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In recent years, deep learning techniques have outperformed traditional models in many machine learning
tasks. Deep neural networks have successfully been applied to address time series forecasting problems,
which is a very important topic in data mining. They have proved to be an effective solution given their
capacity to automatically learn the temporal dependencies present in time series. However, selecting the
most convenient type of deep neural network and its parametrization is a complex task that requires
considerable expertise. Therefore, there is a need for deeper studies on the suitability of all existing
architectures for different forecasting tasks. In this work, we face two main challenges: a comprehensive
review of the latest works using deep learning for time series forecasting; and an experimental study
comparing the performance of the most popular architectures. The comparison involves a thorough
analysis of seven types of deep learning models in terms of accuracy and efficiency. We evaluate the
rankings and distribution of results obtained with the proposed models under many different architecture
configurations and training hyperparameters. The datasets used comprise more than 50000 time series
divided into 12 different forecasting problems. By training more than 38000 models on these data, we
provide the most extensive deep learning study for time series forecasting. Among all studied models,
the results show that long short-term memory (LSTM) and convolutional networks (CNN) are the best
alternatives, with LSTMs obtaining the most accurate forecasts. CNNs achieve comparable performance
with less variability of results under different parameter configurations, while also being more efficient.
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1. Introduction

Time series forecasting (TSF) plays a key role in a

wide range of real-life problems that have a tempo-

ral component. Predicting the future through TSF

is an essential research topic in many fields such

as the weather,1 energy consumption,2 financial in-

dices,3 retail sales,4 medical monitoring,5 anomaly

detection,6 traffic prediction,7 etc. The unique char-

acteristics of time series data, in which observations

have a chronological order, often make their analysis

a challenging task. Given its complexity, TSF is an

area of paramount importance in data mining. TSF

models need to take into account several issues such

as trend and seasonal variations of the series and the
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correlation between observed values that are close

in time. Therefore, over the last decades, researchers

have placed their efforts on developing specialized

models that can capture the underlying patterns of

time series, so that they can be extrapolated to the

future effectively.

In recent times, the use of deep learning (DL)

techniques has become the most popular approach

for many machine learning problems, including

TSF.8 Unlike classical statistical-based models that

can only model linear relationships in data, deep

neural networks have shown a great potential to

map complex non-linear feature interactions.9 Mod-

ern neural systems base their success in their deep

structure, stacking several layers and densely con-

necting a large number of neurons. The increase in

computing capacity during the last years has allowed

creating deeper models, which has significantly im-

proved their learning capacity compared to shallow

networks. Therefore, deep learning techniques can be

understood as a large-scale optimization task: simi-

lar to an easy problem in terms of formulation but

complex due to its size. Moreover, their capacity to

adapt directly to the data without any prior assump-

tions provides significant advantages when dealing

with little information about the time series.10 With

the increasing availability of data, more sophisti-

cated deep learning architectures have been proposed

with substantial improvements in forecasting perfor-

mances.11 However, there is the need more than ever

for works that provide a comprehensive analysis of

the TSF literature, in order to better understand the

scientific advances in the field.

In this work, a thorough review of existing deep

learning techniques for TSF is provided. Existing re-

views have either focused just on a specific type of

deep learning architecture12 or on a particular data

scenario.13 Therefore, in this study, we aim to fill

this gap by providing a more complete analysis of

successful applications of DL for TSF. The revision

of the literature includes studies from different TSF

domains considering all the most popular DL ar-

chitectures (multi-layer perceptron, recurrent, and

convolutional). Furthermore, we also provide a thor-

ough experimental comparison between these archi-

tectures. We study the performance of seven types of

DL models: multi-layer perceptron, Elman recurrent,

long short-term memory, echo state, gated recurrent

unit, convolutional, and temporal convolutional net-

works. For evaluating these models, we have used 12

publicly available datasets from different fields such

as finance, energy, traffic, or tourism. We compare

these models in terms of accuracy and efficiency, ana-

lyzing the distribution of results obtained with differ-

ent hyperparameter configurations. A total of 6432

models have been tested for each dataset, covering

a large range of possible architectures and training

parameters.

Since novel DL approaches in the literature are

often compared to classical models instead of other

DL techniques, this experimental study aims to pro-

vide a general and reliable benchmark that can be

used for comparison in future studies. To the best of

our knowledge, this work is the first to assess the per-

formance of all the most relevant types of deep neu-

ral networks over a large number of TSF problems

of different domains. Our objective in this work is to

evaluate standard DL networks that can be directly

applicable to general forecasting tasks, without con-

sidering refined architectures designed for a specific

problem. The proposed architectures used for com-

parison are domain-independent, intending to pro-

vide general guidelines for researchers about how to

approach forecasting problems.

In summary, the main contributions of this pa-

per are the following:

• An updated exhaustive review on the most

relevant DL techniques for TSF according to

recent studies.

• A comparative analysis that evaluates the

performance of several DL architectures on

a large number of datasets of different na-

ture.

• An open-source deep learning framework for

TSF that implements the proposed models.

The rest of the paper is structured as follows:

Section 2 provides a comprehensive review of the ex-

isting literature on deep learning for TSF; in Section

3, the materials used and the methods proposed for

the experimental study are described; Section 4 re-

ports and discusses the results obtained; Section 5

presents the conclusions and potential future work.

2. Deep learning architectures for time
series forecasting

A time series is a sequence of observations in chrono-

logical order that are recorded over fixed intervals
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of time. The forecasting problem refers to fitting

a model to predict future values of the series con-

sidering the past values (which is known as lag).

Let X = {x1, x2, ..., xT } be the historical data of

a time series and H the desired forecasting hori-

zon, the task is to predict the next values of the

series {xT+1, ..., xT+H}. Being X̂ = {x̂1, x̂2, ..., x̂T }
the vector of predicted values, the goal is to mini-

mize the prediction error as follows:.

E =

h=H∑
i=1

|xT+i − x̂T+i| (1)

Time series can be divided into univariate or

multivariate depending on the number of variables

at each timestep. In this paper, we deal only with

univariate time series analysis, with a single obser-

vation recorded sequentially over time. Over the last

decades, artificial intelligence (AI) techniques have

increased their popularity for approaching TSF prob-

lems, with traditional statistical methods being re-

garded as baselines for performance comparison in

novel studies.

Before the rise of data mining techniques, the

traditional methods used for TSF were mainly based

on statistical models, such as exponential smoothing

(ETS)14 and Box-Jenkins methods like ARIMA.15

These models rely on building linear functions from

recent past observations to provide future predic-

tions, and have been extensively used for forecasting

tasks over the last decades.16 However, these statis-

tical methods often fail when they are applied di-

rectly, without considering the theoretical require-

ments of stationarity and ergodicity as well as the

preprocessing required. For instance, in an ARIMA

model, the time series has to be transformed into

stationary (without trends or seasonality) through

several differencing transformations. Another issue

is that the applicability of these models is limited

to situations when sufficient historical data, with an

explainable structure, is available. When the data

availability for a single series is scarce, these models

often fail to extract effectively the underlying fea-

tures and patterns. Furthermore, since these meth-

ods create a model for each individual time series, it

is not possible to share the learning across similar in-

stances. Therefore, it is not feasible to use these tech-

niques for dealing with massive amounts of data as it

would be computationally prohibitive. Hence, artifi-

cial intelligence (AI) techniques, that allow building

global models to forecast on multiple related series,

began earning popularity. Meanwhile, linear methods

started to be regarded as baselines for performance

comparison in novel studies.

Ref. 17 provides a survey on early data mining

techniques for TSF and its comparison with classical

approaches. Among all proposed data mining meth-

ods in the literature, the models that have attracted

more attention have been those based on artificial

neural networks (ANNs). They have shown better

performance than statistical methods in many situ-

ations, especially due to their capacity and flexibil-

ity to map non-linear relationships from data given

their deep structure.18 Another advantage of ANNs

is that they can extract temporal patterns auto-

matically without any theoretical assumptions on

the data distribution, reducing preprocessing efforts.

Furthermore, the capacity of generalization of ANNs

allows exploiting cross-series information. When us-

ing ANNs, a single global model that learns from

multiple related time series can be built, which can

greatly improve the forecasting performance.

However, researchers have struggled to develop

optimal network topologies and learning algorithms,

due to the infinite possibilities of architecture con-

figurations that ANNs allow. Starting from very ba-

sic Multi-Layer Perceptron (MLP) proposals, a large

number of studies have proposed increasingly sophis-

ticated architectures, such as recurrent or convolu-

tional networks, that have enhanced the performance

for TSF. In this work, we review the most relevant

types of DL networks according to the existing liter-

ature, which can be divided into three categories:

• Fully connected neural networks.

– MLP: Multi-layer perceptron.

• Recurrent neural networks.

– ERNN: Elman recurrent neural network.

– LSTM: Long short-term memory network.

– ESN: Echo state network.

– GRU: Gated recurrent units network.

