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ABSTRACT The explosive growth of the mobile application market in recent years has led to a large
concomitant mobile software industry whose components are, in many cases, startups and small-size
software providers. The success of these applications and the firms behind them depends on a subtle balance
between different dimensionsmainly affected by their architectural design, such as user satisfaction, resource
consumption, operating costs, and timing. The present communication describes a framework with a specific
set of practices for identifying the boundaries of different architectural designs —in this article we apply it
to estimate both the smartphone’s resource consumption and the operating costs in the cloud— and thus help
in the architectural decision-making process. This will enable mobile software developers to predict at early
stages which architectural design best suits their business model in accordance with the number of users and
the expected use of the application and even provide an advance alert of when architectural choices will need
to be reviewed, obviating the need for costly architectural re-design in further phases.

INDEX TERMS J.9 mobile applications, D.2.11 software architectures, D.2.18 software engineering
process, M.2 services lifecycle.

I. INTRODUCTION
One of the most striking social changes in recent years
has been the pervasive presence of mobile phones. Mobile-
broadband subscriptions had been estimated to reach a pen-
etration rate of over 120% in developed countries [1]. The
implication was that this would involve a global mobile data
traffic of 11.5 exabytes per month by the end of that year,
with an estimated compound annual growth rate of 46% up to
2022 [2]. Consumers’ habits have adapted accordingly, to the
point where now major Internet sites receive most of their
traffic through smartphones. Facebook, for instance, in its
2020 report states that it had 1.73 billion daily active users,
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and that 93% of its advertising revenues came from mobile
advertising [3].

Such figures reflect the global dimension of the impact
caused by smartphones, an impact which has led to the
creation of a large mobile software development industry.
Currently, there are more than 5.5 million applications in the
leading app stores in 2020, with more than 200 billion down-
loads in 2019 [4]. This relatively new industry is expected
to grow to over 400 billion US dollars in 2026 [5]. The
rapid growth of this market has changed the way in which
applications are being conceived and implemented.

This explosive development of the mobile apps market
has been a challenge for the software industry. In contrast
to standard software investments which focus on long-term
issues such as feasibility, earned value, etc., the business
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models behind mobile applications are usually based on a
very short time-to-market [6]. This allows investors to get
rapid feedback about the application’s profitability. Given this
feedback, they can then work closely with the developers to
analyse different alternatives for the ongoing development
of the application. An application that becomes viral would
follow a very different process than one which is merely
profitable.

The analysis required to define the immediate future of
a mobile application is anything but trivial. It will involve
a trade-off between different closely related magnitudes [7]
for improving the user experience, such as the user interface,
the functionalities or the resource consumption [8], [9]. For
instance, focused on the resource consumption, one is the
number of users and their behaviour and engagement in the
use of the application. That magnitude directly affects the
consumption of resources in mobile devices and the opera-
tional costs of the cloud infrastructure and services. Tradition-
ally, one has always wanted to maximize the number of users
and their engagement. The reason is that these magnitudes in
most cases determine the return on investment (monetization
and retention of users). But more users and more activity
per user usually lead to a greater consumption of resources
in their devices, and this can cause a proportion of those
users to abandon the application and other potential users
to reject it [10], [11]. Alternatively, this increased resource
consumption in mobile devices can be mitigated by applying
architectural decisions that offload activities to the cloud,
but this implies increased cloud operating costs [12] which
may even exceed the benefit created by engaging a greater
number of users. Both situations – user rejection and cloud
operational cost overrun - could mean a step backwards in
the mobile application’s development plan.

Even though this kind of analysis is of crucial importance,
there is little literature available about when and how it should
be undertaken. Therefore, we here propose a set of practices
to be integrated into the process of mobile application devel-
opment with the aim of assisting with future architectural
decisions. The practices involve the use of a framework that
uses such magnitudes as the number of users and the activity
per user to provide an early estimate of the boundaries of
each architectural design. In particular, in this article those
practices are focused on estimating resource consumption
both in the mobile device and in the cloud of different archi-
tectural designs of social mobile applications. The goal of
these practices is to provide additional guidance and help soft-
ware architects to evaluate different architectural options in
order to improve that dimension of the user satisfaction. This
also enables investors to in turn make an early assessment
of the return on investment that can be expected for differ-
ent architectural decisions. In addition, the framework also
provides an estimate of when and under which conditions an
architecture should be re-engineered. This information could
be used together with the existing architectural knowledge
and expertise to better plan future evolution. To the best of
our knowledge, no other work has proposed a framework for

the early identification of a mobile application’s architectural
boundaries, allowing developers to plan when and how the
architecture has to evolve depending on the users’ behaviour.

The rest of this article is organized as follows. After this
introduction, Sec. II presents the motivation for the work.
Then Sec. III describes how the proposed practices can be
included in a development process, and Sec. IV applies them
for estimating both the mobile and the cloud consumption
dimensions. Sections V and VI describe respectively a realis-
tic case study and the experimental validation of the approach,
measuring the actual consumption of the architecturally dif-
ferent variants of the application developed. Section VII dis-
cusses the most relevant related work in this field, and finally
Sec. VIII presents the conclusions drawn from this study.

II. MOTIVATION
The early evaluation of software architectures has tradition-
ally been the object of much attention from researchers in
the area of software engineering. Various methodological
approaches, techniques, and tools have been proposed to
evaluate an architecture’s formal aspects [13], their tech-
nical coherence [14], their adaptation to business require-
ments [15], and even the user experience [16]. The main
objective of such proposals is to provide mechanisms that
can help ensure the success of investments in software tech-
nologies. This is of real importance because such investments
usually involve considerable financial effort and strategic
planning on the part of the software’s target business. Experi-
ence in the development of complex systems has shown that
poor decisions made in early stages can lead to problems
that will only be revealed when they are already almost
irreparable [17]. So the industry has welcomed any aid to the
early validation of decisions.

In the last fifteen years, the penetration of mobile technolo-
gies, smartphones in particular, has motivated the growth of
the mobile application market. This market’s rules are quite
different from those applicable to traditional systems [18]. In
the latter, software is developed for a well-known business
in which users are clearly identified. The intention with the
new software is to improve the services offered to users. User
engagement is largely guaranteed by the business itself. In
contrast, mobile applications are often born in the context of
a startup with an as yet undeveloped but maybe innovative
business idea behind it. Lean software development practices
are then adopted by the development teams looking to shorten
the time-to-market. The objective is to obtain feedback as
soon as possible with a minimum investment, and then decide
whether greater investment is justified and in which direction
to aim [19]. Since how users will react and be engaged
is almost unknown, there will be a great variability in the
business plans.

Operating in a world guided by the law ‘‘the faster you
deploy, the faster you get feedback’’ [20] often means that
the product is released without being fully tuned. Indeed, fine
tuning of the product is sometimes left to be done in response
to the feedback provided by users. This can cause a false
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impression that, in the development of mobile apps, the early
evaluation of design decisions takes a back seat because
anything goes. This could not be further from reality. For
instance, early evaluation practices are explicitly considered
as part of the lean methodology’s build-measure-learn cycle
so as to make development teams aware of the implications
of technical decisions in terms of exploitation costs and user
satisfaction, and of how the decisions made have to be con-
stantly evaluated and reconsidered in order to increase user
satisfaction. In fact, early evaluation is now as present as it
has always been, but with a different focus. Instead of the
focus being on addressing very large long-term investments,
it is now on evaluating different future scenarios in terms of
the amount of resources that have to be committed to them,
and the outcome they will generate.

