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Abstract

Microorganisms produce volatile compounds (VCs) that promote plant growth and

photosynthesis through complex mechanisms involving cytokinin (CK) and abscisic

acid (ABA). We hypothesized that plants' responses to microbial VCs involve post-

translational modifications of the thiol redox proteome through action of plastidial

NADPH‐dependent thioredoxin reductase C (NTRC), which regulates chloroplast

redox status via its functional relationship with 2‐Cys peroxiredoxins. To test this

hypothesis, we analysed developmental, metabolic, hormonal, genetic, and redox pro-

teomic responses of wild‐type (WT) plants and a NTRC knockout mutant (ntrc) to VCs

emitted by the phytopathogen Alternaria alternata. Fungal VC‐promoted growth,

changes in root architecture, shifts in expression of VC‐responsive CK‐ and ABA‐

regulated genes, and increases in photosynthetic capacity were substantially weaker

in ntrc plants than in WT plants. As in WT plants, fungal VCs strongly promoted

growth, chlorophyll accumulation, and photosynthesis in ntrc–Δ2cp plants with

reduced 2‐Cys peroxiredoxin expression. OxiTRAQ‐based quantitative and site‐

specific redox proteomic analyses revealed that VCs promote global reduction of

the thiol redox proteome (especially of photosynthesis‐related proteins) of WT leaves

but its oxidation in ntrc leaves. Our findings show that NTRC is an important mediator

of plant responses to microbial VCs through mechanisms involving global thiol redox

proteome changes that affect photosynthesis.
© 2019 John Wiley & Sons Ltdwileyonlinelibrary.com/journal/pce 2627
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1 | INTRODUCTION

It is well known that volatile compounds (VCs) emitted by beneficial rhi-

zosphere bacteria and fungi can promote plant growth (Hung, Lee, &

Bennett, 2013; Kanchiswamy, Malnoy, & Maffei, 2015; Piechulla,

Lemfack, & Kai, 2017; Ryu et al., 2003) and root developmental changes

(Delaplace et al., 2015; Ditengou et al., 2015; Garnica‐Vergara et al.,

2016; Gutierrez‐Luna et al., 2010). However, recent studies have

shown that pathogens may also release growth‐promoting VCs

(Sánchez‐López, Baslam, et al., 2016). Promotion of growth and devel-

opmental changes bymicrobial VCs has frequently been associatedwith

lipophilic carbon‐containing compounds with molecular masses less

than 300 Da and high equilibrium vapour pressures, known as volatile

organic compounds (VOCs; Kanchiswamy et al., 2015). In addition to

VOCs, microorganisms also release volatile inorganic compounds (VICs)

with molecular masses less than 45 Da. When exogenously applied in

discrete forms and low concentrations, some of these compounds can

act as signalling molecules that promote plant growth, photosynthesis,

and developmental changes through thiol redox modifications (Chen

et al., 2011; He et al., 2008; Takahashi et al., 2014). Using a “box‐in‐

box” cocultivation system in which plants are grown in the vicinity of

microbial cultures covered with VOC‐adsorbing charcoal filters, we

have recently provided evidence that VOCs with molecular masses less

than 40 Da and/or VICs other than CO2 are strong determinants of

plants' responses to microbial VCs (García‐Gómez et al., 2019).

In Arabidopsis plants exposed to VCs emitted by various microbes,

growth promotion is accompanied by increases in photosynthesis

rates, levels of cytokinins (CKs) derived from the 2‐C‐methyl‐D‐

erythritol 4‐phosphate (MEP) pathway, and starch in leaves, together

with reductions in abscisic acid (ABA) contents, and distinct changes

in shoot and root development (Ezquer et al., 2010; García‐Gómez

et al., 2019; Li et al., 2011; Sánchez‐López, Baslam, et al., 2016 ; Zhang

et al., 2008). Mutants with reduced CK and ABA sensitivity have been

found to respond weakly to microbial VCs, indicating that plant

responses to microbial VCs involve CK and ABA signalling (Sánchez‐

López, Baslam, et al., 2016; Zhang et al., 2008). Several studies have

also found similarities in transcriptional changes in plants exposed to

VCs emitted by different microorganisms, despite substantial differ-

ences in induced developmental changes in roots and shoots (García‐

Gómez et al., 2019; Sánchez‐López, Baslam, et al., 2016). These find-

ings suggest that regulation of some plant responses to microbial

VCs is primarily posttranscriptional (García‐Gómez et al., 2019). This

hypothesis is supported by reports that fungal VCs do not affect the

transcription of genes encoding most proteins that are differentially

expressed following plants' exposure to VCs (Sánchez‐López, Baslam,

et al., 2016), and microbial VCs promote posttranslational reductive

activation of starch biosynthetic enzymes (García‐Gómez et al., 2019).
Reversible reduction–oxidation (redox) thiol modifications of

cysteines (such as disulfide bond formation, S‐glutathionylation,

S‐nitrosylation, and S‐sulfenylation) provide fundamental posttransla-

tional “switches” that play important roles in the regulatory mecha-

nisms of metabolism, growth, and development that allow plants to

adjust to continuously changing environmental constraints (Akter

et al., 2015; Buchanan & Balmer, 2005; Couturier, Chibani, Jacquot,

& Rouhier, 2013; Hu et al., 2015; Keech, Gardeström, Kleczkowski,

& Rouhier, 2017). Therefore, identification of reactive cysteine resi-

dues is crucial not only for understanding protein functions but also

for obtaining insights into the mechanisms involved in plants'

responses to environmental changes. To assist such efforts, increasing

numbers of mass spectrometry (MS)‐based large‐scale redox proteo-

mic techniques have been developed recently to identify proteins that

undergo reversible oxidative modifications (Akter et al., 2015; De

Smet et al., 2019; Fares, Rossignol, & Peltier, 2011; Guo et al., 2014;

Liu, Zhang, Wang, & Xia, 2014). The results obtained using these

approaches indicate that almost any metabolic pathway may be sub-

ject to thiol‐based redox regulation.

Important components of plants' thiol redox regulation machinery

include thioredoxins (Trx) proteins that mediate disulfide–dithiol

exchange of cysteine residues, thereby modulating activities of target

proteins. Plant chloroplasts have a versatile set of Trxs, which receive

reducing equivalents from the photosystem I (PSI) electron acceptor

ferredoxin (Fdx), with participation of an Fdx‐dependent Trx reductase

(FTR; Schürmann & Buchanan, 2008). In addition, plastids contain an

NADPH‐dependent Trx reductase (NTR) with a joint Trx domain, called

NTRC, which uses NADPH produced by the oxidative pentose phos-

phate pathway and photosynthetic electron transport (PET) as a source

of reducing power (Serrato, Pérez‐Ruiz, Spínola, & Cejudo, 2004). In

Arabidopsis, NTRC is the most efficient reductant of two H2O2‐detox-

ifying 2‐Cys peroxiredoxins (Prxs) A and B, suggesting that it plays an

important role in avoidance of toxic levels of reactive oxygen species

(ROS; Kirchsteiger, Pulido, González, & Cejudo, 2009; Pérez‐Ruiz

et al., 2006; Puerto‐Galán, Pérez‐Ruiz, Guinea, & Cejudo, 2015; Pulido

et al., 2010). Biochemical and genetic studies have provided evidence

that NTRC participates in regulation of the redox status of stromal tar-

get proteins, including starch metabolism enzymes (Lepistö et al.,

2013; Valerio et al., 2010), ATP synthase (Carrillo, Froehlich, Cruz,

Savage, & Kramer, 2016; Nikkanen, Toivola, & Rintamäki, 2016), and

diverse Trxs that control the redox status of Calvin–Benson cycle

(CBC) enzymes such as plastidial fructose‐1,6‐bisphosphatase (cFBP1),

phosphoribulokinase (PRK), sedoheptulose‐1,7‐bisphosphatase (SBP),

and glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH; Nikkanen

et al., 2016; Ojeda et al., 2017; Yoshida & Hisabori, 2016). NTRC also

regulates the redox status of Mg–protoporfirin IX methyltransferase

(CHLM), which is involved in chlorophyll biosynthesis (Da et al.,
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2017; Richter et al., 2013), and CHLI (Pérez‐Ruiz, Guinea, Puerto‐

Galán, & Cejudo, 2014), which is the subunit of the Mg–chelatase com-

plex involved in chlorophyll biosynthesis and ABA signalling (Du et al.,

2012; Tsuzuki et al., 2011). Furthermore, recent studies have shown

that NTRC plays important roles in control of nonphotochemical

quenching (NPQ) and PET (Carrillo et al., 2016; Naranjo et al., 2016).

