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Abstract
Data centres are quickly evolving to support new demands for Cloud-Computing services. Extreme workload peaks

represent a challenge for the maintenance of the performance and service level agreements, even more when operation

costs need to be minimised. In this paper, we first present an extensive analysis of the impact of extreme workloads in

large-scale realistic Cloud-Computing data centres, including a comparison between the most relevant centralised resource-

managing models. Moreover, we extend our previous works by proposing a new energy-efficiency policy called Bullfighter

which is able to keep performance key performance indicators while reducing energy consumption in extreme scenarios.

This policy employs queue-theory distributions to foresee workload demands and adapt automatically to workload fluc-

tuations even in extreme environments, while avoiding the fine-tuning required for other energy policies. Finally, it is

shown through extensive simulation that Bullfighter can save more than 40% of energy in the aforementioned scenarios

without exerting any noticeable impact on data-centre performance.
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1 Introduction

Sustainability is one of the major economic issues of the

last decade, and still researchers are encouraged to keep

energy consumption as low as possible in all domains,

specially in production industries. Information Technology

industries should be one of the leaders in this context, as

the evolution and development of its infrastructures have a

very short life cycle, enabling researchers to propose new

methodologies and strategies to lead the sustainability

requirements. Minimisation of energy consumption is one

of the main areas of work to reduce costs and preserve

environmental sustainability.

Cloud computing paradigm has led to a new scenario

where each of this infrastructures are as energy greedy as

traditional industrial factories and small towns. Data cen-

tres constitute the computational and storage core for cloud

computing. The latest tendencies show that data centres

account for approximately 2% of global energy consump-

tion [24], and it increases by 5% annually [26].

The huge amount of energy consumed by Cloud-Com-

puting data centres provides justification for a study into

energy-saving methodologies, either from an economic or

ecological point of view. To this end, cloud computing

operational policies must be analysed in order to be opti-

mised. The workload that has to be processed by Cloud-

Computing data centres usually follows a pattern related to

queue theory. These workloads are process by schedulers,

which may follow various centralized strategies:
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monolithic, two-level and shared state as detailed in

Sect. 2. As Cloud-Computing infrastructures are usually

composed by thousands of machines and experimentation

also needs to be performed through long periods, simula-

tion tools have been widely used by the research

community.

Energy efficiency may be improved in several areas,

such as hardware power consumption, energy distribution,

network equipment, and cooling. In this work we focus on

workload consolidation to reduce the number of servers in

an idle state due to workload fluctuations, such as day/night

patterns. Such model is interesting since current data cen-

tres usually operate at less than half of their maximum

capacity.

The shut-down of servers in low-utilisation periods is

challenging, above all, because the incoming workload

must be successfully foreseen. Furthermore, when the

workload arrival pattern does not follow a stable pattern,

such as one following the Exponential distribution and/or

day/night patterns, performing bad shut-down decisions

may impose a critical performance penalty due to insuffi-

cient available servers.

Current trends tend to consolidate various workloads in

the same hardware to improve resource efficiency. In these

large-scale multi-purpose data centres, the different work-

load patterns of these heterogeneous workloads may lead to

extreme workload arrival patterns. In green data centres

that employ consolidation and shut-down policies, such

extreme peaks may break service level agreements (SLAs)

if the chosen policies are not prepared to adapt to rapidly-

changing environments.

In this paper, we focus on such extreme scenarios, and

present the following novelties:

– Characterisation of the impact in terms of performance

and energy consumption of extreme workloads in large-

scale realistic Cloud-Computing data centres, including

several centralised resource- managing models

employed in industry.

– A new energy-efficiency policy called Bullfighter

which is able to automatically adapt to workload

fluctuations even in extreme scenarios without fine

tuning.

