL pattern is obtained by applying two interlaced
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Least Squares methods, one to obtain the parameterisation parameters of the
function describing the non-linearity of the generator and the other to correct
the time drift effects by minimising with respect to the variation of the gain.
The contributions of our proposal are:

• The algorithm itself considers and corrects for possible effects arising
from time drifts of the generator and setup parameters during both his-
togram testing, with no time-interleaved procedure. The integration of
a L-times Thue-Morse series in the test procedure increases the test time
by L-2 times, as well as increases the difficulty of the set-up program-
ming to manage the process implementation

• The transition levels are obtained from a direct application of the his-
togram method on each data set acquired for the double histogram.
This gives the advantage that it can be applied with any type of input
as long as its amplitude probability distribution function is known. The
use of input signals other than a ramp type does not require any correc-
tion terms of higher derivatives.

In (Jalon and Peralias, 2009; Jalon and Peralias, 2010) we introduced the
Simplified Double Histogram method (SDH), a simple novel proposal based
on a double histogram, but without resorting to a parameterisation of the
generator non-linearity for its description. Our method performs a local
study for each ADC code of how the non-linearity of the generator affects
the evaluated code width (called virtual code width), obtaining how much
it deviates from the real code width of the ADC. As we are dealing with
high resolution ADCs, each code width is assumed to be very small, so that
within it and for each code it is possible to locally study how the non-lineal
generator function evolves and affects the virtual code widths by means of
its derivative approximated with the three-point formula. Obtaining two sets
of evaluated transition levels (called virtual transition levels) from two equal
input signals except for a constant offset displacement between them, it will
allow estimating the actual code widths of the ADC through an expression
that only depends on the two sets of evaluated transition levels and the ap-
plied constant offset. Our SDH proposal estimates the two sets of transition
levels by using the same EDH approximation based on the Standard His-
togram method. In the SDH method it is assumed that the two input signals
and the offset for the application of the method are generated in a stationary
test environment, so no input signals and offset time drifts are considered.
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The work presented in (Jalon and Peralias, 2010) also addresses the prob-
lem of non-stationarity during the application of the method introducing the
Extended Simplified Double Histogram method (ESDH). The ESDH method
applies the proposal of EDH in (Jalon, Rueda, and Peralias, 2009) to a non-
stationary test environment but adapted to the SDH new algorithm. The
contributions of our proposal are:

• The algorithm does not perform a parameterisation of the generator
non-linearity by a finite series expansion of basis functions, so the ac-
curacy of the SDH and ESDH method does not depend on the number
Mp of series elements chosen to model the generator non-linearity. This
is important to emphasise as it is not a trivial task to choose the right
number of Mp elements of the series to perform a fit to a function for
which, a priori, everything is unknown. The pattern of INL estimated
by SEIR will depend on the number of Mp basis functions selected
for the fitting, and both under-selection (underestimation)and over-
selection (overestimation) will result in an erroneous estimate of INL.
Proper fitting of the non-linear generator function is achieved when the
estimated INL accurately matches the true INL signature, but which is
unknown a priori since precisely the objective of this method is to ob-
tain it.

• As in EDH, the algorithm itself considers and corrects for possible ef-
fects arising from time drifts of generator and setup parameters during
both histogram testing, with no time-interleaved procedure.

• As in EDH, the transition levels are obtained from a direct application
of the histogram method on each data set acquired for the double his-
togram. This gives the advantage that it can be applied with any type
of input as long as its distribution function is known. The use of input
signals other than a ramp type does not require any correction terms of
higher derivatives. In (Jalon and Peralias, 2010) is explained the simple
way of evaluating transition levels by the Standard Histogram method
while keeping the full code range of the converter under test.

The EDH, SDH and ESDH methods are part and are fully described in
this thesis work. The high accuracy of both simulation and experimental
INL estimation results show that our proposals are applicable as alternative
test methods to the Standard Histogram test when the available generators
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do not meet the linearity requirements for the ADC to be tested.

The work presented in (Gines et al., 2016) introduces a self-testable BIST
test strategy based on the use of double histogram techniques. It uses an iter-
facing solution for on-chip ramp generator design, based on a buffer topol-
ogy that allows an offset injection for a double histogram test. The strategy
was verified by simulation by applying our SDH technique.

In this section it is imperative to mention the existence of techniques de-
veloped from the SEIR method but which do not apply a double histogram
as such. The methods are intended to relax the requirement for linearity of
the test input signal but also reducing test time. In (Jin, Chen, and Geiger,
2009) is introduced a histogram SEIR based technique that uses the archi-
tecture property of high resolution pipelined and cyclic ADCs to only use
a single nonlinear stimulus signal for linearity testing. The Ultrafast Stimu-
lus Error Removal and Segmented Model Identification of Linearity Errors
(USER-SMILE method) (Chen and Chen, 2015; Chen et al., 2018) uses the
SEIR concept of applying the two nonlinear signals related by the constant
offset to stimulus error removal combined with a segmented model identifi-
cation of linearity errors (Yu and Chen, 2012) (see subsection 1.4.3). Although
the original proposal of (Yu and Chen, 2012) uses a pure sine wave as input
signal, since the expected code (which the code actually obtained is com-
pared with) is obtained through the application of the Fast Fourier Transform
(FFT), the acquisition of the two output sets removes the linearity and wave
type constraints of the input signal. No histogram evaluation is required and
is limited to ADCs with segmented architecture such as SAR, pipeline and
cyclic ADCs. In (Chen et al., 2020) is addressed the implementation of a BIST
solution for a signal generator with voltage shift generation for USER-SMILE
application.

The authors of the adaptative procedure presented in (Gines Arteaga, Per-
alias, and Rueda, 2011) (see subsection 1.4.3) indicate as a method of relax-
ation of the input digital representation accuracy requirement the adaptation
of the DH technique to the adaptive estimation method.
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1.4.3 Other INL estimation techniques

The work presented in (Gines Arteaga, Peralias, and Rueda, 2011) proposed
an adaptive no-histogram evaluation procedure of the INL applicable with
any type of input signal as it does not require prototype waveforms such as
a ramp or a sine. It is possible to implemented by using a low-cost digital
logic. The adaptive algorithm still requires a digital representation of the in-
put signal of at least one or two bits more accurate than the ADC under test.

The authors in (Yu and Chen, 2012) introduce an algorithm to accurate es-
timates nolinearity parameters dramatically reducing data acquisition. The
method performs a more efficient noise averaging than the histogram method,
by making a proper use of the input signal information. Knowing the pure
input signal, the ideal expected output code is known and can be compared
to the actual output code to obtain error terms. The method uses the fact that,
in high resolution ADCs, the number of truly independent error sources con-
tributing to linearity errors is significantly smaller than the number of codes
to be tested. In (Yu and Chen, 2012) the ADC INL pattern is modeled with a
three-level segmented non-parametric model and the expected output codes
are evaluated via a Fast Fourier Transform of the actual output data. There-
fore the method is only applicable to ADCs with segmented INL structures,
such as pineline, SAR and cyclic ADCs and with pure sinusoidal input sig-
nals. As the method requires FFT of the output data signal to obtain the
expected codes, INL estimates covering nearly the full input domain of the
ADC will require very careful control of the amplitude of the input signal.
A customised version of this test procedure was applied for the evaluation
of the static parameters of the COTS 18-bit SAR AD7982 from Analog De-
vices during the TID qualification test campaign (Vargas-sierra et al., 2018).
The work was carried out by the mixed-signal group of the Alter Technology
company, to which the PhD student of this thesis belongs, in collaboration
with Dr. Eduardo Peralías Macías, from the Institute of Microelectronics of
Seville (IMSE-CSIC). The results were compared with those of the Standard
Histogram method, showing excellent accuracy while greatly reducing the
number of data acquired for its application.

Other methods extend the procedure of the Standard Histogram method:
the standard histogram method, due to its high accuracy on results, is a con-
ventional method used to calibrate the nonlinearity errors of ADCs (INL-
based calibration). Recently, some studies (Gines, Peralias, and Rueda, 2017;
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Gines, Leger, and Peralias, 2021) have shown that its application in ADCs
with a redundant codification (used in pipeline and SAR ADCs) is not ap-
propriate, since due to its data processing procedure, is not capable of cor-
rectly estimate the INL in the multivalued regions. Notice that the Standard
Histogram method will always result in a monotonic representation of the
transfer function of the ADC. In (Gines, Peralias, and Rueda, 2017) the au-
thors introduce a digital foreground INL-based calibration using a INL-based
additive code, called Redundant Integral NonLinearity (INLR). The INLR is
obtained using the redundant information from the multivalued codes and
it is experimental estimate applying the no-histogram based adaptive algo-
rithm presented in (Gines Arteaga, Peralias, and Rueda, 2011). The INLR

information is then stored in a Look-Up-Table LUT) to be used during cali-
bration process. In (Gines, Leger, and Peralias, 2021) an improved INL-based
calibration using LUT approach is presented. The method is based on a digi-
tal post-processing of the INL estimated by the Standard histogram method,
but replacing in the LUT the standarized values of INL in the multivalued
regions by the INL values obtained by an extrapolation process.
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Chapter 2

INL estimation using a Spectral
Processing based method

2.1 Introduction

This chapter will introduce a simple method to estimate the Integral Non-
Linearity (INL) parameter based on spectral processing and will show how
its application in high resolution ADCs can obtain more than satisfactory re-
sults while significantly relaxing the number of samples acquired for its ap-
plication compared to the Standard Histogram method (Measurement and
Technical, 2011). The method is based on the idea of expressing the INL in
such a way that it is possible to relate it to the spectrum of the ADC response
when it is excited by a pure sinusoidal signal.

Algorithms based on spectral processing for ADC static parameter esti-
mation, such as INL, have shown that they can obtain a more than enough
description to evidence ADC high level out-of-specification. This estimation
produces a partial description of the static behavior of the ADC and, for ex-
ample, cannot be used for a non-linearity calibration. But from the point of
view of a test in which the aim is to evaluate whether the INL parameter
is within the established margins indicated by an acceptance criteria, given
for example by the manufacturer, this partial description can be a valid ap-
proach.

Obtaining the INL using the ADC output signal spectrum information
requires expressing the Integral Non-Linearity by a mathematical function
and then relating it to the spectral harmonics:

INLk ≈ f INL(k; h̄1, h̄2, ..., h̄n) (2.1)
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Where {h̄i} is the set of complex harmonics of the output waveform.

A summary of works related to the spectral processing approach can be
found in Chapter 1, section 1.4.1 of this thesis dissertation.

2.2 A Simple Spectral Approach to estimate the INL

in ADCs: SSA method

FIGURE 2.1: Theoretical deduction flow to establish the SSA
test procedure

Based on the previously section, the objective is to find a mathematical
expression of the INL that can be related to the spectrum of the ADC output
data in response to a sinusoidal input. The contributions of the new tech-
nique presented here, referred to as SSA from now on, are:

• Simplification: a study of the local variation of the ADC transfer func-
tion around each ideal transition is made under the hypotheses of con-
tinuity and derivability, obtaining a mathematical expression that can
easily be related to the standard mathematical definition of the Integral
Non-Linearity, not requiring to express it as a sum of polynomials or as
a series expansion.

• Generalization: possibility of applying the method even to ADCs with
an abrupt and sharp INL pattern.

The work developed in this chapter has been presented in the papers (Per-
alias and Jalon, 2007; Peralias, Jalon, and Rueda, 2007; Peralias, Jalon, and
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Rueda, 2008).

Figure 2.1 shows the theoretical deduction flow to establish the SSA test
procedure. This seccion is devided in five subsections. The first one shows
the application conditions of the technique and how to obtain a mathematical
model of the INL. The second and the third sections will adapt this model
so that it can be evaluated by a spectral processing of the ADC response to a
sinusoidal input. These three sections are depicted and summarised at Figure
2.1. In the fourth section the SSA method will be tested by simulation. In the
fith section its application to a real prototype ADC will be shown.

2.2.1 A proposal for modelling the Integral Non-Linearity

Let start from the standard mathematical definition of the INL ((Measure-
ment and Technical, 2011) and Appendix (A)):

INLk = (tk − lk)/q (2.2)

where tk is the actual transition level in which the ADC output code
changes from k− 1 to k, lk is the ideal transition level and q is the quantum
or LSB of the ADC.

The aim is to link (2.2) to the transfer function of the ADC. The transfer
function of an ADC relates the ADC input signal x to the ADC output code
Z. As an example, Figure 2.2 shows a hypothetical ADC of N bits of resolu-
tion and input range [−R,+R], assuming without any loss of generalization
that the ADC input range is bipolar and centered at zero and the output
code range is bipolar. On the same Z(x) versus x graph is plotted the ideal
transfer function and the assumed actual transfer function of the example
ADC. An enlargement of the plot is shown in the colored shaded area. The
ideal transfer function is the representation of the set of of ideal transitions,
lk = q · k in the example, versus the set of output codes k ∈ [zmin + 1, zmax] ⊂
[−2N−1, 2N−1 − 1], where q = (2 · R)/2N is the quantum or LSB of the ADC.
Without loss of generality, from now on zmin = −2N−1 and zmax = 2N−1 − 1
will be considered as saturating codes.

The SSA proposes an approach to the Integral Non-Linearity based on
two hypotheses about the transfer function:

• It is a smooth, continuous and derivable function with respect to the
input signal x over the full input range of the ADC.
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FIGURE 2.2: Example N-bit ADC transfer function: the blue
line plots the ideal transfer function and the black line plots the

actual transfer fuction of the example ADC

• It is a strictly increasing function and, therefore, with derivative always
non-zero over the full input range of the ADC.

When the transfer function continuity assumption is made, it is presum-
ming that the resolution of the ADC is high enough so that the quantization
error is embedded in the rest of the noise contributions.

Let Z(x) be the transfer function of the ADC satisfying the above two
conditions, then mathematically it can be written:

z = Z(x) + ε(x), ∃∂xZ 6= 0, ∀x ∈ [−R,+R] (2.3)

where the error function ε(x) is considered of the same order as the quan-
tization error and [−R,+R] represents the input range of the ADC.

For a better understanding of the mathematical process to be developed,
the transfer function example illustrated above will be used. Consider Fig-
ure 2.3. Focusing on the actual transfer function of the example ADC, let us
assume that the blades in red represent the codes obtained when perform-
ing an output data acquisition with a low density of samples per code. Then
the Z(x) function can be obtained as a fit to this low-density sampling of the
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FIGURE 2.3: Low density sampling of the actual transfer func-
tion of the example ADC

actual transfer function. Figure 2.4 shows a high-order (upper figure) and a
low-order (bottom figure) fitting to the example actual transfer function.

For this purpose, and under the fulfilment of the two conditions indicated
above for the transfer function, the local variation of the transfer function
around each ideal transition level will be studied: for values of x close to
each ideal transition level lk it is possible to estimate the value of Z(x) know-
ing how this function varies over this small range (x − lk). This local vari-
antion can be obtained by a Taylor series approximation. The approach here
presented for the SSA method considers a low-order differentiable transfer
curve using a first-order Taylor expansion around each ideal transition lk (as
is illustrated in Figure 2.5):

Z(x) ≈ Z(lk) + ∂xZ(lk) · (x− lk), ∀x ≈ lk (2.4)

For each ideal transition lk, (2.4) is evaluated in the corresponding actual
transition level, x = tk, obtaining:

Z(tk) ≈ Z(lk) + ∂xZ(lk) · (tk − lk) (2.5)

The value of Z(x) evaluated for x = tk roughly matches the code k for
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FIGURE 2.4: High-order (up) and Low-order (bottom) transfer
function approximation

that transition, k ≈ Z(tk). And the term (tk − lk) is easily related to the In-
tegral Non-Linearity using the standard definition given in expression (2.2).
Substituting in (2.5) is obtained:

k ≈ Z(lk) + ∂xZ(lk) · q · INLk (2.6)

Solving for the INL term from (2.6), the desired INL approximation is:

↪→ INLk ≈
k− Z(lk)
q · ∂xZ(lk)

(2.7)

Obviously the INL pattern of an ADC can be evaluated from the previous
expression if the first derivative of the function Z(x) exists.

A first-order Taylor expansion approximation is considered since the non-
linearity of the ADC is assumed very small. For high resolution ADCs we

38



2.2. A Simple Spectral Approach to estimate the INL in ADCs: SSA method

FIGURE 2.5: The first-order Taylor expansion of the transfer
function Z(x) around an ideal transition level lk

can mathematically limit its value to maxk|INLk| < 2N−10 with N > 10.
In the case that a second-order Taylor expansion is required and the second
derivative of the function Z(x) exists, it is possible to obtain an alternative
INL approximation to the one proposed in (2.7). The second-order Taylor
expansion around each ideal transition lk is:

Z(x) ≈ Z(lk) + ∂xZ(lk) · (x− lk) +
1
2

∂2
xZ(lk) · (x− lk)2, ∀x ≈ lk (2.8)

Evaluating at each transition level tk:

Z(tk) ≈ Z(lk) + ∂xZ(lk) · (tk − lk) +
1
2

∂2
xZ(lk) · (tk − lk)2 (2.9)

Using k ≈ Z(tk) and relating (2.9) to the INL using its definition (2.2):

k ≈ Z(lk) + ∂xZ(lk) · q · INLk +
1
2

∂2
xZ(lk) · q2 · INL2

k (2.10)

Solving this quadratic equation in INLk:

INLk ≈
√

2(k− Z(lk)) · ∂2
xZ(lk) + (∂xZ(lk))2 − ∂xZ(lk)
q · ∂2

xZ(lk)
(2.11)
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2.2.2 Inclusion of the Integral Non-Linearity model in the

spectral approach

The aim of this seccion is to show how to evaluate the expression (2.7) through
the spectrum of the ADC response to a sinusoidal excitation. This will be
achieved by obtaining an expression for the transfer function Z(x) of the
ADC when it is excited by a sinusoidal signal.

Let therefore start from the ADC that is excited by a sinusoidal input sig-
nal whose mathematical expression is:

x(t) = A cos(wxt + ϕx) + B (2.12)

Where A is the amplitude, B is the offset, wx the frequency and ϕx the
phase of the sinusoidal input signal.

Considering that the objective is to estimate the static parameter INLk for
all code k, the sinusoidal signal must meet the following two requirements:

• It has to excite the full input range of the converter to cover the entire
range of codes but without saturating the ADC; following the example
in Figure 2.2, A ≈ R y B ≈ 0.

• The input frequency must be low enough so that the dynamic effects
during the test are negligible. This requirement is analogous to the
one in (Measurement and Technical, 2011) for the choice of a test input
frequency for the evaluation of the static parameters by the histogram
method using a sinusoidal input.

As the ADC is a linear system, the response of the ADC to the above sinu-
soidal input in (2.12) is a sinusoidal signal that contains the static errors (as
indicated above, the dynamic errors have been considered negligible) intro-
duced by the ADC and so can be described as a superposition of harmonics
of the excitation frequency, whose mathematical expression is:

Z(x(t)) = C0 + ∑
n≥1

Cn cos(wnt + ϕn), wn = nw1 (2.13)

where w1 and ϕ1 are respectively the frequency and phase of the funda-
mental harmonic.
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FIGURE 2.6: Application of the spectral approach to relate the
input signal and the output signal parameters for a sinusoidal

input

Remember that the aim is to evaluate the Integral Non-Linearity using
the expression (2.7) and for this it is required to obtain the derivative of the
transfer function of the ADC. The derivative of the transfer function ∂xZ(x)
is calculated as:

∂xZ(x) =
∂tZ(x(t))

∂tx(t)
=

∑n≥1 wnCn sin(wnt + ϕn)

wx A sin(wxt + ϕx)
(2.14)

Expression (2.13) can be evaluated finding a relationship between the pa-
rameters of the sinusoidal input signal and the parameters of Z(x(t) as Figure
2.6 shows: since the ADC is a linear system and its response is a sinusoidal
signal, the fundamental harmonic is dominant and in a first approximation
it is possible to discriminate from (2.13) the remaining harmonics (n > 1)
to obtain a relationship between the parameters and coefficients of the main
harmonic and the expression (2.12) of the analog input signal. Thus:

Z(x(t)) ≈ C0 + C1 cos(w1t + ϕ1) (2.15)

w1 ≈ wx and ϕ1 ≈ ϕx are the frequency and phase of the fundamental
harmonic and they have been identified with the frequency and phase of the
input signal. On the other hand, the ADC is a linear system whose function
is approximate to (Measurement and Technical, 2011):

Z(x) ≈ g · x
q

+ zos (2.16)
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where g represents the gain and zos the offset of the ADC.

From (2.15) and (2.16) the following relations are obtained:

C1 ≈
g · A

q
, C0 ≈

g · B
q

+ zos, w1 ≈ wx, ϕ1 ≈ ϕx (2.17)

A more approximate but more expensive expression can be obtained if
the ADC output signal is fitted by means of Least Squares method to a sinu-
soidal signal expressed as ẑ(t) = CB +CA cos(wzt+ ϕz), where CA, CB, wz, ϕz

are the parameters obtained from the adjustment. In relation (2.17) these pa-
rameters would replace the coefficients, frequency and phase of the main
harmonic.

Continuing with our more simplified model, including the relations (2.17)
in (2.14):

∂xZ(x) ≈ g
q
[1 +

∑n≥2 Cnn sin(nw1t + ϕn)

C1 sin(w1t + ϕ1)
] (2.18)

Both (2.13) and (2.18) are functions expressed in the time domain but that
need to be evaluated at each ideal transition level lk as they appear in (2.7).
This will be possible knowing the time instants t = τk in which the input
signal crosses the ideal transition levels and, from the perspective of the out-
put data, knowing the phases nw1t + ϕn of the output harmonics for t = τk.
Then Z(lk) = Z(τk) and ∂xZ(lk) = ∂xZ(τk) in (2.7). For a better under-
standing, Figure 2.7 shows a sinusoidal excitation signal that covers the full
input range of the example ADC but without producing saturation: during
its travel there will be certain time instants τk in which the signal will reach
the voltage values corresponding to the ideal transition levels lk of the ADC,
being easily related using the mathematical expression of the input wave,
x(τk) = lk. It can then be written that:

lk = A cos(wxτk + ϕx) + B (2.19)

Clearing the cosine argument wxτk + ϕx:

wxτk + ϕx = arccos(
lk − B

A
)⇒ wxτk = −ϕx arccos(

lk − B
A

) (2.20)

Equation (2.20) is expressed in terms of the parameters of the sinusoidal
input signal. To express it in terms of the spectral harmonic parameters and
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FIGURE 2.7: Time instants τk when the input signal crosses the
ideal transition levels lk

coefficients of the response, the relations of (2.17) are used:

↪→ δk = w1 · τk ≈ −ϕ1 arccos(
g · k + zos − C0

C1
) (2.21)

where lk has been replaced by its value lk = q · k.