Arabidopsis NTRC knockout (ntrc) mutants show a strong

photoperiod‐dependent phenotype of stunted growth and low chloro-

phyll content, highlighting the enzyme's crucial roles in chloroplast func-

tions, photosynthesis, and growth (Lepistö, Kangasja, & Luomala, 2009;

Pérez‐Ruiz et al., 2006). NTRC is localized in plastids of both photosyn-

thetic and nonphotosynthetic tissues, prompting the hypothesis that it

acts as a generalmolecular switch capable of converting reducing power

in the form of NADPH into redox signals that coordinate redox regula-

tion in the whole plant (Kirchsteiger, Ferrández, Pascual, González, &

Cejudo, 2012). Growth is dramatically inhibited in Arabidopsis mutants

combining deficiencies of NTRC and Trxs f and x (Ojeda et al., 2017),

suggesting that NTRC and the Fdx–FTR–Trxs systems act in concert.

Recent studies have shown that the ntrc phenotype is suppressed by

decreased expression of 2‐Cys Prxs (Ojeda, Pérez‐Ruiz, & Cejudo,

2018; Pérez‐Ruiz, Naranjo, Ojeda, Guinea, & Cejudo, 2017). These find-

ings led to the proposal that 2‐Cys Prxs are crucial to maintain the redox

status of the pool of plastidial Trxs and, consequently, the light‐

dependent reduction of photosynthesis‐related proteins (Ojeda et al.,

2018; Pérez‐Ruiz et al., 2017). Accordingly, it has been suggested that

the phenotype of ntrc plants is due to impairment of the redox regula-

tion of chloroplastic growth‐ and photosynthesis‐related processes

rather than ROS over‐accumulation as a consequence of 2‐Cys Prxs

inactivation (Pérez‐Ruiz et al., 2017).

Microbial VCs induce smaller increases in starch contents in ntrc

plants than in wild‐type (WT) plants (Li et al., 2011). Because NTRC

plays a central role in redox regulation of various plastidial processes

involved in metabolism, growth, and development, we hypothesized

that NTRC could be involved in plants' overall responses to VCs. To

test the potential importance of posttranslational thiol modifications

of proteins in plant responses to microbial VCs and investigate NTRC's

contribution to these responses, we compared developmental, meta-

bolic, hormonal, and redox proteomic responses of WT and ntrc plants

to VCs emitted by the fungal phytophathogen Alternaria alternata. Our

findings show that NTRC is an important mediator of plant responses

to fungal VCs and provide a broad quantitative picture of redox‐

mediated responses of the thiol proteome in Arabidopsis to VCs,

allowing us to infer potential redox switches.
2 | MATERIALS AND METHODS

2.1 | Plant and microbial cultures, growth conditions,
and sampling

The work was carried out using Arabidopsis thaliana L. (Heynh) eco-

type Columbia (Col‐0), the ntrc mutant (Pulido et al., 2010), the Δ2cp

and ntrc–Δ2cp mutants with severe reduction of 2‐Cys Prxs
expression (Pérez‐Ruiz et al., 2017), the ADPglucose pyrophos-

phorylase null aps1 mutant (SALK_040155), and the gwd

(SALK_077211) mutant. Microorganisms used in this study were also

used by Sánchez‐López, Baslam, et al. (2016). Unless otherwise indi-

cated, the plants were cultured in Petri dishes (92 × 16 mm, Sarstedt,

Ref. 82.1472.001) containing sucrose‐free half‐strength solid

Murashige and Skoog (Phytotechlab M519) medium in growth cham-

bers providing “long‐day” 16‐hr light (90 μmol photons s−1 m−2),

22°C/8‐hr dark, 18°C cycles. Fungi were cultured in small Petri dishes

(35 × 10 mm, Sarstedt, Ref. 82.1135.500) containing solid Murashige

and Skoog medium supplemented with 90‐mM sucrose. Bacteria were

cultured in small Petri dishes containing solid M9 minimal (95‐mM

Na2HPO4/44‐mM KH2PO4/17‐mM NaCl/37‐mM NH4Cl/0.1‐mM

CaCl2/2‐mM MgSO4 and 1.5% bacteriological agar) medium supple-

mented with 50‐mM glucose. M9 medium for Bacillus subtilis culture

was supplemented with 7 μM each of MnSO4, FeSO4, and ZnSO4

and 1 μM of thiamine. Effects of microbial VCs on plants were inves-

tigated using the “box‐in‐box” cocultivation system as described in

García‐Gómez et al. (2019). Briefly, microbial cultures in unlidded Petri

dishes with a top layer of VOC‐adsorbing activated charcoal filters and

plant cultures of 14 days after sowing were placed together in sterile

plastic boxes (200 × 150 × 50‐mm IT200N Instrument Trays; AW

Gregory, UK) sealed with polyvinyl chloride plastic wrap. As negative

controls, Petri dishes containing plant cultures were incubated in

sealed boxes together with Petri dishes containing sterile microbial

culture media and a charcoal filter. At the indicated incubation periods,

leaves were harvested, immediately freeze clamped, and ground to a

fine powder in liquid nitrogen with a pestle and mortar.
2.2 | Determination of gas exchange rates and
photosynthetic parameters

Gas exchange rates were determined as described by Sánchez‐López,

Baslam, et al. (2016) using a LI‐COR 6400 gas exchange portable pho-

tosynthesis system (LI‐COR, Lincoln, NE, USA). The net rate of CO2

assimilation (An) was calculated using equations developed by von

Caemmerer and Farquhar (1981). The maximum rate of carboxylation

by Rubisco (Vcmax), triose phosphate use (TPU), and maximum electron

transport demand for RuBP regeneration (Jmax) values were calculated

from An/Ci curves (where Ci is the intracellular CO2 concentration)

according to Long and Bernacchi (2003). Photosynthetic electron

transport (ETR) values were calculated according to Krall and Edwards

(1992) as ΦPSII × PPFD × 0.84 × 0.5, where PPFD is the photosyn-

thetic photon flux density incident on the leaf, ΦPSII is the photosys-

tem II (PSII) operating efficiency, 0.5 was used as the fraction of

excitation energy distributed to PSII (Ögren & Evans, 1993), and

0.84 was used as the fractional light absorbance (Morales, Abadia, &

Abadia, 1991). Chlorophyll fluorescence emission parameters were

determined using a PlantScreen™ XYZ System (Photon Systems

Instruments, Brno, Czech Republic). The phenotyping system was

equipped with a FluorCam unit for pulse amplitude modulated mea-

surement of chlorophyll fluorescence. After 20 min of dark adaptation,
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the standardized measurement protocol was applied, as described by