2 Related work

Data-centre energy efficiency can be addressed from vari-

ous perspectives, from an industrial point of view

improving facilities organisation, cooling, arrangement to a

software related solutions. From the latter proposed

strategies range from energy-aware scheduling algorithms

to power-off heuristics that aim to minimize the idleness

time of computational resources. In [7] a neural network

predictor is proposed to support a green scheduling algo-

rithm, and in [15] the energy-aware scheduling proposal is

backed by a multi-objective algorithm backed by a directed

acyclic graph of jobs. The most related approaches to this

work are the ones that aim to switch off resources such as

safety margin power-off policy proposed by [22], migra-

tion policies to free resources proposed by [1, 2, 25] or

energy-aware task consolidation proposed by [19]. In this

work, the authors apply a power-off policy based on a

safety margin in order to minimize the negative impact on

performance. To evaluate this strategy, two different data

centres of 5000 and 100 nodes are simulated. In this kind of

scenario, potential energy reductions between approxi-

mately 20% and 70% are shown.

This paper follows the approach of deeply describe the

impact of a power-off policy when the workload pattern

present unexpected high or low peaks of jobs. The impact

is analyzed in terms of performance and energy con-

sumption on a well-defined, rich and realistic heteroge-

neous workload that follows the trends present in Google

Traces by running a huge amount of experiments for var-

ious centralized scheduling frameworks. The proposed

power-off policy is applied at the resource manager level,

not to a framework or subsystem, making it possible to be

applied to any framework.

2.1 Resource and energy efficiency in Cloud-
Computing data centres

Data centres are usually governed by resource managers in

order to orchestrate the whole process flow from the arrival

of jobs to their deployment to the computational resources

and execution tracking. There are various resource-

managing approaches from centralised to fully distributed

and even hybrid solutions. Centralised approaches are

currently the most popular solutions, where we can high-

light three alternatives known as monolithic (e.g. Google

Borg) [27], shared-state (e.g. Omega) [23] and two-level

(e.g. Mesos) [13]. In monolithic models, a centralised

scheduling algorithm is employed for all jobs. Two-level

alternatives separate the responsibilities of resource allo-

cation and task placement, there is a unique and centralised

resource manager that exposes computing resources to

The rest of the paper is structured as follows: Sect. 2 
includes a brief summary of some approaches found in the 
literature and separated by their perspectives. Section 3 
describes the theoretical framework and formalisation 
proposed to support the models developed. Section 4 
explains in detail the proposed Energy-efficiency policy 
named Bullfighter and then experimentation and results are 
presented and discussed in Sect. 5. Finally, conclusions are 
drawn in Sect. 6.



multiple parallel scheduling nodes, enabling task-place-

ment logic to be developed for each application. It also

allows the cluster state to be shared between clusters.

Finally, in shared-state alternatives the cluster meta-data is

shared between all schedulers but the scheduling process is

performed by using a copy of the cluster state data, that can

be out of date. Thus, when one of these parallel schedulers

makes a decision, it tries to commit it as a transaction, and

in case that it cannot be applied because the selected

resources are no longer free, the scheduling operation is

retried until no conflicts are found.

2.2 Extreme values

The extreme-value theory was developed by studying the

limiting distribution of the random variables sequences

maxfX1; . . .;Xng and minfX1; . . .;Xng; where fX1; . . .;Xng
are independent and identically distributed (iid) random

variables. Historically, work on extreme value problems

may be dated back to as early as 1709, when N. Bernoulli

discussed the mean largest distance from the origin when n

points lie at random on a straight line of length t [18].

Gumbel’s book of 1958 [12] contains a very extensive

bibliography of the developed literature up to that point of

time. Of course, since then, many more refinements of the

original ideas and further theoretical developments and

fields of applications have emerged.

There are three different families of models of Extreme

Value distributions: Gumbel, Fréchet and Weibull. These

three families can be unified by means of the Generalized

Extreme Value Family. An extensive revision of Extreme

Values distributions and their applications can be seen in

Reiss and Thomas [14]. Extreme value analysis (EVA) is

useful for the study of extreme deviations of a random

variable and has been applied to topics as varied as Finance

[8], Structural Design [6] and Environmental Modelling

[17]. In field of Engineering, EVA has been widely used,

for example, in Mechanical Engineering [3], and Tele-

traffic Engineering [21].