Replacing (2.21) into the phases of the expressions (2.13) and (2.18):

nw1t + ϕn|t=τk = nw1τk + ϕn = nδk + ϕn (2.22)

Applying (2.22) and (2.21) into (2.13) and (2.18) both evaluated for t = τk,
and replacing in (2.7):

43



Chapter 2. INL estimation using a Spectral Processing based method

↪→ INLk ≈ f INL(k; Cn, ϕn, g, zos) =
k−(C0+∑n≥1 Cn cos(nδk+ϕn))

g·[1+∑n≥2
Cn
C1

n sin(nδk+ϕn)
sin(δk+ϕ1)

]
,

∀k ∈ [−2N−1 + 1, 2N−1 − 1]
(2.23)

Equation (2.23) provides an approximation of the Integral Non-Linearity
evaluable through the amplitudes of the response harmonics {Cn}, their phase
shifts {ϕn}, and the gain g and offset zos of the ADC. All of them, in principle,
can be estimated by the spectral processing of the ADC output data. Some
considerations must be indicated:

Gain and offset : To obtain the gain g and offset zos of the ADC it is nec-
essary to know the exact amplitude A and offset B values of the input
sinusoidal signal. This is the case, for example, if the evaluation of
the gain eg and offset eos errors of the ADC is required. In general,
canceling the offset zos of the ADC is equivalent to a possible compen-
sation with the offset of the input signal. Concerning to the gain, is
assumed that the ADC gain is close to unity. Errors in the amplitude
and offset values of the input signals do not induce errors in the INL
parameter because they only induce gain and offset errors (Measure-
ment and Technical, 2011), so the Integral Non-Linearity wanted is the
one obtained after correcting the {INLk} vector from offset and gain
contributions. In (Measurement and Technical, 2011), this is achieved
by performing a fit of the set of actual transition levels tk to the equation
of a straight line, either by the Least Squares method or by the method
of passing through the extreme points, for then removing the obtained
line from the INL computation. This is equivalent to performing a nor-
malization process considering g = 1 and zos = 0 in (2.21) to evaluate
(2.23):

INLk ≈ f INL(k; Cn, ϕn, 1, 0), ∀k ∈ [−2N−1 + 1, 2N−1 − 1] (2.24)

where the INL in (2.24) represents the Integral Non-Linearity without
the offset and gain information of the ADC.
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Number of harmonics selected : The number of harmonics selected for the
evaluation of (2.23) depends on the mathematical method used to ob-
tain the harmonics parameters {Cn} and {ϕn}, and on the spectral dis-
crimination allowed by the noise floor. The work presented is based on
the Discrete Time Fourier Transform (or DTFT) to obtain the spectrum
of the ADC output data and, concerning to the selection of harmon-
ics, a conservative criterion has been chosen of including those whose
amplitude is at least 10dB over the noise floor.

This will be discussed in the next section.

2.2.3 Method for spectral processing and calculation of spec-

tral parameters

In the previous section, a mathematical expression of the INL has been ob-
tained as a function of spectral parameters calculated by the spectral pro-
cessing of the ADC output signal in response to a sinusoidal excitation. In
Analog-to-Digital Converters, where the output signal is obtained by sam-
pling the input signal with a constant period Ts (where f s = 1/Ts is the sam-
pling frequency of the ADC), many of the mathematical methods applied for
the evaluation of spectral harmonics are based on the Discrete Time Fourier
Transform (DTFT). In a test environment where records with a limited num-
ber of samples or output codes are acquired, the mathematical calculation
can be simplified by using the Discrete Fourier Transform (DFT) (Measure-
ment and Technical, 2011), under the assumption that a record corresponds
to a single period of the input signal extending infinitely. If the record does
not contain an integer number of complete cycles of the input signal, spectral
leakage arises. The requirement for coherence sampling appears. This condi-
tion implies the use of high accuracy frequency signal generators and the use
of a low jitter master clock that synchronises the input signal and the ADC
clock signals.

Output data spectral processing based on DFT is a time-consuming chal-
lenging task for high performance ADC. The work (Sudani et al., 2015) sum-
marizes four methods to relax some of these test requirements, as the coher-
ent sampling or the use of an input amplitude that does not produce out-
put signal clipping. The four methods presented are: (1) Windowing, (2)
The four-parameter sine-fit, (3) Fundamental Identification and Replacement
(FIRE) (Sudani and Chen, 2013) and (4) Fundamental Estimation, Removal
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And Residue Interpolation (FERARI) (Sudani, Xu, and Chen, 2013; Xu, Su-
dani, and Chen, 2014).

Estimation of the harmonic parameters under a coherence sampling test

In our test conditions, it is assumed the need to acquire a register of M output
samples {zi}M

i=1. Coherent sampling occurs if the frequency of the sinusoidal
input signal to the ADC fx is related to the ADC sampling frequency fs such
that in the output data record there is an integer number of cycles of the
input signal converted by the ADC, i.e., if it is verified (Measurement and
Technical, 2011):

fx = fs ·
J

M
(2.25)

where J is the number of complete cycles contained in the data register.
The Fast Fourier Transform or FFT is a powerful and very efficient algorithm
that allows to calculate the DFT. This algorithm increases its effectiveness if
the number of samples stored in the register M is a power of two.

In addition, as is indicated in (Measurement and Technical, 2011), the con-
dition (2.25) is also used to guarantee that the ADC samples the input signal
such that M different values are sampled, being this possible if the relation-
ship between fx and fs is such that there are M different input signal phases
that are uniformly distributed between 0 and 2π. This condition meets when
M and J do not have common factors or, what is the same, its greatest com-
mon factor is one. If the number of samples captured is a power of two, any
odd integer for J satisfies the condition.

Regarding the contribution of noise, it is assumed a random, additive
and white noise model, and with a background noise level allowing to make
a clear discrimination of harmonics in the obtained spectrum.

Thus, let {ς j} = FFT({zi}) be the data set resulting from applying the
DFT to the output data record under the above test conditions. From this
new data set it will be estimated the spectral parameters of the H harmonics
{ς jn}H

n=1 used in the calculation of the INL in (??) following the criteria: (1)
They are dominant and clearly noticeable against the background noise. A
very restrictive selection criterion is to consider those harmonics with apli-
tudes at least 10dB above the noise floor level. (2) Identifying the source of
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other notable spectral lines in the spectrum is important, as they may be due
to higher order harmonics wn > ws/2 that are folded into the spectrum rep-
resented within the Nyquist frequency or the Nyquist band; if these harmon-
ics are part of the INL computation, a correction factor have to be introduced.

Under all these above considerations, the applicable expressions in (??)
are:

w1 = 2π fs J/M (2.26)

wn = nw1 (2.27)

C0 = meani{zi} (2.28)

Cn = (2/M) · ‖ς jn‖ (2.29)

ϕn = (−1)pn · Arg(ς jn) (2.30)

g = q · rms{zi}/rms{x(t)} (2.31)

where for k ≥ 0 :

pn = { 0 wn/ws ∈ [k, (2k + 1)/2[
1 wn/ws ∈ [(2k + 1)/2, (k + 1)[

pn is the function that corrects the inversion phase in the case of folded
harmonics in the spectrum.

Although the gain and offset contributions are eliminated from (2.23) by
taking g = 1 and zos = 0, in (2.26) is indicated a simple way to evaluate the
gain g by calculating the Root Mean Square of the input signal RMS{x(t)},
which is easily measurable with a wattmeter. Under the assumption of a low
distortion ADC, the difference between the gain measured in this way and
that evaluated by standard methods such as fitting the set of transition leves
to a straight line and matching the gain with the slope (Measurement and
Technical, 2011), is usually less than 0.5%.

If, when calculating the output signal spectrum, a noise averaging is re-
quired on the acquisition of R records of M samples length, these records
must be consecutive captured since the phase information is necessary and
cannot be lost. A single record of R ·M samples must be captured to this end
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and where the coherent sampling requirement apply to M samples. Spec-
trum averaging is performed by applying the FFT to the data of each of the R
records, obtaining the modulus and argument of data of each new data set,
and using them to obtain averaged modulus and argument:

{ς(m)
j }

R
m=1 = FFT{z(m)

i } (2.32)

ˆ‖ς j‖ =
√

meanm=1,...,R{‖ς
(m)
j ‖2} (2.33)

ˆArg(ς j) = meanm=1,...,R{Arg(ς(m)
j )} (2.34)

where ˆ‖ς j‖ is the averaged modulus and ˆArg(ς j) is the averaged argu-
ment. (2.26) to (2.32) will continue to be valid expressions but considering
the averaging in R records.

An alternative approach to obtain an averaged spectrum is to address the
problem from the time domain signal, this is a Time-Avaraged Spectrum. It
consists of averaging the raw data over the R records of M samples to obtain
an averaged signal:

{ẑi} = meanm=1,...,R{z
(m)
i } (2.35)

and then calculating the FFT:

{ς j} = FFT({ẑi}) (2.36)

Time-Avaraged Spectrum is very useful in the SSA method as it over-
averages the spectral noise and can allow discerning a larger number of spec-
tral lines embedded in the noise floor.

Estimation of the harmonic parameters under a non-coherence sampling
test

If the sinusoidal input frequency and the sampling frequency are not accu-
rately known and controlled leading to the coherent sampling condition is
not met, the DFT application causes spectral leakage. Windowing or to ap-
ply a window function to the output data is proposed in (Measurement and
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Technical, 2011) to reduce spectral leakage. For the case of a spectrum aver-
aging, the window function is applied to each sub-record R:

{ς(m)
j }

R
m=1 = FFT{wiz

(m)
i } (2.37)

where {wi}M
i=1 is the convolution window. In this case the coefficients in

(2.26) have to be corrected by a factor that depends on the applied window.

If the test input frequency is such that there are high-order harmonics
above the Nyquist frequency and folded into the Nyquist band, when win-
dowing is used it is not only necessary take care with the proper selection
of harmonics, but also a fine adjustment on the input frequency considering
that there are no overlaps between the lobes of the harmonics taken for the
INL evaluation with (2.23).

2.2.4 Simulated experiments

In order to test the SSA method, simulated experiments for the estimation
of the Integral Non-Linearity have been performed on two ADCs with very
different signatures of this parameter:

ADC1 : high-level model of a Sigma-Delta ADC with 14-bits of resolution
and fs = 100ksps of sampling frequency. The ADC works in unipolar
configuration with reference voltages R− = 0.0V and R+ = +5.0V and
a useful input range [+0.5V,+4.5V]. The model: (1) includes offset
and non-linearity effects considering a very regular transfer function
affected by +7.3LSB of offset and whose nonlinearity is described by
a smooth curve, (2) models a frequency behavior to simulate dynamic
effects and (3) also considers the noise introduced by both the ADC and
the input treated as a 2LSB RMS white noise referred to the input.

ADC2 : high-level model of a pipeline ADC with 16-bit of resolution and
a sampling frequency up to fs = 5Msps. The ADC works in bipolar
configuration with reference voltages R− = −2.0V and R+ = +2.0V.
The model: (1) considers a non-monotonic transfer characteristic and
whose non-linearity presents strong and sharp discontinuities, (2) mod-
els a frequency behavior to simulate dynamic effects, (3) the noise in-
troduced by both the ADC and the input is modeled as a 1LSB RMS
white noise referred to the input.
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For each of the above ADCs the Integral Non-Linearity evaluated by the
Standard Histogram method (Measurement and Technical, 2011) is taken as
the real INL reference pattern. In order to this, the histogram method is
performed under the same test conditions as for the application of the SSA
method, but with the amplitude of the sinusoidal signal that slightly satu-
rates the ADC under test and with a number of captured samples suitable
for the application of the method: in a sinusoidal wave test, the minimum
record size ensuring a sample of every code is M = π · 2N, in the case of the
ideal ADC transfer function in the absence of random noise. The section has
been divided into three parts or experiments:

• Experiment 1: a direct application of the approximation (2.7) to the
ADC1 model will be performed.

• Experiment 2: Application of the SSA spectral algorithm to estimate the
INL pattern of the ADC1 model.

• Experiment 3: Application of the SSA spectral algorithm to estimate the
INL pattern of the ADC2 model.

The simulated experiments have been presented in the papers (Peralias
and Jalon, 2007; Peralias, Jalon, and Rueda, 2007; Peralias, Jalon, and Rueda,
2008).

Experiment 1: ADC1 under a low-density DC sweep

In order to show an immediate application of the INL modeled as (2.7), an
experiment has been devised using the ADC1 model as the ADC under test.
The aim is to find an expression Z(x) that describes the transfer function of
the ADC under test and satisfies the assumptions of continuity, derivability
and growth already listed above. To do so, the idea is to perform a low-
density sampling by means of a DC sweep, obtain for each input value x̄i a
record of output codes or samples to compute and associate to it the average
code z̄i. On the set [(x̄i, z̄i)] a best-fit polynomial of degree Mp, ZMp(x), will
be constructed. This polynomial can be directly replaced into (2.7).

Firstly, the excitation signal has been constructed to perform a DC sweep
of about 4000 points covering the input range [+0.7V,+4.3V]. Each of these
points excites the ADC under test model, registering for each input value
50 points or output codes. Secondly, on each register of 50 stored codes, an
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FIGURE 2.8: a)INL estimation and b) difference or error for the
ADC1 approximating Z(x) in a low-sampling test and using a
DC sweep: in thick black line the one obtained by (2.7), in thin
blue line the INL reference pattern evaluated by the Histogram

method.

average code is calculated, being in this experiment inside the range Ik =

[−5792, 5801]. Now, each input level with which the ADC has been excited
has a corresponding output code associated with it. Thirdly, a polynomial
fit has been applied to the above input-code data set. In this experiment, the
Chebyshev polynomials of the first class Tn in its trigonometric definition
have been chosen as the basis function. The choice of the degree of the poly-
nomial was adjusted according to the number of significant harmonics found
in the spectrum of Simulated Experiment 2, being Mp = 32. This idea will
be discussed later.

It has been already defined the function Z32(x) which models the transfer
function of the simulated ADC and its derivative. Under these conditions, it
is possible to obtain for each k ∈ Ik = [−5792, 5801] code the value of Z32(lk)
and ∂xZ32(lk) to evaluate INLk according to (2.7).
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In order to obtain a reference curve of the INL of ADC1 with which to
compare the results, the application of the Standard Histogram method has
also been simulated using a sinusoidal waveform as the excitation signal and
taking R = 64 records of M = 500 + 212 = (500 + 4096)samp/reg. The num-
ber of 500 samples are recorded at the beginning of ech register to reduce set-
ting errors by removing them from the final computation: the total number
of output samples computed for the histogram is Mtotal = 64 · 212 = 262144
samples. The amplitude of the input signal saturates the input range of the
ADC under test and the input frequency has been set in the order of 83 times
lower than the sampling frequency (to avoid dynamic effects on the mea-
surement) and observing coherent sampling over the 4096 samples, being
fx = 1.1962KHz. The phases of the records have been evenly distributed be-
tween [0, 2π].

Figure 2.8 a) shows in black line the INL estimated by (2.7) and in blue
line the reference INL pattern obtained by the Standard Histogram method.
Both pattern shapes match but with a displacement of about 0.5LSB, show-
ing the high accuracy achieved by the method in a smoothy INL pattern.
It should be mentioned that the curves depicted in Figure 2.8 a) are shifted
by about −6LSB respect to 0LSB due to no offset correction has been made
to remove its contribution from the INL: practically the offset from which
the ADC1 transfer function is affected is shown. Figure 2.8 b) depicts the
difference between both estimations, showing the systematic 0.5LSB error
commented above. This difference comes since (2.5) and (2.6) are evaluated
from the transitions levels instead of the code centers. As the INL desired
is the one without offset contribution, it must be eliminated from the final
INL calculus, in this case correcting it by means of the its mean value. When
the expressions (2.23) and (2.21) are used through the spectral processing, no
offset correction is needed since the offset contribution is eliminated consid-
ering zos = 0.

Experiment 2: ADC1 under a sine-wave input

This simulated experiment will show the result of the application of the SSA
method, estimating the INL of the ADC1 using (2.23). To carry out the exper-
iment, it is necessary to generate a sine wave to excite to the ADC under test
and to construct the spectrum of the response signal. The choice of parame-
ters defining the sinusoidal input signal are as follows:
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FIGURE 2.9: Typical spectrum for the ADC1 averaging 4
records of 4096 samples

• Amplitude A of about −3dBFS to cover the same input range as the
previous experiment and with an offset B in the range of 100LSB from
mid-range at 2.5V.

• Input frequency of value well lower than the sampling frequency in or-
der to not introduce dynamic effects in the measurement. In this exper-
iment, a value approximately 83 times below, fx ≈ fs/83 = 1.2048kHz,
has been selected. The input frequency value has also been set to em-
ulate an experiment where coherent sampling is not achieved with the
accuracy required.

• The input signal phase was uniformly distributed within the range [−π,+π]

by the repetition of 35 simulated experiments.

The equivalent noise referred to the input will now be included as 1LSB
RMS white noise.

Addressing data capture for the SSA method application, R = 4 consec-
utive output records of M = 212 = 4096samp/reg are acquired. Added to
these data, 500 samples are recorded at the beginning of the acquisition to re-
duce settling error effects by removing them from the final computation. The
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TABLE 2.1: In order of harmonic magnitude, first six ampli-
tudes and phases estimated from the ADC1 output data spec-

trum

Index n Amplitude (dBFS) Cn Phase (degree) ϕn

1 -3.0 177.9
3 -70.3 -6.7
2 -85.2 175.3
5 -90.2 169.1
6 -90.2 -12.2
22 -93.9 134.4

total number of samples captured are 500 + (4 · 4096) = 500 + 16384 sam-
ples. As the INL pattern reference was estimated (in the previous simulated
experiment) taking 262144 samples, the number of samples used for the SSA
application is 1/16 times the number of samples required for the histogram
method.

Finally, the FFT is applied to each set of 4096 samples and an averaged
spectrum over the 4 records is calculated. Figure 2.9 depicts the typical mag-
nitude spectrum obtained. In this experiment a window function applica-
tion is needed to avoid spectral leakage due to non-coherent sampling. The
selection of an appropriate window function and the extraction of the spec-
tral parameters corrected for the effect of its application have been treated
according to the works presented in (Belega, Ciugudean, and Stoiciu, 2007;
Zhu et al., 2007), chosing a 4-term cosine window for output data windowing
and a linear phase regression algorithm for the {Cn}, {wn} and {ϕn} spectral
parameters extraction. The DC component have been evaluated by means of
the weighted mean of the samples, using as weight function the convolution
window:

C0 = meanm=1,...,R{
∑i(wi · z

(m)
i )

Σiwi
} (2.38)

As Figure 2.9 shows, the background noise is approximately −112dBFS.
Following the very restrictive selection criterion of choosing harmonics with
amplitudes at least 10dB above the noise level, those with amplitudes higher
than −102dBFS will be chosen as possible harmonics to compute (2.23). In
addition, among these harmonics, only those whose estimated frequency
does not deviate from a multiple of the fundamental frequency by more than
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FIGURE 2.10: a)Black thick line: estimation of the INL of the
ADC1 using SSA method. Blue thin line: reference INL ob-
tained by the Standard Histogram method b) Difference be-
tween the SSA INL estimation and the one estimated by the
standard histogram method, c) Differences obtained for all of

the SSA experiments performed in ADC1

2.25 times the spectral resolution ∆ f = fs/4096, that is | fn− h · f1| ≤ 2.25 ·∆ f
with h an integer, have been selected to compute (2.23). This criterion allows
to accurately discriminate true harmonics from other spurious lines, even
if they are high frequency harmonics folded into the Nyquist band of the
spectrum. The typical selection detects about 17 harmonics with orders up
to 30th. Table 2.1 indicates, in order of magnitude, the estimated amplitude
and phase values of the first six harmonics selected from the spectrum of
this experiment. Amplitude values are given in dBFS unit. Remark that the
estimated amplitude of -3dBFS matches the amplitude value of the input si-
nusoidal signal used in this experiment, which is consistent with the unity
gain of this ADC model.
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FIGURE 2.11: Histogram estimation using 4 records of 4096
samples and its comparison with the standard histogram

method

Figure 2.10 a) plots in black line the typical INL result obtained for one of
the 35 expreriments when the SSA method is applied and in blue line the INL
pattern reference corrected from the offset effect. In this case the INL curves
are completely overlapping since the offset contributions are corrected from
both estimations, the SSA method by considering zos = 0. The INL reference
pattern covers approximately the range of ±4LSB. Figure 2.10 b) plots the
difference or error between the two INL patterns, that lies between±0, 3LSB.
Figure 2.10 c) shows the differences between the INL estimating by each of
the 35 experiments and the INL pattern reference, showing that the error al-
ways lies within the range ±0, 4LSB.

The application of the histogram method with only 4 records of 4096 sam-
ples each would lead to large errors in the estimation of the INL pattern. This
is depicted in Figure 2.11, where the blue line plots the INL obtained by the
histogram method using a 4 · 4096 samples, resulting in a INL pattern within
the ±10LSB range.

By applying the SSA method and using only 16384 samples, a number
1/16 times the number of samples used for the Standard Histogram method
(or the 6.25%), it has been possible to accurately estimate the INL of the
ADC1, with a smooth pattern and INLmax = 4LSB, fully matching its shape,
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being in the same range of values and with a maximum error of 0.4LSB.
In contrast, the application of the histogram method using the same 16384
number of samples leads to an inaccurate INL estimation that is not able to
estimate the actual shape of the INL curve and that duplicates the range of
values in which it moves.

Experiment 3: ADC2 under a sine-wave input

FIGURE 2.12: Typical spectrum for the ADC2 averaging 8
records of 32768 samples

In this section, a simulated experiment is carried out for the application
of the SSA method in the ADC model ADC2, with a higher resolution and
higher speed than the previous one and with a non-smooth and sharp INL
signature.