Humplík et al. (2015). The maximum quantum yields of PSII in the

dark‐adapted state (ΦPo; also referred as F v/ F m), ΦPSII, and

nonphotochemical quenching (ΦNPQ) were calculated from the mea-

sured parameters according to Lazár (2015).
2.3 | Root morphological analysis

Numbers and lengths of roots of plants grown on vertical square Petri

dishes (10 × 10 × 2 cm, Sarstedt, Ref. 82.9923.422) were measured

using a MVX10 stereomicroscope, and microphotographs were cap-

tured with a DP72 video camera equipped with Cell D software (all

supplied by Olympus, Japan).
2.4 | Analytical procedures

For sucrose, glucose, and fructose measurements, a 0.1‐g aliquot of

the frozen powders (see above) were resuspended in 1 ml of 90% eth-

anol, incubated at 70°C for 90 min, and centrifuged at 13,000 × g for

10 min. Sugar contents in the supernatants were then determined by

high‐performance liquid chromatography with pulsed amperometric

detection using an ICS‐3000 Dionex system as described by Bahaji

et al. (2015). NADP and NADPH contents were measured as

described by Queval and Noctor (2007). Recovery percentages of

the analytes were estimated from differences in measured amounts

in samples of frozen tissue slurry with and without spiking by stan-

dards immediately after addition of extraction solutions. All presented

concentrations of these metabolites were corrected for losses during

extraction. Starch was measured using an amyloglucosydase‐based

test kit (Boehringer Mannheim, Germany), and chlorophyll contents

were quantified according to Lichtenthaler (1987). To determine levels

of CKs, portions of the frozen leaves (prepared as described above)

were lyophilized, and CKs were quantified following Novák,

Hauserová, Amakorová, Dolezal, and Strnad (2008). ABA contents

were determined as described by Floková et al. (2014).
2.5 | ROS staining

ROS were semiquantitatively detected in rosettes essentially as

described by Nguyen et al. (2017). Briefly, superoxide anion was

detected by staining rosettes for 15 min with 0.05% nitro blue tetra-

zolium (NBT; w/v) in 50‐mM potassium phosphate, pH 7.0, and

H2O2 by staining for 5 hr with 0.1% 3,3′‐diaminobenzidine (DAB) in

10‐mM potassium phosphate, pH 7.0.
2.6 | Real‐time quantitative PCR

Total RNA was extracted from frozen Arabidopsis leaves of in vitro cul-

tured plants using the TRIzol method according to the manufacturer's

recommendations (Invitrogen), following treatment with RNAase‐free

DNAase (Takara). RNA (1.5 μg) was reverse transcribed using polyT

primers and an Expand Reverse Transcriptase kit (Roche) according
to the manufacturer's instructions. RT‐PCR amplification was per-

formed as described by Sánchez‐López, Baslam, et al. (2016) using

primers listed in Table S1, and their specificity was checked by sepa-

rating the obtained products on 1.8% agarose gels.
2.7 | Identification of redox‐sensitive cysteines

2.7.1 | Protein extraction and tagging

Proteins were extracted and tagged essentially as described by Guo

et al. (2014) with some modifications. Briefly, 0.5 g of plant tissue

was ground in liquid nitrogen, mixed with 2‐ml extraction buffer (20‐

mM HEPES, 0.5‐mM EDTA, 0.5% Triton X‐100, 100‐mM NaCl, and

1% SDS) supplemented with 100‐mM N‐ethylmaleimide (NEM) to

block the free thiol groups, and incubated for 1 hr at room tempera-

ture. The mixture was centrifuged at 4°C for 10 min at 10,000 × g. Pro-

teins were precipitated and washed to remove any free NEM by

adding of 5 volumes of iced acetone and incubating overnight at

−20°C. After centrifugation, the supernatant was discarded, and the

protein pellet was recovered by centrifugation at 10,000 × g and 4°C

for 10 min, rinsed with cold acetone three times, and air dried. Urea

solution (8 M) was added to dissolve the pellet, and brief intermittent

sonication was applied until the pellet dissolved. The resulting

protein‐containing solution was incubated with 10‐mM dithiothreitol

(DTT) at 37°C for 30 min to reduce oxidized thiols. DTT was then

removed with PD‐10 desalting columns (GE Healthcare). The protein

concentration of each preparation was determined using a Pierce™

660 nm Protein Assay Kit (Thermo Fisher Scientific), and a portion con-

taining 500 μg of proteins was used for the subsequent enrichment

experiment. The samples were alkylated with 1 M of 2‐iodoacetamide

(IAM; Wako) for 1 hr at 37°C in the dark to tag the DTT‐reduced thiols

by carbamidomethylation. Proteins were acetone precipitated,

resolubilized in 8‐M urea, digested with lysine (Sigma) for 3 hr and

trypsin (Sigma) overnight at 37°C at a 1:40 trypsin‐to‐protein mass

ratio, desalted using Sep‐Pak C18 cartridges, and dried in a SpeedVac.

2.7.2 | iTRAQ labelling of peptides and strong cation
exchange fractionation

Peptides from samples of non‐VC‐treated WT plants, VC‐treated WT

plants, non‐VC‐treated ntrc plants, and VC‐treated ntrc plants were

labelled at room temperature for 2 hr with iTRAQ reporter reagents

114, 115, 116, and 117, respectively, according to the iTRAQ manual

(SCIEX). All four samples were then mixed in a single tube and dried

in a SpeedVac (Eppendorf). Peptides were subsequently fractionated

by strong cation exchange columns (SCIEX, USA) and then lyophilized

to dryness.

2.7.3 | Liquid chromatography–mass spectrometry
analysis

Proteomic profiles of three technical replicates of samples were quan-

titatively analysed as described by Fukao et al. (2011) and Shiraya
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et al. (2015) using a coupled DiNA‐A (KYA Tech., Tokyo, Japan) and

LTQ‐Orbitrap XL (Thermo Fisher Scientific) liquid chromatography–

MS/MS system. The ionization voltage and capillary transfer tempera-

ture at the electrospray ionization nanostage were set to 1.7–2.5 kV

and 200°C, respectively. iTRAQ‐labelled peptides were separated in

a MonoCap C18 High Resolution 2000 column (GL Sciences), using a

mobile phase consisting of a 240‐min linear gradient of 2–26.7% ace-

tonitrile in water (with a 10‐min wash with 80% acetonitrile, v/v, and

15‐min re‐equilibration between each run, maintaining 0.1% formic

acid, v/v, throughout). Peptides that eluted from the column were

introduced directly into the mass at a flow rate of 300 nl min−1. Diva-

lent or trivalent ions were subjected to MS/MS analysis in top 3 data‐

dependent acquisition mode. Collision‐induced dissociation and higher

energy collisional dissociation settings for all MS/MS analyses were 35

and 45 eV, respectively.
2.7.4 | MS data analysis

Raw MS data files were submitted to Proteome Discoverer 1.4 with

the SEQUEST algorithm (Thermo Scientific Inc., Bremen, Germany)

and MS Amanda (Dorfer et al., 2014) to search for matches in the

Gene Ontology Arabidopsis database. Percolator was set to a target

false discovery rate of 0.05. Peptides were quantified using the

iTRAQ4plex reporter ion method and identified from database search

results with the following criteria: enzyme, trypsin; maximum missed

cleavage sites, 2; peptide charge, 2+ or 3+; MS tolerance, 5 ppm;

MS/MS tolerance, ±0.6 Da; and dynamic modification, oxidation (H,

M, and W) and iTRAQ 4‐plex (K, Y, and N‐terminus). Variable

modifications for the search included carbamidomethylation and

NEM at cysteines, iTRAQ (4‐plex) at tyrosines, and oxidation at methi-

onines (mass shifts: 57.02, 125.05, 144.10, and 15.99, respectively).