• Convolutional networks.

– CNN: Convolutional neural network.

– TCN: Temporal convolutional network.

The architectural variants and the fields in

which these DL networks have been successfully ap-

plied will be discussed in the following sections.
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2.1. Multi-Layer Perceptron

The concept of ANNs was first introduced in Ref. 27,

and was inspired in the functioning of the brain with

neurons acting in parallel for processing data. Multi-

Layer Perceptron (MLP) is the most basic type of

feed-forward artificial neural network. Their archi-

tecture is composed of a three-block structure: an in-

put layer, hidden layers, and an output layer. There

can be one or multiple hidden layers, which deter-

mines the depth of the network. It is the increase

of the depth, the inclusion of more hidden layers,

which makes an MLP network a deep learning model.

Each layer contains a defined set of neurons that

have connections associated with trainable parame-

ters. The neural network learning algorithm updates

the weights of these connections in order to map the

input/output relationship. MLP networks only have

forward connections between neurons, unlike other

architectures that have feedback loops. The most rel-

evant studies using MLPs are presented below.

In the early 90s, researchers started to pose

ANNs as a promising alternative compared to tra-

ditional statistical models. These initial studies pro-

posed the use of MLP networks with one or a few

hidden layers. At that time, due to the lack of sys-

tematic methodologies to build ANNs and their dif-

ficult interpretation, researchers were still skeptical

about their applicability to TSF.

At the end of the decade, several works reviewed

the existing literature with the aim of clarifying the

strengths and shortcomings of ANNs.28 These re-

views agreed about the potential of ANNs for fore-

casting due to their unique characteristics as uni-

versal function approximators and their flexibility

to adapt to data without prior assumptions. How-

ever, they all claimed that more rigorous validation

procedures were needed to conclude generally that

ANNs improve the performance of classical alterna-

tives. Furthermore, another general reasoning was

that determining the optimal structure and hyper-

parameters of the ANNs was a difficult process that

had a key influence on performance. From that time

on, many references proposing ANNs as a powerful

tool for forecasting can be found in the literature.

Table 1 presents a collection of studies using

MLPs for different time series forecasting problems.

Most studies have focused on the design of the net-

work, concluding that the past-history parameter has

a greater influence on the accuracy than the number

of hidden layers. Furthermore, these works proved

the importance of the preprocessing steps, since sim-

ple models with carefully selected input variables

tend to achieve better performance. However, the

most recent studies propose the use of ensembles of

MLP networks to achieve higher accuracy.

Although feed-forward neural networks such as

Table 1. Relevant studies on time series forecasting using MLP networks.

Ref. Year Technique Outperforms Application Description/findings

16 2003 Hybrid
ARIMA-MLP

ARIMA and MLP
individually

Exchange rates and
environmental data

The ARIMA component models the linear correlation
structures while MLP works on the nonlinear part.

19 2006 MLP Statistical methods Tourism expenditure Pre-processing steps such as detrending and desea-
sonalization were essential. MLPs performed better
as the forecast horizon increases.

20 2007 48 MLPs with
different inputs

No comparison Quarterly time series
M3 competition

Data preparation was more important than optimiz-
ing the number of nodes. Carefully selected the input
variables and designed simple models.

21 2009 MLP ARIMA Six datasets of
different domains

Comparison between iterative and direct forecasting
methods. Best performance with direct approach.

22 2012 MLP Competition winner NN3 competition Automatic scheme based on generalized regression
neural networks (GRNNs).

23 2014 MLP ARIMA Tourism data ARIMA models were better for short-horizon predic-
tion while ANNs were better for longer forecasts.

24 2014 Ensemble MLP Exponential smoothing
and naive forecast

Retail sales Evaluates different ensemble operators (mean, me-
dian, and mode). The mode operator was the best.

25 2016 Ensemble MLP Statistical methods NN3 and NN5
competitions

Two-layers ensemble. The first layer finds an appro-
priate lag, and the second layer employs the obtained
lag for forecasting.

26 2018 Parallelized
MLPs

Linear Regression,
Gradient-Boosted Trees,

Random Forest

Electricity demand Split the problem into several forecasting subprob-
lems to predict many samples simultaneously.
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MLP have been applied effectively in many circum-

stances, they are unable to capture the temporal

order of a time series, since they treat each input

independently. Ignoring the temporal order of in-

put windows restrains performance in TSF, espe-

cially when dealing with instances of different lengths

that change dynamically. Therefore, more specialized

models, such as recurrent neural networks (RNNs)

or convolutional neural networks (CNNs), started

to raise interest. With these networks, the tempo-

ral problem is transformed into a spatial architecture

that can encode the time dimension, thus capturing

more effectively the underlying dynamical patterns

of time series.33

2.2. Recurrent Neural Networks

Recurrent Neural Networks (RNN) were introduced

as a variant of ANN for time-dependent data. While

MLPs ignores the time relationships within the in-

put data, RNNs connects each time step with the

previous ones to model the temporal dependency of

the data, providing RNN native support for sequence

data.34 The network sees one observation at a time

and can learn information about the previous ob-

servations and how relevant the observation is to

forecasting. Through this process, the network not

only learns patterns between input and output but

also learns internal patterns between observations of

the sequence. This characteristic makes RNNs ones

of the most common neural networks used for time-

series data. They have been successfully implemented

for forecasting applications in different fields such as

stock market price forecasting,35 wind speed fore-

casting,36 or solar radiation forecasting.37 Further-

more, RNNs have achieved top results at forecasting

competitions, like the recent M4 competition.38

In the late 80s, several studies worked on differ-

ent approaches to provide memory to a neural net-

work.39 This memory would help the model to learn

from time series data. One of the most promising

proposals was the Jordan RNN.40 It was the main in-

spiration to create the Elman RNN, which is known

as the base of modern RNN.34

2.2.1. Elman Recurrent Neural Networks

The ERNN aimed to tackle the problem of dealing

with time patterns in data. ERNN changed the feed-

forward hidden layer to a recurrent layer, which con-

nects the output of the hidden layer to the input of

the hidden layer for the next time step. This con-

nection allows the network to learn a compact rep-

resentation of the input sequence. In order to imple-

ment the optimization algorithm, the networks are

usually unfolded and the backpropagation method

is modified, resulting in the Truncated Backpropa-

gation Through Time (TBPTT) algorithm. Table 2

presents some studies where ERNNs have been suc-

cessfully applied for TSF in different fields. In gen-

eral, the studies demonstrate the improvement of re-

current networks compared to MLPs and linear mod-

els such as ARIMA.

Despite the success of Elman’s approximation,

the application of TBTT faces two main problems:

the weights may start to oscillate (exploding gradi-

ent problem), or an excessive computational time to

learn long-term patterns (vanishing gradient prob-

lem)41

2.2.2. Long Short-Term Memory Networks

In 1997, Long Short-Term Memory (LSTM) net-

works56 were introduced as a solution for ERNN’s

problems. LSTMs are able to model temporal de-

pendencies in larger horizons without forgetting the

Table 2. Relevant studies on time series forecasting using ERNNs.

Ref. Year Technique Outperforms Application Description/findings

29 2000 ERNN MLP, RBF, ARIMA Solar radiation Despite the good results, ERNNs were unable to
model the discontinuities of time series. ERNNs had
slower convergence rate than non-recurrent models.

30 2012 ERNN RBFNN, ARMA-ANN,
NARX

Chaotic time series Compares different training algorithms, concluding
that evolutionary algorithms take significantly more
time to converge than gradient-based methods.

31 2018 ERNN ARIMA, SVR, BPNN,
RBFNN

Electricity data Improved performance with pre-processing steps such
as signal decomposition and feature selection.

32 2018 ERNN NAR, NARX Energy consumption Reported an important improvement with respect to
nonlinear autoregressive networks.
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short-term patterns. LSTM networks differ from

ERNN in the hidden layer, also known as LSTM

memory cell. LSTM cells use a multiplicative input

gate to control the memory units, preventing them

from being modified by irrelevant perturbations.

Similarly, a multiplicative output protects other cells

from perturbations stored in the current memory.

Later, another work added a forget gate to the LSTM

memory cell.57 This gate allows LSTM to learn to re-

set memory contents when they become irrelevant.

A list of relevant studies that address TSF prob-

lems with LSTM networks can be found in Table

3. Overall, these studies prove the advantages of

LSTM over traditional MLP and ERNN for extract-

ing meaningful information from time series. Fur-

thermore, some recent studies proposed more inno-

vative solutions such as hybrid models, genetic al-

gorithms to optimize the network architecture, or

adding a clustering step to train LSTM networks on

multiple related time series.

2.2.3. Echo State Networks

Echo State Networks (ESNs) were introduced by Ref.

62. They are based on Reservoir Computing (RC),

which simplifies the training procedure of traditional

RNNS. Previous RNNs, such as ERNN or LSTM,

have to find the best values for all neurons of the

network. In contrast, the ESN tunes just the weights

from the output neurons, which makes the training

problem a simple linear regression task.63

Table 3. Relevant studies on time series forecasting using LSTM networks.