For example, in order to improve a dimension of the user
satisfaction, the development team might evaluate the reduc-
tion of mobile devices’ resource consumption by offloading
some of the application’s features to the cloud [21]. If the
number of users remains under control, this could well be
a good decision with an affordable cost. But if the number
of users were to increase sharply, a startup might find that
the exploitation cost of the service had become unafford-
able, or the quality of service would have to be reduced
to an inadmissible level. Hence, a reliable estimate of the
boundaries of each architecture, depending on the number
of users and their expected behaviour, is crucial to deter-
mine whether or not it is feasible. Likewise, monitoring
those magnitudes would be a key to identifying when the
architecture needs to evolve. There are known cases of this
situation. One example is PokemonGO where the failure
to make a good early evaluation led to server connection
and access problems due to the heavy demand, problems
that would have ruined such a major investment made by a
startup [22].

To the best of our knowledge, there have been no stud-
ies focused on how to include early evaluation practices
in the development processes of mobile apps. Given this
lacuna, the present work provides a set of practices to be
incorporated into these processes so as to support early
evaluation during the preparation of each release, and pro-
vide additional help in the identification of the architec-
tural design that best fits the requirements and the business
model. Although, it can be applied to any application, this
process is focused on social mobile applications (which are
apps oriented to the interaction with other users and data
sharing) [23]. To that end, in Sec. III we shall detail how
these practices should be carried out, and discuss when they
should be implemented within the processes of agile and lean
software development. Measurements and evaluation need to
be supported by some mathematical tools. As an example of
how to estimate these boundaries, a framework is provided
(Sec. IV) for estimating mobile applications’ consumption
of resources. This framework is evaluated and validated in
Secs. V and VI.

III. INTEGRATING THE FRAMEWORK INTO A SOFTWARE
DEVELOPMENT PROCESS
This section will address the activities that must be performed
for the early evaluation of a mobile app’s architectural bound-
aries. It will deal with their sequencing, the roles they each
have to play, and the artifacts they might generate. To better
detail this process, it wasmodeled using SPEM (Software and
Systems Process Engineering Meta-Model) [24]. We shall
also discuss how these activities integrate with agile and lean
software development processes [25].

These processes have become very popular in recent
years [26]. The Lean Methodology focuses on, first, reduc-
ing activities and code that are not clear or do not benefit
the customer, and, second, continual learning using the cus-
tomer’s feedback [27], [28]. The term Agile was introduced
in the 1990s to refer to flexible production systems [26].
Agile software process model concentrates on people and
not technologies [29]. Agile tries to make the development
process more flexible while Lean makes it more sustainable.

During the last few years, different works analysed and
evaluated the usefulness of these processes to cope with
the competitiveness of the mobile applications market and
the restrictions of these devices. These works analyse the
integration of different Agile methodologies (such as Scrum,
XP, Kanban, etc.) with Lean [30]–[32].

Concretely, in this section, we discuss how the proposed
activities are integrated with the Scrum development pro-
cess [33] and the Lean Business model [34]. We selected
Scrum as Agile methodology because it is widely used for the
development of mobile applications [20], [27]. Please, note
that the proposed activities do not substitute the development
team’s knowledge, but they provide additional guidance.

Instead of the planning activities defined by Scrum,
i.e., specifying the sprint size, the team size, how to handle
the sprint Backlogs or its integration with Lean (some works
such as [27] defined how to perform these tasks for the
development of mobile applications), Figure 1 shows how
the whole process for estimating the architectural boundaries
fits into a Scrum development workflow, with the Product
Owner and the Scrum Team being the main roles involved.
Themain responsibilities of the Product Owner for increasing
the stakeholder’s satisfaction are to manage the relationship
with the users, the backlog, the identification of the needs, and
the business plan development [35]. Apart from the artifacts
detailed in the figure, every task has an artifact App Architec-
ture as input/output (not included in the figure for the sake
of its readability). This documents the different architectural
decisions considered and taken, and their impact on the user
satisfaction and the business model. The process is iterative
and fits the build-measure-learn feedback loop of the lean
methodology. Briefly, in the first iteration, the Minimum
Viable Product (MVP) [36] is defined. To that end, a full anal-
ysis of the MVP, its functionalities, the execution environ-
ment, and the predicted user behaviour is required to deter-
mine the architectural design that best fits the business model
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and the user satisfaction (regarding resource consumption, for
instance, or any other dimension). Each iteration results in a
build of a new release of the product. Once the release has
been launched, the Product Owner measures its acceptance,
i.e., how users interact with it, their satisfaction, etc., and
can thus learn how to improve the product to increase user
satisfaction or to reduce costs. This information is stored in
the Business Model artifact for use in future iterations of the
process. For instance, every new release requires this infor-
mation to be re-analysed in order to identify whether some
parts of the system should be changed to reduce operational
cost, consumption, and/or to improve the user experience.

FIGURE 1. Activities for estimating the architectural boundaries.

Specifically, in the first task (Architectural designs to anal-
yse), the Scrum Team reviews the Product Backlog artifact
which was generated as a result of the Scrum process. It
contains a list of functional requirements prioritized by their
business value, from which the main features of the applica-
tion will derive. Several architectural design alternatives may
be identified by analysing these requirements, in particular
those that will be included in theMVP. Different architectural
designs can be defined depending on the applied architectural
styles (which are the grouping of different responsibilities on
loosely coupled layers or modules) [37], [38]. These designs
may vary in how some functionalities have to be onloaded to
the mobile devices or offloaded to the cloud, ranging from
a pure server-centric application (where all the computation
is done in the cloud, applying a client-server architectural
style) to a mobile-centric one (in which it is done in the end
devices, applying a peer-to-peer style) [38], or a mix of the
two, with part of the functionality in the devices and part
in the cloud. The architectural designs considered will be

listed in the App Architecture artifact. The Scrum Team must
decide which one is the most appropriate for the first release
of the product.

At the same time, for the task Architectural Dimensions,
the Product Owner studies the Business Model artifact to
identify the dimensions to be estimated for. For instance,
the Owner may decide to estimate the consumption, and
concretely the battery and data traffic consumption, as they
have a major impact on user satisfaction. In addition, if the
Business Model sets constraints on the operating costs, they
must also be evaluated. To assist in this decision-making task,
the Cloud Dimensions and Mobile Dimensions artifacts list
the different dimensions under consideration and how they
can be estimated. If the Product Owner decides to estimate
a dimension, or a specific resource, which is not dealt with
in these artifacts, this must be noted appropriately so that the
Scrum Team can later determine how it is to be estimated.

However, it would require too much effort to estimate the
architectural impact of every feature of an application. There-
fore, in the task Identify Architectural Significant Features,
the Scrum Team has to determine which are the functional
requirements that impact on the architecture. These will be
the key requirements for the MVP, either because they are
frequently used or because they underpin the essence of the
application. Examples of architectural significant require-
ments are those that involve data acquisition from several
sensors, require much processing, transfer large volumes of
data, or are executed very frequently. As a result of this step,
the Scrum Teamwill identify the most significant features for
estimating the application’s architectural boundaries and the
parameters on which they depend (rates of use, data sizes,
processing times, etc.).

Once the relevant requirements have been identified, one
needs to estimate how they impact on each architectural
option under consideration. To assist in this analysis, in the
next section we shall present a framework that make use of a
set of common primitive operations in order to estimate the
application’s boundaries for each design. Figure 1 shows two
tasks — Smartphone Boundaries and Cloud Boundaries—
for estimating the impact on the most important elements of
mobile apps. They are performed in parallel by the Scrum
Team according to the following steps:

1) TheAppArchitecture and the Product Backlog artifacts
are checked to learn the precise behaviour of each
measured requirement for each architectural design.

2) The identified behaviours are then decomposed into
the set of primitives that model their execution in each
architecture, and those primitives are stored in the
Mobile and Cloud Dimensions artifacts.