The experiment operates the ADC at a sampling frequency of fs = 1Msps
and the sinusoidal input signal is programmed as:

• The generated sinusoidal input signal will cover practically the full in-
put range of the ADC under test, by setting −0.2dBFS of amplitude A.
The signal offset B is in the range of 10LSB.

• The input frequency is well lower than the sampling frequency in or-
der to not introduce dynamic effects in the measurement. In this ex-
periment, a value of approximately 223 times below, fx ≈ fs/223, has
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FIGURE 2.13: a)Black thick line: estimation result of the INL of
the ADC2 using SSA method and including gain effect. Blue
thin line: reference INL obtained by the standard histogram
method and including gain effect, b) Difference between the
SSA INL estimation and the one estimated by the standard his-

togram method

been selected. The input frequency value has been set to emulate a
coherent sampling experiment. The number of samples per record se-
lected on which the coherent sampling has been established is M =

215 = 32768samp/reg, being the coherent sampling met for J = 147
and fx = fs · (147/32768) = 4.4843kHz.

• The input signal phase was uniformly distributed within the range [−π,+π]

by the repetition of 35 simulated experiments.

In order to obtain a reference pattern of the INL of ADC2 with which to
compare the results, the application of the Standard Histogram method has
also been simulated using a sinusoidal waveform as the excitation signal and
taking R = 64 records of M = 500+ 215 = (500+ 32768)samp/reg. The num-
ber of 500 samples are recorded at the beginning of ech register to reduce set-
ting errors by removing them from the final computation: the total number of
output samples computed for the histogram is Mtotal = 64 · 215 = 2097576
samples. The amplitude of the input signal saturates the input range of the
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FIGURE 2.14: a)Black thick line: estimation result of the INL
of the ADC2 using SSA method with g = 1. Blue thin line:
reference INL obtained by the standard histogram method and
including gain effect, b) Both estimations corrected by gain and

offset contributions

ADC under test and the input frequency has been set in the order of 223
times lower than the sampling frequency (to avoid dynamic effects on the
measurement) and observing coherent sampling over the 32768 samples, be-
ing fx = 4.4843kHz. The phases of the records have been evenly distributed
between [0, 2π].

Addressing data capture for the SSA method application, R = 8 consecu-
tive output records of M = 215 = 32768samp/reg are acquired. Added to this
data, 500 samples are recorded at the beginning of the acquisition to reduce
settling error effects by removing them from the final computation. The total
number of samples captured are 500 + (8 · 32768) = 500 + 262144 samples.
As the INL pattern reference was estimated computing 2097576 samples, the
number of samples used for the SSA application is 1/8 times the number of
samples required for the histogram method.
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The FFT is applied to each record of 32768 samples and a spectrum aver-
aged over the 8 records is calculated. Figure 2.12 depicts the typical magni-
tude spectrum obtained, observing how the sharp shape of the INL results in
a large number of harmonics in the spectrum. The background noise is ap-
proximately −130dBFS. Following the very restrictive selection criterion of
choosing harmonics with aplitudes at least 10dB above the noise level, those
with amplitudes higher than −120dBFS will be chosen as possible harmon-
ics to compute (2.23). The so irregular structure with sharp discontinuities of
the INL of this ADC leads to the typical selection detects about 165 harmon-
ics with orders up to 680th.

First of all, the SSA method is applied without any normalisation of the
gain g in the expression (2.21), obtaining its value through the proposal in
(2.26). In order to be able to compare the result with the reference INL, the
pattern obtained with the standard histogram method has not been corrected
for the effect of gain. Figure 2.13 a) depicts in black line the INL estimated by
SSA method and in blue line the reference INL estimated by the histogram
method. It shows that even for such sharp INL pattern of the ADC2, the SSA
method estimation absolutely follows (obviously with a smoothing effect)
the reference curve processing 262144 samples, a number 8 times fewer than
the one used by the histogram method. The result also evidences the high ac-
curacy in the measurement of the gain from the AC power relation between
the output and input signals through (2.26). Figure 2.13 b) plots the differ-
ence between both estimates: the main differences or errors occur in the areas
where the discontinuities of the transfer function are more abrupt, where the
smoothing effect of the curve due to the limited number of harmonics that
have been selected is more evident.

As the INL required is the one corrected by gain and offset effects, mea-
suring the gain value is not necessary since for the SSA method this is simply
achieved in this example by taking now g = 1. Figure 2.14 a) depicts in black
line the INL estimated by SSA using g = 1 and in blue line the reference INL
including the gain effect. Figure 2.14 b) plots the same INL estimations as in
a) but now with both pattern corrected by gain and offset contributions by
means of the substraction of the best-fitting line.

The experiment has been replicated on the same ADC model but acquir-
ing only two consecutive records, R = 2, of M = 32768samp/reg. The FFT
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FIGURE 2.15: SSA application using 2 records of 32768 samples
and its comparison with the standard histogram method

is applied to each record of 32768 samples and a spectrum averaged over the
2 records is calculated. In this case, the typical selection detects about 150
harmonics with orders up to 600th. The INL pattern obtained when the SSA
method is applied is analogous to the previous one. Figure 2.15 plots in black
line the INL estimated by the SSA method and in blue line the INL reference
pattern, both corrected by gain and offset contributions by means of the sub-
straction of the best-fitting line.

The application of the histogram method with only 2 records of 32768
samples each would lead to large errors in the estimation of the INL pattern.
This is depicted in Figure 2.16, where the blue line plots the INL obtained
by the histogram method using 2 · 32768 samples, resulting in a INL pattern
within the ±25LSB range.

Application of the SSA method acquiring only 65536 samples, that is a
number 1/32 times the number of samples acquired by the Standard His-
togram method (or 3, 125% of the required by the histogram) it has been pos-
sible to estimate the INL of the ADC2, with a transfer function with sharp
discontinuities and INLmax = 4LSB, fully adapted to its actual shape and be-
ing in the same range of values. In contrast, the application of the histogram
method using the same 65536 number of samples leads to an inaccurate INL
estimation that is not able to estimate the actual shape of the INL curve and
that increases the range of values in which it moves to ±25LSB.

With the results of the three simulated experiments above, the feasibility
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FIGURE 2.16: Histogram estimation using 2 records of 32768
samples and its comparison with the standard histogram

method

of the SSA method has been demonstrated by simulation in a low-cost test
environment where test time reduction is critical. This may be the situation
in New Space industry, where minimising measurement time costs is critical:
(1) with a massive number of COTS devices to be tested (2) the same com-
ponent is evaluated several times (3) under a Pass/Fail criterion given by a
range or limits in which the evaluated device parameter must be inside.

2.2.5 Application of the method to a real ADC Pipeline

As an example of application of the SSA method, this section shows the re-
sults of a laboratory experiment to estimate the INL pattern of a pipeline pro-
totype ADC of 12-bit of resolution, using the SSA method. The experiment
was introduced in the paper (Peralias, Jalon, and Rueda, 2008) to present an
SSA application and its results on a real ADC with an abrupt INL pattern.
The ADC under test is fully differential prototype in a 120 nm CMOS tech-
nology with reference voltages R− = −1V and R+ = +1V.

The input signals driven to the ADC under test are AC-coupled and gen-
erated by the Agilent N8241A AWG generator. The experiment has been
performed at an input frequency of fx ≈ 500kHz, with the ADC under test
operating at a sampling frequency of fs = 20MHz, and always under coher-
ent sampling compliance.
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FIGURE 2.17: Prototype ADC: Output spectrum for the SSA
method application showing selected harmonics

FIGURE 2.18: INL estimated by the Standard Histogram
method and by the SSA method

First, the SSA method has been applied using a single record of M = 4090
samples. No windowing or spectral averaging is required. The input fre-
quency is fx ≈ 503KHz. The input amplitude is A = −0.1dBFS. Figure 2.17
depicts the magnitude spectrum of the output data of the acquired record,
with a floor noise at about −100dBFS. The harmonics selected have been
those with the amplitude higher than −90dBFS, taking the typical selection
about 45 harmonics with orders up to 150th.
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In order to obtain a INL reference pattern with which to compare the re-
sults of the estimation using the SSA method, a Standard Histogram test has
been performed. This test has been carried out with an input amplitude sat-
urating the ADC under test and acquiring 262144 samples, a much larger
number of output data than for the application of the SSA method.

Figure 2.18 shows the INL pattern estimated by the SSA method (black
line) versus the INL reference pattern (indicated as Real INL in the picture
and depicted in blue line). Remark that the INL obtained by the spectral
method reproduces the shape of the reference pattern even at large steps,
and both are within the same INL values. The SSA method has required
1.56% of the number of samples required by the Histogram method.
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Chapter 3

INL estimation based on the
Double Histogram method

3.1 Introduction

Methods based on a double histogram aim to perform the linearity test on
high-resolution ADCs by relaxing the linearity requirement of the excitation
signal generator. This is achieved by applying two identical signals shifted
one from each other by a constant offset, constructing two histograms of the
two sets of output data and relating the two sets to the input signal non-
linearity.

These appraches have shown that they can achieve high accuracy results
in the INL estimation using low-accuracy input signals versus the accuracy
of the ADC under test, being methods potentially applicable in low-cost test
environments. But they are very sensitive to time drifts of the input signal
and the applied offset between the first and the second data acquisition. This
information can be found at subsection 1.4.2 of Chapter 1.
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3.2 A proposal for the Non-Linearity estimation based

on the Double Histogram method

This section describe our DH-based proposal for the estimation of Non-Linearity
in high resolution ADCs by using generators less linear than the converter
under test. The contributions of the developed algorithm can be summarised
in the following points:

Simplification of the method:

• As a major innovation, it uses very simple relationships through
the two related input signals. It does not require to express the
non-linearity of the generator as a series expansion of basis func-
tions whose coefficients must be estimated by solving a system of
non-linear equations.

• The method provides a simple way of evaluating transition levels
by the Standard Histogram method while keeping the full code
range of the converter under test.

Generalisation of the method:

• It is a black box method. It treats the ADC as a black box, it makes
no assumptions about its internal architecture.

• It works with any type of input waveform. No assumptions have
to be made about the waveform of the input signal, as the tran-
sition levels are evaluated by the Standard Histogram method. It
does not require any correction terms of higher derivatives.

• As a major innovation, the method is adapted to a non-stationary
measurement set-up, and the algorithm itself considers and cor-
rects the possible time drifts during the test of each histogram. No
alternative procedure is required to compensate for the possible
errors generated.

Firstly, the use of the Standard Histogram method (Measurement and
Technical, 2011) will be discussed. The basic block diagram of the measure-
ment set-up for the estimation of the non-linearity parameters of a ADC by
means of a generator that is less linear than the converter under test, is shown
in the Figure 3.1. The figure, without loss of generality, depicts an N-bit ADC
(ADC under test or ADCUT in the picture) with input range [R−, R+] and
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FIGURE 3.1: Non-Linear AWG model for an ADC stationary
test set-up

with transition levels {tk}, ∀k ∈ [1, 2N − 1]. From now on, and without loss
of generality, the lower saturating code is considered to be 0 and the upper
saturating code is considered to be 2N − 1. The non-linear generator, block
named NL− AWG in the figure, is modeled as an ideal voltage source called
Virtual Source (VS) that supplies the ideal signal x(t), to which a non-linear
component Ψ(·) is added, being the final input signal that excites the ADC
u(t) = x(t) + Ψ(x(t)). According to this, the probability distribution of the
amplitude of the signal driving the ADC is not known with accuracy, so the
ADC under test is not in a suitable condition for the application of the Stan-
dard Histogram method for the evaluation of its real transition levels, {tk}.

Consider now the Figure 3.2, where the non-linear part of the generator
Ψ(·) is associated to the ADC; this group can be considered as a new virtual
ADC, named Global ADC (GADC) and with virtual transitions {τk}, which
is in the appropriate conditions for the application of the Standard Histogram
method, since it is excited by the ideal signal given by the ideal virtual gen-
erator VS and which amplitude probability distribution is a priori known.
Therefore, the application of the Sandard Histogram method in the test set-
up under discussion does not allow to directly estimate the real transition
levels of the ADC under test {tk}, but virtual transition levels modified by
the non-linearity of the non-linear generator {τk}, as represented in Figure
3.2.
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FIGURE 3.2: New ADC stationary test set-up with a Global
ADC

However, the virtual transition levels of the GADC and the real transi-
tion levels of the ADC under test are univocally related through the NL −
AWG generator non-linear function, denoted as f (x) and mathematically
expressed as f (x) = x + Ψ(x). This is depicted in Figure 3.3, that shows
if this function is evaluated at the instants when the virtual signal x(t) passes
through the GADC virtual transition levels, x = τk, this matches to the in-
stants when the distorted signal u(t) passes through the real transition levels
of the ADC under test. Mathematically:

u(x = τk) = tk = f (τk) = τk + Ψ(τk), ∀k ∈ [1, 2N − 1] (3.1)

The expression (3.1) provides a relation between the set of actual transi-
tion levels that are not directly evaluable by the Standard Histogram method
and the set of virtual transition levels evaluable by the Standard Histogram
method. Since the virtual converter GADC now contains the non-linearity
of the NL− AWG generator, its virtual transition levels {τk} are modified by
Ψ(·) with respect to those of the original ADC under test, {tk}.

The model for the application of the DH method is depicted in Figure 3.4,
where v(t) = x(t) + Ψ(x(t)) is the signal generated by NL− AWG and the
aim of the adder, named as d, is to introduce a modification in the NL− AWG
function by adding a constant offset between the two distorted signals that
will excite the ADC under test, to build the two histograms that allow to
establish a set of relations to obtain the non-linearity parameters of the ADC
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FIGURE 3.3: Details on the relationship between the actual and
the measured transition leves

under test. Thus, the input signal to obtain a Histogram 1, from now on
designated as H1, can be expressed as:

u(t) = v(t) + d1 (3.2)

And for a Histogram 2, from now on designed as H2:

u(t) = v(t) + d2 (3.3)

Where d = d1 − d2 is the offset applied between the input signals. The
criteria for the choice of the d value is that it has to be large enough to discern
it from the quantization noise and small enough to avoid an excessive loss of
the converter input range when the input signal is shifted for the construc-
tion of the second histogram.

Proceeding with the test set-up model proposed in Figure 3.2, from H1
is obtained a set of virtual transition levels {τ(1)

k } corresponding to a virtual
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FIGURE 3.4: Set-up model for the Double Histogram method in
a stationary test environment

FIGURE 3.5: Example of the DH method application using a
sine-wave input signal

converter GADC1, and from H2 is obtained a set of virtual transition levels
{τ(2)

k } corresponding to a virtual converter GADC2, since the introduccion
of the offset has modified the non-linear function of the NL-AWG. Figure 3.5
depicts an example of the DH method application using a sine-wave input
signal, showing the two histograms constructed from each output data and
the two set of virtual transition levels evaluated from them. Applying (3.1)
to the excitation signals (3.2) and (3.3) of the DH method:

u(x = τ
(1)
k ) = tk = f (τ(1)

k ) + d1 (3.4)

u(x = τ
(2)
k ) = tk = f (τ(2)

k ) + d2 (3.5)

Matching (3.4) to (3.5) through the actual transition levels tk of the ADC
under test:
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tk = f (τ(1)
k ) + d1 = f (τ(2)

k ) + d2 (3.6)

applicable in ∀k ∈ [kmin, kmax] ⊆ [1, 2N − 1], indicating the code range
[kmin, kmax] the result of a possible loss of input range when applying the sig-
nal shift, leading to a reduction of the code range in which the method is
applicable and, consequently, to a loss of information of the Integral Non-
linearity of the ADC under test in those codes lost. Our proposal for the cal-
culation of the virtual transition levels so that the application of the method
covers the full input range of the ADC under test will be shown below, in the
section 3.2.2.

3.2.1 Adaptation to a non-stationary test environment

The expression (3.6) assumes that during data capture for H1 and H2 there
are no time drifts in the measurement set-up or that data capture is so fast
that such drifts are negligible during acquisition. But the application of (3.6)
in a non-stationary test environment and in which the data capture is slow
enough to be affected by its time drifts will lead to systematic estimation
errors in the transition levels and thus in the estimation of the static non-
linearity parameters of the ADC under test. It is impossible to guarantee
that time variations do not exist in a real test environment. Careful design
of the measurement set-up can minimise such time drifts and their effects,
but never completely eliminate them. In addition, design can be difficult and
costly, requiring time-consuming and expensive test equipments.

Our proposal is a solution using a general DH-based algorithm that in-
cludes and corrects for the above possible effects. The starting hypothesis
is based on the assumption that, during the test for H1 and the test for H2,
the output signal of the non-linear generator NL− AWG, v(t), is affected in
each case by an effective gain αi and offset βi with i = 1 to 2 whose values
depend on the offset di applied in each standard histogram H1 and H2 and
whose ideal values are the unity gain and the offset values di applied for
each data set, i.e. those of a test environment without time drifts. That is,
the inclusion of the adder d in the nonlinear generator signal path introduces
effective variations in the offset and gain of the generated signal, depending
on the offset applied by the adder. A schematic of our proposed model is
depicted in Figure 3.6. Mathematically it is expressed as:
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FIGURE 3.6: Non-Linear AWG model for an ADC non-
stationary test set-up

u(t) = αi · v(t) + βi (3.7)

with αi ≈ 1 and βi ≈ di.

If the ADC under test is now excited with a signal of the form written in
(3.7) and the Double Histogram method is applied, using the expression (3.1)
the following relations are obtained:

u(x = τ
(1)
k ) = tk = α1 · f (τ(1)

k ) + β1 = α1(τ
(1)
k + Ψ(τ

(1)
k )) + β1 (3.8)

u(x = τ
(2)
k ) = tk = α2 · f (τ(2)

k ) + β2 = α2(τ
(2)
k + Ψ(τ

(2)
k )) + β2 (3.9)

tk = α1 · f (τ(1)
k ) + β1 = α2 · f (τ(2)

k ) + β2 (3.10)

tk = α1(τ
(1)
k + Ψ(τ

(1)
k )) + β1 = α2(τ

(2)
k + Ψ(τ

(2)
k )) + β2 (3.11)

∀k ∈ [kmin, kmax] ⊆ [1, 2N − 1].
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TABLE 3.1: Relations between signal waveform and its ampli-
tude cumulative probability distribution.

Signal Waveform Qk = h(τk; A, C) τk = h−1(Qk; A, C)

Ramp τk−C
2A C + 2A ·Qk

Triangular τk−(C−A)
2A C− A · (1− 2Qk)

Sinusoidal 1− 1
π arccos( τk−C

A ) C− A · cos(πQk)

Exponential 1
(T/Tau) ln( 2A/1−e−(T/Tau)

(C−A)+2A/1−e−(T/Tau)−τk
) (C− A) + 2A · (1−e−(T/Tau)Qk

1−e−(T/Tau) )

3.2.2 Proposal for the histogram normalisation and the eval-

uation of the two set of virtual transition levels in Dou-

ble Histogram methods

Obtaining each set of virtual transition levels {τ(1)
k } and {τ(2)

k } is done by
applying the Standard Histogram Method to the histograms of the output
data H1 and H2 respectively, where the evaluation of the transitions is based
on the calculation of the cumulative probability distribution of each output
code, henceforth denoted as Qk. The function defining the cumulative prob-
ability distribution per code is set by the waveform of the excitation signal to
the ADC. In addition, this function for each code depends on the transition
level of the code and the offset and amplitude parameters of the input signal.
Mathematically for the GADC:

Qk = h(τk; A, C), ∀k ∈ [1, 2N − 1] (3.12)

where h(x; A, C) is the function defining the cumulative probability dis-
tribution for an assumed ideal waveform, A is its peak amplitude and C its
DC voltage offset.

Isolating from (3.12) the virtual transition levels:

τk = h−1(Qk; A, C), ∀k ∈ [1, 2N − 1] (3.13)

Table 3.1 shows the expresion to obtain the transitions leves by the cumu-
lative probability distribution for some signal waveforms.

On the other hand, the cumulative probability distribution per code is
calculated through the histogram of the output codes:
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Qk =
k−1

∑
i=0

pi, ∀k ∈ [0, Mcod] (3.14)

where Mcod = 2N− 1 is the maximum code, pi ≈ Hi/Hc is the estimation
of the occurrence probability of code i, Hi is the number of collected samples
of code i and Hc = ΣiHi is the total number of collected data.

So that the virtual transition levels can be calculated from (3.13) if the
amplitude A and the offset C are known. Our proposal for obtaining the
virtual transition levels is based on the following two points:

• Test in a saturated state of the ADC: The amplitude and offset values
of the input signal and the offset value d must be such that, both for
the construction of the histogram H1 and for the construction of the
histogram H2, the ADC is always saturated. This ensures that the full
input range of the converter is covered, running through its entire set
of transition levels and hence [kmin, kmax] = [1, 2N − 1].

If the offset d to be applied is such that it is not possible to cause satu-
ration at one of the extremes of the code range of the ADC under test,
then it is necessary to impose a fictitious saturation on the output data.

• Normalisation of the Standard Histogram Method (Measurement and
Technical, 2011): Knowledge of the amplitude and offset parameters is
necessary to evaluate (3.13). According to our model, the virtual transi-
tion levels correspond to those of the virtual converter GADC and are
obtained through the application of the virtual signal generated by the
virtual source VS, not accessible to us and, therefore, without the pos-
sibility of measuring exactly the parameters that define it. To overcome
this problem, a normalisation process is used in the range of the virtual
transition levels.

The proposed process is as follows:

First, the ADC is excited with a signal that saturates its input range and
from output data the histogram H1 is constructed. From (3.14) the set Q(1)

k
is obtained. In order to evaluate the virtual transition levels from (3.13) it is
necessary to know the amplitude and offset values of the signal generated by
the virtual source VS, which are respectively called AVS and CVS:
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τ
(1)
k = h−1(Q(1)

k ; AVS, CVS), ∀k ∈ [1, 2N − 1] (3.15)

In (3.15) is where the normalisation process will be carried out, mov-
ing the set of virtual transition levels {τ(1)

k } ⊆ [τ
(1)
1 , τ

(1)
Mcod] to, for exam-

ple, a fixed normalised range by assigning τ
(1)
1 = −1 and τ

(1)
Mcod = 1. Then

{τ(1)
k } ⊆ [−1, 1] ∀k ∈ [1, 2N − 1].