The fixed modification was iTRAQ (4‐plex) reagent labelling at N‐

terminal and lysine.
2.7.5 | OxiTRAQ data analysis

Amounts of detected peptides were normalized using total intensities

of their assigned mass spectra according to the SEQUEST searching

results, and peptide ratios were calculated accordingly from medians

of the normalized intensities. Log2‐transformed treated/control ratios

were subjected to Student's t test (two tailed). Differences in concen-

trations of peptides between samples with fold changes greater than

1.9 or less than 0.5, and P < 0.05, were considered significantly

changed. The isobaric tags for relative and absolute quantitation

(iTRAQ) data (Parker, Zhu, Zhu, & Chen, 2012) were searched using

the database mentioned above to generate information about changes

in total protein levels. The same set of samples were analysed in

another MS run and used as technical replicates to determine possible

variation caused by MS analysis. Student's t test was applied to peak

intensity values of all spectra of corresponding peptides from control

and treated samples in the same MS run.
2.8 | Statistical analysis

Presented data are means (± standard error) obtained from three to

four independent experiments, with 3–5 replicates for each experi-

ment. The significance of differences between WT and ntrc plants

not exposed to VCs and plants exposed and not exposed to

A. alternata VCs was statistically evaluated with Student's t test using

the SPSS software. Differences were considered significant if P < .05.
3 | RESULTS

3.1 | ntrc plants poorly respond to A. alternata VCs

Using the box‐in‐box cocultivation system described by García‐Gómez

et al. (2019), we compared growth and developmental responses of

WT and ntrc plants grown in the vicinity of A. alternata cultures cov-

ered with VOC‐adsorbing charcoal filters. We also analysed the

growth response to fungal VCs of near starch‐less aps1 plants

impaired in starch biosynthesis and starch‐excess gwd plants impaired

in starch breakdown (Baslam et al., 2017; Caspar et al., 1991;

Ventriglia et al., 2008). In the absence of VOC‐depleted fungal VCs,

rosettes and roots of the ntrc mutant were slightly smaller and lighter

than those of WT plants (Figure 1a,b), as reported by Lepistö et al.

(2009) and Li et al. (2011). ntrc plants produced shorter primary roots

and fewer first‐ and second‐order lateral roots (LRs) than WT plants

(Figure 1a,c), as found by Kirchsteiger et al. (2012). In keeping with

findings by Sánchez‐López, Baslam, et al. (2016) and García‐Gómez

et al. (2019), VOC‐depleted fungal VCs promoted rosette and root

growth, elongation of the primary root, and formation of first‐ and

second‐order LRs in WT plants (Figure 1), thereby increasing the

density of the root system (Figure 1c). As in WT plants, VOC‐depleted

fungal VCs promoted rosette and root growth in aps1 and gwd plants

(Figure S1). Notably, fungal VC‐promoted rosette and root growth was

substantially weaker in ntrc plants than in WT plants (Figure 1a,b).

Furthermore, unlike in WT plants, VOC‐depleted fungal VCs did not

promote primary root elongation or LR formation and did not

enhance the root system density in the ntrc mutant (Figure 1c). Fungal

VCs promoted root hair elongation in both WT and ntrc plants

(Figure S2).

It is known that VCs emitted by diverse types of microorganisms

promote growth of WT plants (Sánchez‐López, Baslam, et al., 2016).

To assess further the growth responses of ntrc plants to microbial

VCs, we grew plants in the presence of adjacent cultures of phyloge-

netically diverse species of fungi and bacteria with or without a top

layer of VOC‐adsorbing charcoal filter. As shown in Figure S3, growth

promoted by VOC‐depleted VCs of tested microorganisms was sub-

stantially weaker in ntrc plants than in WT plants. In keeping with

García‐Gómez et al. (2019), the responses of WT and ntrc plants

grown in the vicinity of microbial cultures not covered with charcoal

filters were identical to those of plants grown with adjacent fungal cul-

tures covered with charcoal filters (not shown).



FIGURE 1 ntrc plants weakly respond to
Alternaria alternata volatile compounds (VCs).
(a) external phenotypes, (b) rosette and root
fresh weight (FW), and (c) root architecture
parameters of wild‐type (WT) and ntrc plants
cultured in the absence or continuous
presence of VCs emitted by adjacent
A. alternata cultures covered with volatile
organic compound‐adsorbing charcoal filters
for 1 week. Values in (b) and (c) are
means ± standard error for three biological
replicates (each a pool of 12 plants) obtained
from four independent experiments.
aSignificant differences, according to
Student's t test (P < .05), between WT and
ntrc plants cultured without fungal VC
treatment. bSignificant differences, according
to Student's t test (P < .05), between VC‐
treated and nontreated WT plants.
cSignificant differences, according to
Student's t test (P < .05), between VC‐treated
and nontreated ntrc plants
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3.2 | A. alternata VCs reduce ABA content and
increase levels of plastidial CKs but weakly alter
expression of ABA‐ and CK‐responsive genes in ntrc
plants

Having established NTRC's involvement in plants' response to fungal

VCs, we compared their effects on ABA and CK contents and signal-

ling in ntrc and WT plants. For this, we measured the contents of

ABA and CKs in mature leaves of ntrc plants cultured in the absence

or continuous presence of VCs emitted by adjacent A. alternata cul-

tures for 3 days. We also analysed expression levels of a selected

group of CK‐ and ABA‐responsive genes (Bhargava et al., 2013; Bren-

ner & Schmülling, 2015; Nemhauser, Hong, & Chory, 2006) that are

sensitive to fungal VCs (cf. table 3 in Sánchez‐López, Baslam, et al.,

2016) by qRT‐PCR.

In the absence of fungal VCs, ntrc leaves had higher ABA content

than WT leaves (209 ± 16 and 352 ± 8 pmol g−1 dry weight in WT
and ntrc plants, respectively) but similar CK contents (Tables 1 and

S2 and Figure S4). A. alternata VCs caused a significant reduction in

ABA contents in leaves of both WT and ntrc plants (86.1 ± 19.7 and

94.7 ± 25.4 pmol g−1 dry weight, respectively) and increases in levels

of precursors and active and transport forms of plastidial CKs (Tables 1

and S2 and Figure S4). Notably, changes in levels of expression of

ABA‐ and CK‐responsive genes in response to VC treatment were

substantially weaker in ntrc leaves than in WT leaves (Figure 2).
3.3 | Fungal VCs weakly increase photosynthetic
capacities of exposed ntrc plants

NTRC plays an important role in photosynthesis (Naranjo et al., 2016;

Nikkanen et al., 2016; Ojeda et al., 2017). To investigate whether ntrc

plants' weak responses to VCs could be due to nonresponsiveness of

photosynthesis to fungal VCs, we compared key photosynthetic



TABLE 1 Contents of precursors and active and transport forms of
plastidial CK (pmol g−1 dry weight) in leaves of WT and ntrc plants
cultured in solid Murashige and Skoog medium in the absence or
continuous presence of VCs emitted by adjacent A. alternata cultures
for 3 days

CKs

MEP pathway (plastid)‐derived CKs

WT − VCs WT + VCs ntrc − VCs ntrc + VCs

iPRMP 51.5 ± 1.0 132 ± 6b 49.8 ± 1.9 76.6 ± 2.3c

tZRMP 5.66 ± 0.43 53.0 ± 2.8b 2.93 ± 0.12a 8.75 ± 0.48c

iPR 8.32 ± 0.18 13.3 ± 16.7 14.5 ± 1.7a 68.7 ± 7.4c

tZR 1.60 ± 0.08 13.0 ± 12.0b 1.45 ± 0.04 6.89 ± 0.54c

DZR 2.47 ± 0.13 0.65 ± 0.09 2.95 ± 0.32 3.96 ± 0.50

iP 16.2 ± 0.5 15.1 ± 1.3 19.3 ± 2.8 21.7 ± 2.4

tZ 13.7 ± 1.8 24.0 ± 1.3b 16.0 ± 2.7 21.7 ± 3.6

DZ 0.71 ± 0.15 0.65 ± 0.09 0.89 ± 0.20 0.77 ± 0.10

Note. Values are means ± standard error of determinations in three inde-

pendent experiments.