3) For each primitive, the Scrum Team estimates its exe-
cution rate and the values of its parameters, taking
into account the architectural design being evaluated,
the predicted execution scenarios (number of users,
frequency of interaction with the app, etc.), and the
measurements obtained from previous releases. Most
of this data is detailed in the Business Model artifact.
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4) If a new primitive has to be defined, the Scrum Team
needs to characterize it and its parameters, measuring
how it impacts on each architectural dimension.

5) Finally, the primitives are aggregated to get the bound-
aries of each feature for each architectural design under
consideration.

Then, for the Architectural Design Boundaries task,
the Scrum Team estimates the limits of the entire application
for each architectural design and for each dimension selected
by the Product Owner. For this, they simply have to aggregate
the impact of feature multiplied by different parameters (such
as the execution frequency).

Finally, one needs to identify which architectural design
most efficiently satisfies the Product Owner’s requirements.
For the phone, the Scrum Team simply has to weight each
dimension in accordance with its importance for the Product
Owner and for the success of the mobile app. For instance,
with regard to the resource consumption, various studies [39],
[40] discuss the consumption that users expect —or accept—
for different dimensions with different kinds of apps. Nev-
ertheless, the Scrum Team may also use internal reports to
set the weight and the limits for each dimension. As a result
of this weighting, the different architectural options can be
ranked by efficiency.

With regard to the cloud, the Scrum Team has to determine,
for instance, which architectural options comply with the
cost limits set out in the Business Model. To that end, the
viability and success of any mobile app depends on two main
parameters: Customer Acquisition Cost (CAC) and Customer
Lifetime Value (LTV) [41]. The former refers to the resources
that a business must allocate to acquire an additional cus-
tomer. Typically this is a sum of marketing campaign costs,
wages associatedwithmarketing and sales personnel, and any
additional professional services per customer acquired [42].
The latter is a prediction of the net profit attributed to the
entire future relationship with a customer. To calculate this
value, entrepreneurs analyse the average revenue per cus-
tomer (ARPC), the gross margin (GM), the maintenance and
evolution costs (EC), the customer retention cost (CRC), and
the operating costs (OC) [43]:

LTV =
(ARPC ∗%GM )− (EC + CRC + OC)

ChurnRate
(1)

It is widely recognized that, for any form of recurring
revenue model, LTV should be greater than three times
CAC [44]. This can be achieved by reducing expendi-
ture or increasing revenue. Whichever the case, the method-
ological approach presented here allows the entrepreneur to
select an architectural design that reduces OC while main-
taining the users satisfaction regarding the app resource con-
sumption. To that end, the operating costs of the selected
architecture should satisfy the following inequality:

OC ≤ 3 ∗ CAC ∗ ChurnRate

−ARPC ∗%GM + EC + CRC (2)

For a startup, one might think that cloud expenses would
be a minor cost. But some analyses have indicated that they
could surpass 80% of total operating costs [45].

Once the architectural designs satisfying the limit rep-
resented by Eq. 2 have been identified, the one that best
addresses user satisfaction can be selected. If no architecture
meets this condition, then a trade-off must be made in con-
sensus with the Product Owner.

The estimation process discussed here may also be used
to forecast when an app surpass some limits and to plan new
releases. Developers would evaluate the trends in the usage of
an app, identifying how new habits would affect the primitive
operations, the use cases, their parameters, and the frequency
at which they would be executed. They could then predict
the evolution of each architectural dimension (such as the
consumption) and plan the implementation of amore efficient
architectural design for that usage.

In the following section, we shall present a conceptual
framework assisting on the application of and validating
the defined practices.This framework is specially focused
on social mobile applications. Due to the space limitations
and the authors’ experience, this framework is focused on
identifying the boundaries regarding both cloud and mobile
consumption.

IV. ESTIMATING ARCHITECTURAL BOUNDARIES
In order to estimate the consumption boundaries of social
mobile applications, both the phones and the cloud environ-
ment must be considered. On the mobile side, this analysis
must be based on the resources that directly impact user sat-
isfaction (such as battery consumption and data traffic) [11].
Instead, on the server side, one has to consider the operating
costs of deploying the application’s back end on a cloud
environment. In the following subsections, we shall briefly
recall how to estimate resource consumption on the mobile
side, and then extend the analysis to estimating the operating
costs on the cloud side.

A. ESTIMATING CONSUMPTION ON THE MOBILE SIDE
Three features of social mobile applications that have a direct
impact on resource consumption are interacting with external
entities, using specific sensors, and receiving information.
Whether these operations are performed in themobile devices
or in cloud servers is an architectural decision that also affects
consumption. In [46], we proposed a conceptual framework
to assist developers during the architectural decision making
process. This framework was based on a set of common
primitive operations together with their associated resource
consumptions. Most social application can be described as a
combination of these primitives, thereby allowing the appli-
cation’s consumption boundaries to be estimated for each
architectural option. Please, note that in order to estimate the
consumption of other kind of applications, other primitive
operations may be required. Some primitive operations are:
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• Read the mobile’s sensors (e.g., access the GPS sensor
in order to geolocate the device).

• Store content in the mobile device.
• Get content from the cloud environment.
• Post content to the cloud environment.
• Receive a push notification.

Each primitive may have associated with it some param-
eters that directly influence the amount of resources that it
consumes. Thus, for storing, posting, and getting content,
the most important parameter is the size of the content since
both data traffic and battery consumption depend on it.

TABLE 1. Average resource consumption of the primitives.

Table 1 lists each primitive’s battery consumption and data
traffic (whether received or transmitted) for specific sizes of
the data being handled. To measure the resource consumption
of each primitive, we developed an application that executes
them and registers the battery consumed in microampere-
hours (µAh) and the number of bytes transmitted and/or
received. In order to get more precise measurements, each
operation was repeated 3000 times, and the mean consump-
tion was calculated in order to mitigate different consumption
because of specific contextual situations. We also measured
the consumption due to the operating system (OS) itself. The
effective consumption of each operation was thus obtained
by subtracting OS consumption from the operation’s mean
consumption.

Content size was selected based on the usual contents
shared by social network users, i.e., geolocation (16 bytes to
represent latitude and longitude), text comments (140 bytes
for the average size of the messages posted), and images

(300 KB, the average size of compressed images) [46].
If required, the measurements can be replicated for other con-
tent sizes, or their values can be extrapolated from those given
in Table 1. Likewise, the activity performed by the user can
also impact on the consumption of the sensor modules [47].
The tests have been performed to identify the usual consump-
tion of the different sensors. If required, the measurements
can also be replicated for different contexts. If additional
primitives are required to estimate the consumption of a
given application, their consumption can be calculated by
performing similar experiments.

B. ESTIMATING THE OPERATING COSTS IN THE CLOUD
For the cloud environment, we propose a similar approach
in order to estimate an application’s operating cost and to
forecast the architectural boundaries. In particular, there is a
set of five primitive operations that characterize the common
back-end logic of an application deployed in the cloud:

• Reserve an amount of cloud storage.
• Write content to the cloud and store it.
• Read content from cloud storage.
• Execute in the cloud a given algorithm that uses a certain
amount of memory during a period of time.

• Invoke a cloud end-point, involving a certain amount of
data transfer.

These primitives have parameters related either to the
amount of data stored or transmitted or to the working mem-
ory used during the execution of a certain functionality. Based
on these parameters, for each operation, a cost function must
be defined according to the cloud provider’s pricing structure.
Here, we shall exemplify this process by considering Amazon
Web Services (AWS), currently the largest major provider
in terms of market share. In particular, we assume a micro-
service architecture implemented on Amazon’s Function as
a Service infrastructure (i.e., AWS Lambda and AWS API
Gateway), and using AWS DynamoBD NoSQL storage for
the persistence layer. In this context, it is important to stress
the great complexity of AWS pricing schemes which address
a wide variety of different situations. To this end, we shall
need to make a number of assumptions:

• We use a single region (US_EAST) for the provi-
sion of all services. In a different scenario, the region
choice could be more elaborate, based on such fac-
tors as reliability requirements (e.g., multi-region redun-
dancy) or regulations that constrain storing sensitive data
to a specific location.