3 Theoretical framework

3.1 Workload model

A workload is a set of jobs that has to be deployed and

executed by the data-centre resources. Workloads are

composed of jobs W ¼ fJjgnj¼1; and jobs are composed of

tasks T j ¼ ftjignji¼1: Workloads are usually divided

depending on the duration and goal of their jobs into batch

or service workloads:

– Batch jobs are the ones that perform a computation and

then finish. These jobs have a determined start and end

(e.g. Map-reduce jobs)

– Service jobs are long-running which provide end-user

operations and infrastructure services and they have no

determined end. Web servers or services, such as

BigTable [16], are good examples of Service jobs.

The following job attributes have been considered and

studied:

– Inter-arrival time Xj represents the time between two

consecutive jobs Jj and Jj�1: Therefore it also influ-

ences the amount of jobs executed in a specific time

window. The inter-arrival time between two Batch jobs

is usually shorter than the time between two Service

jobs. According to the queue theory, the inter-arrival

time usually follows an exponential distribution.

Notwithstanding, other distributions, such as the

extreme-value Weibull distribution may be employed.

– Number of tasks nj �ExpðktÞ represents the number of

tasks that compose a job. The number of tasks of a

particular job Jj is generated following an Exponential

distribution with a given the mean value 1=kt:
– Job duration dj �ExpðkdÞ represents the time during

which a job Jj consumes resources in the data centre.

The duration of all tasks of a particular job Jj is

generated by the means of the Exponential distribution

with the given expected value 1=kd:
– Resource usage is the amount of CPU KCPU and RAM

KRAM that all the tasks of all the jobs of a particular

workload consumes.

3.2 Utilisation of the Weibull model

In order to model extreme inter-arrival times, the Weibull

model has been considered for several reasons. In this case,

extreme inter-arrival times present positive small values

and therefore the model must be obtained as the limiting

distribution of the random variables sequence

minfX1; . . .;Xng and must have a positive range. The only

extreme value family that verifies these two conditions is

the Weibull family. Specifically, we use the following

definition: a random variable X follows the two-parameter

Weibull distribution Wða; kÞ (and we write x�Wða; kÞ ) if

its probability density function (pdf) is:

f ðxÞ ¼ ak xkð Þa�1e�ðxkÞa ; x[ 0;

where a and k are the shape and scale parameters

respectively.

The Exponential distribution is commonly used to

model the arrival of workload to data centres. Therefore,

one of the objectives of this work is to compare the results



obtained from the Weibull and Exponential models. A

random variable X follows the Exponential distribution

ExpðkÞ (and we write x�ExpðkÞ ) if its pdf is:

f ðxÞ ¼ k exp �kxf g; x[ 0;

where k[ 0 is the scale parameter.

Given the definition of the Weibull model used above,

the Exponential distribution consists in a particular case of

the Weibull family (for the Weibull model the most usual

definition in the literature is Wða; bÞ; where b ¼ k�1).

Specifically, if a ¼ 1;, a random variable X follows a

Weibull distribution Wða ¼ 1; kÞ if and only if X follows

the Exponential distribution ExpðkÞ: This fact facilitates

the comparison of results between both models.

Since our objective consists on the modelling of extre-

mely small inter-arrival times, we consider only values of

the parameter less than or equal to one, since the closer to

zero, the greater the probability of obtaining extremely

small values (Table 1). If a random variable x�ExpðkÞ is

taken to model inter-arrival times, it is well known that the

expected value can be noted as E X½ � ¼ k�1: For each

0\a0 � 1; a random variable X0 �W a0; k0ð Þ is considered,

with the condition that the mean of inter-arrival times

equals that of the Exponential, that is, E X0½ � ¼ k�1: Taking

into account that E X0½ � ¼ C 1 þ a�1
0

� ��
k0; the Weibull

model used to generate inter-arrival times may be descri-

bed as X0 �W a0; k0 ¼ C 1 þ a�1
0

� �
k

� �
; where C �ð Þ denotes

the Euler’s Gamma Function [18].