Abbreviations: CK, cytokinin; DZ, dihydrozeatin; DZR, dihydrozeatin

riboside; iP, isopentenyladenine; iPR, N6‐isopentenyladenosine; iPRMP,

N6‐isopentenyladenosine‐5′‐monophosphate; tZ, trans‐zeatin; tZR, trans‐
zeatin riboside; tZRMP, trans‐zeatin riboside 5′‐monophosphate; VCs, vol-

atile compounds; WT, wild‐type.
aSignificant differences, according to Student's t test (P < .05), between

WT and ntrc plants cultured without fungal VC treatment.
bSignificant differences, according to Student's t test (P < .05), between

VC‐treated and nontreated WT plants.
cSignificant differences, according to Student's t test (P < .05), between

VC‐treated and nontreated ntrc plants.
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parameters of WT and ntrc plants cultured in the absence or continu-

ous presence of VCs emitted by adjacent A. alternata cultures.

As shown in Figure 3a, and previously recorded (Pérez‐Ruiz et al.,

2006), leaves of ntrc plants that were not exposed to fungal VCs accu-

mulated lower levels of chlorophyll than those of WT plants. In keep-

ing with previous reports (Lepistö et al., 2009; Naranjo et al., 2016),

ΦPo, ΦPSII, and photochemical quenching (qP) were lower in ntrc plants

than in WT plants (Table 2 and Figure S5). Accordingly, An and ETR at
FIGURE 2 Alternaria alternata volatile
compounds (VCs) weakly alter expression of
abscisic acid (ABA)‐ and cytokinin (CK)‐
responsive genes in ntrc plants. Relative
abundance of transcripts of CK‐ and ABA‐
responsive genes in leaves of WT and ntrc
plants (grey and black, respectively) cultured
in the absence or continuous presence of VCs
emitted by adjacent A. alternata cultures for
3 days. Fold change values are differences in
levels of transcripts (measured by quantitative
RT‐PCR) in leaves of plants cultured in the
presence of VCs and harvested at the end of
the light period for 16 hr, relative to those of
control leaves of plants cultured in the
absence of VCs. WT, wild‐type
all Ci levels (Figure 3b, c) as well as Vcmax, TPU, and Jmax values (Table 2)

were lower in ntrc plants than in WT plants. Nonphotochemical

quenching of chlorophyll fluorescence (ΦNPQ) was higher in ntrc plants

than in WT plants (Table 2), as previously reported by Naranjo et al.

(2016). The NADPH/NADP ratio was higher in ntrc leaves than in

WT leaves (Figure 3d), as observed by Thormählen et al. (2015). Leaves

of VC‐exposed WT plants accumulated substantially higher levels of

chlorophyll than those of nontreated plants (Figure 3a). ΦPSII was

higher and ΦNPQ lower in VC‐treated WT plants than in nontreated

controls (Table 2), as found by Sánchez‐López, Baslam, et al. (2016).

Accordingly, leaves of VC‐treated WT plants had higher An and ETR

values than controls at all Ci levels (Figure 3b,c). VC‐treated WT leaves

also had higher Vcmax, Jmax, and TPU values than nontreated controls

(Table 2), higher NADPH/NADP ratios (Figures 3d and S6), and higher

levels of primary photosynthates (e.g., glucose, fructose, and sucrose;

Figure 3e). In contrast, A. alternata VCs caused a nonsignificant reduc-

tion in chlorophyll contents in leaves of ntrc plants (Figure 3a). More-

over, VCs had a negative effect on ɸPo and qP and did not

significantly alter ΦNPQ in ntrc plants (Table 2). Furthermore, no signif-

icant differences were observed in An values between VC‐treated and

nontreated ntrc leaves at any Ci levels (Figure 3b). Accordingly, no sig-

nificant differences in Vcmax, Jmax, and TPU were observed between

VC‐treated and nontreated ntrc leaves (Table 2). Finally,

NADPH/NADP ratios were lower in leaves of VC‐treated ntrc plants

than in controls (Figures 3d and S6), and levels of primary photosyn-

thates were not significantly altered by A. alternata VCs in the ntrc

mutant (Figure 3e). Fungal VCs enhanced ETR at all Ci levels and ΦPSII

in leaves of ntrc plants (Table 2, Figure 3c).
3.4 | The weak response to fungal VCs of ntrc plants
is suppressed by decreased 2‐Cys Prx expression

Pérez‐Ruiz et al. (2017) have recently reported that reduction of 2‐Cys

Prx expression suppresses the ntrc phenotype and proposed that

NTRC regulates chloroplast redox status via its functional relationship

with 2‐Cys Prxs. To investigate the possible involvement of the



FIGURE 3 Fungal volatile compounds (VCs)
poorly increase photosynthetic capacities of
exposed ntrc plants. (a) Total chlorophyll
contents, curves of (b) net CO2 assimilation
rate (An) and (c) photosynthetic electron
transport (ETR) versus intercellular CO2

concentration (Ci), (d) NADPH/NADP ratio,
and (e) levels of primary photosynthates
(soluble sugars) in leaves of wild‐type (WT)
and ntrc plants cultured in the absence or
continuous presence of VCs emitted by
adjacent Alternaria alternata cultures for
1 week. VC treatment started 28 days after
sowing plants. Values in (a), (d), and (e) are
means ± standard error for three biological
replicates (each a pool of 12 plants) obtained
from four independent experiments.
aSignificant differences, according to
Student's t test (P < .05), between WT and
ntrc plants cultured without fungal VC
treatment. bSignificant differences, according
to Student's t test (P < .05), between VC‐
treated and nontreated WT plants.
cSignificant differences, according to
Student's t test (P < .05), between VC‐treated
and nontreated ntrc plants. FW, fresh weight

TABLE 2 Photosynthetic parameters of leaves of WT and ntrc plants cultured in the absence or continuous presence of VCs emitted by adjacent
A. alternata cultures for 3 days

Treatment ɸPo ɸPSII ɸNPQ qP
Jmax

(μmol e− m−2 s−1)
Vcmax

(μmol CO2 m−2 s−1)
TPU
(μmol Pi m−2 s−1)

WT − VCs 0.830 ± 0.002 0.710 ± 0.001 0.243 ± 0.002 0.722 ± 0.008 33.1 ± 1.7 12.8 ± 0.9 1.82 ± 0.09

WT + VCs 0.831 ± 0.000 0.718 ± 0.002b 0.215 ± 0.002b 0.770 ± 0.002b 53.7 ± 1.3b 20.4 ± 2.0b 2.79 ± 0.04b

ntrc – VCs 0.815 ± 0.001a 0.688 ± 0.003a 0.311 ± 0.004a 0.543 ± 0.010a 28.6 ± 2.1a 11.3 ± 0.8a 1.44 ± 0.05a

ntrc + VCs 0.795 ± 0.002c 0.696 ± 0.004 0.304 ± 0.009 0.362 ± 0.013c 29.0 ± 2.3 11.6 ± 0.7 1.36 ± 0.02

Note. Values are means ± standard error of determinations in three independent experiments.