• As DynamoDB uses 100 bytes of overhead for indexing
purposes, the size of the items to be stored is considered
to be no more than 924 bytes (i.e., 1 KB per stored item).
This is important for the performance of the application
in order to guarantee the contracted throughput while
accessing the storage. In a different scenario it could be
important to perform a throughput analysis if the data
model requires larger items.
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• We assume eventually consistent reads since typical
mobile applications do not require an accurate state of
the server data and could accept a fair amount of stale
data. In time-critical applications this assumption should
be reconsidered, and adjusted accordingly.

• We assume amaximum 10 TB ofmonthly response data.
This does not include the data posted to storage, but is
just the data generated as a result of the execution of the
analysis in the micro-service layer.

Please, note that different cloud configurations can also
be considered to better identity the operational costs and the
architectural boundaries. Table 2 lists the cloud primitive
operations together with their pricing and billing schemes
as offered by AWS and for the selected configuration. The
reserve operation depends on the allocation size in GB that
must be indexed each month in the storage. The write oper-
ation is quantified in terms of a required throughput of
item writes per second, and is charged hourly regardless of
whether or not the total throughput is used. Similarly, the cost
function for the read operation is based on the desired read
throughput of items per second. The execute operation is
parameterized with a combination of memory used in GB
and the duration of the execution in seconds with a billing
granularity of 10 seconds. Finally, the invoke operation’s cost
function corresponds to a combination of the cost of request-
ing a cloud end-point (cost per million requests per month)
and the response data transferred (in GB per month) from the
cloud back end to the front end as a result of executing the
algorithm.

TABLE 2. AWS pricing model.

Table 3 presents our analysis of the Free Tier offered by
AWS. Again, we consider each of the primitives separately.
These free quotas are permanent and reset monthly, except
for the cloud-endpoint invocation which is limited to the first
12 months of operation.

Despite the realism of the presented model, we must point
to three issues that were left out of consideration. First,
the pricing model for the write/read throughput corresponds
to an on-demand premise. A more general model would
take into account estimation of the temporal provisioning
sequence of the application. In such a context, there are
other pricing models which reserve the infrastructure for a
given period of time, and which involve an initial investment
in exchange for cheaper hourly costs. Second, for the sake

TABLE 3. AWS monthly free tier.

of simplicity, we have left out optional optimization and
development services such as AWSDAX,AWSAPIGateway
Cache, and AWS Cloudtrail which provide extended features
that can improve the performance or the development life-
cycle.

And third, a uniform distribution is taken for the number
of accesses to storage, which allows one to assume a linear
provision of throughput. This is a limitation with respect to
the auto-scaling possibilities of AWS DynamoDB.

C. USING THE PRIMITIVES TO ESTIMATE THE
CONSUMPTION
In order to estimate the architectural boundaries of a par-
ticular application for the consumption dimension, in the
Identify Arch. Significant Features activity one has to iden-
tify which features are executed in the mobile device and
which in the cloud. This depends strongly on the application’s
architectural design. Then, in the Smartphone Boundaries
andCloud Boundaries activities, each featuremust be decom-
posed into a set of primitive operations, taking into account
specific values for their parameters. This provides an estimate
of consumption for each particular feature of the applica-
tion. Finally, in the Architectural Design Boundaries activity,
the consumption of all the features on each side—mobile and
cloud— are aggregated to get the resource consumption and
the operating costs of the entire application.

For example, consider a mobile app that periodically gets
and stores the location of its users. This feature is present
for different purposes in almost any of today’s social mobile
applications. Once the user location has been obtained, it can
be stored in the mobile device or uploaded to the cloud envi-
ronment, thus resulting in two different architectural designs
for the application, which one can call mobile-centric and
server-centric, respectively. If, for instance, the information is
stored in the cloud, then the primitives into which this feature
can be decomposed are the following:

• First, the user location is obtained in the mobile phone
(using the getGPS primitive), and then it is posted to the
cloud (with the post primitive).

• In the cloud, the amount of data that is going to be used
has to be reserved, and then the user location is stored in
the database (using the write primitive).

By aggregating these primitives taking into account the rate
at which they are executed and the specific values of their
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parameters, one can estimate the resource consumption and
operating costs of this feature.

We are currently working on the development of a tool
to support this process. This tool allows developers to spec-
ify the different functionalities using the defined primitives,
to define a range of values or parameters for each primi-
tive or functionality, and to automatically generate the esti-
mated consumption for each combination of parameters. This
tool gets as input a JSON document with the specification
of the application (i.e., the different architectural designs,
the use cases for each architecture, their parameters, etc.).
As a result, it provides a CSVwith the estimated consumption
for each architectural design and combination of parameters.
From that CSV, developers can manually generate different
charts showing the consumption trends, for instance, when
the number of users increases. Currently, this tool only sup-
ports the generation of estimations for the mobile side of the
application, we are working on also supporting the server
side. More information on this tool is available in [7].

The following section presents a more extensive case study
and uses it to validate both the proposed process and the
framework.

V. CASE STUDY: HeatMaps
In this section we present a case study to illustrate how our
proposal can help in the development of a mobile application
by providing an early evaluation of different architectural
options estimating their consumption. Then, in the following
section, we shall compare these estimates with the actual
figures of consumption of three variants of the application
that were developed using different architectural approaches.

For this case study, we selected a social application that
generates heat maps (i.e., shading matrices which, in this
case, are overlain on a geographical map) from the geograph-
ical positions of its users. Such an application would provide
interesting information for city authorities who would get
precise information about the flow of tourists, the places they
visit, etc., but also for the visitors themselves who could
consult the most interesting spots for sightseeing, peak hours,
etc., so that they would be able to better plan their visit.

The HeatMaps application entails a significant workload
due both to obtaining information through the mobile phone’s
sensors and to algorithmic computing. Hence, it should be
well-suited to displaying the impact that architectural deci-
sions can have on the mobile applications’ resources con-
sumption. For this case study, we shall focus solely on the
application’s main architectural significant features: gather-
ing and storing the location of each user in real time, and
generating heat maps upon discretionary request of a user.
Figure 2 shows what the app’s user interface might be. To
request a heat map, the user would mark its centre (Fig. 2a),
and choose the radius and the time frame to be considered.
The app would then present a map with all the users of the
application that have been in the chosen area within that time
frame (Fig. 2b). Obviously, a greater number of functional

features would have to be considered for a production-ready
application.

FIGURE 2. Interface of the HeatMaps mobile app.

In order to estimate the consumption dimension, we fol-
lowed the seven tasks set out in the previous section.

A. ARCHITECTURAL DESIGNS TO ANALYSE
The two main requirements of the HeatMaps application
are assumed to be present in the application’s MVP: con-
tinuously tracking users’ positions, and generation of heat
maps. We shall consider three architectural designs imple-
menting these features. First, a server-centric design (cc)
that delegates both features to cloud servers, minimizing
computation in the smartphone. Second, a mobile-centric
architecture (mc) that takes advantage of the computing
capabilities of smartphones by both storing user positions
and generating the maps locally. And third, a hybrid (hy)
architecture that attempts to balance the workload between
the mobile devices and the cloud servers, gathering loca-
tions in the smartphone, but computing the heat maps in the
back end.