Under these conditions, it is possible to calculate a normalised amplitude
AVS and offset CVS by solving the two equations with two unknowns system
obtained from (3.13), evaluated at the extreme normalised virtual transition
levels:

−1 = h−1(Q(1)
1 ; AVS, CVS)

1 = h−1(Q(1)
Mcod; AVS, CVS)

(3.16)

And using these AVS and CVS values, the rest of the normalised virtual
transition levels {τ(1)

k } from H1:

τ
(1)
k = h−1(Q(1)

k ; AVS, CVS), ∀k ∈ [2, 2N − 2] (3.17)

Secondly, the H2 histogram is constructed by exciting the ADC with the
same signal as for the H1 histogram but adding the offset d and always keep-
ing the saturation condition for the ADC. As the amplitude and offset param-
eters of the virtual signal given by the virtual generator VS have not changed
from one test to the other, the new virtual transition levels {τ(2)

k } are calcu-
lated using the values AVS and CVS evaluated from (3.16):

τ
(2)
k = h−1(Q(2)

k ; AVS, CVS), ∀k ∈ [1, 2N − 1] (3.18)

where Q(2)
k is the accumulated probability distribution for H2 and has

been obtained from the second set of output data by applying (3.14).
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3.2.3 Enhanced DH method: Application of the generalised

Double Histogram model under a non-stationary test

environment by obtaining the non-linearity Ψ of the

non-linear generator

The aim of this section is to show how to calculate the set of actual transition
levels of the ADC under test, {tk}, from the solution of the set of relations
(3.11) obtained from our set-up model under a non-stationary test environ-
ment and considering the non-linearity function Ψ(·) of the non-linear gen-
erator NL − AWG as an unknown of the system. That is, the estimation of
the set of real transitions will be handled from the initial proposal of (Jin et
al., 2005a), where the construction of the two histograms H1 and H2 and their
subsequent processing will allow to evaluate the nonlinearity Ψ(·) of the gen-
erator, to remove its contribution from the estimated actual transition levels.
This procedure, called SEIR (Stimulus Error Identification and Removal) by
its authors, is described in detail in Appendix (B).
The algorithm developed in this section was presented in the paper (Jalon,
Rueda, and Peralias, 2009).

First of all, expression (3.11) is rewritten as follows:

τ
(1)
k + Ψ(τ

(1)
k ) = γ(τ

(2)
k + Ψ(τ

(2)
k )) + β, ∀k ∈ [kmin, kmax] ⊂ [1, 2N − 1]

(3.19)
Being γ = α2/α1 y β = (β2 − β1)/α1.

The virtual transition levels {τ(1)
k } and {τ(2)

k } are estimated as explained
in section 3.2.2 by using the Standard histogram method to H1 applying
(3.17) and to H2 applying (3.18) respectively, so they are known values of
the system of equations. In addition, if the input signals always saturate the
input range of the ADC, the application code range is ∀k ∈ [kmin, kmax] =

[1, 2N − 1]

Regarding the non-linearity of the NL− AWG generator Ψ(·), is followed
the proposal of (Jin et al., 2005a) to express it as a finite series of Mp + 1 basis
functions {ψj(x)} and coefficients {aj} with j = 0, 1, 2, ..., Mp in the form of:

Ψ(x) =
Mp

∑
j=0

ajψj(x) + e(x) (3.20)
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where e(x) represents the part not modeled by the finite parametrisation
of Mp + 1 terms. The greater the number Mp of summation terms in the se-
ries that constructs the function Ψ(x), the smaller the error e(x) made, so in
the developments it is assumed that Mp has been chosen so that e(x) is neg-
ligible (Jin et al., 2005a). Replacing (3.20) into (3.19), it is possible to express
the latter as a matrix equation of the form:

λ̃(γ) = [Γ̂(γ) 1]ã (3.21)

where:

(λ̃)k = τ
(1)
k − γτ

(2)
k

(Γ̂)kj = γψj(τ
(2)
k )− ψj(τ

(1)
k ), ã = (a0, a1, ..., aMp, β)t

(3.22)

Expression (3.21) is a nonlinear system of equations, with kmax − kmin

equations and Mp + 3 unknowns: Mp + 1 unknowns corresponding to the
coefficients aj that parameterise the function Ψ(·) and the unknowns γ and
β. Our work proposed a solution by means of two meshed Least Squares
methods:

Step 1 : Let γ0 be a fixed value for the parameter γ, from which to start. Since
γ represents the gain change between the first data acquisition for H1
and the second data acquisition for H2, a suitable option is to choose
γ0 = 1, which is its ideal value when there has been no gain change
between the two data acquisitions. Substituting γ0 in (3.21) and solving
by Least Squares method, the set of parameters ã(γ0) is obtained.

Step 2 : Using the coefficients {aj(γ0)}, a set of transitions levels {t̃k(γ0)} is
calculated from (3.11):

t̃k(γ0) = τ
(1)
k +

Mp

∑
j=0

aj(γ0)ψj(τ
(1)
k ) (3.23)

Then, the Integral Non-Linearity set INL(UC)
k (γ0) is estimated from its

definition:
INL(UC)

k (γ0) = (t̃k(γ0)− lk)/q (3.24)

where the super-index UC (Un-Corrected) indicates that INL has not
yet been corrected for gain and offset contributions, q = (R+− R−)/2N
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FIGURE 3.7: Example of the INL norm evolution versus γ

is the quantum or LSB of the ADC under test and {lk} = {R− + qk} is
the set of ideal transition levels.

Step 3 : An offset and gain correction process of the vector INL(UC)
k (γ0) is

done, to remove linear contributions from our calculations ((Measure-
ment and Technical, 2011) and Appendix A). This process allow to can-
cel the errors introduced by the use of an non-accurate offset value. The
new vector is designed as INL(C)

k (γ0), indicating the super-index C that
the INL is corrected for gain and offset contributions.

Step 4 : Finally, the above step-by-step procedure is repeated for different
values of γ. The second Least Squares process consists of minimising
with respect to the γ parameter the norm of the INL(C)

k (γ) vector. The
Integral Non-Linearity vector resulting from this minimisation is the
final adopted estimate for the INL of the ADC under test (see Figure
3.7):

INLk = INLC
k (γ

∗), γ∗ = minγ[‖ INLC
k (γ) ‖] (3.25)

The following section will explain and develop a simple proposal based
on the DH method, called Simplified Double Histogram or SDH method.
The expression (3.6) is of great importance for this, because it will allow to
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establish geometric relations between real transition levels {tk} and virtual
transition levels {τ(1)

k } and {τ(2)
k }. Later, the method will be generalised to a

non-stationary test environment and will be referred to as Extended SHD or
ESHD.
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3.3 A Simplified algorithm based on the Double

Histogram method

This section presents a simple approach to estimate the Integral Non-Linearity
in high resolution ADCs based on the Double Histogram that was introduced
in the papers (Jalon and Peralias, 2009; Jalon and Peralias, 2010). It is divided
into a first part where the algorithm is developed under stationary test con-
ditions and a second part where the algorithm is developed under time drifts
in the input signal parameters assuming an adder model that takes them into
account.

3.3.1 SDH: A Simplified algorithm based on the Double His-

togram method applied on a stationary set-up

The simplified algorithm that will be developed in this section to estimate the
Integral Non-Linearity parameter of high resolution ADCs, and referred to
as Simplified DH or SDH from now on, was presented in (Jalon and Peralias,
2009; Jalon and Peralias, 2010) and is based on the two-histogram test with
the typical set-up that has already been shown in Figure 3.4. Starting from
the expression (3.6), as an innovation, the algorithm proposed here obtains a
local geometric relation between the virtual transition levels τk, τk+1 and the
code width of the ADC under test wk = tk+1 − tk, through the derivative of
the curve f (x) and its approximation to the slope of this curve. Once the set
{wk} is known, it is possible to evaluate the Differential Non-Linearity (DNL)
parameter of the ADC under test through the expression ((Measurement and
Technical, 2011) and Appendix A):

DNLk =
wk
q
− 1, ∀k ∈ [1, 2N − 2] (3.26)

And the INL parameter using the relationship:

INLk =
k−1

∑
j=1

DNLj, ∀k ∈ [1, 2N − 1] (3.27)

where q = (R+ − R−)/2N is the quantum or LSB of the ADC under test.

Figure ?? shows the theoretical deduction flow to establish the SDH test
procedure.
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FIGURE 3.8: Theoretical deduction flow to establish the SDH
test procedure

The INL evaluated from (3.27) contains in its value, apart from the non-
linearity component of the ADC, a linear contribution due to gain and offset
errors. The linear contribution is obtained by fitting the vector or set {INLk}
to the equation of a straight line. This fitting can be performed by (Measure-
ment and Technical, 2011):

• The best-fit line method, using a least-squares fit technique.

• The terminal-based method, where the straight line is the one joining
the two values of INL at the extreme codes.

The final INL is the one corrected from offset and gain contributions (Mea-
surement and Technical, 2011). In the later examples of both simulated and
experimental applications, it will be always represented as the INL the one
corrected using its best-fit line by the least squares method.
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FIGURE 3.9: Geometrical relationships between the k-th code
width, the two sets of virtual transition levels and the offset d

Consider first Figure 3.9, which shows the geometric relationships be-
tween the real transition levels of the ADC under test {tk} and the virtual
transition levels obtained by the histogram H1 and the histogram H2, {τ(1)

k }
and {τ(2)

k } respectively. Remember that the histograms H1 and H2 have been
obtained by modifying the non-linear function of the NL-AWG generator,
f (x), by adding the offset d at the output of the generator, satisfying (3.6)
∀k ∈ [kmin, kmax] ⊂ [0, 2N − 1]. Without loss of generality, in Figure 3.9 the
shifted function has been represented as g(x) = f (x) + d. Notice that the
derivatives of the functions f (x) and g(x) coincide, since they differ in a con-
stant d. Focusing on the functions f (x) and g(x) at each interval of the virtual
transition levels [τ

(i)
k , τ

(i)
k+1], intervals that are univocally related to the inter-

val [tk, tk+1] and in a high resolution converter will be very small, it is possible
to apply the three-point formula to approximate a function derivative from
two evaluations of that function:

f
′
(c) ≈ f (x + h)− f (x− h)

2h
(3.28)

Defining ξ
(i)
k as the central point of each interval of the virtual transition

levels in the code k, evaluating (3.28) at this central point (P1, P2 and P3 in
Figure 3.9) we obtain for each histogram test H1 and H2 respectively:
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f
′
(ξ

(1)
k ) ≈

f (τ(1)
k+1)− f (τ(1)

k )

τ
(1)
k+1 − τ

(1)
k

=
t(1)k+1 − t(1)k

τ
(1)
k+1 − τ

(1)
k

(3.29)

g
′
(ξ

(2)
k ) = f

′
(ξ

(2)
k ) ≈

f (τ(2)
k+1)− f (τ(2)

k )

τ
(2)
k+1 − τ

(2)
k

=
t(2)k+1 − t(2)k

τ
(2)
k+1 − τ

(2)
k

(3.30)

∀k ∈ [kmin, kmax] ⊂ [1, 2N − 2] and where ξ
(i)
k = (τ

(i)
k+1 + τ

(i)
k )/2.

Replacing in the above expressions by the code width wk = tk+1 − tk,
∀k ∈ [kmin, kmax] ⊂ [1, 2N − 2] is obtained:

f
′
(ξ

(1)
k ) ≈ wk

Ω(1)
k

(3.31)

for H1 and where Ω(1)
k = τ

(1)
k+1 − τ

(1)
k is the virtual code width for the

virtual ADC GADC1.

f
′
(ξ

(2)
k ) ≈ wk

Ω(1)
k

(3.32)

for H2 and where Ω(2)
k = τ

(2)
k+1 − τ

(2)
k is the virtual code width for the vir-

tual ADC GADC2.

Isolating the code width from (3.31) and (3.32):

wk ≈ f
′
(ξ

(1)
k ) ·Ω(1)

k (3.33)

wk ≈ f
′
(ξ

(2)
k ) ·Ω(2)

k (3.34)

Up to now the derivatives have been obtained with the sets derived from
the histograms. Now they will be related to the d displacement of the input.
For this purpose consider now the Figure 3.10. The derivatives (3.31) and
(3.32) can be evaluated through the slope traced at the points f (ξ(1)k ) and
f (ξ(2)k ) respectively, using the relationship between these two nearby points
on the curve f (x) and the displacement d. For this purpose, a finite difference
will be applied as an approximation to the derivatives. In the case of the slope
at f (ξ(1)k ) (P1 in Figure 3.10), the Backward-Difference formula is applied:
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FIGURE 3.10: Errors in the incremental derivatives at two close
points

f
′
(x) ≈ limh→0

f (x)− f (x− h)
h

(3.35)

where x = ξ
(1)
k and h = ξ

(1)
k − ξ

(2)
k .

And in the case of the slope at f (ξ(2)k )(P3 in Figure 3.10), the Forward-
Difference formula is applied:

f
′
(x) ≈ limh→0

f (x + h)− f (x)
h

(3.36)

where x = ξ
(2)
k and h = ξ

(1)
k − ξ

(2)
k .

In both cases, the obtained approximation is the same value:

f
′
(ξ

(1)
k ) ≈ f

′
(ξ

(2)
k ) ≈ d

δk
(3.37)

being δk = ξ
(1)
k − ξ

(2)
k .

If the error term εk is introduced into the Backward-Difference formula
and the error term ek is introduced into the Forward-Difference formula to
improve the approximation of the derivatives, neglecting second and higher
order terms in the error, then (3.37) becomes:
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f
′
(ξ

(1)
k ) ≈ d

δk − εk
≈ d

δk
(1 +

εk
δk
) (3.38)

f
′
(ξ

(2)
k ) ≈ d− ek

δk
≈ d

δk
(1− ek

δk
) (3.39)

Replacing (3.38) in (3.33) and replacing (3.39) in (3.34):

wk ≈
d ·Ω(1)

k
δk

(1 +
εk
δk
) (3.40)

wk ≈
d ·Ω(2)

k
δk

(1− ek
δk
) (3.41)

As the distance between the curves gets closer, which is equivalent to a
smaller offset d, the points ξ

(1)
k and ξ

(2)
k will get closer together and the dif-

ferences between the derivatives (3.38) and (3.39) will decrease. This means
if the distance between the curves, d, is small enough to assume the change
in its curvature negligible when moving from the point ξ

(1)
k to the point ξ

(2)
k ,

then it is possible to consider, in a first-order approximation, εk ≈ ek. So
that the offset must be low enough to avoid errors due to the difference be-
tween the derivatives on the two points, but must be high enough to obtain
a noticeable distance between the curves for method application. Under this
conditions:

wk ≈
d ·Ω(1)

k
δk

(1 +
εk
δk
) = w(1)

k (3.42)

wk ≈
d ·Ω(2)

k
δk

(1− εk
δk
) = w(2)

k (3.43)

Where w(1)
k is the expression obtained for the code width from the Backward-

Difference formula and w(2)
k is the expression obtained from the Forward-

Difference formula. The mean value of the two available approaches is:

↪→ w∗k =
w(1)

k + w(2)
k

2
≈

d · (Ω(1)
k + Ω(2)

k )

2δk
, ∀k ∈ [kmin, kmax] ⊂ [1, 2N − 2]

(3.44)
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where the errors from (3.42) and (3.43) in a first-order approximation are
compensated:

w∗k =
w(1)

k + w(2)
k

2
≈ wk(1− εk/δk) + wk(1 + εk/δk)

2
= wk (3.45)

The expression (3.44) is a very simple formula to calculate the code width
set {wk} of the ADC under test and is fully known once the virtual transition
levels have been estimated through the histograms H1 and H2 as explained
in section 3.2.2, by using the Standard histogram method to H1 applying
(3.17) and to H2 applying (3.18) respectively. In addition, if the input signals
always saturate the input range of the ADC, the application code range is
∀k ∈ [kmin, kmax] = [1, 2N − 1]. Applying (3.44) to the calculation of the DNL
by means of (3.26) and this later to the calculation of the INL by means of
(3.27), the integral non-linearity desired is the one obtained after correcting
the {INLk} vector from offset and gain contributions. Errors in the ampli-
tude and offset values of the input signals do not induce errors in the INL
parameter because they only induce gain and offset errors. So, in the gain
and offset correction last process, are cancelled the errors introduced by the
use of a non-accurate d offset value.

It is also important to highlight that the model proposed here makes no
assumptions about the type of waveform that excites the ADC under test, as
the two sets of virtual transition levels are estimated using the Standard His-
togram Method in each case. This degree of freedom in the choice of the type
of test input waveform is a great advantage when designing a measurement
set-up. Traditionally, the standard histogram test uses the ramp or sine-wave
signal as stimulus signals to the ADC under test (Measurement and Techni-
cal, 2011), but it is possible to apply the method to other waveforms as long
as their accumulated probability function is known. This will be explained
in the next section and illustrated by the simulated experiments shown in the
Simulation Experiments Resuls section.
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3.3.2 Extended SDH method: Generalisation of the SDH method

in a non-stationary test environment

FIGURE 3.11: Theoretical deduction flow to establish the ESDH
test procedure

Figure 3.11 shows the theoretical deduction flow to establish the SDH
test procedure. As explained in the section on the Simplified Double His-
togram or SDH algorithm, the objective is to find the geometric relations
that relate the set of real transition levels of the ADC under test {tk} and
the two sets of virtual transition levels corresponding to the virtual convert-
ers GADC1 and GADC2, {τ(1)

k } and {τ(2)
k } respectively. As is well known,

the virtual transition levels are estimated as explained in section 3.2.2 being
known values for the estimation process. In addition, if the input signals
always saturate the input range of the ADC, the application code range is
∀k ∈ [kmin, kmax] = [1, 2N − 1]This will be done on the basis of the expres-
sion (3.10). The Figure 3.12 is an analogous figure to Figure 3.9, but now the

87



Chapter 3. INL estimation based on the Double Histogram method

FIGURE 3.12: Geometrical relationships between the k-th code
width, the two sets of virtual transition levels and the offset dk

using an effective change of gain and offset model

function f (x) of the non-linear generator NL-AWG is affected by a different
effective gain and offset between the first data acquisition to obtain H1 and
the second data acquisition to obtain H2:

g1(x) = α1 · f (τ(1)
k ) + β1 (3.46)

g2(x) = α2 · f (τ(2)
k ) + β2 (3.47)

Isolating f (x) from (3.46) and replacing in (3.47) :

g2(x) = γ · g1(x) + (β2 − γ · β1) (3.48)

where γ = α2/α1.

The mathematical process that now continues is analogous to the one de-
veloped earlier in SDH, since it is again possible to apply (3.28) and similarly
obtain the relationships in the centre of virtual intervals {ξ(i)k }:

g
′
1(ξ

(1)
k ) ≈

f (τ(1)
k+1)− f (τ(1)

k )

τ
(1)
k+1 − τ

(1)
k

=
t(1)k+1 − t(1)k

τ
(1)
k+1 − τ

(1)
k

(3.49)
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g
′
2(ξ

(2)
k ) ≈

f (τ(2)
k+1)− f (τ(2)

k )

τ
(2)
k+1 − τ

(2)
k

=
t(2)k+1 − t(2)k

τ
(2)
k+1 − τ

(2)
k

(3.50)

where ξ
(i)
k = (τ

(i)
k+1 + τ

(i)
k )/2. Substituting by code width of the ADC un-

der test wk and by the virtual code widths Ω(i)
k :

g
′
1(ξ

(1)
k ) ≈ wk

Ω(1)
k

(3.51)

g
′
2(ξ

(2)
k ) ≈ wk

Ω(2)
k

(3.52)

Calculating the derivative of the expression (3.48):

g
′
2(x) = γ · g′1(x) (3.53)

Both derivatives (3.51) and (3.52) are related by:

g
′
2(ξ

(2)
k ) = γ · g′1(ξ

(2)
k ) (3.54)

Replacing (3.54) in (3.52) and isolating wk:

wk ≈ g
′
1(ξ

(1)
k ) ·Ω(1)

k (3.55)

wk ≈ γ · g′1(ξ
(2)
k ) ·Ω(2)

k (3.56)

On the other hand, as it was done in the SDH algorithm under a stationary
test shown in Figure 3.10, it is possible to evaluate the previous derivatives
g
′
1(ξ

(1)
k ) and g

′
1(ξ

(2)
k ) by applying 3.31 and 3.32 under the assumption of two

very close points of the curve, now being the applied offset designated as dk

since its value will depend on the code k on which the calculation is being
performed, due to the effective changes in gain and offset produced between
the first and the second data capture. The new relationships obtained are:

wk ≈
dk ·Ω

(1)
k

δk
(1 +

εk
δk
) = w(1)

k (3.57)

wk ≈ γ ·
dk ·Ω

(2)
k

δk
(1− εk

δk
) = w(2)

k (3.58)
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As in (3.44) and (3.45), it is possible to calculate the code width as the
mean value of the two previous ones:

↪→ wk(γ) ≈ w∗k =
w(1)

k + w(2)
k

2
=

dk · (Ω
(1)
k + γ ·Ω(2)

k )

2δk
(3.59)

∀k ∈ [kmin, kmax] ⊂ [1, 2N − 1] and where dk = g1(ξ
(1)
k )− g1(ξ

(2)
k ).

The equation (3.59) is analogous to that obtained in SDH but now de-
pends on the γ factor and the displacement dk that depends on the code k
in which it is being calculated. So, in order to solve (3.59) and obtain the set
of code widths of the ADC under test, it is necessary to rewrite the displace-
ment dk by evaluating g1(ξ

(1)
k ) and g1(ξ

(2)
k ):

On one hand:

g1(ξ
(1)
k ) = ck = tk + (wk/2) (3.60)

where ck is the midpoint of the interval [tk, tk+1] of the ADC under test.

On the other hand, using (3.48) is obtained:

g1(ξ
(2)
k ) = (1/γ) · (g2(ξ

(2)
k )− (β2 − γ · β1)) (3.61)

where g2(ξ
(2)
k ) = ck = tk + (wk/2).

Finally the displacement dk is rewritten as:

↪→ dk = a · tk + b + a · (wk/2) (3.62)

where a = 1− 1/γ and b = (1/γ) · β2 − β1.

Replacing (3.62) in (3.59):
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↪→ wk(γ) ≈ (a(γ) · tk + b(γ)) · Fk(γ)

1− ((a(γ)/2) · Fk(γ))
(3.63)

∀k ∈ [kmin, kmax] = [1, 2N − 1], where Fk(γ) = (Ω(1)
k + γ ·Ω(2)

k )/2δk.