The values of P½X0 � 0:1� obtained for k ¼ 1 and several

values of a0 are shown in Table 1. These values are the

probabilities to obtain an inter-arrival time lesser than 10%

of the expected time. For a ¼ 1 (Exponential model), the

probability is approximately equals to 10%: This proba-

bility increases as the alpha value decreases, as already

indicated above, reaching a value of 97:3% for a0 ¼ 0:1:

3.3 Performance model

In this work we evaluate the performance of the executed

jobs, especially Batch jobs. This performance is repre-

sented by the following key performance indicators (KPIs):

– Queue times The time jobs spend in queue waiting for

their first task qð1Þj and last task qðnjÞj to be deployed.

– Makespan Representing the time since the submission

of the job until its completion. The makespan of the job

Jj may be described as follows: Cj ¼ qðnjÞj þ dj

3.4 Energy model

In this work, the energy consumption is measured as

follows:

ECðT Þ ¼
X

t2D

X

m2M
Pðem;tÞ d

Let t 2 D ¼ fd; 2d; . . .; T g; where T is the total simulation

time. For each period of time d; the state of each machine

em;t is measured, and the energy consumption computed

depending of the power consumption PðeÞ of that partic-

ular state. The power states considered in this work e 2
f On, Idle, Switching g; where On denotes the power

consumption of a machine when executing a task, Idle

when the machine is waiting for an incoming job to be

executed, and Switching if the machine is shutting-down or

switching-on.

Table 1 Probabilities of

obtaining an inter-arrival time

lesser than 10% of the expected

time

k0 P½X0 � 0:1�

0.1 0.973

0.2 0.807

0.3 0.624

0.4 0.475

0.5 0.361

0.6 0.275

0.7 0.21

0.8 0.16

0.9 0.123

1 0.095

B1 B2S1 S2

Resource manager

Task finished

M1

M2 
(off) M3 M4

Cluster

M5
(on->off) M6 M7

Shut -down ActionYesShut -down decision

Shut -down
M4?

M8

Scheduling policy

Power -off Module

heartbeat

Fig. 1 Shut-down process architecture



4 Bullfighter energy-efficiency policy

Energy-efficiency policies are responsible for the shut-

down of machines in idle state. As illustrated in Fig. 1,

resource managers employ scheduling policies which are

the responsible to decide where a particular task t is to be

deployed. Every time a task finishes, the power-off module

makes a decision whether the machine that was executing

that particular task should be powered off or not. In case

affirmative, a shut-down action is performed on the

machine. The shut-down action must ensure that that

machine is not executing any tasks at the time of shut-

down.

A set of energy-efficiency policies were developed in

[10], including: (1) always power off; (2) random power

off; (3) keeping a security margin; (4) power-off depending

on the resource occupation of the data centre; and (5)

probabilistic policies which employ queue-theory distri-

butions, such as Gamma and Exponential, to forecast the

incoming workload. Nonetheless, the energy-efficiency

policies that achieve the best results, such as those that use

probabilistic and security-margin approaches, precise a fine

tuning that requires a deep knowledge on the data-centre

workload patterns.

In this work we propose Bullfighter, which is able to

overcome the aforementioned limitations related to fine-

tuning depending on the environment by providing a new

simple approach, which may be formally described as

follows:

Let m be a machine with pm tasks ftimg
pm
i¼1; where m 2

M ¼ fm1;m2; . . .;mng: A specific task thm is considered.

A decision is defined as

dðthmÞ ¼
0 The machine m is shut down :
1 The machine m is not shut down :

�

If dðthmÞ ¼ 1; an action aðmÞ ¼ 1 is taken.

Let s be the future time, in which it is intended that the

data centre can execute the incoming workload.

let jðsÞ be the number of the last jobs executed, as a

sample of the incoming workload in a time s: Let IWðsÞ be,

therefore, the incoming workload to be done in a time s:
Let s be the number of predictions executed to analyze if

at time s; IWðsÞ is executed, that is to say s ¼ #ðIWðsÞÞ

Let p ¼
P

m2M asðmÞ
s be the percentage of positive deci-

sions (meaning that the machine m can be safely shut

down) to a given decision threshold D in order to make the

final shut down decision.