Abbreviations: VCs, volatile compounds; WT, wild‐type.
aSignificant differences, according to Student's t test (P < .05), between WT and ntrc plants cultured without fungal VC treatment.
bSignificant differences, according to Student's t test (P < .05), between VC‐treated and nontreated WT plants.
cSignificant differences, according to Student's t test (P < .05), between VC‐treated and nontreated ntrc plants.
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NTRC–2‐Cys–Prx tandem in the plant response to fungal VCs, we

characterized Δ2cp and ntrc–Δ2cp plants cultured in the absence or

continuous presence of charcoal‐filtered VCs emitted by adjacent

A. alternata cultures for 1 week. As shown in Figure 4a, VC‐exposed

Δ2cp, ntrc–Δ2cp, and WT plants had similar sizes and were much

larger than the nontreated controls. Leaves of VC‐exposed Δ2cp and

ntrc–Δ2cp plants accumulated higher levels of chlorophyll, had higher

An values, and accumulated higher levels of primary photosynthates

(starch and soluble sugars) than leaves of nontreated plants (Figure 4

b–d). These findings clearly indicate that the suppressor effect of the

ntrc phenotype by decreased levels of 2‐Cys Prxs is also exerted on

the plant's response to VOC‐depleted fungal VCs. To test whether

the weak responsiveness to VOC‐depleted fungal VCs of ntrc plants
could be due to ROS over‐accumulation in leaves, we examined their

superoxide anion and H2O2 contents by NBT and DAB staining,

respectively. No significant differences in ROS contents were found

between leaves of WT, ntrc, Δ2cp, and ntrc–Δ2cp plants and VC‐

treated and ‐untreated plants (Figure S7).
3.5 | A. alternata VCs promote global reduction and
oxidation of the thiol redox proteomes of WT and ntrc
leaves, respectively

The weak response to VCs of the ntrc mutant suggested that thiol‐

dependent posttranslational modifications play an important role in



FIGURE 4 Reducing 2‐Cys Prx activity
restores ntrc plants' responses to fungal
volatile compounds (VCs). (a) external
phenotype, (b) net CO2 assimilation rate (An),
(c) total chlorophyll content, and (d) contents
of primary photosynthates (starch, sucrose,
glucose, and fructose) in leaves of wild‐type
(WT), ntrc, Δ2cp, and ntrc–Δ2cp plants
cultured in the absence or continuous
presence of VCs emitted by adjacent
Alternaria alternata cultures for 1 week. Values
in panels (b), (c), and (d) are means ± standard
error of three biological replicates (each a pool
of 12 plants) obtained from four independent
experiments. aSignificant differences,
according to Student's t test (P < .05),
between WT and ntrc, Δ2cp, and ntrc–Δ2cp
plants cultured without fungal VC treatment.
bSignificant differences, according to
Student's t test (P < .05), between VC‐treated
and nontreated WT plants. cSignificant
differences, according to Student's t test
(P < .05), between VC‐treated and nontreated
ntrc plants. dSignificant differences, according
to Student's t test (P < .05), between VC‐
treated and nontreated Δ2cp plants.
eSignificant differences, according to
Student's t test (P < .05), between VC‐treated
and nontreated ntrc–Δ2cp plants. FW, fresh
weight
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plant responses to VCs. Thus, we next addressed the possibility that

the different responses to A. alternata VCs observed in WT and ntrc

plants include (and are partially due to) differences in oxidative modi-

fications of protein cysteine residues. Because of the complexity of

the multiple forms of cysteine redox modifications (e.g., disulfide,

S‐nitrosylation, S‐glutathionylation, S‐cyanylation, persulfidation, or

S‐sulfenylation), this study focused on the quantification of total

reversible thiol oxidation in leaves of WT and ntrc plants cultured in

the absence or continuous presence of VCs emitted by nearby fungal

cultures for 3 days using OxiTRAQ‐based quantitative redox proteo-

mics. This approach is based on differential labelling of reduced and

oxidized cysteines and only quantifies reversibly oxidized thiols that

are DTT reducible (for further details, see Section 2).

In total, 782 unique cysteine‐containing peptides from 747 distinct

proteins obtained fromWT leaves and 781 unique cysteine‐containing

peptides from 746 distinct proteins obtained from ntrc leaves were

identified in this study (Tables S3 and S4). A peptide, whose abun-

dance differed by more than 1.9‐fold or less than 0.5 with a P < .05,
was considered to be redox‐sensitive in this report. Applying this cri-

terion, 113 cysteine‐containing peptides from 110 distinct proteins

and 87 cysteine‐containing peptides from 87 distinct proteins were

found to be redox sensitive in response to VCs in WT and ntrc plants,

respectively (Tables S5 and S6). Of the VC‐responsive, redox‐sensitive

proteins, nearly 15% have been shown to be redox sensitive in other

studies (Tables S5 and S6). Among the 113 VC‐responsive, redox‐

sensitive peptides of WT leaves, 74 cysteines in 71 different proteins

were in a more reduced state in the VC‐treated than in nontreated

plants, whereas 49 cysteines in 47 different proteins were more oxi-

dized in the VC‐treated than in nontreated plants (Table S5). Further-

more, of the 87 VC‐responsive, redox‐sensitive peptides of ntrc plants,

56 cysteines in 44 different proteins were in a more oxidized state in

the VC‐treated than in nontreated plants, whereas 44 cysteines in 41

different proteins were more reduced in VC‐treated than in

nontreated plants (Table S6).

Predicted locations of the VC‐responsive, redox‐sensitive proteins

of WT and ntrc plants obtained using the SUBA4 Arabidopsis protein
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subcellular localization database included almost all cellular compart-

ments, but the highest proportions had predicted plastidial, nuclear,

and mitochondrial locations (Tables S5 and S6 and Figure S8). Using

DiANNA software (http://clavius.bc.edu/~clotelab/DiANNA/), 50%

and 60% of the redox‐sensitive peptides of WT and ntrc plants,

respectively, were predicted to form intramolecular disulfide bonds

(Tables S5 and S6). It should be noted that formation of disulfide brid-

ges represents only one possibility of thiol modifications (Buchanan &

Balmer, 2005; Couturier et al., 2013), and other modifications such as

glutathionylation, nitrosylation, and oxidation to sulfenic acid are also

chemically reversible by DTT, which was used to reduce oxidized

thiols before the reaction with thiol‐reactive IAM. Therefore, some

of the VC‐promoted reversible thiol modifications identified in this

study could be due to any of those types.
Using broad characterizations outlined by the MapMan tool

(Thimm et al., 2004; http://gabi.rzpd.de/projects/MapMan/), the VC‐

responsive, redox‐sensitive proteins were assembled into functional

groups. Most were assigned to protein, RNA, signalling, and stress

response functional categories (Tables S5 and S6 and Figure 5). Nota-

bly, VC exposure resulted in reduction of cysteine residues of several

CBC enzymes (e.g., cFBP1, PRK, and SBP), proteins involved in photo-

chemical reactions of photosynthesis (e.g., FNRL and PSAN), and PrxQ

in WT leaves (Table S5 and Figure 5a). In addition, fungal VC exposure

of ntrc plants resulted in oxidation of cysteine residues of proteins

involved in photochemical reactions of photosynthesis (e.g., FNR1,

PSAN, and PSBO‐1) and PrxQ (Table S6 and Figure 5b). All these cys-

teine residues are highly conserved throughout land plants and algae

(Figure S9).
FIGURE 5 Alternaria alternata volatile
compounds (VCs) promote global reduction

and oxidation of the thiol redox proteomes of
wild‐type leaves and ntrc leaves, respectively.
The graphics represent functional
categorizations of VC‐responsive redox
sensitive proteins in (a) wild‐type and (b) ntrc
plants, sorted according to putative functional
categories assigned by MapMan software.
Numbers of oxidized and reduced cysteines in
each categorical group are indicated by grey
and black bars, respectively. Proteins
discussed in the text are boxed

http://clavius.bc.edu/~clotelab/DiANNA/
http://gabi.rzpd.de/projects/MapMan/
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4 | DISCUSSION

4.1 | NTRC is an important mediator of plant
responses to microbial VCs

VCs emitted by A. alternata and other microbial species had weak stim-

ulatory effects on growth and development of ntrc plants (Figures 1a,b

and S3), strongly indicating that NTRC plays an important role in plant

responses to microbial VCs. The weak response of ntrc plants to fungal

VCs cannot be ascribed to altered starch metabolism because growth

responses of the starch‐deficient aps1 and the starch‐excess gwd

plants were comparable with those of WT plants (Figure S1).