B. ARCHITECTURAL DIMENSIONS
Let us assume that our business model wants to maximize
user satisfaction in order to get information from a large
number of users, while keeping operational costs as low
as possible. Since the three architectural designs mentioned
above will have the same functionality and user interface,
we will consider the resource consumption dimension and,
concretely, two issues which are always important while
moving around — battery consumption and data traffic—,
as the dimensions to optimize for user satisfaction. They will
both be estimated for each of the three architectural options
considered. For the operating costs, we will make an estimate
of the costs of running the back end of the application in
a cloud environment. In order to estimate the consumption
of these resources, we will use the primitives described in
Sec. IV.
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C. IDENTIFY ARCHITECTURAL SIGNIFICANT FEATURES
As noted above, the two main features of the application
are location gathering and heat map generation. Their imple-
mentation largely depends on which architectural design is
chosen. In the server-centric architecture (Fig. 3), the mobile
device gets the location from its GPS sensor and sends it to
the cloud. In contrast, in both the mobile-centric and hybrid
designs, the GPS location is kept in the device, requiring no
transmission.

FIGURE 3. Location gathering in a server-centric design.

With respect to the heat map generation, in the server-
centric architecture, the user requests a heat map from the
cloud server, which filters and aggregates the data, and returns
the results to the mobile device for them to be displayed to the
user. In contrast, in themobile-centric design (Fig. 4), the user
requests location data from the rest of the app’s users, whose
devices filter their data to send back to the requesting device
only those data that meet the conditions of the map, and
the requesting device aggregates the results and displays the
heat map. Finally, for the hybrid version (Fig. 5), the device
asks the cloud server for a heat map, the server requests data
from the rest of the users, their devices again filter the data
according to the conditions of the map and send the data
meeting the conditions back to the server which aggregates
the results and returns them to the requesting device for
display to the user.

FIGURE 4. Heat map generation in a mobile-centric design.

D. SMARTPHONE BOUNDARIES
We need to estimate the consumption of the two selected
functional features for each of the architectural designs con-

FIGURE 5. Heat map generation in a hybrid design.

sidered. To this end, we use the primitives described in
Sec. IV-A.

For location gathering, in the server-centric design the con-
sumption derives from reading theGPS position of the device,
plus sending 48 bytes of information (latitude, longitude, and
timestamp — 16 bytes each) to the cloud (Eq. 3).

mobile_loccc = getGPS()+ post(48B) (3)

In both the mobile-centric and hybrid architectures, this con-
sumption corresponds to obtaining the GPS location, plus
storing 48 bytes of information locally (Eq. 4).

mobile_locmc,hy = getGPS()+ store(48B) (4)

For the generation of the heat map, in both the server-
centric and hybrid architectures, the consumption comes from
sending the server a heat map request (comprising latitude,
longitude, radius, init date, end date, and user id— 92 bytes),
plus receiving the information needed to render the heat map.
This information consists of a set of active positions (AP),
i.e., GPS coordinates where at least one user was located in
the specified period of time, plus the number of users present
at that location (40 bytes). Hence, the amount of information
depends on the radius of the map and the number of users that
were present in that area in the time frame selected (Eq. 5).

mobile_mapcc,hy = post(92B)+ get(AP ∗ 40B) (5)

For the mobile-centric design, this consumption in the
requesting smartphone is expressed by Eq. 6 — sending the
request plus receiving the data to render the map, i.e., a set of
active positions of each user (APu) multiplied by the number
of users present in the map (UM ).

mobile_mapmc = post(92B)+ get(APu ∗ 40B) ∗ UM (6)

Additionally, both the mobile-centric and hybrid designs
involve consumption in the rest of the devices whenever a
heat map is requested. This corresponds to receiving a push
notification with the request plus sending the information
required for the heat map (Eq. 7). Note that if the device
was not located in the area and time frame requested then the
second term of this equation would be zero.

mobile_map′mc,hy = push(92B)+ post(APu ∗ 40B) (7)
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E. CLOUD BOUNDARIES
Similarly, the cloud costs of the applicationmust be estimated
for each of the architectures considered. To this end, we use
the primitives described in Sec. IV-B.

For location gathering, the estimated costs of a server-
centric design correspond to one invocation to the cloud
services, plus reserving memory storage for the GPS position
of the user, plus storing the information received, plus the cost
of executing the function (Eq. 8). Note that, for the execute
primitive, we have made the conservative assumption that
each execution requires 1 GB and 1 second for its completion.
This is an upper bound. In the estimates and tests that we
carried out, no execution tookmore than 1 s nor requiredmore
than 1 GB of memory.

cloud_loccc = invoke(1, 16B)+ reserve(48B)

+write(48B)+ execute(1GB) (8)

In contrast, as mentioned above, for the mobile-centric and
hybrid architectures, the implementation of this feature does
not need any cloud resources, and therefore has no associated
consumption.

For the generation of the heat map, the estimated cost in a
server-centric design corresponds to making an invocation to
the cloud, plus reading the information needed from the cloud
storage, plus the cost of executing the algorithm generating
the map (Eq. 9).

cloud_mapcc = invoke(1,AP ∗ 40B)

+ read(AP ∗ 40B)+ execute(1GB) (9)

For a mobile-centric system, this feature does not require
cloud resources so that its cost is zero. For the hybrid design,
however, the cost comes from invoking the corresponding
cloud endpoint, triggering the information request to the
mobile devices which will result in a data transfer of the
information for the map, executing the algorithm to generate
the heat map, and the costs generated for each of the users
present in the map which consist of a single cloud invocation
plus processing the corresponding data for each of those users
(Eq. 10).

cloud_maphy = invoke(1,APu ∗ 40B ∗ UM )

+ execute(1GB)+ invoke(1, 16B) ∗ UM
+ execute(1GB) ∗ UM (10)

F. ARCHITECTURAL DESIGN BOUNDARIES
Once the mobile and cloud costs of each of the app’s features
have been decomposed into those of primitive operations,
the total cost of a given architectural design can be analysed.

For any given architectural design arch of the application,
whether mobile-centric, server-centric, or hybrid, the total
consumption in the mobile devices is expressed by Eq. 11.
The terms on the right hand side correspond to the location
gathering consumption multiplied by the location updating
rate (PIfreq), the heat map generation consumption multiplied
by the estimate of the users’ heat map request rate (HMfreq),

and the consumption due to providing the information for a
heat map requested by other users multiplied again by the
estimated users’ heat map request rate and by the number of
active users of the application (Uapp).

mobilearch = mobile_locarch ∗ PIfreq
+mobile_maparch ∗ HMfreq

+mobile_map′arch ∗ HMfreq ∗ Uapp (11)

The total cloud operating cost can be estimated in a similar
way, taking into account the corresponding rates and number
of active users (Eq. 12):

cloudarch = cloud_locarch ∗ PIfreq ∗ Uapp
+ cloud_maparch ∗ HMfreq ∗ Uapp (12)

G. IDENTIFY THE MOST EFFICIENT ARCHITECTURE
The different architectural alternatives can now be assessed
relatively in accordance with the business needs, and hence a
decision made as to which to choose. To do so, the parameters
in the above equations must be fixed. As explained in Sec. III,
this information can be obtained from estimates made in the
business model or from real measurements obtained from
previous releases of the application. For the present case
study, these parameters are the location gathering and heat
map generation rates, the number of users, the time frame
of the requested heat maps, the proportion of requests in
which a given user is present, and the proportion of spatial
coincidence between users in a given heat map.

Figure 6 shows the consumption estimated for the three
architectures. The charts assume frequency ranges of once
every ten minutes to once every five seconds for the location
gathering frequency, and once every ten days to ten times
per day for the heat map generation. The values fixed for
the rest of the parameters are 1000 active users, a 60-minute
average time frame for the heat maps, a 1% proportion of the
heat maps in which a given user is present in the requested
area, and a 10% proportion of spatial coincidence between
users. The values of all these parameters can be changed
in the Matlab files included as additional material with this
communication, leading of course to different estimates.