The algorithm that implements the above model is

explained in Algorithm 1: it takes the last jðsÞ jobs as

representative for the incoming workload. Then, it per-

forms a number of predictions s to analyse whether the data

centre can execute the incoming workload in a given future

time IWðsÞ with the available resources alone, that is,

without powering-on any machine. Finally, it computes the

percentage of positive decisions (meaning that the machine

m can be safely shut-down) p to a given decision threshold

D in order to make the final shut-down decision.

The creation of future workload is based in queue the-

ory. Specifically, we employ an Exponential distribution

for the generation of the values for each parameter of the

jobs J composing the workloads W; using the means

provided by the last jðsÞ jobs. More details on workload

generation may be found in Sect. 3.

Algorithm 1: Bullfighter shut-down decision
Inputs: num jobs ∈ N

+, threshold ∈ (0, 1) ⊂ R,
future time ∈ R, num predictions ∈ N

+

Data: cluster
Output: decision ∈ B

1 Decisions ← new array(len = num predictions)
2 Past jobs ← cluster.get past jobs(num jobs)
3 for i ← 0 to num predictions − 1 do
4 arrival ←

get average inter arrival time(Past jobs)
5 tasks ← get average tasks(Past jobs)
6 duration ← get average duration(Past jobs)
7 cpu ← get average cpu consumption(Past jobs)
8 mem ←

get average memory consumption(Past jobs)
9 wl gen ←

new workload gen(arrival, tasks, duration, cpu,mem)
10 wl ←

wl gen.generate workload for time(future time)
11 Decisions[i] ← wl.cpu consumption <

cluster.cpu free & wl.mem consumption <
cluster.mem free

12 decision ←
count(Decisions)true/num predictions >
threshold

13 return decision

5 Experimentation

In this section, we perform two deep analysis: (1) the

performance impact of extreme arrival rates in the most

relevant centralised resource managers for various large-

scale cloud-computing scenarios; and (2) the impact of the

application of a novel simple power-off policy in terms of

performance and energy efficiency in one representative

scenario.

Statistical
validation

Results analysis

Experiment
parameterisation

Bullfighter policy
implementation

Weibull
workload
modelling

Experiment
execution

Fig. 2 Experimentation work-flow



The work-flow of the experimentation resulting from the

aforementioned theoretical analysis is illustrated in Fig. 2.

We employed our previously-developed simulation tool

SCORE [9, 11], which focuses on the simulation of large-

scale cloud-computing data centres. This simulator has run

on a server equipped with Intel Xeon E3-1220v5 4C/4T

3.00 GHz, 16 Gb of RAM, CentOS 7.1 and JRE 1.8.0.

All the experiments simulate 7 days of operation time,

and similar synthetic workloads are employed in all

experiments. Following the trends present in large com-

panies, such as Google[20], and Alibaba[5], two kind of

workloads sharing the same data-centre resources are

generated based on statistical distributions, as explained in

Sect. 3:

– Batch workloads, representing jobs which compute a

task and then finish,(e.g. MapReduce jobs). In this

work, Batch workloads account for approximately 90%

of deployed jobs (* 26,000), consuming approxi-

mately 60% of the data-centre resources. Each Batch

job is composed of 180 tasks, which consume 0.3 CPU

cores and 200 Mb of RAM during 180 s in average.

– Service workloads, representing applications, services

and frameworks with no fixed end (e.g. virtual machi-

nes). Service workloads account for * 10% of

deployed jobs (approximately 2500), which consume

* 40% of the resources of the data centre. Each

Service job is composed of 30 tasks, which consume

0.5 CPU cores and 700 Mb of RAM during 1000 s in

average.

All the workloads follow a day/night pattern. It must be

borne in mind that the value of each job parameter is

generated based on statistical distributions, as described in

Section 3.

The workloads are executed in data centres of 1000 and

2000 machines. The machines are considered homoge-

neous in terms of performance and energy consumption

and equip 8 CPU cores and 16GB of RAM.

5.1 Performance impact of extreme workload-
arrival rates

compared with those provided by a traditional Exponential-

based workload generation.