In order to solve (3.63), an iteration process will be applied in which the
definition of Integral Non-Linearity will be used, expressed by its definition:

INLk = (tk − lk)/q (3.64)

where q = (R+ − R−)/2N is the quantum or LSB of the ADC under test
and {lk} = {R− + qk} is the set of ideal transition levels.

The following steps show the post-processing procedure adopted to ob-
tain the INL:

Step 1 : The effective offsets β1 and β2 will be assigned their ideal values, d1

and d2 respectively, being b = (1/γ) · d2 − d1. Indeed, since γ ≈ 1, it is
possible to assume b ≈ d as a constant value. These assumptions will
not be a source of error in the final estimate, as the INL wanted will be
offset and gain corrected.

Step 2 : Considering a fixed γ = γ0 value, an iterative process is applied for
tk and wk in (3.63) starting with the first code and calculating at each
iteration step the Integral Non-Linearity INLk per code from (3.64): The
process starts by assigning to the first transition level t1 its ideal value
l1 = R− + q, which implies INL1 = 0. From (3.63), w1 is obtained and
from this and tk+1 = tk + wk, the second transition level t2. Using the
value of the second transition level, INL2 and w2 are evaluated. So on
and so forth until the process is completed in the last code. The result
is a vector for the chosen value of γ: INL(UC)

k (γ0).

Step 3 : An offset and gain correction process of the vector INL(UC)
k (γ0) is

done, to remove linear contributions from our calculations. This pro-
cess allows to cancel the errors introduced by the use of a non-accurate
b value. The new vector is designed as INL(C)

k (γ0).

Step 4 : Finally, the above is repeated for different values of γ, obtaining dif-
ferent vectors INL(C)

k (γ). The Integral Non-Linearity pattern adopted
is the one that presents the minimum norm versus γ (Figure 3.7):
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INLk = INL(C)
k (γ∗), γ∗ = minγ[‖ INL(C)

k (γ) ‖] (3.65)

3.3.3 Simulated Experiments

In order to validate the proposed algorithms for estimating the Integral Non-
Linearity using non-linear generators, this section shows the results obtained
in three different simulated experiments:

• Experiment 1: In this simulated experiment the SHD method will be
applied under a stationary test environment.

• Experiment 2: In this simulated experiment the ESHD method will be
applied under a non-stationary test environment.

• Experiment 3: In this simulated experiment, the proposed generalised
DH solution by obtaining the non-linearity Ψ of the NL-AWG generator
will be applied for a non-stationary test environment.

In each of them, the INL calculated by the Standard Histogram Method
using a pure excitation signal (Measurement and Technical, 2011) will be
taken as the reference pattern of the ADC under test. A reference pattern
obtained with the same frequency and number of samples as the histograms
of the proposed alternative methods is desired, in order to compare them
each other.

Experiment 1: Application of SDH method under a stationary test environ-
ment

This simulated experiment was presented in the research papers (Jalon and
Peralias, 2009; Jalon and Peralias, 2010). The purpose of this experiment is to
evaluate by simulation the application of the Simplified Double Histogram
(SDH) method to obtain the INL of the ADC under test, using a less linear
generator than the converter under test and with the assumption that it is
operated in a stationary test environment. To this end, the different blocks of
the DH typical set-up shown in Figure 3.4 have been modeled as:

• ADC under test model: it is high-level model of a fully differential
Pipeline ADC with 16-bit of resolution, fs = 100ksps of sampling rate
and bipolar input range [R−, R+] = [−0.5V, 0.5V], being the Full-Scale
value FS = 1V and its LSB = 1/216 ≈ 15.3µV. The ADC model has

92



3.3. A Simplified algorithm based on the Double Histogram method

such a transfer function that it results in strong discontinuities in the
INL pattern. The noise due to both the input signal and the ADC itself,
referred to the input, is modeled as an additive white noise of value
2LSB rms.

• Non-linear generator NL-AWG: According to the generator block model
in Figure 3.4, the generated input signal by the NL-AWG is the sum of a
pure signal x(t) given by the virtual generator VS and of the non-linear
function Ψ(x):

– The pure signal x(t) given by VS has been modeled as the exponential-
pulse train shown in Figure 3.13 a), of frequency f0 ≈ 3.87kHz.
The frequency chosen to perform the simulated experiment is low
enough with respect to the sampling frequency fs of the ADC un-
der test so as not to introduce dynamic effects in the measure-
ments (Measurement and Technical, 2011): f0 � fs. The ampli-
tude and offset parameters has been set to AVS ≈ 0.5V + 5% and
CVS ≈ 0.0V. The time constant of the exponential waveform has
been taken twice the T period of the signal, Tau ≈ 2T = 2/ f0, in
order to have enough time to capture the unsaturated-zone output
codes in each period of the signal.

– The non-linear function Ψ(x) has been modeled as shown in Fig-
ure 3.13 b), a 38th-order polynomial with a range of non-linearity
covering 800LSB peak-to-peak.

The first histogram H1 is obtained from the output data captured us-
ing as excitation signal the exponential waveform given by the non-linear
generator above. The second histogram H2 is obtained from the output
data captured using the same signal as for H1 but with an added offset of
d = 5.0mV ± 0.25mV ≡ 328LSB ± 17LSB. As 5mV is equivalent to 1% of
0.5V, both histograms have been obtained with the ADC under test satu-
rated. From the histogram H1, applying (3.16) and (3.17), it is obtained the
set of virtual transition levels {τ(1)

k } and the amplitude and offset values of
the ADC input signal, AVS, CVS normalised to the range [−1,+1]. According
to the exponential waveform of the experiment, the function relating such
transition levels and the accumulated probability per code is (see Table 3.1):

τ
(1)
k = h−1(Q(1)

k ; AVS, CVS) = (CVS − AVS) + 2AVS · (
1− e−(T/Tau)Q(1)

k

1− e−(T/Tau)
)

(3.66)
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FIGURE 3.13: a) Exponential waveform used in the simulated
example. b) Non-Linearity function Ψ(x) of the NL-AWG gen-

erator

The above set of transition leves results, applying (3.64), in the Integral
Non-Linearity pattern shown in Figure 3.14 which, following our model shown
in Figure 3.2, is the INL pattern of the GADC. This figure plots the vector
{INLk} versus the vector of codes {k} ∈ [1, 2N − 1], and clearly shows that
the estimate is essentially the non-linearity of the NL-AWG generator. This
means that the use of a single histogram with the above non-linear generator
model leads to large errors in the estimation of the Integral Non-Linearity
of the ADC under test, since the application of a single Standard Histogram
Method practically obtains the non-linearity of the generator, being the non-
linearity of the ADC under test embedded in it. This is what can be noticed
in Figure 3.14.

From the histogram H2, applying (3.18) and using the same AVS and CVS

values as in (3.66), it is obtained the set of virtual transition levels {τ(2)
k }:
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FIGURE 3.14: INL estimated by the Standard Histogram
method

τ
(2)
k = h−1(Q(2)

k ; AVS, CVS) = (CVS − AVS) + 2AVS · (
1− e−(T/Tau)(2)

1− e−(T/Tau)
)

(3.67)
From the set of virtual transition levels {τ(1)

k } and the set of virtual tran-
sition levels {τ(2)

k } are calculated the set of virtual code width {Ω(1)
k }, the set

of virtual code width {Ω(2)
k } and δk. These are the data required to evaluate,

from the SDH equation (3.44), the set of code widths of the ADC under test.

The result obtained from calculating the {INLk} vector using the SDH
approach is plotted with a red line in Figure 3.15 a). The black line shows the
actual INL of the ADC under test. Figure 3.15 b) shows the error per code
for the SDH estimated INL, by the difference between both curves. The max-
imum error is approximately 0.75LSB, being the RMS error 0.2LSBrms.

In conclusion, in this simulated experiment it has been possible to esti-
mate accurately, by applying the SDH method which only requires knowl-
edge of the virtual transition levels that have been estimated through the
histograms H1 and H2, the Integral Non-Linearity of a 16-bit ADC using a
much less linear generator than the device under test, in contrast to the ap-
plication of a single histogram which leads to erroneous estimates of about
400LSB.

Using the same ADC model and the same non-linear generator model, a
new simulated test has been performed by using a sine wave as the input
signal to the ADC under test. The pure sine signal x(t) given by the vir-
tual generator VS maintains the previous frequency f0 ≈ 3.87kHz, amplitude
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FIGURE 3.15: a) Comparison between the INL estimated by the
SDH method using d = 328LSB (red line) and the actual INL

(black line). b) Estimated error per code

AVS ≈ 0.5V + 5% and offset CVS ≈ 0.0V conditions. The non-linear function
of the generator Ψ(x) remains as described above and shown in Figure 3.13
b). The SDH method will be performed 10 times by sweeping the value of
the offset d from 50LSB to 500LSB with each step increasing by 50LSB. The
purpose of this simulated test is to verify the following:

• The no dependency between the results estimated by the SDH method
and test input waveform: using a sinusoidal waveform input, results
with an accuracy analogous to that of the previous test are achieved.

• How the error in the INL estimation depends on the offset value d ap-
plied in the SDH method.

Virtual transition levels are now obtained from the expression:

τk = h−1(Qk; AVS, CVS) = CVS − AVScos(πQk) (3.68)

Figure 3.16 depicts the rms value of the INL error estimation versus the
offset d in LSBs from the previous 10 SDH application. Notice that the ac-
curacy of the estimation is of the order of that of the exponential-pulse train
signal. The evolution of the INL estimation error with respect to the value of
the offset d is in accordance with the approximations applied in the mathe-
matical development of the SDH algorithm: with a minimum rms error that
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FIGURE 3.16: RMS error of the estimated INL versus the offset
d (in LSB)

occurs for an offset of dmin ≈ 150LSB, as the value of d increases from this
minimum (in the figure we move to the right of 150LSB), difference between
the derivatives of the two point (3.38) and (3.39) increases, and estimation
errors increase. As the value of d decreases from this minimum (in the figure
we move to the left of 150LSB), the points are so close that the displacement
between the curves is not noticeable by the SDH method, and estimation er-
rors increase.
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Simulated Experiment 2: Application of ESDH under a non-stationary test
environment

The purpose of this experiment also introduced in (Jalon and Peralias, 2009;
Jalon and Peralias, 2010) is to evaluate by simulation the application of the
Extended Simplified Double Histogram ESHD method to obtain the INL of
the ADC under test, using a less linear generator than the converter under
test and with the assumption that it is operated in a non-stationary test en-
vironment. Now, in this simulated experiment, it will be assumed that offset
and gain time drifts occur during the first and second collection data. To this
end, the different blocks of the DH typical set-up shown in Figure 3.6 have
been modeled as:

• ADC under test model: it is high-level model of a fully differential
Pipeline ADC with 16-bit of resolution, fs = 1Msps of sampling rate
and bipolar input range [R−, R+] = [−1.0V, 1.0V], being the Full-Scale
value FS = 2V and its LSB = 2/216 ≈ 30.5µV. This ADC model has
such a transfer function that it results in strong discontinuities in the
INL pattern and a large number of missing codes. The noise due to
both the input signal and the ADC itself, referred to the input, is mod-
eled as an additive white noise of value 2LSB rms.

• Non-linear generator NL-AWG: According to the generator block model
in Figure 3.6, the generated input signal by the NL-AWG is the sum of
a pure signal x(t) given by the virtual generator VS and of the non-
linear function Ψ(x), but including offset and gain errors because of
the adder:

– The pure signal x(t) given by VS has been modeled as a sine-wave
signal, of frequency f0 ≈ 3.87kHz. The frequency chosen to per-
form the simulated experiment is low enough with respect to the
sampling frequency fs of the ADC under test so as not to introduce
dynamic effects in the measurements (Measurement and Techni-
cal, 2011): f0 � fs. The amplitude and offset parameters has been
set to AVS ≈ 1V + 5% and CVS ≈ 0.0V.

– The non-linear function Ψ(x) has been modeled as shown in Fig-
ure 3.13 b), a 38th-order polynomial with a range of non-linearity
covering 800LSB peak-to-peak.

– The adder has been modeled as a block that introduces a gain fac-
tor α(t) and and offset value β(t) that varies in time according to
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the expressions:

α(t) = α0 · (1 + bαt + cαû(t− tH2) + nαB(t)) (3.69)

β(t) = β0 + bβt + cβû(t− tH2) + nβB(t) (3.70)

Each of the above expressions consists of a term that varies lin-
early with time bxt, a term that introduces the finite increment cx

at the instant tH2 when the offset is applied by the û(·) the Unit
Step function, and an unbounded Brownian noise nxB(t), where
x ≡ α or β. The following coefficients have been chosen for the
simulation: α0 = 0.99, bα = 10.7ppm/s, cα = 1000ppm, a standard
deviation of σαB = 10−4ppm for each time-step of the α− Brownian
noise, β0 = −110LSB, bβ = −3µV/s, cβ = 200LSB± 20LSB and
a standard deviation of σβB = 3.10µV for each time-step of the
β − Brownian noise. Figure 3.17 depicts in detail the time evolu-
tion of these models during the simulation test, that lasts about 9s
and where tH2 ≈ 4.5s.

The first histogram H1 is obtained from the output data captured using as
excitation signal the sine-wave v(t) given by the non-linear generator above.
During the execution of this part of the test, the time evolution of the gain
and offset that the adder has applied to the signal is the one shown in Figure
3.17 for t < tH2. The second histogram H2 is obtained from the output data
captured using the same signal v(t) as for H1 but now,during the execution
of this part of the test, the evolution in time of the gain and offset that the
adder has applied to the signal is the one shown in Figure 3.17 for t ≥ tH2. In
both histograms the saturation of the input range of the ADC under test has
been preserved.

From the histogram H1, applying (3.16) and (3.17), it is obtained the set
of virtual transition levels {τ(1)

k } and the amplitude and offset values of the
ADC input signal, AVS, CVS normalised to the range [−1,+1]. According
to the sine waveform of the experiment, the function relating such transition
levels and the accumulated probability per code is (see Table 3.1):

τ
(1)
k = h−1(Q(1)

k ; AVS, CVS) = CVS − AVScos(πQ(1)
k ) (3.71)

From the histogram H2, applying (3.18) and using the same AVS and CVS

values as in (3.66), it is obtained the set of virtual transition levels {τ(2)
k }:
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FIGURE 3.17: a) Offset and b) relative gain time evolution dur-
ing the running of the entire example test

τ
(2)
k = h−1(Q(2)

k ; AVS, CVS) = CVS − AVScos(πQ(2)
k ) (3.72)

From the set of virtual transition levels {τ(1)
k } and the set of virtual tran-

sition levels {τ(2)
k } are calculated the set of virtual code width {Ω(1)

k }, the set
of virtual code width {Ω(2)

k } and δk.

Figure 3.18 a) shows the actual sharp INL pattern and Figure 3.18 b)
shows the actual DNL pattern of the ADC under test. Notice the large num-
ber of missing codes that exist (DNL = −1). If the SDH method is applied
in a first approach, using a fixed offset of d = 200LSB, the INL pattern esti-
mated for the ADC under test is the one shown in Figure 3.18 c). This INL
pattern is within the range of approximately +1000LSB and−1900LSB. That
is, the use of the SDH method in the non-stationary test environment here
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FIGURE 3.18: a) Actual INL pattern b) Actual DNL pattern of
the ADC under test. Non-stationary set-up: Resuls comparin-
son between c) SDH, d) ESDH and e) interleaved SDH methods

presented leads to large errors in the estimation of the INL pattern.

If the ESDH method is applied, the expression to be computed is (3.63)and
within the iterative process developed and explained in the corresponding
section above:

1. The coefficient b(γ) is assumed to be the constant value b(γ) = d =

200LSB.

2. A γ value is set, i. e. γ = 1.

3. The following iterative algorithm is applied:
t1 = 1
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FOR k = 1 to 2N − 2
INL(UC)

k = tk − k
wk from formula (3.63)
tk+1 = tk + wk

ENDFOR
INL(UC)

2N−1 = t2N−2 − (2N − 2)
where the quantities have been inserted directly in LSBs units.

4. The vector INL(UC)
k is gain and offset corrected, obtaining INL(C)

k .

5. Going back to step 2, the process is repeated by varying the coefficient
γ using values close to the unity.

6. The norm is calculated for all the vectors INL(C)
k obtained during the

above process, adopting as the INL pattern of the ADC under test the
one with the minimum norm.

Figure 3.18 d) plots the error per code obtained when the ESDH method is
used, calculated as the difference between the actual and the estimated INL
patterns. The error is within the range ±0.5LSB.

So, by applying the ESDH method which only requires knowledge of the
virtual transition levels that have been estimated through the histograms H1
and H2, it has been possible to estimate accurately the Integral Non-Linearity
of a 16-bit ADC using a much less linear generator than the device under test
and in the more real non-stationary test envarionment. Even with an INL
pattern as sharp as that of the simulated example ADC and containing a
large number of missing codes.

In this simulated experiment, the solution to the set-up time drift problem
has also been addressed using the approach proposed in (Jin et al., 2005a; Jin
et al., 2005b). In it the two input signals used for the Double Histogram
method are L times interleaved following a "common-centroid" distribution
sequence according to the Thue-Morse series, as is depicted in Figure 3.19.
This process increases the time needed to collect the data by L-2 times, as well
as increases the difficulty of the set-up programming to manage the process
implementation. The simulation has required L = 128 time slots to obtain the
error per code of the same order as the ESDH, and is shown in Figure 3.18
e). In conclusion, the ESDH method, which requires only 2 time slots, has
achieved an INL estimation with an accuracy analogous to the proposal in
(Jin et al., 2005b), which requires 128 time slots.

102



3.3. A Simplified algorithm based on the Double Histogram method

FIGURE 3.19: SDH test using L-interleaved Thue-Morse series

Experiment 3: Application of the Enhanced DH method under a non-stationary
test environment

The aim of this simulated experiment is to evaluate in a non-stationary test
environment the application of the Enhanced DH method from the approx-
imation of (Jin et al., 2005a), where the non-linear contribution of the non-
linear generator is estimated by a parameterisation and then removed from
the ADC under test INL calculation (SEIR approach). The simulated exper-
iment was presented in (Jalon, Rueda, and Peralias, 2009). To this end, the
different blocks of the DH typical set-up shown in Figure 3.6 have been mod-
eled as:

• ADC under test model: it is high-level model of a fully differential
Pipeline ADC with 16-bit of resolution, fs = 100ksps of sampling rate
and bipolar input range [R−, R+] = [−1.0V, 1.0V], being the Full-Scale
value FS = 2V and its LSB = 2/216V. The actual INL pattern is the
same as that of the ADC model chosen for the Simulated Experiment 1.
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The noise due to both the input signal and the ADC itself, referred to
the input, is modeled as an additive white noise of value 2LSB rms.

• Non-linear generator NL-AWG: According to the generator block model
in Figure 3.6, the generated input signal by the NL-AWG is the sum of
a pure signal x(t) given by the virtual generator VS and of the non-
linear function Ψ(x), but including offset and gain errors because of
the adder:

– The pure signal x(t) given by VS has been modeled as a sine-wave
signal, of frequency f0 ≈ 3.87kHz. The frequency chosen to per-
form the simulated experiment is low enough with respect to the
sampling frequency fs of the ADC under test so as not to introduce
dynamic effects in the measurements (Measurement and Techni-
cal, 2011): f0 � fs. The amplitude and offset parameters has been
set to AVS ≈ 1V + 5% and CVS ≈ 0.0V.

– The non-linear function Ψ(x) has been modeled as shown in Fig-
ure 3.13 b), a 38th-order polynomial with a range of non-linearity
covering 800LSB peak-to-peak. For the application of the pro-
posed estimation method, the Ψ(x) function has been parametrised
using as basis function the set {sin(jπx)} up to the order Mp =

100.

– The adder has been modeled as a block that introduces a gain fac-
tor α(t) and and offset value β(t) that varies in time according to
the expressions:

α(t) = α0 · (1 + bαt + cαû(t− tH2) + nαB(t)) (3.73)

β(t) = bβt + cβû(t− tH2) + nβB(t) (3.74)

Each of the above expressions consists of a term that varies linearly
with time bxt, a term that introduces the finite increment cx at the
instant tH2 when the offset is applied by the û(·) the Unit Step
function, and an unbounded Brownian noise nxB(t), where x ≡ α

or β. The following coefficients have been chosen for the simula-
tion: α0 = 0.99, bα = 1.75ppm/s, cα = 1000ppm, an accumulated
standard deviation of σαB = 0.9940ppm

√
s for the α − Brownian

noise, bβ = −3µV/s, cβ = 200LSB ± 20LSB and an accumu-
lated standard deviation of σβB = 3.10µV

√
s for the β− Brownian

noise. Figure 3.20 depicts in detail the time evolution of these
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FIGURE 3.20: a) Offset and b) relative gain time evolution dur-
ing the running of the entire example test

models during the simulation test, that lasts about 100s and where
tH2 ≈ 50s.

The first histogram H1 is obtained from the output data captured using as
excitation signal the sine-wave v(t) given by the non-linear generator above.
During the execution of this part of the test, the time evolution of the gain
and offset that the adder has applied to the signal is the one shown in Figure
3.20 for t < tH2. The second histogram H2 is obtained from the output data
captured using the same signal v(t) as for H1 but now,during the execution
of this part of the test, the time evolution of the gain and offset that the adder
has applied to the signal is the one shown in Figure 3.20 for t ≥ tH2. In both
histograms the saturation of the input range of the ADC under test has been
preserved. The virtual transition levels are calculated as already explained
in the Experiment 2.
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FIGURE 3.21: Non-stationary set-up:a) Estimated INL from DH
method approaching the non-linearity generator with Mp=100.
b) and c) Comparison between the True INL (red line) and the
estimated INL (black line) by applying the proposed Enhanced

DH method

If an approach is applied where time drifts are not taken into account,
the result of the INL estimation has large errors as shown Figure 3.21 a). In
this case the system of equations (3.21) has been solved by only considering
γ = 1. The wrong estimate INL pattern is within the range of approximately
+1200LSB and −2350LSB.