Ref. Year Technique Outperforms Application Description/findings

42 2015 LSTM MLP, NARX, SVM Traffic speed LSTM proved effective for short-term prediction
without prior information of time lag.

43 2015 LSTM MLP, Autoencoders Traffic flow LSTM determines the optimal time lags dynamically,
showing higher generalization ability.

44 2018 LSTM Logistic regression,
MLP, RF

S&P 500 index Disentangle the LSTM black-box to find common pat-
terns of stocks in noisy financial data.

45 2018 LSTM Linear regression, kNN,
RF, MLP

Electric load Feature selection and genetic algorithm to find opti-
mal time lags and number of layers for LSTM model.

46 2019 LSTM ARIMA, ERNN, GRU Petroleum
production

Deep LSTM using genetic algorithms to optimally
configure the architecture.

47 2019 LSTM + Attention LSTM, MLP Solar generation Temporal attention mechanism to improve perfor-
mance over standard LSTM, also using partial au-
tocorrelation to determine the input lag.

48 2020 Hybrid ETS-LSTM Competition winner M4 competition ETS captures the main components such as seasonal-
ity, while the LSTM networks allow non-linear trends
and cross-learning from multiple related series.

49 2020 Clustering + LSTM LSTM, ARIMA, ETS CIF2016 and NN5
competitions

Building a model for each cluster of related time series
can improve the forecast accuracy, while also reducing
training time.

Table 4. Relevant studies on time series forecasting using ESNs.

Ref. Year Technique Outperforms Application Description/findings

50 2009 ESN MLP, RBFNN Stock market price Applying PCA to filter noise improved the ESN per-
formance over some indexes.

51 2011 ESN Other types of reservoirs 7 time-series from
different fields

An ESN with a simple cycle reservoir topology
achieved high performance for TSF problems.

52 2012 ESN with
Laplace function

Support Vector, Gaussian,
and Bayesian ESN

Simulated datasets Applied ESN in a Bayesian learning framework. The
Laplace function proved to be more robust to outliers
than the Gaussian distribution.

53 2012 ESN No comparison Electricity load
forecasting

The ESN proved its capacity to learn complex dy-
namics of electric load, obtaining high accuracy re-
sults without additional inputs.

54 2015 GA-optimized
ESN

ARIMA, Generalized
Regression NN

Wind speed ESN to predict multiple wind speeds simultaneously.
PCA and spectral clustering to preprocess data and
genetic algorithm to search optimal parameters.

55 2020 Bagged ESN BPNN, RNN, LSTM Energy consumption Combines ESN, bagging, and differential evolution al-
gorithm to reduce forecasting error and improve gen-
eralization capacity.
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An ESN is a neural network with a random RNN

called the reservoir as the hidden layer. The reser-

voir has usually a high number of neurons and sparse

interconnectivity (around 1%) between the hidden

neurons. These characteristics make the reservoir a

set of subsystems that work as echo functions, being

able to reproduce specific temporal patterns.64

In the literature, many ESN applications for

TSF can be found. Especially, ESN networks have

proved to outperform MLPs and statistical meth-

ods when modeling chaotic time series data. Further-

more, it is worth mentioning that the non-trainable

reservoir neurons make this network a very time-

efficient model compared to other RNNs. Table 4

presents several studies using ESNs and their most

interesting findings.

2.2.4. Gated Recurrent Units

Gated Recurrent Units (GRU) were introduced by

Ref. 65 as another solution to the exploding gradient

and vanishing gradient problem of ERNNs. However,

it can also be seen as a simplification of LSTM units.

In a GRU unit, the forget and input are combined

into a single update gate. This modification reduces

the trainable parameters providing GRU networks

with a better performance in terms of computational

time while achieving similar results.66

The GRU cell uses an update gate and a re-

set gate that will learn to decide which information

should be kept without vanishing it through time and

which information is irrelevant for the problem. The

update gate is in charge of deciding how much of the

past information should be passed along to the fu-

ture, while the reset gate decides how much of the

past information to forget.

Table 5 presents several studies that use GRU

networks for TSF problems. These works often pro-

pose modifications to the standard GRU model in

order to improve performance over other recurrent

networks. However, the number of existing studies

proposing GRU models is much lower than those us-

ing LSTM networks.

2.3. Convolutional Neural Networks

CNNs are a family of deep architectures that were

originally designed for computer vision tasks. They

are considered state-of-the-art for many classification

tasks such as object recognition,78 speech recogni-

tion79 and natural language processing.80 CNNs can

automatically extract features from high dimensional

raw data with a grid topology, such as the pixels of

an image, without the need of any feature engineer-

ing. The model learns to extract meaningful features

from the raw data using the convolutional operation,

which is a sliding filter that creates feature maps and

aims to capture repeated patterns at different regions

of the data. This feature extracting process provides

CNNs with an important characteristic so-called dis-

tortion invariance, which means that the features are

extracted regardless of where they are in the data.

These characteristics make CNNs suitable for dealing

with one-dimensional data such as time series. Se-

quence data can be seen as a one-dimensional image

from where the convolutional operation can extract

features.

A CNN architecture is usually composed of con-

volution layers, pooling layers (to reduce the spatial

dimension of feature maps), and fully connected lay-

ers (to combine local features into global features).

These networks are based on three principles: local

connectivity, shared weights, and translation equiv-

ariance. Unlike standard MLP networks, each node

Table 5. Relevant studies on time series forecasting using GRU networks.

Ref. Year Technique Outperforms Application Description/findings

58 2014 GRU ERNN Music and speech
signal modeling

The results proved the advantages of GRU and LSTM
networks over ERNN but did not show a significant
difference between both gated units.

59 2017 GRU LSTM, GRU Electricity load Proposed scaled exponential linear units to overcome
vanishing gradients, showing a significant improve-
ment over LSTM and standard GRU models.

60 2018 GRU LSTM, SVM,
ARIMA

Photovoltaic power Pearson coefficient is used to extract the main fea-
tures and K-means to cluster similar groups that train
the GRU model.

61 2018 GRU MLP, CNN, LSTM Electricity price GRU performed better and trained faster than LSTM
networks. Using a larger number of lagged values im-
proved the results.
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Table 6. Relevant studies on time series forecasting using CNNs.

Ref. Year Technique Outperforms Application Description/findings

67 2017 CNN SVM, MLP Stock price The data was preprocessed using temporally-aware
normalization. The model obtained better perfor-
mance in short-term predictions.

68 2018 CNN LSTM, MLP Energy load The model used convolution and pooling to predict
the load for the next three days. It proved useful for
reducing expenses in future smart grids.

69 2018 CNN LSTM Solar power and
electricity

The CNN was significantly faster than the recurrent
approach with similar accuracy, hence more suitable
for practical applications.

70 2018 Hybrid CNN-LSTM RNN and LSTM
individually

Electricity The LSTM is able to extract the long-term depen-
dencies and the CNN captures local trend patterns.

71 2018 Ensemble
CNN-LSTM

ARIMA, ERNN,
RBF

Wind speed The data is decomposed using the wavelet packet,
with a CNN predicting the high-frequency data and
a CNN-LSTM for the low-frequency data.

72 2019 CNN RNN, ARIMAX Building load The CNN model with a direct approach provided the
best results, improving significantly the forecasting
accuracy of the seasonal ARIMAX model.

73 2019 Hybrid CNN-LSTM LSTM, CNN Financial data The LSTM learns features and reduces dimensional-
ity, and the dilated CNN learns different time inter-
vals.

is connected only to a region of the input, which is

known as the receptive field. Moreover, the neurons

in the same layers share the same weight matrix for

the convolution, which is a filter with a defined ker-

nel size. These special properties allow CNNs to have

a much smaller number of trainable parameters com-

pared to a RNN, hence the learning process is more

time efficient.74 Another key aspect of the success of

CNNs is the possibility of stacking different convo-

lutional layers so that the deep learning model can

transform the raw data into an effective representa-

tion of the time series at different scales.81

CNN-based models have not been extensively

used in the TSF literature since RNNs have been

given far more importance. Nevertheless, several

works have proposed CNNs as feature extractors

alone or together with recurrent blocks to provide

forecasts. The most relevant works involving these

proposals are detailed in Table 6.

2.3.1. Temporal Convolutional Network

Recent studies have proposed a more specialized

CNN architecture known as Temporal Convolutional

Network (TCN). This architecture is inspired by

the Wavenet autoregressive model, which was de-

signed for audio generation problems.82 The term

TCN was first presented in Ref. 83 to refer to a

type of CNN with special characteristics: the con-

volutions are causal to prevent information loss, and

the architecture can process a sequence of any length

and map it to an output of the same length. To en-

able the network to learn the long-term dependencies

present in time series, the TCN architecture makes

use of dilated causal convolutions. This convolution

increases the receptive field of the network (neurons

that are convolved with the filter) without losing res-

olution since pooling operation is not needed.84 Fur-

thermore, TCN employs residual connections to al-

low to increase the depth of the network, so that

Table 7. Relevant studies on time series forecasting using TCNs.