Extreme-value distributions may generate heteroge-

neous distribution patterns when a low value of a is taken,

as shown in Fig. 3. In this work we performed 10 simu-

lations of seven days of data-centre operation for each a
value ([0.2–0.8] with a step of 0.1) of Weibull-based, and

10 simulations for the Exponential-based workload-gener-

ation scenario. The average of such results are presented.

We evaluated the homogeneity of the results within pop-

ulations by means of the t-student test and the statistical

relevance of the results of different parameterisation

through ANOVA tests with a ¼ 0:1:

Moreover, in this section, we analysed the following

parameterisation for each workload-generation strategy:

– Three of the most relevant centralised resource-

managing models:

(a) Monolithic, such as Google Borg [4];

(b) Two-level, such as Mesos [13]; and

(c) Shared-state, such as Google Omega [23].

Two-level and Shared-state resource managers

employ four schedulers for Batch jobs, and one

scheduler for Service jobs.

– Three levels of initial utilisation: 20, 30, and 50% of

resources.

– Two data-centre sizes: 1000 and 2000 machines.

The rest of parameters are equal for all the simulation

scenarios. Only performance results of Batch jobs are

presented for the sake of clarity, since these are the most

affected by poor scheduling performance. The complete

data set, containing the results for both Batch and Service

workloads, as well as many more key performance indi-

cators can be found as Supplementary material.

The summary of the results for Monolithic, Two-level

and Shared-state models are shown in Tables 2, 3, and 4,

respectively.

In Monolithic scheduling scenarios, extreme values have

a significant impact only in terms of queue times. It can be

noticed that even a value of a ¼ 0:8; which means it is very

similar to the Exponential distribution, has a severe impact

in terms of the time jobs spend in queue waiting to be

scheduled. Exponential-generated workloads wait in queue

240 ms. until their first task is scheduled qð1Þj; whilst

Weibull[0.8]-generated workloads wait 440 ms in average.

These times represent graphically an Exponential trend.

While the aforementioned time increases by approximately

50% between a ¼ 0:8 and a ¼ 0:7; it shows an increment

of � 2x for a ¼ 0:4 and a ¼ 0:3; and � 4x between a ¼
0:3 and a ¼ 0:2: This trend is illustrated in Fig. 4 (blue

line). The very same pattern is present for the time jobs

wait in queue until all their tasks are scheduled qðnjÞj; which

We first evaluate the impact of extreme distributions in the 
arrival of tasks and the consequences in terms of data-

centre performance as a first step towards the proposal of a 
model for energy efficiency in extreme environments.

The Weibull distribution is employed for the generation 
of extreme values of task-arrival times in the workload-

generation phase. The range [0.2–0.8] with a step of 0.1 is 
considered for a values. The parameter k0 is not presented 
since it can be obtained following the explanation given in 
Section 3. The results provided by these workloads are then



means that the scheduler is usually able to schedule jobs in

one scheduling operation. The results provided by 90 per-

centile of the values are consistent with the average results.

The impact in terms of the makespan is minor. Finally,

with this first analysis, we can state the number of available

resources, which is represented by the data-centre size and

the occupation, has a minimum impact in terms of per-

formance compared to that of extreme inter-arrival values.

Two-level schedulers present a different behaviour. In

this scenario, we also included the number of jobs that

stayed in queue without any scheduling attempt (notation),

and the number of timed-out jobs in the scheduling process,

which means that the scheduler tried to schedule 100 times

a particular job or 1000 times its tasks. We do not show

these results for Monolithic and Shared-State resource

managers because they can successfully schedule the total

number of jobs in all scenarios.

Unlike in monolithic environments, the number of

available resources is extremely relevant in two-level

scenarios. This is shown in Weibull[0.3] results. On one

hand, when the number of available resources is low (50%

of initial utilisation and 1000 machines in the data centre),

almost 2000 jobs could not be scheduled, and all the queue

times skyrocket: jobs spend an average of 1682 s in queue

for their first task to be scheduled (qð1Þj), compared to 3.73

s in less-congested scenarios. It must be noticed that this

behaviour is not gradual, but shows a clear frontier where

performance results become unacceptable, specially for

makespan results: in this case, the average makespan is the

total simulation time (1 week). On the other hand, when

2000 machines or lower utilisation environments are con-

sidered (20 or 35% utilisation), performance results fall

back to reasonable values.