If our proposed solution in subsection 3.2.1 for a non-stationary test en-
vironment is applied, the errors in the estimation of the INL pattern are dra-
matically reduced, as shown Figure 3.21 b) and Figure 3.21 c). The actual and
the estimated INL patterns match very closely, with the difference between
them being in the range of ±1LSB.
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Chapter 4

Experimental application of the
proposed methods on a commercial
high-resolution Analog-to-Digital
Converter

FIGURE 4.1: AD6644: Picture of the evaluation board including
the input signal (BNC connector), the clock signal (SMA con-

nector) and the Logic Analyser connections

The objetive of this chapter is to evaluate the application of the SSA method
(based on a spectral approach) and the SDH, ESDH and EDH methods (based
on a double histogram approach) for the Integral Non-Linearity estimation
of a high-resolution commercial ADC. The device under test is the high-
performance 14-bit, 65Msps AD6644 from Analog Devices (Devices, 2007).
To simplify the design and the assembly of the measurement set-up, the
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commercial high-resolution Analog-to-Digital Converter

AD6644 converter has been measured on its evaluation board, also from Ana-
log Devices. A picture of the evaluation board is shown in Figure 4.1. The
schematic of the evaluation board can also be found in the datasheet of the
device (Devices, 2007).
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4.1 Description of the measurement set-up

The schematic of the measurement set-up used during the experiments is
depicted in Figure 4.2:

FIGURE 4.2: AD6644: General measurement set-up

AD6644 This commercial ADC from Analog Devices has a resolution of 14
bits, nominally operates at a sampling frequency of 65Msps, has a fully-
differential input with a Full-Scale of FS = 2.0V and parallel digital
outputs. It requires an analogue bias of AVcc = 5.0V typical and a dig-
ital bias of DVcc = 3.3V typical. A VREF = 2.4V reference voltage is
on-chip generated to give the Common Mode level to the input sig-
nals driving the AD6644. It is clocked differentialy via ENCODE and
ENCODE signals.

AD6644 Eval-Board The AD6644 evaluation board contains all the elements
necessary to operate the converter quickly and easily:

• All the required bias-voltages on the evaluation board are driven
from two power supplies of +5V and +3.3V, including the ADC
analog and digital biasing.

• The differential conversion clock of the ADC can be ac-coupled
driven from a board-included fixed 65Msps frequency clock oscil-
lator, the MX045-65 from CTS Reeves, or from an externally clock
generator via a BNC or SMA connector. As the AD6644 must
be clocked differentially, the clock signal is ac-coupled into the
ENCODE and ENCODE pins via a board-included transformer.
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• A single-to-differential input conditioning circuit: the DC-coupled
analog input circuit buffers the single-ended input of the evalu-
ation board to the differential inputs of the ADC under test. The
DC-coupled circuit is a resistive inverter that uses the low-distortion
fully-differential output AD8138 Operational Amplifier from Ana-
log Devices. This amplifier has an input pin that gives the re-
quired Common Mode level to each of the output signals driving
the ADC. This pin is driven by the output pin VREF = 2.4V given
by the AD6644.

It should be noted that the signal conditioning circuit driving the AD6644
will be integrated in the system to be measured, introducing a non-linearity
contribution that may be significant in the INL estimated by the different
evaluation methods. This is why, as shown in Figure 4.2, from now on the
ADC under test will be the system formed by the conditioning circuit plus
the AD6644 ADC.

Tek AFG3102 Function/AWG Input Signal Generator The AFG3102 is a con-
ventional inexpensive generator. This generator does not meet the lin-
earity requirements necessary to estimate the INL of the ADC under
test. In our experiment the input signals have been generated using the
basic-prestored standard generator functions.

Filter During the experiments, three different signal filters are used accord-
ing to the desired purity and the waveform of the input signal that will
drive the ADC under test: (1) An expensive high quality custom-made
band-pass filter designed for a frequency of 1.42MHz to achieve a high
spectral purity sinusoidal signal. It is the Q56TR from TTE filter, a 8-
pole elliptical function anti-aliasing filter with a Total Harmonic Distor-
tion of THD = −90dBc dedicated for ADCs. This filter also lowers the
noise level due to the input signal. (2) A conventional cheap 15MHz
low-pass filter to filter out part of the noise introduced by the input sig-
nal. It is the BLP-15 filter from Minicircuit. This filter is used only to fil-
ter out the noise from the signal supplied by the generator to perform a
double histogram test with a sinusoidal type signal. (3) A conventional
cheap 5MHz low-pass filter to filter out part of the noise introduced by
the input signal. It is the BLP-5 filter from Minicircuit. This filter is used
only to filter out the noise from the signal supplied by the generator to
perform a double histogram test with a triangular type signal.
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SRSCG635 Clock Generator A low jitter high accuracy clock generator is
used to generate the ADC conversion clock at approximately 65Msps.

HP 53131A Frequency Counter The frequency counter is used to achieve a
high accuracy coherent sampling.

Agilent 16823A Logic Analyzer Data acquisition is performed using a logic
analyser.

HP E3631A Power Supply For +3.3V and +5.0V biasing.

4.2 Description of the experiment test flow

Experimental tests have been carried out as follows:

1. Evaluation of the INL reference pattern using the Standard Histogram
method. The excitation signal is a high spectral purity sine-wave ob-
tained with the conventional generator and the inclussion of the TTE
high quality bandpass filter in the signal path. The use of this filter im-
poses that the frequency of the sinusoidal signal is f0 ≈ 1.42MHz. This
frequency is much lower than the sampling frequency of the converter,
fs ≈ 65Msps.

2. Application of the SSA method using a pure sine-wave input signal.
The pure signal is also obtained by filtering the sinusoidal signal gener-
ated by the conventional generator with the TTE high quality bandpass
filter. The use of this filter imposes that the frequency of the sinusoidal
signal is f0 ≈ 1.42MHz.

3. Application of the SDH, the Extended SDH and the Enhanced DH meth-
ods using as the non-pure input signal the sine-wave generated by the
conventional generator filtered by the conventional commercial BLP-15
low pass filter. The filter is used to lower the input noise level allow-
ing to relax the number of captured samples. If the filter introduces
distortion into the input signal, the applied method will include it as
embedded in the non-linearity of the generator. In order to compare
results, this test will be performed using the same input frequency of
f0 ≈ 1.42MHz.

4. Application of the SDH the Extended SDH and the Enhanced DH meth-
ods using as the non-pure input signal a triangular-wave generated
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by the conventional generator filtered by the conventional commercial
BLP-5 low pass filter. This test has been performed at a frequency of
f0 ≈ 14.1kHz.

The following criteria have been considered when comparing the INL
patterns obtained from the different methods versus the reference one:

• Comparison of the maximum and minimum values of the INL patterns.

• Comparison according to how the shape and margins comprising the
two INL patterns match.

• Comparison of similarity between INL patterns. The similarity be-
tween patterns has been evaluated by calculating the Fréchet distance
(Alt and Godau, 1995; Efrat et al., 2002; Buchin, Buchin, and Wenk,
2008). The Fréchet distance is a Figure Of Merit (FOM) that will allow a
mathematical evaluation of the performance of the proposed methods
by measuring the similarity between the INL patterns evaluated by the
different approaches respect to the INL reference pattern, as it measures
the distance between their points taking into account the flow of the
two curves being compared. The larger the Fréchet distance the lower
the similarity between the curves. A Fréchet distance of zero indicates
that the curves match completely.

4.3 Standard Histogram test settings

The evaluation of the INL patterns requires test settings for performing a
standardised histogram test (Measurement and Technical, 2011) according to:
(1) Coherent sampling compliance and (2) Number of data records required.
In general, the test setting procedure consists of the following steps:

1. Analysis of the output noise level, by means of a DC histogram. This
analysis can also be performed using a low frequency sine wave as in-
put signal and obtaining the sine of best fit to the output signal. The
difference between the real output data and the best-fit signal gives us
the residual or error which, due to the low frequency, can be assumed
only as noise contribution.

2. Obtaining the number of samples and records required for the noise
level of the system previously evaluated and according to the accuracy
desired.
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(a) The number of samples per record is decided by the memory depth
of the hardware available for the test and by the ability to estab-
lish a level of perfection in the coherence compliance between the
sampling signal and the input signal. It should be observed that
the longer the record, the more accuracy is required for the fre-
quencies, as indicated in (Measurement and Technical, 2011).

(b) The number of records is determined by the conditions indicated
in the standard (Measurement and Technical, 2011).

(c) The input signal and its conditions are set according to the avail-
able filtering capacity.

3. Assessment of whether it is necessary to reduce the noise level to reduce
the number of records required. As the Standard Histogram method
requires a uniform distribution of the samples over [0, 2π], the differ-
ent records should have their initial phases uniformly distributed over
[0, 2π]. If this adjustment is done by software, it is necessary to leave a
sufficient number of samples in each record to choose as the first sam-
ple of the record the one with the required initial phase. The number of
samples per record is therefore also limited by the number of records to
be acquired.

4. The saturation level to the ADC will depend on the noise level of our
system and should be set according to the standard, but also according
to the offset level to be used to perform the double histogram method,
as the saturation should always be maintained.

5. The offset between the input signals used for the double histogram
should be:

• A value large enough so that the noise levels between the con-
structed histograms do not overlap.

• A value small enough so that the saturation condition is not lost
and the local variations of the generator non-linearity are slight
enough to allow the derivative to be approximated by a finite first
order difference.

Coherent Sampling Compliance

The experimental procedure followed to achieve a coherent sampling in a
data record has been as follows:
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1. Coherent sampling is guaranteed if it is complied with:

f0 = fs
J

M
(4.1)

where f0 is the input frequency, fs is the sampling frequency, J is the
number of cycles per record and M is the number of samples per record
on which coherent sampling is established, being J and integer rela-
tively prime to M.

2. The ideal values considered for the input frequency and the sampling
frequency are the starting point. The use of the bandpass filter at 1.42
MHz fixes the frequency of the input signal, so in this experiment the
sampling frequency has been more flexible in adjusting the coherence,
although always considering that the ADC is working at its maximum
frequency.

3. The input signal is programmed into the signal generator with the ideal
required frequency value and by means of the frequency counter its
value is accurately measured, obtaining f0. It is also possible to fine
tune the frequency of the signal generator to the required frequency by
means of the frequency counter.

4. A record length is set by selecting the number of samples M to be cap-
tured. When choosing the number of samples per record, it should be
observed that the longer the record, the more accuracy is required for
the frequencies, as indicated in (Measurement and Technical, 2011). Us-
ing the accurate value of the input signal f0 and the ideal value to the
sampling frequency (in our case 65MHz), from (4.1) a number of cycles
is obtained. The number of samples M and the number of cycles J are
then set to relatively prime integers.

5. From (4.1), using f0, M and J the precise value for the sampling fre-
quency that achieves coherence is obtained, being fs.

6. The value obtained for the sampling frequency is programmed to the
highest possible accuracy supported by the clock generator and by means
of the frequency counter its value is accurately measured.

7. A very fine coherence adjustment is possible by varying the frequency
of the clock generator in very small steps until the frequency counter
meets the obtained value sampling frequency fs.
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Amplitude setting

For fine tuning of the input signal amplitude, a calibration process of this
parameter has been carried out, by correcting the experimental measured
gain between the amplitude programmed in the generator and that measured
with the output data. The amplitude of the input signal saturating the ADC
under test has been programmed to provide an already corrected amplitude
of 0.1dBFS.

Setting of the number of samples per record and the number of records

The memory depth of our capture system has been limited to a maximum
number of samples per record of Mmax = 216 = 65536. To optimise memory
resources, for each record we have fully utilised the available memory depth,
but reserving a number of samples to eliminate effects from signal settling
(removing first samples from the histogram computation) and to software
adjust the phase of each record to ensure a uniformly distributed sampling
between 0 and 2π. If M = 65304samp/reg is considered, this gives a margin
of 65536− 65304 = 232 samples to perform the phase shift.

Once the number of samples M per record is set, the number of records
required to achieve the desired confidence level must be determined. The
standard ((Measurement and Technical, 2011)) provides an equation to cal-
culate it:

R = (
2(N−1)Ku

B
)2 · ( cπ

M
) · {1.13[

σ

V
+

cσΦ

2
] + 0.25(

cπ

M
)} (4.2)

where R is the minimum required number of records, M is the number of
samples per record, c is equal to 1 + 2(V0/V), V is the full-scale range of the
ADC under test, V0 is the input overdrive, σ is the rms random noise effects,
σΦ is the rms random phase error of the input signal relative to the sampling
frequency, N the number of bits of the ADC under test, B the desired test
tolerance and ku is obtained from the Table 2 of ((Measurement and Technical,
2011)) for the specified confidence. The following approximations on the
standard expression has been used in our test:

• Since the high resolution of the ADC under test, V0/V is very small,
considering c ≈ 1.

• Phase noise is assumed to be white noise and embedded within the
total random noise.
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R ≈ (
2(N−1)Ku

B
)2 · ( π

M
) · {1.13

σ

V
+ 0.25(

π

M
)} (4.3)
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4.4 Evaluation of the INL reference pattern using

the TTE high quality band-pass filter: Pure Sine

input signal

FIGURE 4.3: AD6644: Measurement set-up for the evaluation
of the INL reference pattern

FIGURE 4.4: AD6644: Picture of the set-up for the evaluation of
the INL reference pattern

The pure sinusoidal input signal of frequency f0 = 1.42MHz has been
generated using the TTE high quality custom-made Band-Pass filter (BP fil-
ter), as shown the schematic of the set-up in Figure 4.3 to evaluate the INL
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FIGURE 4.5: AD6644: Output data spectrum from the pure si-
nusoidal input signal

reference pattern by the Standard Histogram method. The figure also reports
the attenuation factors in the input signal path due to the filtering stage and
the input conditioning circuit. It should be mentioned that the TTE Band-
Pass filter removes the DC component of the generator signal (AC coupling).
Figure 4.4 shows a picture of the set-up at the laboratory, with the TTE fil-
ter placed after the signal generator. In order to show the spectrum of the
output data when this filter is used, Figure 4.5 is plotted. This figure has
been obtained with a peak-to-peak amplitude of −1dBFS not to saturate the
ADC and by averaging spectra over R = 16 records of M = 16343 sam-
ples each and taken in a continually way. The records have been acquired in
compliance with the requirement of coherent sampling, being de sampling
frequency fs ≈ 65Msps. As the input signal is a high purity sine, the har-
monic distortion observed in the spectrum of the output signal is produced
by the non-linearity of the ADC under test. Taking the contribution of the
100 most influential harmonics of the spectrum, the Total Harmonic Distor-
tion (THD) obtained translates into an effective number of bits of 13.3 bits,
i.e. the non-linearity results in a loss of approximately 0.7 bits respect to the
ideal ADC resolution. The Effective Number Of Bits (ENOB) is 11.2 bits, i.e.
adding the noise contribution the loss is approximately 2.8 bits.

In order to have an experimental estimation of the noise level of our sys-
tem, the histogram of a DC level has been analysed. The histogram shows a
bell-shaped Gaussian distribution centred at the DC level and σ ≈ 2LSB.
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FIGURE 4.6: Number of Records versus Noise for M = 65325
samples

To estimate the INL reference pattern, the peak-to-peak amplitude of the
pure sinusoidal input signal has been set to A = +0.1dBFS, maintaining
the input frequency to 1.42MHz. The DC component of this signal is the
nominal one, and will be filtered by the TTE bandpass filter. The selected
amplitude causes both upper and lower saturation of about 100LSB. Fol-
lowing the coherent sampling compliance search process, the sampling fre-
quency has been set to 65.00Msps and the selected number of samples per
record to M = 65325. This number of samples gives 211 samples to per-
form the registers phase shift to cover uniformly [0, 2π]. Figure 4.6 plots
the number of records required versus the noise level of the system for a
M = 65325samp/reg, for test tolerances from 0.2LSB to 1LSB, considering
a 95% confidence level. The number of total samples collected has been
3070275.

The noise sigma value in Figure 4.6 allows to choose the number of records
according to the desired tolerance for the test. The choice is a trade-off be-
tween accuracy and time cost. In this experiment, R = 47 records has been
acquired for histogram test, corresponding to a estimation tolerance of about
0.5LSB.

Figure 4.7 shows the INL reference pattern obtained from the Standard
Histogram method, using the pure sine input signal. The figure also plots
the DNL. A typical INL saw-pattern is estimated, being the maximum INL
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FIGURE 4.7: AD6644 INL and DNL reference pattern

value about 3LSB. The figure shows that the INL is practically in the range of
±1.5LSB, except in the more extreme lower codes where there is a curvature
rising to about 3LSB. Note the third order behaviour in the shape of the
evaluated pattern, which is consistent with the spectrum shown in Figure 4.5
where, excluding the main harmonic, the third harmonic predominates over
the rest of the spectral components. From now on it will be considered as
the true INL pattern of the ADC under test and will be called INL reference
pattern.
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4.5 Estimation of the INL pattern using the SSA

method: Pure Sine input signal

FIGURE 4.8: AD6644: Measurement set-up for the evaluation
of the INL pattern by the SSA method

The objective of this section is to show the estimated INL pattern when
the SSA method is applied to the ADC under test and its comparison with
the reference pattern evaluated by the Standard Histogram method.

For this purpose, the ADC under test has been excited with a high spec-
tral purity sinusoidal signal obtained by filtering with the TTE BP filter the
sinusoidal signal of frequency f0 = 1.42MHz generated by the generator.
The schematic of the measurement set-up is as shown in the Figure 4.8, the
same as for the INL reference pattern estimation by the Standard Histogram
method, but with the conditions of the input siganl and the data acquisi-
tion adapted to the SSA spectral test, as will be detailed in this section. The
SSA method has been applied with a much smaller number of samples than
the Standard Histogram method. In this experiment, the coherence of each
record has been established on M = 16343 samples. Taking a smaller number
of samples per record speeds up the process of searching for coherent sam-
pling, since as indicated above, the larger the data record the more precision
is required in the frequencies involved. In the spectral processing, a coher-
ent sampling search process has been performed together with a fine tuning
of frequencies to avoid that high frequency harmonics (above the Nyquist
frequency) when folding within the Nyquist band overlap or lie closely to
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FIGURE 4.9: AD6644: Output data spectrum from the pure si-
nusoidal input signal by averaging 4 registers of 16343 samples

per register

harmonics of lower frequencies within the Nyquist spectrum. To perform
spectrum averaging, R = 4 records have been acquired continuously. It is
worth remembering that the records have to be taken continuously in order
not to lose the phase information of the sinusoidal signal. The total number
of samples taken is 65372, practically filling the available memory depth. It
should be noted that the total number of samples acquired in this esperiment
is the 2.13% of the total number of samples collected to evaluate the INL ref-
erence pattern from the Standard Histogram method.

Concerning the input signal amplitude, it has been set to a peak-to-peak
amplitude of −0.2dBFS to ensure that the signal does not saturate the ADC
under test. This peak-to-peak amplitude is about 180LSB lower than the full-
scale of the ADC under test.

When obtaining an averaged spectrum, it is possible to address it in two
different ways: (1) Averaged Spectrum: one approach is to calculate the spec-
trum over each of the M sample records and then perform the averaging. (2)
Time-Averaged Spectrum: another approach is a raw-data averaging over
the R records of M samples and calculate the spectrum of the averaged signal
obtained. Figure 4.9 shows the spectrum obtained from the first approach:
the FFT of each record of M = 16343 samples has been calculated and then
the four spectra obtained have been averaged. Figure 4.10 shows the spec-
trum obtained with the second approach: the data of the four records have
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FIGURE 4.10: AD6644: Output data spectrum from the pure
sinusoidal input signal by time-averaging 4 registers of 16343

samples per register

been time-averaged, obtaining an averaged data record. The FFT has been
calculated on the data of this new record. Comparing both pictures, it can
be observed that the Time-Averaged approximation eliminates part of the
noise and allows discriminating harmonics that in the first approximation
are embedded in the spectrum background noise. Although time averag-
ing underestimates the spectral noise, it is well suited for the application of
the SSA method, as it is helpful in discerning a larger number of harmonics
compared to spectral averaging. This is clearly observable in the THD pa-
rameter: using the Averaged Spectrum approach it has been calculated on
100 harmonics while in the Time-Averaged approach it has been possible to
estimate it on 300 harmonics. Although the contribution of harmonic distor-
tion to the effective number of bits when taking 100 harmonics (about 12.7
bits) or 300 harmonics (about 12.5 bits) has not changed much, discerning
more harmonics in the SSA method allows a more accurate estimation of the
shape of the INL pattern.

Finally, based on the spectrum of the figure 4.10, the amplitude, frequency
and phase parameters of the 300 harmonics with the highest amplitude have
been evaluated and the SSA method has been applied. Figure 4.11 shows the
INL estimated by the SSA method in maroon line and the reference pattern
in grey line. The estimated INL pattern is a smooth version of the INL ref-
erence pattern, but follows its shape perfectly and within the margins set by
the reference pattern.
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FIGURE 4.11: Estimated INL from the SSA method using 300
harmonics and its comparison to the INL reference pattern

FIGURE 4.12: Estimated INL from the SSA method using 300
harmonics and its comparison to the estimated INL from the

histogram method using 32686 samples

Figure 4.12 overlaps both the INL estimated by the SSA method using
the spectrum parameters from the 300 harmonics obtained via the Time-
Averaged spectrum with R = 4 records (65372 total number of samples)
and the INL obtained by the histogram method with the same number of
records (cyan line). The figure shows how the number of samples is insuf-
ficient for the histogram method for a noise averaging to obtain an accurate
INL estimate, as some errors are of the order of 2LSB. Although the SSA
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method does not provide the detail of the typical INL saw pattern, it does
accurately follow the shape of the reference INL pattern. For a mathematical
comparison between pattern similarities, the Fréchet distance to the INL ref-
erence pattern has been calculated for both estimates. The Fréchet distance
using the SSA method is FOMFD = 48.5 and using the histogram method is
FOMFD = 82.4.
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4.6 Estimation of the INL using methods based on

the DH: Non-pure input signals

Next step has consisted of carrying out the experiments for the application
and evaluation of the proposed SDH, Extended SDH and Enhanced DH meth-
ods based on the DH approach.