Ref. Year Technique Outperforms Application Description/findings

74 2019 TCN LSTM Financial data TCN can effectively learn dependencies in and be-
tween series without the need for long historical data.

75 2019 Encoder-decoder
TCN

RNN Retail sales Combined with representation learning, TCN can
learn complex patterns such as seasonality. TCNs are
efficient due to the paralellization of convolutions.

76 2019 TCN LSTM, ConvLSTM Meteorology The TCN presented higher efficiency and capacity of
generalization, performing better at longer forecasts.

77 2020 TCN LSTM Energy demand TCN models showed a greater capacity to deal with
longer input sequences. TCNs were less sensitive to
the parametrization than LSTM networks.
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it can deal effectively with a large history size. In

Ref. 83 the authors present an experimental com-

parison between generics RNNs (LSTM and GRU)

and TCNs over several sequence modeling tasks. This

work emphasizes the advantages of TCNs such as:

their low memory requirements for training due to

the shared convolutional filters; long input sequences

can be processed with parallel convolutions instead of

sequentially as in RNNs; and a more stable training

scheme, hence avoiding vanishing gradient problems.

TCNs are acquiring increasing popularity in re-

cent years due to their suitability for dealing with

temporal data. Table 7 presents some studies where

TCNs have successfully applied for time series fore-

casting.

3. Materials and methods

In this section, we present the datasets used for

the experimental study and the details of the archi-

tectures and hyperparameter configurations studied.

The source code of the experiments can be found

at Ref. 85. This repository provides a deep learning

framework based on TensorFlow for TSF, allowing

full reproducibility of the experiments.

Table 8. Datasets used for the experimental study.
Columns N, FH, M and m refer to number of time series,
forecast horizon, maximum length and minimum length
respectively.

# Datasets N FH M m

1 CIF2016o12 57 12 108 48
2 CIF2016o6 15 6 69 22
3 ExchangeRate 8 6 7588 7588
4 M3 1428 18 126 48
5 M4 48000 18 2794 42
6 NN5 111 56 735 735
7 SolarEnergy 137 6 52560 52560
8 Tourism 336 24 309 67
9 Traffic 862 24 17544 17544
10 Traffic-metr-la 207 12 34272 34272
11 Traffic-perms-bay 325 12 52116 52116
12 WikiWebTraffic 997 59 550 550

3.1. Datasets

In this study, we have selected 12 publicly available

datasets of different nature, each of them with mul-

tiple related time series. This collection represents a

wide variety of time series forecasting problems, cov-

ering different sizes, domains, time-series length, and

forecasting horizon. Table 8 presents the character-

istics of each dataset in detail. In total, the exper-

imental study involves more than 50000 time series

among all the selected datasets. Furthermore, Figure

1 illustrates some examples instances of each dataset.

As can be seen, the selected datasets present a wide

diversity of characteristics in terms of scale and sea-

sonality. Most of these datasets have been used in

forecasting competitions and other TSF reviews such

as Ref. 12.

The CIF 2016 competition dataset86 contains a

total of 72 monthly time series, from which 12 of

them have a 6-month forecasting horizon while the

remaining 57 series have a 12-month forecasting hori-

zon. Some of these time series are real bank risk anal-

ysis indicators while others are artificially generated.

The ExchangeRate dataset87 records the daily

exchange rates of 8 countries including Australia,

British, Canada, Switzerland, China, Japan, New

Zealand, and Singapore from 1990 to 2016 (a total of

7588 days for each country). The goal of this dataset

is to predict values for the next 6 days.

Both M3 and M4 competitions88,89 datasets

include time series of different domains and obser-

vation frequencies. However, due to computational

time constraints, we have limited the experimenta-

tion to the monthly time series as they are longer

than the yearly, quarterly, weekly and daily time se-

ries. Both competitions ask for an 18 months pre-

diction and contain time series of different categories

such as industry, finance, or demography. The num-

ber of instances belonging to each category are evenly

distributed according to their presence in the real

world, leading novel studies to representative con-

clusions. Considering only the monthly time series,

the M4 dataset has 48000 time series, while M3 is

considerably smaller with 1428 time series.

The NN5 competition dataset90 is formed by

111 time series with a length of 735 values. This

dataset represents 2 years of daily cash withdrawals

at automatic teller machines (ATMs) from England.

The competition established a forecasting horizon of

56 days ahead.

The Tourism dataset91 is composed of 336

monthly time series of different length, requiring a

24 months prediction. The data was provided by

tourism bodies from Australia, Hong Kong, and New

Zealand, representing total tourism numbers at a

country level.
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Figure 1. Two examples of time series instances of each data set. The colours differentiate the two instances. The y-axis
represents the value that the time series takes for each timestep along the x-axis.

The SolarEnergy dataset92 contains the solar

power production records in the year of 2006, which

is sampled every 10 minutes from 137 solar photo-

voltaic power plants in Alabama State. The forecast-

ing horizon has been established to one hour, which

comprises 6 observations.

Traffic-metr-la and Traffic-perms-bay are two

public traffic network datasets.93 Traffic-metr-la con-

tains traffic speed information of 207 sensors on the

highways of Los Angeles for four months. Similarly,

Traffic-perms-bay records six months of statistics on

traffic speed from 325 sensors in the Bay area. For

both datasets, the readings from the sensors are ag-

gregated into five-minute windows.

The Traffic dataset is a collection of hourly time

series from the California Department of Transporta-

tion collected during 2015 and 2016. The data de-

scribes the road occupancy rates (between 0 and 1)

measured by different sensors on San Francisco Bay

area free-ways.

The WikiWebTraffic dataset belongs to a Kag-

gle competition94 with the goal of predicting future

web traffic of a given set of Wikipedia pages. The

traffic is measured in the daily number of hits and

the forecasting horizon is 59 days.

3.2. Experimental setup

This subsection presents the comparative study car-

ried out to evaluate the performance of seven state-

of-the-art deep-learning architectures for time series

forecasting. We explain the architectures and hyper-

parameter configurations that we have explored, to-

gether with the details of the evaluation procedure.

The experimental study is based on a statistical anal-

ysis with the results obtained with 6432 different ar-

chitecture configurations over 12 datasets, resulting

in more than 38000 tested models.

3.2.1. Deep learning architectures

Seven different types of deep learning models for

TSF are compared in this experimental study: multi-

layer perceptron, Elman recurrent, long short-term

memory, echo state, gated recurrent unit, convolu-

tional, and temporal convolutional networks. For all

these models, the number of hyperparameters that

have to be configured is high compared to traditional

machine-learning techniques. Therefore, the proper

tuning of these parameters is a complex task that

requires considerable expertise and is usually driven

by intuition. In this work, we have performed an ex-

haustive grid search on the configuration of each type
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of architecture in order to find the most suitable val-

ues. Table 9 presents the search carried out over the

main parameters of the deep learning models such as

the number of layers or units. The grid of possibilities

has been decided based on typical values found in the

literature. For instance, it is a common practice to

select powers of two for the number of neurons, units,

or filters. We have tried to establish a fair compar-

ison between architectures, maintaining the values

consistent across the models as long as possible. For

example, in all cases, we explore single-layer models

up to deeper networks with four stacked layers.

Table 9. Parameter grid of the architecture configura-
tions for the seven types of deep learning models.

Models Parameters Values

MLP Hidden Layers

[8], [8, 16], [16, 8], [8, 16, 32],
[32, 16, 8], [8, 16, 32, 16, 8],

[32], [32, 64], [64, 32],
[32, 64, 128], [128, 64, 32],

[32, 64, 128, 64, 32]
Layers 1, 2, 4
Units 32, 64, 128ERNN

Return sequence True, False
Layers 1, 2, 4
Units 32, 64, 128LSTM

Return sequence True, False
Layers 1, 2, 4
Units 32, 64, 128GRU

Return sequence True, False
Layers 1, 2, 4
Units 32, 64, 128ESN

Return sequence True, False
Layers 1, 2, 4
Filters 16, 32, 64CNN

Pool size 0, 2
Layers 1, 3
Filters 32, 64

Dilations [1, 2, 4, 8], [1, 2, 4, 8, 16]
Kernel size 3, 6

TCN

Return sequence True, False

Firstly, we experiment with the simplest neu-

ral network architecture, the multi-layer perceptron.

The MLP models can be used as a baseline for more-

complex architectures that obtain a better perfor-

mance. In particular, we have implemented 12 MLP

models, which differ in the number of hidden lay-

ers and the number of units in each layer. The se-

lected configurations can be seen in Table 9, where

the hidden-layers parameters are defined as a list

[v1, v2, ..., vi, ..., vn]. A value vi from the list repre-

sents the number of units in the i-th hidden layer.