Figure 6a shows the battery consumption estimates for
the three design alternatives. The consumption of the hybrid
architecture is very similar to that of the mobile-centric sys-
tem (in blue), and is therefore hidden from view. Never-
theless, the figure clearly shows that consumption increases
significantly with the rate of location gathering for all three
architectures, especially for the server-centric architecture
(in red). The heat map request rate significantly increases
consumption in the hybrid and mobile-centric designs, but
has barely any effect in the server-centric case.

Similarly, Fig. 6b shows the estimated data traffic for
the three architectures. In this case, increasing the location
gathering rate is even more significant for consumption, and
is particularly demanding for the server-centric architecture.
The heat map request rate is far less relevant, although the
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FIGURE 6. Estimates for 1000 active users.

hybrid and mobile-centric architectures are slightly more
sensitive to changes in this parameter than the server-centric
case.

Finally, Fig. 6c shows the estimated daily cloud operating
cost. Obviously, for themobile-centric alternative, it is always
zero, while for the server-centric design it increases slightly
with both the location gathering and the heat map generation
rates. One sees that the hybrid alternative (in green) is signif-
icantly affected by these parameters, incurring greater costs
as they increase.

In sum, the possibility of establishing ranges, or actual
and future values, allows one to observe the evolution of the
different architectural options and thus analyse their limits.
This in combination with the application business model,
can be used to make architectural decisions which are better
informed. For the HeatMaps application, under most circum-
stances a mobile-centric solution would incur lower cloud

costs and mobile resource consumption. However, if the loca-
tion gathering rate could be kept low to around two or three
updates per minute, the server-centric architecture would
present better behaviour, especially as the number of map
requests increases.

VI. MEASURING ACTUAL CONSUMPTION
In order to validate the identified architectural boundaries,
we implemented the HeatMaps application with the three
architectural alternatives discussed above, and then measured
their actual consumption of resources. The source code of the
three implementations is provided as additional material with
this communication.

We developed the apps for the Android OS since this was
the operating system for which the primitive operations’ con-
sumptions were measured. For the implementations, various
frameworks and libraries were used, abstracting from low
level functionalities. We would emphasize that, while the use
of different APIs may increase consumption with respect to
the estimates, proportion-wise this increase should be the
same for each architectural design.

Some of the libraries included are among those most
widely used in commercial mobile apps. In this way, our
procedure would be like that which any firm or startup would
follow. In particular, we made use of the following:

• For communication with the cloud, we selected the
widely used Retrofit framework.1 This provides better
performance than other alternatives [48].

• In order to facilitate communication between mobile
devices in both the hybrid and the mobile-centric
designs, we used nimBees.2 This framework provides
specific support for a mobile-centric design, with smart
push notification capabilities based on the user’s cur-
rent or past locations.

• We used Realm3 to store user locations in the smart-
phone, as this database offers better large entry writing
and reading performance [49].

• To prepare the maps, we used the API provided by
Google4 for its ease of integration with Android apps.

For the hybrid and server-centric apps, the corresponding
back ends were implemented in Node.js, and deployed on
Amazon Lambda, storing all the information gathered in
DynamoDB to create the heat maps. Again, the nimBees API
was used to request information from the mobile devices,
such as their locations during a specific time frame.

Once the apps had been developed, several experiments
were conducted to compare our estimates with the apps’
actual consumption. The main parameters of the experiments
were:

• Five users were active during the experiments.

1 Retrofit, Square Open Source. http://square.github.io/retrofit/
2 nimBees. http://www.nimbees.com
3 Realm for Android. https://realm.io/
4 Google Maps API. Heatmaps. https://developers.google.com
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• All the users were present in all the heat maps requested,
and the spatial coincidence between users was set at
10%.

• Each experiment lasted 30 minutes in order to obtain
stable consumption measurements.

• Tomeasure consumption under different situations, each
app was evaluated with different frequencies of location
gathering (from 0.4 to 1.2 times per minute) and heat
map requests (from 0.06 to 0.16 times per minute).

The measurements were made on five different smart-
phones, running different versions of the Android OS: one
Motorola Moto E 1st generation (Android 5), one Motorola
Moto E 2nd generation (Android 5), one Honor 8 (Android
8), one Xiaomi RedMi 5 (Android 8.1), and one Xiaomi
RedMi 4 (Android 7.0). Each experiment involved having
the devices in movement, being carried by the user while
he or she was moving around the university campus, and
requesting heat maps at the pre-established rates. In addition,
in order to get some stable values, the mobile devices were
reset to the factory values before each experiment in order to
eliminate any interference or residual consumption of other
applications. Figure 7 shows two of the maps generated as a
result of the experiments.

FIGURE 7. Heat maps generated in the experiments.

In order to obtain the data traffic and battery consumption
during each test, we used Android’s bug report functional-
ity [50].This generates logs with information about battery
consumption, data traffic, sensors used, etc. by the different
applications installed in the device. This information was
reset before each test and the logs were generated after each
execution. In order to help with the reproducibility of our
experiments, the 60 logs generated are provided as additional
material with this communication. All the logs were pro-
cessed using the tool Battery Historian [51], which among
other information provides the estimated battery and data
traffic consumption of each installed app.

Figure 8 shows the comparison between the estimated
(blue line) and the actual (orange bars) consumption for the
mobile-centric architecture. As one can see in Fig. 8a, the real
battery consumption is always greater than the estimates.
Some of the reasons are that the estimates were made assum-

ing that the smartphone screen is always off, whereas it had
to be on during the experiments to start/stop the app and
to request maps. Moreover, since the smartphones were in
movement, real consumption would also have depended on
other issues such as network coverage, etc. However, when
the results are scaled appropriately (the reason for the two
different Y-axes in Fig. 8a), one sees that the differences scale
linearly and the two shapes match. Indeed, configurations
with lower location gathering and map request frequencies
show lower battery consumption, and the growth of con-
sumption with increases in these frequencies is similar in the
two charts. On the contrary, for data consumption (Fig. 8b),
the actual measurements are very close to the estimates.

FIGURE 8. Consumption for the mobile-centric architecture.

Figure 9 compares the estimates with the real consumption
for the server-centric architecture. Again, the differences for
battery consumption were found to scale linearly, but for
each configuration the ratio between the real and the esti-
mated data was similar for both the battery and the data
traffic measurements. Apart from the screen consumption,
we would attribute some of the deviations to optimizations
of the different libraries used to exchange information in the
three architectural designs.

FIGURE 9. Consumption for the server-centric architecture.

Figure 10 shows the comparison for the hybrid architec-
ture case. Once again, there were similar linear differences
for battery consumption, but the consumption trends for the
different configurations were very much alike.

We did not analyse actual cloud costs because Amazon’s
free tier was not exhausted during the experiments. Neverthe-
less, the number of requests to the cloud environment (shown
in Fig. 11 for the server-centric option) correlates linearly
with cloud costs, as may be deduced from the equations in
Sec. V. The figure shows that the actual number of cloud

VOLUME 8, 2020 146659



J. Berrocal et al.: Early Evaluation of Mobile Applications’ Resource Consumption and OC

FIGURE 10. Consumption for the hybrid architecture.

invocations was almost the same as the estimate, with minor
deviations for the greater location gathering rates. These
deviations can be attributed to the fact that the estimates were
calculated for exactly 30 minutes, while the actual experi-
ments where just approximately for this duration, with small
variations for each user. Figure 11b shows the cloud requests
for the hybrid architecture. As can be seen, here the number
of invocations is exactly as estimated. This is because for the
hybrid design the figures depend only on the number of heat
maps requested, not on the exact duration of the experiments.