Moreover, the results in terms of performance provided

by more extreme scenarios, such as those shown for Wei-

bull[0.2], follow the same trend: only the environments

with more available resources (data centre composed of

2000 machines and an initial utilisation of [20,35]%) pre-

sent a reasonable behaviour. In the rest of Weibull[0.2]

scenarios, the number of jobs timed out or not scheduled,

as well as queue and makespan times, skyrocket.

In those scenarios which do not present unaccept-

able performance results, both makespan Cj and queue

times increase with each step of the a value, as shown in

the previous monolithic environment. The increase pattern

of the queue time jobs wait until their first task is scheduled

is illustrated in Fig. 4 (orange line). In these cases, such as

Weibull[0.2] with 2000 machines and 20% of resource

utilisation, two-level resource managers achieve better

results in term of queue times (� 9 vs. � 15 s) than

monolithic schedulers.

(a) Weibull 0.2 sample 1

(b) Weibull 0.2 sample 2

(c) Exponential sample 1

(d) Exponential sample 2

Fig. 3 CPU consumption comparison between workloads whose

inter-arrival values are generated by means of a Weibull 0.2

distribution (a, c), and Exponential distribution (b, d). All of them

follow the same day/night pattern. It can be noticed that Weibull

distributions generate more heterogeneous patterns than Exponential

distributions



Shared-state resource managers seem to performance

better than two-level and monolithic models when extreme

values are considered. We include the number of

scheduling conflicts, due to parallel schedulers trying to

deploy tasks on the same resources.

Despite the increment of queue times keeps stable at

� 2–3x ratio in every step of a; an increment of � 5x is

shown in the most extreme case, the step between a ¼ 0:3

and a ¼ 0:2: Moreover, even in the worst-case scenarios

(Weibull[0.2], 1000 machines, and 50% of initial occupa-

tion), shared-state schedulers keep the time jobs wait in

queue until their first task is deployed as low as � 1.6 s, in

comparison with the � 17 s and more than 17 h of

monolithic and shared-state resource managers,

respectively.

After this analysis, we can highlight the following:

(a) extreme values always impact negatively in terms of

performance; (b) the impact in terms of makespan is minor,

increasing 20% in worst-case scenarios, except for very

congested two-level resource managers, where the capacity

of the system may be exceeded; (c) queue times become

unacceptable only in very extreme cases, represented by

Weibull[0.3, 0.2]; (d) only the two-level resource managers

under very high pressure are unable to handle all the

incoming workload; and (e) In general, the resource man-

agers with parallelisation strategies (two-level and shared-

state models) perform better than monolithic in the vast

majority of scenarios. The optimistic-locking model of

shared-state resource managers outperform the rest of

strategies, and monolithic can only achieve better results

than the pessimistic-locking strategy of two-level resource

managers when very congested environments are under

consideration.

Table 2 Performance impact of

extreme values on Monolithic

centralised schedulers

Prefill (%) DC size Sched. oper. qð0Þj qðnjÞj Cj

Avg 90p. Avg. 90p. Avg. 90p.

Exponential

[50,35,20] 1000 28,264 0.24 0.29 0.24 0.29 39.42 90.95

[50,35,20] 2000 28,176 0.24 0.32 0.24 0.32 39.84 90.86

Weibull[0.8]

[50,35,20] 1000 28,354 0.44 1.50 0.44 1.50 39.91 91.63

[50,35,20] 2000 28,320 0.45 1.52 0.45 1.52 39.89 92.10

Weibull[0.7]

[50,35,20] 1000 28,149 0.62 2.27 0.62 2.27 40.21 92.72

[50,35,20] 2000 28,389 0.58 2.11 0.58 2.11 40.15 93.32

Weibull[0.6]

[50,35,20] 1000 28,214 0.85 3.13 0.85 3.13 39.85 91.62

[50,35,20] 2000 27,948 0.85 3.09 0.85 3.09 40.12 92.49

Weibull[0.5]