Unlike in WT plants, chlorophyll content did not increase upon

fungal VC treatment in ntrc plants (Figure 3a), indicating that NTRC

is a major determinant of chlorophyll biosynthesis in VC‐exposed

plants and no other reductant system(s) can functionally replace NTRC

in promoting photosynthetic pigment production under VC exposure.

Also, ΦNPQ did not vary and qP did not increase upon fungal VC treat-

ment in ntrc plants (Table 2), indicating that, unlike in WT plants, VCs

do not improve the efficiency of light use in ntrc leaves and, hence, do

not improve photosynthetic CO2 fixation. This inference was sup-

ported by the finding that fungal VCs did not alter Vcmax, Jmax, and

TPU values of ntrc plants but increased those of WT plants (Table 2).

These observations suggest that NTRC is a major mediator of the

plants' responses to VCs, probably due to its regulatory action on

photosynthesis‐related mechanisms.

Previous reports have shown that microbial VCs can induce

changes in root development (Ditengou et al., 2015; García‐Gómez

et al., 2019; Garnica‐Vergara et al., 2016; Molina‐Favero, Creus,

Simontacchi, Puntarulo, & Lamattina, 2008). Furthermore, Kirchsteiger

et al. (2012) reported that NTRC is involved in LR formation in

Arabidopsis seedlings by unidentified mechanisms. Here, we found

that, unlike in WT plants, VCs did not promote formation of LR in ntrc

plants (Figure 1c), strongly indicating that NTRC is an important deter-

minant of LR formation in response to A. alternata VCs. CKs and ABA

are major regulators of photosynthesis, growth, and development

(Cortleven & Valcke, 2012; Kieber & Schaller, 2014; Moore et al.,

2003; Rolland, Baena‐Gonzalez, & Sheen, 2006). In WT plants, micro-

bial VCs promote reduction of ABA levels and increases in plastidial

CK contents (Sánchez‐López, Baslam, et al., 2016; Zhang et al.,

2008), which are accompanied by changes in the expression of ABA‐

and CK‐responsive genes (Sánchez‐López, Bahaji, et al., 2016;

Sánchez‐López, Baslam, et al., 2016; Zhang et al., 2008). Arabidopsis

mutants with CK deficiency, and/or reduced endogenous ABA and

CK receptor sensitivity, weakly respond to microbial VCs (Sánchez‐

López, Baslam, et al., 2016; Zhang et al., 2008), indicating that plant

responses to microbial VCs involve endogenous ABA and CK signal-

ling. NTRC is a good reductant of CHLI (Pérez‐Ruiz et al., 2014), which

together with the putative ABA receptor CHLH (Du et al., 2012;

Shang et al., 2010; Shen et al., 2006; Wu et al., 2009) is involved in

ABA signalling in processes such as stomatal movement, seed devel-

opment, and seedling growth (Du et al., 2012; Tsuzuki et al., 2011).

Moreover, NTRC is an important determinant of posttranslational
regulation of CHLI expression, as impairment of the NTRC‐mediated

redox regulation of CHLI destabilizes the protein (Pérez‐Ruiz et al.,

2014). Notably, here we found that responses in expression of ABA‐

responsive genes to VC treatment were substantially weaker in ntrc

plants than in WT plants (Figure 2). This suggests that NTRC affects

ABA signalling in VC‐exposed plants through its action on CHLI redox

status. Therefore, the nonresponsiveness of ABA‐responsive genes in

ntrc plants to fungal VCS could be due, at least partly, to the lack of

active CHLI. As responses in expression of CK‐responsive genes to

VC treatment were weaker in ntrc plants than in WT plants

(Figure 2), it is tempting to speculate that NTRC participates in CK sig-

nalling in VC‐exposed plants through unidentified mechanisms involv-

ing regulation of the redox status of proteins that mediate this signal

pathway. Clearly, further experiments are needed to test this

hypothesis.
4.2 | Weak responses of ntrc plants to microbial VCs
are not due to ROS over‐accumulation

Photosynthesis involves transport of electrons in the presence of oxy-

gen and, thus, is a major source of ROS. When high levels accumulate

under stress conditions in which PET rates exceed photosynthetic

capacity, ROS over‐accumulation may cause photooxidative damage

(Apel & Hirt, 2004; Stenbaek et al., 2008). Microbial VCs enhance pho-

tosynthetic ETR in ntrc plants (Figure 3c) but have no effect on An

(Figure 3b), thereby creating conditions that promote ROS production.

In Arabidopsis, NTRC is a good reductant of the two H2O2 detoxifying

2‐Cys Prxs, hence suggesting it plays an important role in preventing

excessive ROS accumulation (Kirchsteiger et al., 2009; Pérez‐Ruiz

et al., 2006; Puerto‐Galán et al., 2015; Pulido et al., 2010). Notably,

as in WT plants, VCs strongly promoted photosynthesis and growth

of ntrc–Δ2cp plants (Figure 4a–d). Furthermore, leaves of VC‐treated

and nontreated WT, ntrc, Δ2cp, and ntrc–Δ2cp plants accumulated

comparable ROS levels (Figure S7). These findings indicate that ntrc

plants' weak responses to VCs are not due to ROS over‐accumulation

as a consequence of 2‐Cys Prxs inactivation. They also indicate that

the stimulatory effect of microbial VCs on plant performance requires

an appropriate chloroplast redox homeostasis through mechanisms

wherein the NTRC–2‐Cys–Prx tandem plays a central function.
4.3 | A. alternata VCs promote changes in the thiol
redox‐proteome of WT plants that could account for
the observed plants' responses

The redox proteomic analyses conducted here provide an in‐depth

report of thiol‐based redox proteins that are responsive to microbial

VCs in plants. Our results show that microbial VCs promote global

reduction of the thiol redox proteome of WT leaves, especially of pro-

teins involved in cell wall metabolism, nucleotide metabolism, photo-

synthesis, protein synthesis and processing, redox metabolism,

secondary metabolism, and signalling (Figure 5), which could partly

explain the stimulatory growth responses of plants to VCs. Notably,
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microbial VCs promote global changes in the redox status of proteins

distributed in all cellular compartments but especially in plastids, mito-

chondria, and the nucleus (Figures 5 and S8 and Tables S5 and S6),

indicating that interorganellar redox crosstalk is involved in mainte-

nance of whole cells' redox balance. The results highlight a redox

switching mechanism in VC signalling and provide additional confirma-

tion of the hypothesis that, as illustrated in Figure 6, microbial VC sig-

nalling operates at multiple (including transcriptional, translational, and

posttranslational) levels (García‐Gómez et al., 2019; Sánchez‐López,

Baslam, et al., 2016).