The number of neurons in each layer ranges from

8 to 128, which aims to suit shorter and longer

past-history input sequences. Furthermore, the de-

sign considers both encoder and decoder-like struc-

tures, with more neurons in initial layers and less at

the end, and vice versa.

Concerning recurrent architectures, four differ-

ent types of models have been implemented in this

study: Elman recurrent neural network (ERNN),

long-short term memory (LSTM), gated recurrent

unit (GRU), and echo state network (ESN). A grid

search on the three main parameters is performed,

resulting in 18 models for each architecture. These

parameters are the number of stacked recurrent lay-

ers, the number of recurrent units in each layer, and

whether the last layer returns the state sequence or

just the final state. If return sequence is False, the

last layer returns one value for each recurrent unit.

In contrast, if return sequence is True, the recurrent

layer returns the state of each unit for each timestep,

resulting in a matrix of shape (input timesteps ×
number of units). Finally, as we are working with

a multi-step-ahead forecasting problem, the output

of the recurrent block is connected to a dense layer

with one neuron for each prediction. Table 9 shows

all the possible values for each parameter. The num-

ber of units ranges from 32 to 128, aiming to explore

the convenience of having more or less learning cells

in parallel.

Furthermore, 18 convolutional models have been

implemented (CNN). These models are formed by

stacked convolutional blocks, which are composed of

a one-dimensional convolutional layer followed by a

max-pooling layer. In Table 9, we present the value

search for each parameter. The convolutional blocks

are implemented with decreasing kernel sizes, as it is

common in the literature. Single-layer models have a

kernel of size 3, two-layers models have kernel sizes

of 5 and 3, and four-layers models have kernels of

size 7-5-3, and 3. Since the input sequences in the

studied datasets are not excessively long (ranging ap-

proximately from 20 to 300 timesteps), we have only

considered a pooling factor of 2.

Finally, we have also experimented with the

temporal convolutional network (TCN) architecture.

TCN models are mainly defined by five parameters:

number of TCN layers, number of convolutional fil-

ters, dilation factors, convolutional kernel size, and

whether to return the last output or the full se-

quence. A grid search on these parameters has been

done with the values specified in Table 9, resulting
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in 32 different TCN architectures. The number of

dilations and the kernel sizes have been selected ac-

cording to the receptive field of the TCN, which fol-

lows the formula (number of layers×kernel size×
last dilation). With the selected grid we cover re-

ceptive fields ranging from 24 to 288, which suits the

variable length of the input sequences of the studied

datasets.

3.3. Evaluation procedure

For evaluation purposes, we have divided the

datasets into training and test sets. We have fol-

lowed a fixed origin testing scheme, which is the same

splitting procedure as in recent works dealing with

datasets containing multiple related time series.12

The test set consists of the last part of each individ-

ual time series within the dataset, hence the length

is equal to the forecast horizon. Consequently, the

remaining part of the time series is used as training

data. This division has been applied equally to all

datasets, obtaining a total of more than one million

timesteps for testing and more than 210 million for

training. In this study, we use thousands of time se-

ries with a wide variety of forecasting horizons over

more than 38000 models. Therefore, this fixed ori-

gin validation procedure can lead to representative

results and findings.

Once we have split the time series into training

and test, we perform a series of preprocessing steps.

Firstly, a normalization method is used to scale each

time series of training data between 0 and 1, which

helps to improve the convergence of deep neural net-

works. Then, we transform the time series into train-

ing instances to be fed to the models. There are sev-

eral techniques available for this purpose:95 the re-

cursive strategy, which performs one-step predictions

and feeds the result as the last input for the next pre-

diction; the direct strategy, which builds one model

for each time step; and the multi-output approach,

which outputs the complete forecasting horizon vec-

tor using just one model. In this study, we have se-

lected the Multi-Input Multi-Output (MIMO) strat-

egy. Recent studies show that MIMO outperforms

single-output approaches because, unlike the recur-

sive strategy, it does not accumulate the error over

the predictions. It is also more efficient in terms of

computation time than the direct strategy since it

uses one single model for every prediction.95

Following this approach, we use a moving-

window scheme to transform the time series into

training instances that can feed the models. This

process slides a window of a fixed size, resulting in

an input–output instance at each position. The deep

learning models receive a window of fixed-length

(past history) as input and have a dense layer as

output with as many neurons as the forecasting hori-

zon defined by the problem. The length of the input

depends on the past-history parameter that should

be decided. For the experimentation, we study three

different values of past history depending on the fore-

cast horizon (1.25, 2, or 3 times the forecast horizon).

Figure 2 illustrates an example of this technique with

7 observations as past history and a forecasting hori-

zon of 3 values.

Figure 2. Example of moving window procedure that
obtains the input–output instances to train the models.
In this example, the models receive an instance with past-
history window of length 7 as input and output 3 values
as forecasting horizon.

Along with the past-history parameter, we have

also conducted a grid search over the optimal train-

ing configuration of the deep learning models. We

have experimented with several possibilities for the

batch size, the learning rate, and the normalization

method to be used. We have selected commonly used

values for the batch size (32 and 64) and learning

rate (0.001 and 0.01). The Adam optimizer has been

chosen, which implements an adaptive stochastic op-

timization method that has been proven to be robust
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and well-suited for a wide range of machine learning

problems.96 Furthermore, the two most common nor-

malization functions in the literature have been se-

lected to preprocess the data : min-max scaler (Eq. 2)

and mean normalization, also known as z-score (Eq.

3). The complete grid of training parameters can be

found in Table 10.

min-max(x) =
x−min(x)

max(x)−min(x)
(2)

z-score(x) =
x− average(x)

max(x)−min(x)
(3)

Table 10. Grid of training parameters for the deep
learning models.

Parameters Values

Past History (1.25, 2.0, 3.0) × Forecast horizon
Batch size 32, 64

No. of epochs 5
Optimizer Adam

Learning rate 0.001, 0.01
Normalization minmax, zscore

3.3.1. Evaluation metrics

The performance of the proposed models is evalu-

ated in terms of accuracy and efficiency. We ana-

lyze the best results obtained with each type of ar-

chitecture, as well as the distribution of results ob-

tained with the different hyperparameter configura-

tions. For evaluating the predictive performance of

all models we use the weighted absolute percentage

error (WAPE). This metric is a variation of the mean

absolute percentage error (MAPE), which is one of

the most widely used measures of forecast accuracy

due to its advantages of scale-independency and in-

terpretability.97 WAPE is a more suitable alternative

for intermittent and low-volume data. It rescales the

error dividing by the mean to make it comparable

across time series of varying scales.

WAPE can be defined as follows:

WAPE(y, o) =
MAE(y, o)

mean(y)
=
mean(|y − o|)
mean(y)

, (4)

where y and o are two vectors with the real and pre-

dicted values, respectively, that have a length equal

to the forecasting horizon

Furthermore, developing efficient models is es-

sential in TSF since many applications require real-

time responses. Therefore, we also study the average

training and inference times of each model.

3.3.2. Statistical analysis

Once the error values for each method over each

dataset have been recorded, a statistical analysis

will be carried out. This analysis allows us to com-

pare correctly the performance of the different deep-

learning architectures. Since we are studying multi-

ple models over multiple datasets, the Friedman test

is the recommended method.98 This non-parametric

test allows detecting global differences and pro-

vides a ranking of the different methods. In the

case of obtaining a p-value below the significance

level (0.05), the null hypothesis (all algorithms are

equivalent) can be rejected, and we can proceed

with the post-hoc analysis. For this purpose, we use

Holm-Bonferroni’s procedure, which performs pair-

wise comparisons between the models. With this

n×n procedure, we can detect significant differences

between each pair of models, which allows establish-

ing a statistical ranking.

In this study, we perform the statistical anal-

ysis over different performance metrics to evaluate

the seven types of deep learning models from all

perspectives. We rank the models according to the

best results in terms of forecasting accuracy (WAPE)

and efficiency (training and inference times). Fur-

thermore, we evaluate the statistical differences of

the worst performance and the mean and standard

deviation of the results obtained with each type of

architecture. Finally, we carry out a ranking of aver-

age rankings to see which models are better overall.

An additional statistical analysis is performed

using a paired Wilcoxon signed-rank test, in order to

study the statistical difference among the studied ar-

chitecture configurations of each type of model. Note

that in this case, we compare models within the same

type of deep learning network, so we will discover

what configurations are optimal for each of them.

The null hypothesis is that models with two different

values for a specific configuration are not statistically

different at the significance level of α = 0.05. A p-

value ≤ 0.05 rejects the null hypothesis, indicating a

significant difference between the models.99
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4. Results and Discussion

This section reports and discusses the results ob-

tained from the experiments carried out. It provides

an analysis of the results in terms of forecasting accu-

racy and computational time. The experiments have

taken around four months, using five NVIDIA TI-

TAN Xp 12GB GPU in computers with an Intel i7-

8700 CPU, and an additional GPU in the Amazon

cloud service.