4.6.1 Estimation of the INL pattern using the LPB-15 low-

pass filter: Non-pure sine input signal

In this test, the sinusoidal signal generated by the generator is filtered by the
low-cost LPB-15 low-pass filter, as shown the set-up figure 4.13. This is the
non-pure sine input signal. Figure 4.14 shows a picture of the set-up in the
laboratory, with the LPB-15 filter placed after the signal generator. Figure
4.15 shows the spectrum of the ADC signal response to this excitation. It
should be noted that now the THD obtained with the 100 most influential
harmonics of the spectrum corresponds to an effective number of bits of 9.9
bits, being of the same order as the ENOB obtained with the total contribu-
tion of noise and distortion. That is, the non-linearity of the input signal in
this experiment is conditioning the non-linearity measured through the out-
put signal and its contribution is overestimating the non-linearity of the ADC
under test. This is clearly shown by the THD, which estimates a loss of 4.1
bits respect to the nominal ADC resolution. Obviously, the application of the
histogram method using this input signal will lead to an erroneous estima-
tion of the Integral Non-Linearity of the ADC under test.

In order to have an experimental estimation of the new noise level of our
system, the histogram of the output data of a DC level input has been anal-
ysed. The histogram shows a Gaussian distribution with a sigma of about
2LSB. In the DH method, this test not only helps to establish the minimum
number of registers to perform the histogram tests with a certain tolerance,
but also to establish the minimum difference between the DC or offset values
of the input signals so that there is no overlap between them in the queue
of the Gaussian, to be clearly discernible when applying the method. This
is shown in Figure 4.16, where the histograms of three DC values in LSB
units have been plotted: nominal DC value, +15LSB offset from DC nom-
inal, and −15LSB offset from DC nominal. Considering that in the Gaus-
sian distribution approximately 99% of the distribution is contained within
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FIGURE 4.13: AD6644: Set-up for the application of the SDH,
Extended SDH and Enhanced DH methods using a non-pure

sine-wave input

FIGURE 4.14: AD6644: A picture of the set-up for the appli-
cation of the SDH, Extended SDH and Enhanced DH methods

using a non-pure sine-wave input

±3σ with respect to the central value, the separation between the DC val-
ues of each excitation signal must be about 15LSB. Finally, the following
test conditions have been set: (1) the computing of M = 65416samp/reg and
R = 47 records for each histogram test (that is, each histogram has been per-
formed on a total of 3.1 million of samples), corresponding to a estimation
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FIGURE 4.15: AD6644 output data spectrum from the non-pure
sinusoidal input signal

FIGURE 4.16: Evaluation of the system noise by DC histograms

tolerance of about 0.5LSB, (2) the displacement of a ±15LSB respect to the
nominal DC value to generate the two non-pure sinusoidal input signals for
the SDH and ESDH methods. Therefore, the offset or displacement between
the two non-pure sinusoidal signals to apply a double histogram has been
about 30LSB = 3.7mV.
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FIGURE 4.17: Offset evolution during the test process in SDH
method

Considering M = 65416samp/reg, the number of cycles per record is
J = 1429cycles/reg. Each displacement from one sample to the next cor-
responds to a phase shift of 360◦ · (1429/65416) = 7.86◦/samp. The 120 sam-
ples to perform the phase shifts gives a coverage of 7.86◦/samp · 120 = 943◦,
more than enough to cover the phase shifting between 0 and 2π.

The histogram H1 has been obtained from the 47 records of output data
acquired using as excitation signal the non-pure sine-wave with a os1 =

+15LSB offset. The histogram H2 has been obtained from the 47 records
of output data acquired using as excitation signal the non-pure sine-wave
with a os2 = −15LSB offset. From each set of histograms H1 and H2 the
virtual transition levels have been estimated. The offset is required remain-
ing constant over time. Figure 4.17 is intended, as an example, to show the
evolution of the offset values os1 and os2 during the test run, plotting the off-
set estimated with the data set for each of the first 40 records captured for
the construction of the H1 and the H2 histograms. Performing a linear fit to
the set of 40 offset values calculated for each histogram, it is concluded that
for the H1 histogram the offset has followed an evolution with effective gain
g1 = +3.37mLSB/reg and for the H2 histogram the offset has followed an
evolution with effective gain g2 = −5.12mLSB/reg. Temporal offset drifts
will lead to errors in the estimation of the INL pattern.

In order to address the offset time drifts as the solution proposed in (Jin
et al., 2005a; Jin et al., 2005b), the data collection has been repeated but
switching the offset of each sinusoidal input signal for each record following
a Thue-Morse series distribution. These records have then been reordered
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FIGURE 4.18: Offset evolution during the test process in an
Thue-Morse interleaved SDH method

by software to construct two histograms: the one containing the output data
with offset +15LSB and denoted as H1Morse and the one containing the out-
put data with offset−15LSB and denoted as H2Morse. Figure 4.18 shows the
time evolution of the offset values os1 and os2, plotting the offset value esti-
mated for each of the first 80 registers when the 94 registers are interleaved
following the Thue-Morse series. From the linear fit performed to the set
of 40 offset values calculated for H1Morse and to the set of 40 offset values
calculated for H2Morse, the effective gains that govern the evolution of the
offsets are now g1 = −0.73mLSB/reg and g2 = +0.54mLSB/reg. The ef-
fective gains have been reduced but not completely eliminated, so there will
still be errors in the INL estimation due to offset drifts.

Figure 4.19 plots the non-linearity patterns obtained by each of the sim-
ple histograms, H1, H2, H1Morse and H2Morse. That is, the INL curves
obtained by comparing the ideal transition levels of the ADC under test with
the virtual transition levels obtained from the histogram H1 (INL in red line),
from the histogram H2 (INL in magenta line), from the histogram H1Morse
(INL in blue line) and from the histogram H2Morse (INL in green line) are de-
picted. The grey line plots the INL reference pattern. The four INL patterns
obtained from the non-pure sine signals practically match each other and lie
within ±12LSB. By visual comparison with the reference INL, it is possi-
ble to conclude that the generator in its sinusoidal function is more linear in
the central regions of the sine waveform than in the extreme regions. The
Fréchet distance reports (indicated as FOMFD in the picture), as expected,
that all four INL patterns have practically the same low similarity to the ref-
erence INL pattern, a value of about 400.

130



4.6. Estimation of the INL using methods based on the DH: Non-pure input
signals

FIGURE 4.19: AD6644 INL patterns estimated from the simple
histograms of the non-pure sinusoidal signals

Using the H1 and H2 histograms, the SDH method has been applied. The
H1Morse and H2Morse sets have been used to apply the Double Histogram
but with a parameterisation of Mp = 51 coefficients of the non-linearity of
the generator, as explained in the Enhanced DH method but not yet applying
our time drift correction strategy. Figure 4.20 shows the results obtained in
both cases and their comparison with the INL reference pattern. Time drifts
in the measurement set-up during the tests leads to an erroneous estimation
of the INL of the ADC under test. Even the strategy of interleaving the 94
records according to the Thue-Morse series was not sufficient to improve the
result. The Fréchet distance informs that Thue-Morse strategy has improved
the result (FOMFD = 302.7), but is still far away from the reference pattern.

Finally, the Extended SDH method has been applied using the H1 and
H2 sets. The Enhanced DH method has been applied using the H1Morse
and H2Morse sets (hereinafter referred to as Enhanced Morse DH). Figure
4.21 shows the results obtained from both methods and their comparison to
the INL reference pattern. The upper picture shows in maroon line the INL
pattern estimated with the Enhanced Morse DH method. The bottom pic-
ture shows in pink line the INL pattern estimated with the Extended SDH
method. It is noteworthy how the patterns evaluated with these algorithms
closely matches with the reference pattern, with the typical INL saw-pattern,
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FIGURE 4.20: AD6644: INL patterns estimated by SDH and
Morse DH methods using a sinusoidal input signal

and how the Figure of Merit has improved to values below 70. The INL es-
timated by the Extended SDH method obtains a Fréchet distance of 68.7 and
a maximum INL of 3LSB. The INL estimated by the Enhanced DH method
and introducing the offsets interleaving strategy obtains a Fréchet distance
of 66.7 and a maximum INL of about 2.5LSB.

FIGURE 4.21: AD6644: INL patterns estimated by the Extended
SDH and the Enhanced DH methods
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4.6.2 Estimation of the INL pattern using the LPB-5 low-pass

filter: Non-pure triangular input signal

FIGURE 4.22: AD6644: Set-up for the SDH, Extended SDH and
Enhanced DH methods using a non-pure triangular-wave as

input signal

In order to show the independence of the results of the proposed meth-
ods with the type of input signal wave driven to estimate the INL of the
ADC under test, the experiment has been repeated but with a low-purity
triangular-wave signal generated by the same non-linear generator. Figure
4.22 shows the set-up. Now the signal generated by the triangular function
of the generator is filtered by the low-cost LPB-5 low-pass filter. This is the
non-pure triangular input signal.

The noise level obtained from the histogram of the output data of a DC
level input has been analogous to that of the previous experiments, being
again a Gaussian distribution with a sigma of about 2LSB. This leads to con-
clude that in all of the introduced filtered cases it is the noise level of the ADC
under test that is dominating the total noise level of the system.

As in the previous experiments, the test conditions have been set accord-
ing to the coherent sampling compliance and the number of data per record
and the number of records to obtain an estimation accuracy of about 0.5LSB
considering 2LSB noise level. The number of samples per register over which
the coherent sampling is established, M, is still conditioned by the memory
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FIGURE 4.23: Raw output data from the non-pure triangular
input signal

FIGURE 4.24: Equivalent-time output data from the non-pure
triangular input signal

depth of Mmax = 65536 samples and by the need to have a sufficient num-
ber of samples available to perform the sample shift at the beginning of each
record so that the uniform distribution is met. Finally, the following condi-
tions have been set: f0 = 14.1kHz, fs = 65.20MHz, M = 60237samp/reg,
J = 13cycles/reg and R = 47 registers. That is, each histogram has been per-
formed on a total of 2.8 million of samples. Regarding the saturation level,
it has remained around 100LSB. According to the measured noise level, the
offset shift between the non-pure triangular-wave input signals to perform
the proposed double histogram methods has been kept at 30LSB.

134



4.6. Estimation of the INL using methods based on the DH: Non-pure input
signals

The histogram H1 has been obtained from the 47 records of output data
acquired using as excitation signal the non-pure triangle input signal with
a os1 = +15LSB offset. The histogram H2 has been obtained from the 47
records of output data acquired using as excitation signal the non-pure triangle-
wave with a os2 = −15LSB offset. Figure 4.23 shows one of the coher-
ent sampling compliance record of the ADC under test output data in re-
sponse to the non-pure triangular signal used to compute the histogram H1.
The figure depicts the output codes encoded in bipolar output range versus
time. Figure 4.24 plots the equivalent-time output data, where the data of
the thirteen cycles have been depicted in a single period of the signal, being
Ts = 1/ fs = 70.9µs the period of the signal. The saturation is clearly visible
in this graph.

As in the non-pure sinusoidal input signal experiment, the data collection
has been repeated switching the offset of each triangle input signal for each
record following the Thue-Morse series distribution. These records also have
been reordered by software to obtain two histograms: the one containing the
output data with offset +15LSB and denoted as H1Morse and the one con-
taining the output data with offset −15LSB and denoted as H2Morse.

Figure 4.25 plots the non-linearity patterns obtained by each of the sim-
ple histograms, H1, H2, H1Morse and H2Morse. That is, the INL curves
obtained by comparing the ideal transition levels of the ADC under test with
the virtual transition levels obtained from the histogram H1 (INL in red line),
from the histogram H2 (INL in magenta line), from the histogram H1Morse
(INL in blue line) and from the histogram H2Morse (INL in green line) are
depicted. The grey line plots the INL reference pattern. The four INL pat-
terns obtained from the non-pure triangular signals practically match each
other and lie within the range [−6LSB,+2LSB]. The Fréchet distance has
been calculated in each estimation and included in the figure, reporting, as
expected, that all four INL patterns have practically the same low similar-
ity to the reference INL pattern, a value of about 150. Comparing with the
INL results of the simple histograms of the sinusoidal experiment, it can be
concluded that the non-linearity of the generator in its triangular function is
lower than that of the sinusoidal function.

Figure 4.26 shows the results obtained when the SDH method (in green
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FIGURE 4.25: AD6644 INL patterns estimated from the simple
histograms of the non-pure triangular signals

line) and the Thue-Morse strategy of offset interleaving (in yellow line) have
been performed, and their comparison with the INL reference pattern (in
grey line). As for the sinusoidal experiment, the non-linearity of the gen-
erator has been parameterized by Mp = 51 coefficients. The time drift in
the measurement set-up during the tests leads to an erroneous estimation of
the INL of the ADC under test when the SDH method is applied. The re-
sulting INL pattern is analogous to that of the experiment with sinusoidal
input signal, obtaining a Fréchet distance of 418.3. But, on the other hand,
the strategy of interleaving the 94 records according to the Thue-Morse se-
ries has been able to improve the result, obtaining a Fréchet distance of 66.5
and a maximum INL of about 2LSB, results very similar to those obtained
with the sine-wave Enhanced DH method.

Finally, the Extended SDH method has been applied using the H1 and H2
sets. The Enhanced DH method has been applied using the H1Morse and
H2Morse sets. Figure 4.27 shows the results obtained from both methods
and their comparison to the INL reference pattern. The upper picture shows
in maroon line the INL pattern estimated using the Enhanced Morse DH
method. The bottom picture shows in pink line the INL pattern evaluated by
the Extended SDH method. The INL estimated by the Enhanced Morse DH
method (Enhanced DH introducing the offsets interleaving strategy) obtains
a Fréchet distance of FOMFD = 62.5 and a maximum INL of about 2LSB.
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FIGURE 4.26: AD6644: INL patterns estimated by SDH and
Morse DH methods using a triangular input signal

FIGURE 4.27: AD6644: INL patterns estimated by the Extended
SDH and the Enhanced DH methods using a triangular signal

For the INL pattern estimated by the Extended SDH method, the Fréchet dis-
tance is FOMFD = 89.1 and lies approximately within a range of±1LSB. It is
noteworthy that both estimates obtain a very similar behaviour in the lower
codes, approximately below code -7168, which does not match the reference
pattern. This phenomenon, combined with what is shown by Figure 4.25 in
those same codes, leads to suspect that probably the INL of the ADC under
test has modified its behaviour especially in those codes during the test with
the triangular input signal due to the influence of the DC-coupled input con-
ditioning circuit part of the ADC under test.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

Knowledge of the parameters that characterise the transfer function of an
Analog-to-Digital converter (ADC) is of major importance to ensure the cor-
rect operation of an ADC in a given application. One of the most widely
used standardised methods for estimating these parameters is the Standard
Histogram method. Its application in high resolution ADCs is highly expen-
sive and time consuming, especially in industrial sectors such as the so-called
New Space, where large amounts of parts have to be tested several times in
long test flows.

This dissertation has focused on the development of two alternative meth-
ods to the Standard Histogram method (Measurement and Technical, 2011)
for the estimation of the non-linearity parameters of high resolution ADCs.

1. The first contribution introduced a method based on a spectral process-
ing and it has been named Simple Spectral Approach (SSA):

(a) The method is intended to estimate the Integral Non-Linearity (INL)
parameter acquiring much smaller number of output samples than
required by the Standard Histogram. It uses a pure sinusoidal in-
put signal. It is a black-box method as it makes no assumptions
about the ADC design topology.

(b) It assumes and applies a continuous and derivable transfer func-
tion model of the ADC under test.

(c) The method performs a local study of the ADC transfer function
by means of a first-order Taylor series which is related to the ADC
non-linearity parameters by means of the mathematical definition
of the INL.
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(d) The Integral Non-Linearity is estimated by the evaluation of the
harmonic amplitudes and the phase-shifts obtained from the spec-
trum of the ADC output.

(e) The SSA method has been applied by simulation in realistic ADC
models with different design topology and non-linearity patterns:
some ADC models emulate smooth INL patterns and some ADC
models emulate saw-tooth INL patterns. In both cases, accurate
estimates of the INL pattern were obtained.

(f) The SSA method has been applied in laboratory experiments to es-
timate the INL of two real ADCs: a 12-bit resolution Pipeline pro-
totype ADC and a 14-bit resolution 65Msps commercial Pipeline
ADC, both with sharp INL patterns. The results show an INL pat-
tern that follows the shape of the reference one (evaluated by the
Standard Histogram method), reproducing the typical large steps,
and always complying with the INL margins established by the
reference INL

(g) The SSA method can be useful in industrial test protocols where a
very precise estimation of the shape of the INL pattern is not re-
quired but just to evaluate the maximum and minimum values in
which it lies, in order to compare them with the range established
by the manufacturer as valid. It is a trade-off between accuracy
and cost. Introducing the SSA method as an initial check test, it
can also be useful to quickly assess whether a long, highly accurate
test process is running under the right conditions by comparing
the shape of the estimated pattern with the one actually expected.
This will allow a fast decision on whether to continue or abort the
full test.

2. The second contribution introduced methods based on the collection
of two sets of output data to construct two histograms (Double His-
togram). The methods have been referred to as Enhanced Double His-
togram (Enhanced DH or EDH), Simplified Double Histogram (Sim-
plified DH or SDH) and Extended Simplified Double Histogram (Ex-
tended SDH or ESDH):

(a) The methods are intended to relax the requirements on the pu-
rity of the signal driving the ADC under test. They use the tran-
sition levels evaluated from the two histograms constructed from
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the collection of two sets of output data in response to two identi-
cal non-pure input signals except for a constant DC level between
them. The ADC is handled as a black-box model as no assumption
is made about its design topology.

(b) A proposal for the estimation of the sets of transition levels using
the two histograms constructed is presented. No assumption is
made about the type of input waveform used.

(c) A solution for the application of the method in a non-stationary
test environment has also be addressed. A general algorithm has
been developed under the hypothesis that time drifts in the input
signals can be modeled with an effective offset and an effective
gain introduced by the signal path adder, being different effective
values for the first and the second data acquisition to construct the
two histograms.

(d) The method named Enhanced Double Histogram (EDH) is based
on performing a parameterisation of the non-linearity of the gen-
erator by means of a serial expansion of basis functions, as was
done in the SEIR algorithm presented in (Jin et al., 2005a) but it is
adapted for using in a non-stationary test environment.

(e) The Simplified Double Histogram method (SDH) is a simple novel
proposal that performs a local study of the non-linearity of the
generator by means of its derivative approximated with the three-
point formula, obtaining a simple relation with the actual code
width of the ADC under test. The two sets of transition levels
evaluated from the two histograms (called virtual transition lev-
els) allow to estimate the actual code widths of the ADC under
test through an expression that only depends on the two sets of
virtual transition levels and the applied constant offset.

(f) The Extended Simplified Simplified Double Histogram (ESDH)
method uses the derivative-based approach presented in the SDH
method, but adapted for use in a non-stationary test environment.

(g) The methods has been applied by simulation in realistic Pipeline
ADC models with the typical saw-tooth non-linearity patterns. The
Simplified DH method has been applied in simulated experiments
using different input waveform signals. The Extended SDH and
Enhanced DH methods have been applied by simulation emulat-
ing a non-stationary test environment using an adder model with
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time drifts in gain and offset parameters. In all cases, accurate es-
timates of the INL pattern were obtained.

(h) The methods have been applied in laboratory experiments to es-
timate the INL of a 14-bit resolution 65Msps commercial Pipeline
ADC. A conventional cheap generator has been used in its stan-
dard waveform generation function and including low-cost filters
in the signal path for noise filtering of the input signals. Experi-
mental tests have been carried out using in one case a low-purity
input sine waveform and in another case a low-purity input tri-
angular waveform. The results have shown that it is possible to
accurately estimate the INL of a high performance ADC using a
low-cost generator and applying the proposed DH-based meth-
ods.

(i) In the industrial sector, the proposed methods can be very use-
ful allowing to perform linearity testing on high-resolution ADCs
overcoming the handicap of using expensive high-linearity sig-
nal generators (including Arbitrary Waveform Generators, AWGs,
and those integrated in Automatic Test Equipments, ATEs). As ex-
amples, some advantages resulting from their application would
be: (1) extending the test laboratory resources available to carry
out the test, (2) speeding up the design and assembly of the mea-
surement set-up by adapting the different resources available to
the different ADCs to be measured, (3) taking advantage of re-
sources that are obsolete versus the new generations of ADCs.
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5.2 Future Work

• Integration of the alternative methods into industrial test protocols.
Enhancing the application in the industrial sector of the methods de-
veloped in this research work to perform linearity tests on ADCs is a
non-trivial task that remains to be done. As shown in the introductory
chapter of the thesis, there is a large literature on alternative methods
to the histogram test, but their application in the test industry is not
widespread. Focusing on test companies in the space industry, pro-
moting the use of these methods implies a full customer confidence in
them, and this is achieved by assuring their reliability throughout the
several test flows. A future action plan could consist of applying the
proposed methods in parallel with the Standard Histogram method in
ADC COTS qualification projects, to have a broad set of results to sup-
port the method for future customers.

• Integration of state-of-the-art spectral processing techniques into the
SSA method. The SSA method is a fast approach for INL estimation in
high-resolution ADCs, but compliance with coherent sampling is one
of the most challenging constraints that needs further work. On the
other hand, the application of the SSA method using saturated output
sine waves would allow to cover the full output code range of the ADC
and relax the requirements on signal amplitude control. The inclusion
of a technique similar to that the FERARI (Fundamental Estimation,
Removal And Residue Interpolation) (Sudani, Xu, and Chen, 2013; Xu,
Sudani, and Chen, 2014) in the SSA method is future work to address
both of the above issues.

• Setting an upper limit on the value of the offset applied between the
input signals for the application of the Simplified Double Histogram
method. As a pending task is to formulate an expression to define a
maximum value for the offset up to which a description with the first
derivative and its approximation by means of the finite difference is
valid.

• Adaptation of the Double Histogram method for application using AC-
coupled signals. The development of the Double Histogram method
based on the variation of the amplitude value of the input signals is
one possibility to address the issue.
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• Adaptation of the algorithm used by the Simplified Double Histogram
method to a procedure in which transition levels are not evaluated by
the Standard Histogram method.