Redox regulation is inextricably associated with the PET chain and

CBC enzymes in plants. Besides the earliest studied CBC enzymes

(e.g., cFBP1, PRK, SBP, and GAPDH), recent biochemical and proteo-

mic studies have provided evidence that all CBC enzymes may

undergo redox regulation through multiple redox posttranslational

modifications (Michelet et al., 2013). We found that fungal VCs pro-

mote reduction of cysteine residues of CBC enzymes in WT plants

(e.g., Cys154 of cFBP1, Cys150 of SBP, and Cys295 of PRK;
FIGURE 6 Suggested model for regulation of plants' responses to micr
proteome changes and NADPH‐dependent thioredoxin reductase C (NTRC
unidentified plasma membrane receptors generate signals that rapidly prom
or alternatively, reactive VIC‐penetrating cells may induce thiol redox modi
activation of photosynthesis‐related proteins (e.g., FNR1, cFBP1, SBP, PRK
activity enhances synthesis of GAP, which enters the MEP pathway, fuellin
regulated signalling reactions resulting in changes in the expression of gene
of enzymes involved in photochemical reactions enhances NADPH product
and NTRC's target enzymes involved in processes such as synthesis of ph
Figure 5a and Table S5). Although highly conserved throughout land

plants and algae (Figure S9), these cysteine residues are not located

in the proposed regulatory Trx redox or catalytic domains of cFBP1,

PRK, and SBP (Brandes, Larimer, & Hartman, 1996; Chiadmi, Navaza,

Miginiac‐Maslow, Jacquot, & Cherfils, 1999; Dunford, Durrant, Catley,

& Dyer, 1998; Villeret, Huang, Zhang, Xue, & Lipscomb, 1995). How-

ever, it should be noted that, besides the structural role of disulfide

bonds, redox changes in proteins' cysteine residues can have diverse

effects. They can participate in regulatory, protective, catalytic, and

signalling mechanisms by influencing subcellular localization or

protein–protein interactions and promoting conformational changes

that affect the modified proteins' biological activities. Therefore, the

redox status of Cys154 of cFBP1, Cys150 of SBP, and Cys295 of

PRK could play roles in the respective enzymes' stability, subcellular

localization, and/or formation of protein complexes in response to

varying environmental conditions. In addition, reduction of some of

these cysteine residues may be involved in the VC‐promoted

enhancement of photosynthesis in WT plants.
obial volatile compounds (VCs) involving posttranslational thiol redox
). According to this model, interactions between VCs and
ote changes in expression of VC‐responsive genes. Additionally, and/
fications of proteins and/or signalling reactions that promote reductive
, PSBO‐1, and PSAN). The resulting augmentation of photosynthetic
g production of isoprenoid hormones that initiate a cascade of redox‐
s whose translation is subject to redox regulation. Reductive activation
ion, thereby influencing whole cells' redox balance, reduction of NTRC
otosynthetic pigments, H2O2 detoxification, and CBC
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The redox proteomic analysis of WT plants performed in this study

also showed that VCs promote reduction of cysteine residues of two

proteins involved in photochemical reactions of photosynthesis: PSAN

and FNRL. These cysteine residues (e.g., Cys155 of PSAN and Cys141

of FNRL) are highly conserved in land plants and algae (Figure S9),

highlighting the importance of their roles throughout a very long

period of evolutionary history. PSAN is essential for efficient interac-

tion between plastocyanin and P700 reaction centre of the PSI com-

plex and thus participates in optimization of electron flow (Haldrup,

Naver, & Scheller, 1999). FNRL is a FAD‐containing NADP+ oxidore-

ductase likely involved in PET (Koskela et al., 2018). It is tempting to

speculate that VC‐promoted ETR enhancement (Figure 3c) is at least

partly due to reductive activation of PSAN and FNRL.
4.4 | The ntrc mutant shows global oxidation of its
redox proteome, especially photosynthesis‐related
proteins

In contrast to WT plants, fungal VCs promoted global oxidation of the

redox proteome of leaves of ntrc plants, especially of proteins related

to cell wall metabolism, nucleotide metabolism, photosynthesis,

protein synthesis and processing, redox metabolism, secondary

metabolism, and signalling (Figure 5 and Table S6), which could partly

explain the weak responses of ntrc plants to VCs. As microbial VC‐

promoted global oxidation of the redox‐proteome involved proteins

distributed in all subcellular compartments in ntrc plants (Figure S8),

NTRC conceivably plays an important role in maintaining whole cell's

redox homeostasis in VC‐exposed plants.

Fungal VCs promoted oxidation of Cys155 of PSAN in ntrc plants

(Table S6), which became more reduced in WT plants exposed to

fungal VCs (see above). This indicates that PSAN is subject to redox

regulation in VC‐exposed plants through mechanisms involving NTRC.

In addition, fungal VCs promoted oxidation of Cys114 of one of the

two PSBO isoforms (e.g., PSBO‐1) in ntrc plants (Table S6), which is

a component of the PSII involved in water oxidation and formation

of molecular oxygen (Murakami et al., 2005). Like Cys155 of PSAN,

Cys114 of PSBO‐1 is highly conserved in land plants and algae

(Figure S9). It is tempting to speculate that weak VC‐promoted

ETR enhancement in ntrc plants (Figure 3c) could be at least partly

due to reduced electron flow as a consequence of PSAN and

PSBO‐1 oxidation.

Microbial VCs also promoted oxidation of Cys178 and Cys183 of

FNR1, both of which are highly conserved in land plants and algae

(Figure S9). FNR1 is one of the two isoforms of leaf Fdx:NADP+(H)

oxidoreductase (FNR) that oxidize the final reduced product of PET,

thereby generating the NADPH required for stromal redox regulation,

reduction of NTRC and its target proteins, and enzymes involved in

diverse metabolic pathways, including the CBC (Ceccarelli, Arakaki,

Cortez, & Carrillo, 2004). Leaf FNR is also implicated in cyclic electron

transfer around PSI, which generates a proton gradient across the thy-

lakoid membrane, resulting in ATP production (Johnson, 2005). FNR1‐

lacking plants grow slowly and accumulate low levels of chlorophyll
(Lintala et al., 2007). Notably, Cys178 is essential for FNR1 enzymatic

activity (Aliverti et al., 1993). Thus, NTRC expression seems to be nec-

essary to prevent FNR1 oxidation in VC‐exposed plants. Moreover,

the reduced FNR1 activity might contribute to the lack of enhance-

ment of photosynthetic capacity, reduction of the NADPH/NADP

ratios, and global oxidation of the redox proteome in VC‐exposed ntrc

plants (Tables 2 and S6 and Figures 3 and S6).

In vitro, PrxQ is a good target of NTRC (Yoshida & Hisabori, 2016).

In WT plants, fungal VCs promoted reduction of Cys116 of this Prx

(Table S5 and Figure 5a), which is conserved throughout land plants

and algae (Figure S9). In contrast, fungal VCs promoted oxidation of

the same cysteine residue in ntrc plants (Table S6 and Figure 5b), sug-

gesting that PrxQ is subject to redox regulation in VC‐exposed plants

to prevent excessive H2O2 accumulation through mechanisms involv-

ing NTRC as schematically illustrated in Figure 6. Both PSAN and PrxQ

are luminal proteins (Petersson, Kieselbach, García‐Cerdán, &

Schröder, 2006), although there are indications that PrxQ may associ-

ate with PSII in the grana stacks (Lamkemeyer et al., 2006) or thyla-

koids on the stromal side (Rouhier et al., 2004). Putative interactions

between NTRC, located in the stroma, and PSAN and PrxQ might

occur through the DsbD‐like transmembrane pathway for disulfide–

thiol exchange, which accepts electrons from stromal Trx‐m and trans-

fers these reducing equivalents to luminal proteins (Karamoko, Gabilly,

& Hamel, 2013; Motohashi & Hisabori, 2006; Figure 6).
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