4.1. Forecasting accuracy

The first part of the analysis is focused on the fore-

casting accuracy obtained for each model, using the

WAPE metric. In Figure 3, we present a comparison

between the distribution of results obtained with all

the different model architectures for each dataset. In

some plots, the ERNN distribution has been cut to

allow better visualization of the rest of the models. It

can be seen at first glance, that some architectures,

such as the ERNN or TCN, are more sensitive to

Figure 3. Boxplots showing the distribution of WAPE accuracy results for each type of model over each dataset. The
red dot indicates the mean WAPE, the box shows the quartiles of the results and the whiskers extend to show the rest of
the distribution.
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Table 11. Best WAPE results obtained with each type of architecture for all datasets.

Model
Dataset

1 2 3 4 5 6 7 8 9 10 11 12

MLP 14.886 21.245 0.367 21.114 17.191 22.930 30.193 21.365 45.515 4.373 1.891 59.710
ERNN 12.303 18.101 0.298 15.621 14.178 18.997 27.407 17.958 33.354 3.388 1.374 46.739
LSTM 12.475 15.352 0.300 15.282 14.281 18.589 24.333 19.081 31.960 3.359 1.314 46.477
GRU 11.596 16.772 0.314 15.182 14.298 18.682 25.054 18.443 33.306 3.363 1.322 46.682
ESN 12.552 17.227 0.283 17.184 14.366 19.626 25.490 18.232 38.488 3.590 1.459 47.149
CNN 12.479 17.143 0.303 15.612 14.256 18.852 29.350 18.497 34.406 3.337 1.333 46.914
TCN 12.866 19.091 0.303 15.587 14.575 18.528 23.930 18.893 32.927 3.398 1.320 46.556

the parametrization as they present a wider WAPE

distribution compared to others like CNN or MLP.

In general, except for the MLP which is not specifi-

cally designed to deal with time series, the rest of the

architectures can obtain forecasting accuracy similar

to the best model in almost all cases. This can be

seen by observing the minimum WAPE values of the

models, which are close to each other. However, in

this plot, it is more important to analyze how hard it

is to achieve such performance. Wider distributions

indicate a higher difficulty to find the optimal hy-

perparameter configuration. In this sense, as will be

seen later in the statistical analysis, CNN and LSTM

are the most suitable alternatives for a fast design of

models with good performance.

Furthermore, Table 11 presents a more detailed

view of the best results obtained for each architecture

on each dataset. As expected, MLP models perform

the worst overall. MLP networks are simple mod-

els that can serve as a useful comparison baseline

with the rest of the architectures. We can notice that

LSTM models achieve the best results in four out of

twelve datasets and it is in the top three architec-

tures for the remaining datasets, except Tourism for

which LSTM is in sixth place only over MLP. Fur-

thermore, we can also point out that GRU seems to

be a very consistent technique as it obtains optimal

predictions for most of the datasets, being within the

first three architectures for ten out of twelve datasets.

TCN and ERNN models obtain the best results in

two datasets, similarly to GRU. However, these two

architectures are much more unstable, observing very

different results depending on the dataset. The CNN

presents a behavior slightly worse than the TCN in

terms of best results. Nevertheless, as it was seen

in the boxplot, it outperforms TCN models when

comparing the average WAPE for all hyperparam-

eter configurations. Finally, the ESN is one of the

worst models, ranking sixth in most datasets, only

outperforming MLP.

Due to space constraints, the complete report

of results is provided in an online appendix that

can be found at Ref. 85. This appendix contains

the results for each architecture configuration in sev-

eral spreadsheets. Furthermore, it has a summary

file with the best, mean, standard deviation, and

worst results grouped by type of model. It is worth

mentioning that CNN outperforms the rest of the

models in terms of the mean and standard devia-

tion of WAPE on many datasets. This indicates that

it is easier to find a high performing set of parame-

ters for convolutional models than for recurrent ones.

However, TCNs have a higher standard deviation of

WAPE, given that they are more complex architec-

tures with more parameters to take into account.

LSTMs also achieve good performance in terms of

average WAPE, which further supports that it is

the best alternative among the studied recurrent net-

works. GRU and ERNN are the models amongst all

that suffer a higher standard deviation of results,

which demonstrates the difficulty of their hyperpa-

rameter tuning. The ESN models also have higher

variability of accuracy and do not perform well on

average.

4.2. Computation time

The second aspect in which the deep learning ar-

chitectures are evaluated is computational efficiency.

Figure 4 represents the distribution of training and

inference time for each architecture. In general, we

can see that MLP is the fastest model, closely fol-

lowed by CNN. The difference between CNN and

the rest of the models is highly significant. Within

the recurrent neural networks, LSTM and GRU per-

form similarly while ERNN is the slowest architec-

ture overall. In general, the analysis for all architec-

tures is analogous when comparing training and in-

ference times. However, the ESN models do not meet
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Figure 4. Distribution of training and inference time results for all architectures.

this standard as most of the weights of the network

are non-trainable, which results in efficient training

and slow inference time. Finally, the TCN architec-

ture presents comparable results in terms of aver-

age train and inference time with GRU and LSTM

models. However, it can be seen that TCN models

have less variability in the distribution of computa-

tion time. This indicates that a deeper architecture

with more number of layers has a smaller effect in

convolutional models than in recurrent architectures.

Therefore, designing very deep recurrent models may

not be suitable under hard time constraints.

Figure 5. Normalized accuracy versus normalized train-
ing time of the best models of each deep learning archi-
tecture for each dataset. The lines represent a logistic
regression for each model.

Figure 5 aims to illustrate the speed/accuracy

trade-off in this experimental study. The plot

presents accuracy against computation time for each

deep learning model over each dataset, which con-

firms the findings discussed previously. The figure

shows that MLP networks are the fastest model but

provide the worst accuracy results. It can also be

seen that the ERNN obtains accurate forecasts but

requires high computing resources. Among the recur-

rent networks, LSTM is the best network with very

high predictive performance and adequate computa-

tion time. CNN strikes the best time-accuracy bal-

ance among all models, with TCN being significantly

slower.

4.3. Statistical analysis

We perform the statistical analysis, grouping the re-

sults obtained with each type of architecture, with re-

spect to eleven different rankings: best WAPE, mean

WAPE, WAPE standard deviation, worst WAPE,

training and inference time of best model, train-

ing and inference mean time, standard deviation of

training and inference time, and a global ranking of

the average rankings of all these comparisons. In all

cases, the p-value obtained in the Friedman test in-

dicated that the global differences in rankings be-

tween architectures were significant. With these re-

sults, we can proceed with the Holm-Bonferroni’s

post-hoc analysis to perform a pairwise comparison

between the models. Figure 6 presents a compact vi-

sualization of the results of the statistical analysis

carried out. It displays the ranking of models from

left to right for all the considered metrics. Further-

more, it also allows visualizing the significance of the

observed paired differences with the plotted horizon-

tal lines. In this critical differences (CD) diagram,

models are linked when the null hypothesis of their

equivalence is not rejected by the test. The plots in

which there are several over-lapped groups indicate
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Figure 6. Rankings and critical differences diagram (using the Holm-Bonferroni’s post-hoc procedure) of the different
deep learning architectures according to several performance metrics

that it is hard to detect differences between models

with similar performance.

In terms of the best WAPE forecasting accu-

racy, the recurrent networks lead the ranking. LSTM

ranks first, providing the best precision for most of

the datasets, closely followed by GRU. The convo-

lutional models, TCN and CNN, obtain rank four

and five respectively. However, the CD diagram tells

that the statistical differences among the best models

obtained for each type of architecture are not signif-

icant, except for the MLP. This fact indicates that,

when the optimal hyperparameter configuration is

found, all these architectures can achieve similar per-

formance for TSF.

When analyzing the mean WAPE ranking, the

results are completely different. In this case, CNN

ranks first, with LSTM in second place. This indi-

cates that these two models are less sensitive to the

parametrization, hence being the best alternatives

to reduce the high cost of performing an extensive

grid search. This fact is further supported by the

WAPE standard deviation diagram, in which CNN

and LSTM also occupy the first positions. The MLP

models logically have a low standard deviation given

their simplicity. The difference in ranking between

CNN and LSTM is greater in the standard deviation,

confirming that CNN performs well under a wider

range of configurations. We also notice that ERNN
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provides the worst performance in terms of the dis-

tribution of results, even below the MLP. This sug-

gests that the parametrization of ERNNs is complex,

hence being the less recommended method amongst

all the studied.