• Optimisation of the procedure of the Double Simple Histogram method
to generators with a linearity behaviour that varies according to the
evolution of the generated signal. This behaviour can be evident in
the generation of signals that change abruptly, as the saw-tooth or the
triangular waveform signals.
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Appendix A

Evaluation of the static parameters
of an ADC by the Standard
Histogram Method

A.1 An overview of the ADC static parameters

An Analog-to-Digital Converter, hereafter referred to as ADC, is a device that
converts an analog signal x(t) to a digital signal, represented as an ADC out-
put code k. Under stationary conditions, the relationship between the analog
input signal and the ADC output codes is a staircase function, known as the
transfer function of the ADC. This transfer function is characterised by: (1)
the analog conversion domain of the ADC, which is the [R−, R+] range of
analogue input signal values in which the ADC operates, being R− the lower
limit of the conversion domain and R+ the upper limit of the conversion
domain and (2) the points tk belonging to that domain where the function
changes value or code in a stepwise way, and called code transition levels or
simply transition levels.

In the case of an ideal ADC, the analog conversion domain is divided into
uniform intervals of value q = FS/2n called quantum or LSB of the ADC,
where FS = R+ − R− is the Full Scale or length of the domain and n is the
number of bits or the resolution of the ADC. The output code is represented
in binary base by n digits. Without loss of generality it has been assumed
that the codes are coded in unsigned decimal values. The transfer function
of the ADC is not a linear function, but it is considered to be linear if the
transition levels are linearly related to the output code. This is the case of the
ideal ADC, whose transition levels fulfil the following linear relationship:

lk = R− + q · k, ∀k ∈ [1, 2n − 1] (A.1)
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where the set {lk} represents the input signal values where the output
code of the ideal ADC changes from k − 1 to k, that is, the ideal transition
levels. In the ideal ADC, the minimum code or lower saturating code is 0
and the maximum code or upper saturating code is 2n − 1, being [0, 2n − 1]
the output conversion domain.

In the real ADC, the output conversion domain may be less than that
of the ideal ADC. Therefore, the minimum code or lower saturating code is
denoted as zmin ≥ 0 and the maximum code or upper saturating code as
zmax ≤ 2n − 1, being [zmin, zmax] the output conversion domain of the real
ADC.

An ADC is designed to meet the behaviour of the ideal ADC. The differ-
ences between the set of real transition levels of the real ADC, hereafter des-
ignated as {tk} , and the set of ideal transition levels {lk} report how much
the transfer function of the real ADC deviates from the transfer function of
the ideal ADC. These are the static parameters and include the following:

INL Integral Non Linearity. It measures the difference between the set {tk}
and the set {lk} in quantum or LSB units:

INLk =
tk − lk

q
, ∀k ∈ [zmin + 1, zmax] (A.2)

It has to be corrected from offset and gain contributions, as indicated
by (Measurement and Technical, 2011).

DNL Differential Non Linearity. It measures how much the width of each
code of the actual ADC, wk = tk+1 − tk, deviates from the quantum or
LSB of the ideal ADC, in LSB units:

DNLk =
wk
q
− 1 =

tk+1 − tk
q

− 1 = INLk+1− INLk, ∀k ∈ [zmin + 1, zmax− 1]

(A.3)

A code k is defined as missing code if DNLk ≤ −0.9.

GE Gain Error. It measures the variation rate of the real analog conversion
domain with respect to the ideal one:

GEv = (tzmax − tzmin+1)− (lzmax − lzmin+1) (A.4)
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Expressed in LSB units, it is related to INL as:

GELSB =
GEv

q
= INLzmax − INLzmin+1 (A.5)

It is usually expressed as a percentage of Full Scale:

GE%FS =
GEv

FS
· 100 (A.6)

OFFE Offset Error. It measures the difference between the beginning of the
actual ADC analog conversion domain and the beginning of the ideal
ADC analog conversion domain:

OFFEv = tzmin+1 − lzmin+1 (A.7)

Expressed in LSB units, it is related to INL as:

OFFELSB =
OFFEv

q
= INLzmin+1 (A.8)

ZE Zero Error. It measures the difference between the central position of
the real ADC transfer function and the central position of ideal ADC
transfer function. The central position is given for the ideal transition
level of the central code of the ideal ADC output conversion domain,
which is zc = 2n−1:

ZEv = lzc − tzc (A.9)

Expressed in LSB units, it is related to INL as:

ZELSB =
ZEv

q
= −INLzc (A.10)

A.1.1 INL corrected for gain and offset contributions

If the real ADC is affected by gain and offset errors, the INL obtained from
the expression (A.2) contains a linear contribution that has to be corrected
as indicated by the standard (Measurement and Technical, 2011). The linear
contribution is performed by fitting the set of real transition levels {tk} to a
straight line, obtaining a new set of effective transition levels {t̃k} that follows
the lineal law:
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t̃k = b + a · (k− zmin), ∀k ∈ [zmin + 1, zmax] (A.11)

The parameters a and b are calculated by two standardised adjustments
(Measurement and Technical, 2011): (1) Best-Fit Line: obtaining the line of
best fit by the Least Squares method or (2) End-Line: obtaining the line that
crosses the extreme or terminal real transition levels, tzmin+1 and tzmax .

This process corresponds to comparing the real ADC not with the ideal
ADC but with the ADC whose transfer function best approximates, as indi-
cated above, the real transfer function. Therefore, by comparison with the
ideal ADC law (A.1), the parameter a corresponds to the quantum or LSB of
the best approximate ADC, designated as the effective quantum or LSB qe ,
and the parameter b corresponds to the lower reference of the best approxi-
mate ADC, designated as the effective lower reference R−e .

The corrected Integral Non Linearity is:

INLk =
tk− t̃k

qe
, ∀k ∈ [zmin + 1, zmax] (A.12)

where:

t̃k = R−e + qe · (k− zmin), ∀k ∈ [zmin + 1, zmax] (A.13)

From (A.12), the Differential Non Linearity is:

DNLk = INLk+1− INLk =
tk+1− tk

qe
− 1, ∀k ∈ [zmin + 1, zmax]

(A.14)
The Gain Error and Offset Error parameters can be obtained respectively

from:

GEdimensionless =
q
qe
− 1 (A.15)

where g = q/qe is the gain of the real ADC.

zos =
R−

q
− R−e

qe
(A.16)

where zos is in LSB units.
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A.2 The Standard Histogram Method

The histogram method is a statistical procedure developed by Joey Doern-
berg et al. (Doernberg, Hae-Seung, and Hodges, 1984) to obtain the set of
transition levels of an ADC and is standardised according to (Measurement
and Technical, 2011). It is based on the construction of the histogram of the
output codes of an ADC, in response to an input signal with a given wave-
form whose amplitude probability statistical distribution is known. On the
one hand, the probability of occurrence of each output code is obtained from
the histogram of the output codes. On the other hand, the probability distri-
bution that the ADC output will follow is known, which is a function of the
transitions and the input parameters. From this information the transition
levels are obtained.

It is important to highlight that the histogram does not report the location
of where the codes are appearing within the ADC analogue domain, only the
number of times each code appears, so the set of transition levels obtained
is monotonic non-decreasing. This condition of the histogram method pro-
duces erroneous results in ADCs with non-monotonic behaviour, since the
histogram method will always assign a set of monotonic transition levels to
the ADC under test. From now on it is assumed that the ADC is monotonic
non-decreasing, being the worst-case behaviour the missing code.

Suppose the histogram method is to be performed to obtain the static pa-
rameters of an ADC. For this purpose, an ideal, noise-free, continuous ana-
logue signal x is applied to excite the ADC under test. Consider the peak
amplitude of the input signal is A and its DC or offset value is C, being the
range of excitation amplitudes of the input signal x ∈ [C − A, C + A]. It is
assumed that this range covers the analogue conversion domain of the ADC,
causing upper and lower saturation of the ADC output.

The data or codes in response to the previous analogue signal will be cap-
tured. Assuming that are acquired M output codes or samples, the code set
{zj}j=1toM is obtained. On it, the histogram of codes is calculated by counting
the number of times Sz each code z appears in the acquired data set, being
the histogram represented as the set H = {z, Sz}z∈[zmin,zmax]. It is obvious that
M meets:
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M =
zmax

∑
k=zmin

Sz (A.17)

From the histogram is estimated the probability of occurrence of each
code k ∈ [zmin, zmax]:

Pk =
Sk
M

(A.18)

And the probability of occurrence of an output code, z, being less than a
given k ∈ [zmin + 1, zmax]:

Qk = P(z<k) =
k−1

∑
z=zmin

Pz, (A.19)

The set HP = {z, Pz}z∈[zmin,zmax] is called a probability histogram, and the
set HQ = {z, Qz}z∈[zmin,zmax] is called a cumulative probability histogram.

On the other hand, as it is assume that the distribution function of the
ADC input signal is known, fx(x; A, C), then it is possible to obtain the prob-
ability cumulative distribution function followed by the output signal, by
means of the transition levels and the amplitude A and offset C of the input
signal:

Qk = P(z<k) =
∫ tk

∞
fx(x; A, C)dx = h(tk; A, C), ∀k ∈ [zmin + 1, zmax] (A.20)

Isolating tk from (A.20) and using the cumulative probability histogram
previously computed in (A.19):

tk = h−1(Qk; A, C), ∀k ∈ [zmin + 1, zmax] (A.21)

Although it is possible to use any waveform whose statistical distribution
is known, typically, the histogram method is performed using pure triangu-
lar or sinusoidal waveforms as input signals to the ADC under test as they
are easily implemented in the laboratory. So, if a triangular or ramp wave-
form is used as input signal:

h(u; A, C) =
(A + C)− u

2A
(A.22)

and therefore by (A.21):
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tk = C− A · (1− 2Qk), ∀k ∈ [zmin + 1, zmax] (A.23)

If a sinusoidal waveform is used as input signal:

h(u; A, C) = 1− 1
π

arccos(
u− C

A
) (A.24)

and from (A.21):

tk = C− A cos(πQk), ∀k ∈ [zmin + 1, zmax] (A.25)

When the peak amplitude A and the offset C parameters are known with
high accuracy, the transition levels are estimated directly from (A.21) using
the suitable expression to the input waveform used. In the case where the
input signal parameters are unknown or known with low accuracy, it is pos-
sible to obtain them if two widely separated transitions are measured very
accurately by an alternative method, solving then the following system of
equations with the two unknowns A and C:

tzl = h−1(Qzl ; A, C) (A.26)

tzh = h−1(Qzh ; A, C) (A.27)

where zl > zmin and zh ≤ zmax are the codes whose transitions tzl and tzh

are known. As an example, if the triangular or ramp waveform is used as
input signal:

A =
1
2
·

tzh − tzl

Qzh −Qzl

(A.28)

C = tzh + A · (1− 2Qzh) (A.29)

And if a sinusoidal waveform is used as input signal:

A =
tzh − tzl

cos(πQzh)− cos(piQzl)
(A.30)

C = tzh + Acos(πQzh) (A.31)

Once the parameters of the input signal are obtained, the rest of the tran-
sition levels are estimated from (A.21) using the suitable expression to the
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Appendix A. Evaluation of the static parameters of an ADC by the
Standard Histogram Method

input waveform used.

Once the transition levels of the ADC under test are known, the static
parameters that characterise its transfer function are evaluated from the ex-
pressions given in section (A.1).

In the case where the peak amplitude A and offset C of the input signal
cannot be accurately known, an erroneous estimate of the static parameters
of the ADC will be obtained, except for those corrected for the gain and offset
contribution: the results from expressions (A.12) and (A.14) are independent
of the value assumed for the input signal parameters. Thus, when the gain
and offset errors are not required and only the non-linearity parameters cor-
rected for their contributions want to be evaluated, it is possible to perform a
normalisation process assuming in (A.21) the values A = 1 and C = 0, to ob-
tain the set of transition levels with which to evaluate (A.12) and/or (A.14).
The results of this evaluation are identical to those obtained with any other
value of A and C.
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Appendix B

Stimulus Error Identification and
Removal: SEIR method

The SEIR algorithm is a method presented in (Jin et al., 2005a) to accurately
estimate the Integral Non Linearity pattern of a high resolution ADC using
a low linearity generator. The method is based on the use of a Double His-
togram, by exciting the ADC under test with two identical low linearity ramp
signals but one shifted with respect to the other by a constant offset. The two
ADC output data sets contain the information of the ADC transition levels
plus the nonlinearity contribution from the generator. Matching the transi-
tion levels of the ADC under test from both sets, a system of equations related
to the nonlinearity of the generator is obtained. The nonlinearity of the input
signal is then parameterized using a set of basis function, whose parameteri-
zation coefficients are obtained solving by the Least Square (LS) method the
previous set of equations. Once the generator nonlinearity is identified, it is
removed from the ADC output data and the nonlinearity of the ADC is ac-
curately estimated.

B.1 Integral Non-Linearity definition

Consider an ADC of n-bit of resolution and N = 2n output codes. The set of
transition leves is denoted as Tk with k = 1, 2, ..., N− 1. It is assumed that the
ADC is monotonic and with no missing codes.

The INL expression used by (Jin et al., 2005a) is specific to the case where
offset and gain correction is performed by means of the terminal-based (or
end-line) definition. The transition levels of the linear ADC that fit the tran-
sition levels of the ADC under test matching their extreme transitions T1 and
TN−1 follow the linear equation:
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Ik = T1 + Qe · (k− 1), k = 1, ..., N − 1 (B.1)

The slope of the line is Qe = (TN−1− T1)/(N− 2), the effective quantum
or Least Significant Bit (LSB) of the fitted linear ADC.

The terminal-based INL expression used is:

INLk =
Tk − Ik

Qe
=

Tk − T1

TN−1 − T1
· (N − 2)− (k− 1), k = 1, 2, ..., N − 1 (B.2)

The aim is to calculate de transition levels and obtain the INL, but if the
input signal is not pure the transition levels cannot be estimated directly from
the output data using the histogram method.

B.1.1 Input signal nonlinearity modeling

In (Jin et al., 2005a) the real linear ramp is modeled in time t as:

x(t) = xos + ηt + F(t) (B.3)

where xos is the dc offset voltage, ηt is the linear part of the ramp signal
and F(t) represents its nonlinear component.

Defining the transition time tk the time at which the ramp signal is equal
to the kth transition level of the ADC, is obtained:

Tk = x(tk), k = 1, ..., N − 1 (B.4)

The input signal is assumed monotonic. In order to make the algorithm
independent of the time range in which the test is performed, the authors
carry out a normalisation process by considering t1 = 0 and tN−1 = 1. Con-
sidering that the nonlinearity of the input signal is zero at t = 0 and t = 1,
that is F(0) = F(1) = 0, (B.3) is expressed as:

x(t) = T1 + (TN−1 − T1)t + F(t), 0 ≤ t ≤ 1 (B.5)

As the signal input nonlinearity is assumed unknown, in order to iden-
tify it F(t) is parameterized as a series expansion over a set of basis function
{Fj(t), j = 1, 2, 3, ...}. In (Jin et al., 2005a) is chosen the trigonometric func-
tions as the set of basis function, resulting on the interval [0, 1]:
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F(t) =
M

∑
j=1

Aj sin(jπt) + e(t), 0 ≤ t ≤ 1 (B.6)

where only the first M basis function are included for the series expan-
sion, and e(t) represents the residual due to the unmodeled part of the ap-
proximation in M terms. According to the authors, M can always be appropi-
ately chosen so that the residue is small to any desired level. In general, the
input nolinearity function can be parameterized as:

F(t) ≈
M

∑
j=1

AjFj(t), 0 ≤ t ≤ 1 (B.7)

where {Aj}with j = 1, 2, 3, ..., M is the set of M coefficients of the finite se-
ries expansion using M basis functions, and satisfying each element of the set
that Fj(0) = Fj(1) = 0. The term e(t) has been neglected from this expression.

The input signal in (B.5) can be written as:

x(t) ≈ T0 + (TN−2 − T0)t +
M

∑
j=1

ajFj(t), 0 ≤ t ≤ 1 (B.8)

B.1.2 Integral Non-Linearity evaluation

Once the model of the input signal in time has been obtained, the ADC tran-
sition levels are estimated by means of (B.4) and using (B.8):

Tk ≈ T1 + (TN−1 − T1)tk +
M

∑
j=1

AjFj(t), 0 ≤ tk ≤ 1 (B.9)

Replacing (B.9) in (B.2):

INLk ≈ (N − 2)tk +
M

∑
j=1

ajFj(tk)− (k− 1), k = 1, 2, ..., N − 1 (B.10)

where now the coefficients aj = Aj/Q are in LSB units. Expression (B.10)
gives the ADC nonlinearity per code as a function of the associated transition
time and the coefficients of the nonlinearity input. An approximation of the
transition times can be estimated using the histogram of the output data:
let Ck with k = 0, 1, ..., N − 1 the bin counts obtained in the histogram test
for each code. As the ADC samples with a constant period, the time taken
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to take a sample is proportional to the number of samples taken up to it.
Thus, taking t = 0 as the origin, if C1 is the number of samples that have been
counted from code 1, as the input signal is a ramp, it is possible to evaluate
the instant of time at which the last sample with code 1 was taken, as C1

times the sampling period. Similarly, the last sample of the code 2 was taken
at instant C1 + C2 times the sampling period. In general:

t̂k = Tc

k

∑
i=1

Ci, k = 1, 2, ..., N − 1 (B.11)

With:

Tc =
1

∑N−2
i=1 Ci

(B.12)

where Tc is a scaling factor to set the t̂k time instants into the normalisation
range [0, 1].

As is assumed that the input signal is monotonically increasing, the ac-
tual time instant at which the value of the input signal matches one transi-
tion level lies between the histogram time instant estimate and the histogram
instant time estimate plus one sampling period:

t̂k ≤ tk < t̂k + Tc (B.13)

Assuming that the number of samples acquired for the histogram is large
enough to make Tc very small, the t̂k time instant will be very close to tk,
being possible the following approximation:

tk ≈ t̂k (B.14)

And using this approximation in (B.10), the INLk is:

ˆINLk ≈ (N − 2)t̂k +
M

∑
j=1

ajFj(t̂k)− (k− 1), k = 1, 2, ..., N − 1 (B.15)

with t̂1 = 0 and ˆtN−1 = 1.

Since the unknowns in the expression (B.15) are the coefficients {aj}, SEIR
approach considers two different histograms to use (B.15) and establish a set
of linear equations to solve.
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B.2 INL estimation using two nonlinear stimuli

The SEIR approach to testing ADC nolinearity involves using two input sig-
nals identical except for a fixed offset between them, to deal with identifying
the nolinearity of the ADC input signal and then removing it from the INL
calculation. Consider α the constant offset between the two input ramp sig-
nals, using the input signal modeling of (B.5) they can be written as:

x1(t) = T1 + (TN−1 − T1)t + F(t) (B.16)

x2(t) = T1 + (TN−1 − T1)t + F(t)− α, (α > 0) (B.17)

Input signal x1 will reach the transition levels of the ADC under test at
time instants t(1)k and input signal x2 will reach them at time instants t(2)k . So,
the set of transition levels of the ADC under test can be evaluated from:

Tk = x1(t
(1)
k ) (B.18)

Tk = x2(t
(2)
k ) (B.19)

Assuming that the offset between the input signals is positive, α > 0,
it will take a longer time for the second signal to reach a transition level
than it will take for the first signal: t(1)k < t(2)k . Let C(1)

k and C(2)
k with

k = 0, 1, ..., N − 1 the bin counts obtained in the histogram test using x1

and x2 respectively as the input signals to the ADC under test. Using the
histogram data information, transition times can be estimated following a
similar procedure to that of (B.11). In this case, in order to perform the nor-
malisation process in time and as two sets of time transitions are available,

the time origin will be taken at
ˆ

t(1)1 = 0 and the unit time at
ˆ

t(1)N−1 = 1, being
an approximation of the transition times for the first signal:

ˆ
t(1)k =

∑k
i=1 C(1)

i

∑N−2
i=1 C(1)

i

, k = 1, 2, ..., N − 1 (B.20)

In order to have the same units, the transition times of the second signal
must be scaled by the same scaling factor but shifted the offset amount in
time generated by the offset α:

ˆ
t(2)k =

∑k
i=1 C(2)

i − (C(1)
0 − C(2)

0

∑N−2
i=1 C(1)

i

, k = 1, 2, ..., N − 1 (B.21)
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Assuming a large number of samples taken for each histogram, INL can
be estimated by operating similar as for (B.15):

ˆ
INL(1)

k = (N − 2)
ˆ

t(1)k + ΣM
j=1ajFj(

ˆ
t(1)k )− (k− 1), k = 2, ..., N − 2 (B.22)

ˆ
INL(2)

k = (N− 2)
ˆ

t(2)k +ΣM
j=1ajFj(

ˆ
t(2)k )− α− (k− 1), k = 2, ..., N− 2,

ˆ
t(2)k ≤ 1
(B.23)

Only INLk estimates for which the corresponding transition times are
within the domain of the definition for the basis functions are included in
(B.22) and in (B.23). As a result of this, the total number of equations avail-
able for (B.23) is N − 3− α.

Since
ˆ

INL(1)
k and

ˆ
INL(2)

k are estimates for the INL of the same ADC, they
must match code to code. Their respectively expressions (B.22) and (B.23) can
be equated to obtain a set of equations involving only the input non-linearity:

(N− 2)(
ˆ

t(2)k −
ˆ

t(1)k ) = ΣM
j=1aj(Fj(

ˆ
t(1)k )− Fj(

ˆ
t(2)k ))+ α, k = 2, ..., N− 2,

ˆ
t(2)k ≤ 1
(B.24)

It is possible to express the latter as a matrix equation of the form:

λ̃(γ) = [Γ̂(γ) 1]ã (B.25)

where:

(λ̃)k = (N − 2)(
ˆ

t(2)k −
ˆ

t(1)k )

(Γ̂)kj = Fj(
ˆ

t(1)k )− Fj(
ˆ

t(2)k ), ã = (a0, a1, ..., aMp, α)t
(B.26)

The number of equations in (B.24) is N − 3 − α and the number of un-
knowns is M + 1 (M from the aj parameters plus the offset α). For high reso-
lutions ADCs, typical values of M and α are much smaller than N. When the
number of equations is larger than the number of unknowns, this system of
equations is overconstrained and is solved by the Least Square method:
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ã = λ̃(γ) [Γ̂(γ) 1] (B.27)

Considering than the solution is given by the parameters and the offset
{â1, â2, ..., ˆaM, α̂}, the esimate of the INLk of the ADC under test can be ob-
tained replacing them, for example, in (B.22):

ˆ
INL(1)

k = (N − 2)
ˆ

t(1)k + ΣM
j=1 âjFj(

ˆ
t(1)k )− (k− 1), k = 2, ..., N − 2 (B.28)
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