FIGURE 11. Number of requests to the cloud environment.

A. DISCUSSION
To synthesize, Figs. 8–11 showed that the real consumption
measured during the experiments roughly corresponded to
the estimates, with both following the same trends for the
scenarios considered. These results indicate that, within a
certain margin of error, the process proposed here can be used
to estimate the consumption, and to identify the boundaries of
different architectural options for a given application.

The evolution of the consumption followed different trends
for each design. For the mobile-centric and hybrid archi-
tectures the consumption mainly depended on the location
gathering rate, but, as was foreseen, for the server-centric case
it depended on the number of maps requested.

As expected, the least accurate of the three types of esti-
mate was that of battery consumption. Indeed, battery con-
sumption depends on various factors that were not under
control during the experiments (screen consumption, external
libraries used in the development, etc.). Also, the values of
consumption of the primitive operations in Table 1 were
measured for a particular device with a specific version of
Android OS, while consumption in the field will depend
on each device’s hardware and OS version. We could have

obtained more accurate estimates by measuring the consump-
tion of the primitives for the particular devices used during
the experiments, and evenmore accurate measurements could
have been made using an external power monitor. However,
our interest was in trends rather than actual consumption
figures, i.e., how, for each of the architectural designs consid-
ered, resource consumption grows with increasing numbers
of users and rates of execution of the app’s different func-
tional features.

With respect to data traffic, the results showed the estimates
to be very close to the real figures for all three versions of the
app. Indeed, data traffic is unaffected by which particular
device or OS version is used.

For the cloud costs, the experiments showed the estimates
of the number of requests in the three versions of the app. As
cloud costs depend mainly on this parameter and on the size
of the data involved (see Sec. IV-B), one can argue that these
estimates are fairly acceptable as proxies.

The set of practices incorporated into the development
process and the conceptual framework that we have presented
allow one to obtain consumption trends of each architectural
design. Also, similar frameworks can be used to obtain the
architectural boundaries for different dimensions. The objec-
tive of this work was to be able to provide a development
team with these trends in the early stages of their work,
so that they can better plan in the medium term the evolution
of the app in accordance with its expected growth and use.
Of particular interest is for the team to be able to identify
the boundaries at which a given architecture ceases to be
advantageous, and changes need to be made for part or the
whole of the system to evolve to another design. For instance,
for the running example, these boundaries can be clearly seen
in Fig. 6 in which, if the GPS information is obtained more
frequently than six times per minute, the efficiency of the
server-centric architecture is overtaken by that of the other
two types of design, and the system should be migrated to a
mobile or hybrid design.

The consumption of mobile resources from the Heatmaps
case study described in this section is very dependent on the
use of GPS positioning, as mentioned above. While the use of
GPS positioning is a very common feature of social mobile
apps, the framework for mobile consumption presented here
has been tested in other applications that do not rely so heav-
ily on positioning. Specifically, in [46] the authors examine
the resource consumption of a mobile app for exchanging
information between contacts in which GPS positioning is
not considered. Similarly, in [21] the framework is used for
estimating the consumption of a context aware application.

B. THREATS TO VALIDITY
The presented methodology was evaluated in one case study
and with three different implementations for different archi-
tectural designs in order to validate the estimations obtained
by the conceptual framework. Data was collected to evaluate
its feasibility, completeness and precision. In this section,
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the possible threats to validity are discussed according to the
four types of possible threats reported in [52].

Construct Validity is concerned with the relation between
a theory and its observation. Threats to construct validity refer
to the extent to which the setting of an empirical study actu-
ally corresponds to the construct under study. The framework
defined in section IV has been applied to a case study in
order to identify the architectural boundaries. Three different
designs of the case study have also been implemented obtain-
ing similar consumption trends. Therefore, we can conclude
that the application of the framework is feasible.

Conclusion Validity is concerned with the relationship
between a treatment and the conclusions drawn from it.
Threats to conclusion validity refer to the ability to draw
correct conclusions about relationships between the treat-
ments and the results of an empirical study. The main
source of information used during this validation was the
results obtained from the execution of the case study for
the three different architectural designs. The results obtained
and the comparison between the estimated and the actual
consumption obtained show that they are not the same,
but they follow the same trend. Therefore, an exact pre-
cision of the consumption cannot be obtained. Neverthe-
less, since the consumption trends are the same, these devi-
ations do not impact the conclusions we draw. We can
conclude that the framework is perfectly valid to estimate
the boundaries of different architectural designs in early
phases.

Internal Validity is concerned with the causal relationship
between a treatment and its results. In the validation of this
conceptual framework, these threats are related to truth of
the metrics obtained, and the application of the methodology.
First, the case study has been developed by the researchers
themselves, so the implementation may be influenced by the
defined conceptual model. This threat to validity was directly
addressed by the researchers during the design and imple-
mentation of the systems. The behaviour of the application
and the technologies to be used were defined at the begin-
ning of the experiment. During the implementation, the same
technologies and defined behaviour were implemented for
the different designs. Second, the use of the application dur-
ing the validation could be conditioned by the estimations.
To address this threat, specific routes were defined for each
user in which the percentage of overlapping with other users
was the same to the one defined for the estimation. Also,
the frequency of execution of different functionalities (such as
the generation of heatmaps) was the same to the one defined
for the estimation. Finally, the characteristics of the devices
chosen to validate the systemmay involve a consumption that
could be different for other devices with different properties.
To address this threat, the validation was performed with five
different devices, with a range of operating system versions
from Android 5 to Android 8.1 and, in addition, from three
different manufacturers. Therefore, it can be concluded that
the different internal threats to validity were addressed to
mitigate and / or eliminate them.

External Validity is concerned with the generalisation of
the conclusions of the validation. Threats to external validity
refer to the ability to generalise the results and conclusions
beyond the setting of the study. First, the conceptual frame-
work presented can be applied to measure the architectural
boundaries for different dimensions. However, in the case
study, only consumption, battery and operational cost have
been evaluated. The framework presented is independent of
the dimensions measured for the mobile environment or for
the cloud environment. If developers want to measure other
dimensions, the consumption of the different primitive oper-
ations for those dimensions should be measured and added
to the framework. The methodology presented and evaluated
would be the same. Second, only a subset of primitives has
been estimated. Estimating the architectural boundaries of
other applications may require the use of other primitives.
The presented conceptual model is independent of the mea-
sured primitives and, even, encourages developers to mea-
sure and add new primitives. To solve this problem public
repositories would be created for developers to add and share
the measured primitives. Finally, the conceptual model has
only been validated for one case study, so the generalisation
of the results could be limited. Although this article only
presents the application of the framework to one case study,
it has also been applied for estimating the consumption of
social networks and to recommendation systems based on
air quality. However, they have not been presented in this
article, avoiding making it too complex. Therefore, it can
be concluded that the different external threats to validity
have been addressed by making the conceptual framework
independent of the application domain.

VII. RELATED WORK
A large body of research has dealt with measuring or esti-
mating some boundaries of an architectural design [53]. Some
studies propose offloading resource-consuming tasks to cloud
servers. As has been demonstrated here, these techniques
may reduce the consumption or the response-time in some
circumstances, but not in all. Therefore, the situations in
which offloading certain tasks to the cloud may be beneficial
need to be identified.