With regard to the efficiency, the conclusions

obtained analyzing training and inference times were

similar in both cases. Therefore, to simplify the vi-

sualization, we only display the rankings referring

to the training time. Despite its poorer forecasting

accuracy, the MLP ranks first in computational ef-

ficiency. MLP networks are the fastest models and

also present a very low training-time standard devi-

ation. CNN models appear as the most efficient DL

model in all rankings, with ESN in third place. It can

also be seen that there are differences between the

first time diagram (training time of the model with

best performing hyperparameter configuration) and

the second (mean training time among all configura-

tions). LSTM has a much lower rank in terms of aver-

age computation time and standard deviation, which

indicates that designing very deep LSTM models is

very costly and not convenient for real-time applica-

tions. Furthermore, it is worth mentioning that CNN

seems a better option than TCN for univariate TSF.

Although TCNs are better designed for time series,

CNN models have shown to provide similar perfor-

mance in terms of best WAPE results. Furthermore,

CNNs have shown to be more computationally effi-

cient and simpler in terms of finding a good hyper-

parameter configuration.

With all these analyses in mind, it can be con-

cluded that CNN and LSTM are the most suitable

alternatives to approach these TSF problems, as it

is displayed in the last diagram (ranking of average

rankings). While LSTM provides the best forecast-

ing accuracy, CNNs are more efficient and suffer less

variability of results. This accuracy versus efficiency

trade-off implies that the most convenient model will

be dependent on the problem requirements, time

constraints, and the objective of the researcher.

4.4. Model architecture configuration

Designing the most appropriate architecture for the

studied deep learning models is a very complex task

that requires considerable expertise. Therefore, for

each architecture, we analyze the results obtained

with the different parameters in terms of the num-

ber of layers and neurons, the characteristics of con-

volutional and recurrent units, etc. We present the

accuracy results tables with the architecture config-

urations ordered by WAPE average rankings. Note

that, in this analysis, the rankings are independent

for each of the seven types of networks. Each model

configuration is trained several times with different

training hyper-parameters. Given the large number

of possibilities, for simplicity, we only report the best

WAPE results for each configuration. Among these

best results, we display in the tables the four top-

ranked and the three worst configurations (among

the best WAPE) for each type of model. The com-

plete results tables are provided in the online ap-

pendix.85

4.4.1. Multi-Layer Perceptron (MLP)

Table 12 presents the best results for each configu-

ration of the MLP networks. The top-ranked MLP

model is composed of 5 hidden layers, with a total of

80 neurons. The results in the table confirm the find-

ings that can be read in the literature, given that the

design of MLP is a well-studied field. They show that

the increase of hidden neurons does not imply bet-

ter performance. In fact, the most complex model,

an MLP with 320 neurons distributed in 5 layers, is

positioned penultimate, obtaining worse predictions

than a simple network of one layer of 8 neurons.

Table 12. WAPE results of the best
MLP architecture configurations.

# Mean ranks

Hidden layers
1 [8, 16, 32, 16, 8] 5.417
2 [32, 64] 5.917
3 [128, 64, 32] 6.167
··· ··· ····
10 [16, 8] 7.000
11 [32, 64, 128, 64, 32] 7.083
12 [32] 7.583

4.4.2. Recurrent Neural Networks

Among the recurrent architectures, the best perfor-

mance was obtained with LSTM models. Table 13

presents the WAPE metrics obtained for the different

LSTM model configurations. The best results were

obtained with two stacked layers of 32 units which re-

turns the complete sequence before the output dense

layer.

Since all recurrent networks have the same pa-

rameters, we present a global comparison in Figure
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Figure 7. Distribution of WAPE ranks obtained for each recurrent architecture with the different configurations studied.
The red dot represents the mean average.

7. This plot shows the results of the different RNN

architectures depending on the three main parame-

ters: number of layers, units, and whether sequences

are returned. On average, we can observe that all

recurrent models tend to obtain better predictions

with a small number of units. When analyzing the

number of stacked layers parameter, we can observe

that LSTM, ERNN, and GRU have similar behavior,

obtaining worse average results when it is increased.

However, ESN models present the opposite pattern,

with the best results obtained with 4 layers. With re-

gard to returning the complete sequence or just the

last output, it can clearly be seen that ESN mod-

els achieve better performance when returning the

whole sequence.

Table 13. WAPE results of the best LSTM archi-
tecture configurations.

# Model Mean ranks

Num. Layers Units Return sequence
1 2 32 True 6.667
2 2 64 True 7.500
3 1 32 False 8.083
··· · · · · · ·
16 4 128 False 11.250
17 2 128 False 11.500
18 4 64 False 11.917

4.4.3. Convolutional Neural Networks

Table 14 reports the ranking of the best CNN model

configurations. It can be noticed that the prediction

accuracy is proportional to the number of convolu-

tional layers. The best results have been obtained

with models with four layers while the single-layer

models are at the bottom of the ranking. However,

regarding the number of filters, there is no signifi-

cant difference at first sight. It is also worth men-

tioning that the best predictions have been obtained

from models without max-pooling, suggesting that

this popular image-processing operation is not suit-

able for time series forecasting.

Table 14. WAPE results of the best CNN archi-
tecture configurations.

# Model Mean ranks

N. Layers N. Filters Pool factor
1 4 16 0 6.000
2 4 64 0 6.750
3 4 64 2 6.917
··· · · · · · ·
16 1 32 2 11.917
17 1 64 2 12.000
18 1 16 0 13.000

Table 15. WAPE results of the best TCN architecture
configurations.

# Model Mean ranks

N. Layers N. Filters Dilations Kernel Return seq.
1 1 64 [1, 2, 4, 8] 6 False 11.083
2 1 32 [1, 2, 4, 8] 6 False 11.500
3 4 32 [1, 2, 4, 8, 16] 6 False 11.500
··· · · · · · ·
30 4 64 [1, 2, 4, 8] 3 False 21.250
31 4 64 [1, 2, 4, 8, 16] 3 True 21.500
32 4 64 [1, 2, 4, 8, 16] 3 False 21.667

Table 15 shows results obtained with the differ-

ent configurations of TCN models. The best network

overall is designed with one single TCN layer with 4

dilated convolutional layers, a kernel of length 6, and

64 filters that do not return the complete sequence

before the output layer. These results indicate a clear

pattern for designing TCN models. Firstly, it should

be noted that single-layer models with few dilated

layers outperform more-complex models. Concerning
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Table 16. Example of how LSTM results are gathered to compare the number of layers parameter with
the Wilcoxon signed-ranked test.

#
Parameters

Fixed parameter
Layers

Units Return Seq. Dataset 1 vs 2 1 vs 4 2 vs 4
1 32 False 1 14.554 - 15.224 14.554 - 14.747 15.224 - 14.747
2 32 False 2 16.212 - 15.352 16.212 - 22.489 15.352 - 22.489
3 32 False 3 0.312 - 0.349 0.312 - 0.337 0.349 - 0.337
··· ··· ··· ··· ···
12 32 False 12 46.477 - 46.714 46.477 - 47.020 46.714 - 47.020
13 32 True 1 13.372 - 12.749 13.372 - 13.672 12.749 - 13.672
14 32 True 2 18.161 - 20.193 18.161 - 28.026 20.193 - 28.026
··· ···
24 32 True 12 46.608 - 46.758 46.608 - 47.067 46.758 - 47.067
25 64 False 1 14.259 - 14.150 14.259 - 14.419 14.150 - 14.419
26 64 False 2 21.601 - 18.131 21.601 - 22.234 18.131 - 22.234
··· ···
48 64 True 12 46.863 - 47.108 46.863 - 47.167 47.108 - 47.167
49 128 False 1 14.825 - 14.549 14.825 - 15.479 14.549 - 15.479
··· ···
71 128 True 11 1.314 - 1.340 1.314 - 1.350 1.340 1.350
72 128 True 12 46.822 - 46.858 46.822 - 46.994 46.858 46.994

the kernel size, the models with a larger kernel size

provide the best predictions. Furthermore, accord-

ing to the results, it is revealed that returning the

complete sequence before the last dense layer may

increases the complexity of the model too much, re-

sulting in a performance downturn.

4.5. Statistical comparison of
architecture configurations

Using the results presented in the previous subsec-

tion, we present a statistical analysis comparing the

studied architecture configurations for each type of

model. This study aims to confirm the findings that

were discussed previously regarding the best param-

eter choices. The method used for this comparison

is the paired Wilcoxon signed-rank test. Table 16 il-

lustrates an example of how results are gathered for

the comparison. Given a certain parameter, we com-

pare the results between each pair of possible val-

ues, keeping fixed the rest of the parameters. It is

worth mentioning that, given the large sample dis-

tribution of possible architecture configurations, the

results presented here are both reliable and signifi-

cant. For instance, in the RNN case, a total of 108

samples are compared for parameters with 2 possible

values, while 72 samples are compared for parame-

ters with 3 values.

Table 17 presents the findings obtained from

the Wilcoxon test, providing the best configurations

found for each type of architecture. The numbers

with ** indicate that it is the best value with a

significant statistical difference compared to the rest

(p < 0.05). We indicate with * that there is a certain

tendency suggesting that it is better to choose that

parameter (p < 0.2), and with = when there are no

significant differences between choosing any of the

possible parameters.

Table 17. Best architecture configuration for each
type of model. Values with ** are significantly bet-
ter (p-value ≤ 0.05), * suggests it is a better choice
although not significant (p-value ≤ 0.2), and = means
that no differences were found among the possible val-
ues.

ERNN LSTM

Layers 1**, 2* Layers 1*, 2**
Units 32**, 64* Units =

Return Sequence False* Return Sequence =

GRU ESN

Layers 1**, 2** Layers 2*, 4**
Units 32* Units 32**, 64**

Return sequence = Return Sequence True**

CNN TCN

Layers 4** Layers 1**

Filters =
Filters 32*

Dilations =

Pooling factor 0**
Kernel 6**

Return Sequence True*

For the recurrent networks, it can be seen that a

lower number of stacked layers (one or two) provides

better performance. The only exception is the ESN,

for which the optimal value is four layers. With re-

gard to the number of units, the values 32 or 64 are

better than 128 for ERNN, GRU, and ESN, while
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Table 18. Best training hyperparameter values for each architecture. Values with ** are significantly better
(p-value ≤ 0.05), * suggests it is a better choice although not statistically significant (p-value ≤ 0.2), and =
means that no differences were found among the possible values.

Parameter
Architecture

MLP ERNN LSTM GRU ESN CNN TCN

Batch size = 64** 32** 64** = 64** 64*
Past History factor 1.25** 1.25** 1.25** 1.25** 1.25** 1.25** 1.25**

Learning Rate 0.001** 0.001** 0.001** 0.001** 0.001** 0.001** 0.001**
Normalization Method zscore** zscore** minmax** minmax* zscore** zscore** zscore**

no differences are found for the LSTM. Furthermore,

the statistical test confirms that ESN achieves signif-

icantly better performance when returning the whole

sequence. It also suggests that ERNN works better

without returning the sequences, while the perfor-

mance of LSTM and GRU is not affected by this pa-

rameter. In the case of LSTM models, it can be seen

that the parameter choice has a minimal impact on

the accuracy results. This finding further supports

the fact that LSTMs are the most robust type of re-

current network. As was seen in Section 4.3, LSTM

models were the best in terms of mean WAPE, show-

ing less variability of results. Since no important dif-

ference in performance was found among the param-

eters, finding a high performing architecture design

is easier.

For CNN models, the Wilcoxon test confirms

that stacking four layers is significantly better than

using just one and two. The number of filters does

not affect performance, while it is clear that max-

pooling is not recommended for these TSF problems.

In the case of TCNs, the test indicates that single-

layer models outperform more-complex models. Ad-

ditionally, it is also confirmed that the models with a

larger kernel size provide significantly better predic-

tions. Concerning the number of filters and dilated

layers, no statistical difference was found. Further-

more, the results suggest that returning the complete

sequence before the last dense layer may increase the

complexity of the model excessively, resulting in per-

formance degradation.

4.6. Analysis of the training
parameters

The grid search performed in the experimental study

also involved several training hyperparameters. We

use the paired Wilcoxon signed-rank test to be able

to compare the results. Table 18 summarizes the

best training parameter values for each deep learn-

ing architecture. First of all, a clear pattern that

is common to all architectures can be noted. The

best results are achieved with a low learning rate

and a small past history factor. Regarding the nor-

malization method, we can observe that the min-

max normalization method performs better for GRU

and LSTM while z-score significantly beats the min-

max method in the other architectures. Furthermore,

results also show that most architectures (ERNN,

GRU, CNN, and TCN) perform better with larger

batch sizes. Only for LSTM, the preferred value is

32, while no difference was found for MLP and ESN.

5. Conclusions

In this paper, we carried out an experimental review

on the use of deep learning models for time series

forecasting. We reviewed the most successful appli-

cations of deep neural networks in recent years, ob-

serving that recurrent networks have been the most

extended approach in the literature. However, convo-

lutional networks are increasingly gaining popularity

due to their efficiency, especially with the develop-

ment of temporal convolutional networks.

Furthermore, we conducted an extensive exper-

imental study using seven popular deep learning

architectures: multilayer perceptron (MLP), Elman

recurrent neural network ERNN, long-short term

memory (LSTM), gated recurrent unit (GRU), echo

state network (ESN), convolutional neural network

(CNN) and temporal convolutional network (TCN).

We evaluated the performance of these models, in

terms of accuracy and efficiency, over 12 different

forecasting problems with more than 50000 time se-

ries in total. We carried out an exhaustive search

of architecture configuration and training hyperpa-

rameters, building more than 38000 different models.

Moreover, we performed a thorough statistical anal-

ysis over several metrics to assess the differences in

the performance of the models.

The conclusions obtained from this experimen-

tal study are summarized below:
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• Except MLP, all the studied models obtain

accurate predictions when parametrized cor-

rectly. However, the distribution of results of

the models presented significant differences.

This illustrates the importance of finding an

optimal architecture configuration.

• Regardless of the depth of their hidden

blocks, MLP networks are unable to model

the temporal order of the time series data,

providing poor predictive performance.

• LSTM obtained the best WAPE results fol-

lowed by GRU. However, CNN outperforms

them in the mean and standard deviation

of WAPE. This indicated that convolutional

architectures are easier to parameterize than

the recurrent models.

• CNNs strike the best speed/accuracy trade-

off, which makes them more suitable for real-

time applications than recurrent approaches.

• LSTM networks obtain better results with a

lower number of stacked layers, contrary to

the GRU architecture. Within recurrent net-

works, the number of units was not impor-

tant and returning the complete sequences

only proved useful in the ESN models.

• CNNs require more stacked layers to im-

prove accuracy, but without using max-

pooling operations. For TCNs, a single-block

with a larger kernel size is recommended.

• With regard to the training hyperparam-

eters, we discovered that lower values of

past history and learning rates are a better

choice for these deep learning models. CNNs

perform better with z-score normalization,

while min-max is suggested for LSTM.

In future works, we aim to study the applica-

tion of these deep learning techniques for time series

forecasting in streaming. In this real-time scenario, a

more in-depth analysis of the speed versus accuracy

trade-off will be necessary. Another relevant work

would be to study the best deep learning models de-

pending on the nature of the time-series data and

other characteristics such as the length or the fore-

casting horizon. It would also be important to focus

future experiments on tuning the training hyperpa-

rameters, once that the most suitable model archi-

tectures have been found. Other possible extensions

of this study are the analysis of regularization tech-

niques in deep networks and performing the experi-

mental study over multivariate time series. Further-

more, future research should address current trends

in the literature such as ensemble models to enhance

accuracy or transfer learning to reduce the burden

of high training times. Future efforts should also be

focused on building a larger high-quality forecasting

database that could serve as a general benchmark for

validating novel proposals.
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98. S. Garćıa and F. Herrera, An extension on “statis-
tical comparisons of classifiers over multiple data
sets” for all pairwise comparisons, Journal of Ma-
chine Learning Research 9 (2008) 2677–2694.

99. F. Wilcoxon, Individual Comparisons by Ranking
Methods, Breakthroughs in Statistics: Methodology
and Distribution (Springer, 1992), pp. 196–202.

https://github.com/pedrolarben/TimeSeriesForecasting-DeepLearning
https://github.com/pedrolarben/TimeSeriesForecasting-DeepLearning
https://github.com/pedrolarben/TimeSeriesForecasting-DeepLearning
https://irafm.osu.cz/cif
https://irafm.osu.cz/cif
http://www.neural-forecasting-competition.com/NN5
http://www.neural-forecasting-competition.com/NN5
www.kaggle.com/c/tourism2
www.kaggle.com/c/tourism2
www.nrel.gov/grid/solar-power-data.html
www.nrel.gov/grid/solar-power-data.html
www.kaggle.com/c/web-traffic-time-series-forecasting
www.kaggle.com/c/web-traffic-time-series-forecasting

	1 Introduction
	2 Deep learning architectures for time series forecasting
	2.1 Multi-Layer Perceptron
	2.2 Recurrent Neural Networks
	2.2.1 Elman Recurrent Neural Networks
	2.2.2 Long Short-Term Memory Networks
	2.2.3 Echo State Networks
	2.2.4 Gated Recurrent Units

	2.3 Convolutional Neural Networks
	2.3.1 Temporal Convolutional Network


	3 Materials and methods
	3.1 Datasets
	3.2 Experimental setup
	3.2.1 Deep learning architectures

	3.3 Evaluation procedure
	3.3.1 Evaluation metrics
	3.3.2 Statistical analysis


	4 Results and Discussion
	4.1 Forecasting accuracy
	4.2 Computation time
	4.3 Statistical analysis
	4.4 Model architecture configuration
	4.4.1 Multi-Layer Perceptron (MLP)
	4.4.2 Recurrent Neural Networks
	4.4.3 Convolutional Neural Networks

	4.5 Statistical comparison of architecture configurations
	4.6 Analysis of the training parameters

	5 Conclusions