With regard to methodological approaches and practices,
in [54], the authors indicate that cloud computing has gener-
ated a new global market thanks to the increasing adoption of
devices such as smartphones and tablets, and this in turn has
led to the birth of a new generation of startup firms. The work
analyses the impact of cloud technology for entrepreneurial
activities, finding that cloud computing allows a new business
to be ‘‘born global’’, to reduce its initial investment and oper-
ating costs, and to achieve high growth rates. They also find
that it reduces diversification costs by eliminating the barriers
to entry. Gupta et al. [55] analyse the adoption of cloud
technology by small- and medium-sized enterprises. They
find that the most important factors influencing cloud usage
by such firms are ease of use, security and privacy, and cost
reduction. All of these studies, however, compared the costs
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of deploying applications using cloud computing with those
of purchasing all the required hardware and software. Current
mobile phones have sufficient resources to store and process
all the data gathered. This allows startups to reduce even
further the operational costs of deploying a new application.
There is thus a requirement for new approaches to identifying
when to use cloud environments or other architectural styles
depending on the business model and the budget.

In this sense, there are some works focused on identifying
the best cloud provisioning plan within a budget. Hasan and
Hossain [56] indicate that startups are often failing due to
not taking into account the risks involved in investing money
without being aware of the actual resources they can avail
themselves of given their budget. In order to obviate these
risks, the authors construct a model which a firm can use
as a guide by specifying its budget as a model parameter,
and then applying a methodical process to determine what
cloud resources are within its possibilities. In particular, they
identify the driving factors to the cost measurement, such as
number of additional elastic IPs, number of elastic IP remaps,
data transfer out, data transfer in, etc., they build a fitness
function and apply genetic algorithms in order to solve the
optimization problem focused onwhat cloud resources can be
obtained from the specified budget. Nevertheless, this model
does not consider to obtain some computation capabilities by
onloading some services, or part of the application, to end
devices by designing a mobile-centric or a hybrid architec-
ture. Startups also need a method that they can apply to guide
them in decision-making by allowing them to analyse the
architectural alternatives if their budget does not meet the
cost of the required resources or just to reduce the operational
expenses maintaining the quality of service.

In addition, in [57] and [58], some of the authors of this
article presented a solution that analyses the user needs to
support the decision-making process of selecting the most
suitable cloud service provision plans for different cloud
providers. To that end, first, the requirements of the software
to be deployed (CPU, memory, IO performance, and storage)
and the usage schedule have to be specified. Then, the optimal
configuration plan is generated for different providers. This
solution made use of feature models in order to define the
characteristics of the different providers. Nevertheless, it was
focused on identifying the optimal configuration in terms of
infrastructural requirements and cost. In this work, we present
a framework that takes into account both the smartphone’s
resource consumption and the operating costs in the cloud.
In addition, the presented solution can be applied in the early
phases while the previous one was applied once the different
services and modules are implemented.

Focused on measuring consumption in applications, first,
we can find some works focused on measuring the exact
resource consumption. In [47], the authors measure the power
consumption of different components and sensors by instru-
mentation at the circuit level and considering different con-
figurations. Reference [59] develops a fine-grained energy
profiler. This allows the authors to measure the energy spent

performing such tasks as rendering images on the device’s
screen, or building an application’s internal database. This
information is extremely useful for developers seeking to
improve resource consumption, but the application has to
be built before it can be analysed. In addition, the source
code has to be instrumented for system-call tracing and
routine tracing. These traces are recorded and analysed in
order to generate the energy profiles. A step further, taking
into account the wide array of sensors installed in current
mobile devices, is taken in [60]. This proposes a solution
optimizing the sensing requirements of all the applications
running on the device, and thus reduce the overall consump-
tion. Concretely, they propose to use an optimizing sampling
scheduler in order to schedule the sampling rates and sharing
the obtained sampling among different applications when
possible. Again, these approaches allow developers to reduce
the resource consumption. Nevertheless, they only can be
used once the application is developed. A methodology for
designing efficient applications regarding different dimen-
sions (battery consumption, data consumption, operational
cost, etc) is needed. Nevertheless, both proposals could be
integrated in order to analyse the resource consumption both
in the early and in the late phases.

Also focused on measuring the precise consumption of
a mobile application, some studies compared the consump-
tion information provided by devices with the measurements
made using an external power monitor [61]. Others take
this information from the device’s battery [62] or from a
modified version of the kernel [63]. These studies show that
the consumption information obtained from the devices is
sufficiently accurate for the analyses and experiments that
have been proposed in the present work to be carried out.

On the other hand, there are also approaches closer to
the presented conceptual model focused on providing some
guidance to developers in order to design applications reduc-
ing the resource consumption. In [64], the literature on the
consumption patterns of mobile applications on Android
platforms is systematically reviewed. The authors find there
to be only limited work assisting developers to choose the
most suitable software architecture, application interface, and
behaviour of an application in terms of resource consumption.
In their analysis, they identify architectural design and the
network technologies used for communications to be among
the main features affecting consumption. In addition, they
identified that the energy conservation of mobile devices is
of great interest for the research community since it is one
of the most limited resources of these devices. Nevertheless,
this review reports no work on trade-offs between battery
and data traffic consumption, or on cloud infrastructure costs.
It focuses on detailing the different approaches that can be
used to optimize the energy consumption.

In [46], some of the present authors proposed a conceptual
framework for measuring patterns of consumption of mobile
applications in early stages of their development. The frame-
work also estimates the trends in consumption as the number
of users increases or when how they use the application
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changes. This framework has also being applied for esti-
mating the consumption of context-aware mobile applica-
tions [21]. The study does not, however, analyse operating
costs when some tasks are offloaded to the cloud.

In [65] the authors indicate that developers need to estimate
their apps’ energy consumption. Therefore, they propose,
first, a machine learning-based energy consumption model
trained by running different applications and that can estimate
the energy consumption from their source code. In addition,
these authors also state that developers need energy optimiza-
tion guidelines. Therefore, they propose different techniques
that can be applied in the communication and security layers
to create more efficient applications and a new design pattern
for making view updates more energy efficient [66]. Never-
theless, these works only propose guidelines for improving
the energy consumption dimension.

Finally, other approaches focus on offloading some part
of a mobile application depending on its context and the
consumed resources. For instance, AndroidOff [67], collects
the execution costs of a subset of the methods and then uses
static analysis to predict the execution costs of the remaining
methods. Then, optimization algorithms decide when some
methods should be offloaded to the cloud. Nevertheless,
the authors do no provide guidelines to developers in order to
design applications in which some modules can be offloaded.

In sum, firms need to have a clear picture of the (mobile
and cloud) boundaries an application. This is crucial for a
product to be sustainable and successful.Most research in this
area has focused on optimizing applications behaviour after
they have already been developed, and on determining the
reduction of the costs of using cloud computing. To the best
of the authors’ knowledge, however, there has been no work
assisting developers in choosing the software architecture that
is best suited to both their applications and business models.

VIII. CONCLUSION
The business models behind mobile applications are often
based on a very short time-to-market. The success of these
apps and of the firms behind them depends on a subtle balance
between user satisfaction, operating costs, and timing. It is not
surprising therefore that an application’s architectural design
has a major impact on the firm’s operating costs and on the
users’ satisfaction. In this communication, we have detailed
a set of practices that should be done to estimate when each
architectural design should be applied. In addition, we have
presented a conceptual framework assisting on the estimation
of the consumption dimension.

In our proposal, we considered three different architectural
design for a given application —from a server-centric design
at one extreme to a mobile-centric design at the other— and
we have shown how the consumption of different resources
can be estimated for these architectural designs. We then
built the three versions of the app, and measured their actual
consumption figures, comparing them with our estimates.
The results showed that the process we propose can be of
use for estimating the architectural boundaries at early stages

of development of an application, assisting the development
team with their decision making during the design stage and
with their planning of the app’s architectural evolution.

As future work, we work on building a tool for providing
support to the presented framework. This tool will take as
input an initial definition of the application and the archi-
tectural designs to evaluate in order to provide the most
suitable cloud configuration and estimations on the resource
consumption and operating costs for each option.
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