[50,35,20] 1000 27,529 1.36 4.67 1.36 4.67 40.80 93.85

[50,35,20] 2000 28,782 1.32 4.55 1.32 4.55 40.00 92.67

Weibull[0.4]

[50,35,20] 1000 28,096 2.22 7.08 2.22 7.08 40.00 92.11

[50,35,20] 2000 28,020 2.31 7.29 2.31 7.29 40.51 93.85

Weibull[0.3]

[50,35,20] 1000 27,973 4.68 12.96 4.68 12.96 40.00 91.80

[50,35,20] 2000 28,600 4.72 12.86 4.72 12.86 40.03 92.56

Weibull[0.2]

50 1000 29,670 17.61 45.05 17.65 45.10 39.87 92,00

[35,20] 1000 29,642 17.58 44.89 17.58 44.89 39.84 91.86

[50,35,20] 2000 28,167 15.60 38.79 15.60 38.79 40.04 91.87

All time-related parameters are given in seconds

qð0Þj and qðnjÞj represents the time jobs spend in queue waiting for their first and all their tasks to be

scheduled, respectively, whilst Cj denotes the makespan

Regarding the number of scheduling conflicts, the 
increment shows a stable ratio of [1.3–1.4]x approximately 
between Weibull a steps, and it is sensitive to resource 
availability.



5.2 Performance and energy-efficiency analysis
of the Bullfighter policy

The second step in this work is the evaluation of the

developed energy-efficiency policy presented in Section 4.

The following values are considered for each Bullfighter

parameter: (a) 1, 3, and 5 predictions are performed; (b) A

[0.1–0.9] range with a 0.2 step is taken for threshold val-

ues; and (c) 15, 30, 45, and 60 s are taken for the future

time window to be considered in predictions; and (d) 25,

50, and 100 past jobs are taken for prediction purposes. For

the sake of clarity, in Table 5 we only present the most

relevant results in terms of performance and energy con-

sumption of the Bullfighter policy, employing the last 25

jobs (not a time window) to make the predictions, since the

rest of values present a similar behaviour. The results of the

Always Power off Policy, which tries to shut down every

machine whenever possible are presented for comparison

purposes. The extended data set can be found in Table 7

in Appendix.

For space reasons, in this table we only show one rep-

resentative and simple scenario, which is configured as

follows: (a) A monolithic centralised scheduler is used;

(b) The data centre is equipped with 1000 machines; and

(c) The data centre starts with 20% of its resources occu-

pied. (d) No extreme values are considered, that is, an

Exponential distribution is used to generate workload

arrival times.

The results for the rest of scenarios presented in the

previous section may be found as supplementary material.

Table 3 Performance impact of

extreme values on Two-Level

centralised schedulers

Prefill (%) DC size JLIQ JTOS qð0Þj qðnjÞj Cj

Avg 90p. Avg 90p. Avg. 90p.

Exponential

[50,35,20] 1000 0 0 0.26 0.39 0.26 0.40 41.71 95.52

[50,35,20] 2000 0 0 0.25 0.38 0.26 0.41 41.87 95.76

Weibull[0.8]

[50,35,20] 1000 0 0 0.40 1.22 0.40 1.24 42.09 94.92

[50,35,20] 2000 0 0 0.42 1.31 0.43 1.34 41.38 93.03

Weibull[0.7]

[50,35,20] 1000 0 0 0.57 1.97 0.58 2.00 41.97 96.37

[50,35,20] 2000 0 0 0.61 2.02 0.62 2.05 42.27 96.50

Weibull[0.6]

[50,35,20] 1000 0 0 0.80 2.82 0.81 2.87 41.74 96.07

[50,35,20] 2000 0 0 0.76 2.62 0.77 2.67 41.89 96.64

Weibull[0.5]

[50,35,20] 1000 0 0 1.21 4.07 1.23 4.13 41.87 95.48

[50,35,20] 2000 0 0 1.18 4.06 1.21 4.14 41.90 95.51

Weibull[0.4]

[50,35,20] 1000 0 0 1.90 5.97 1.95 6.10 41.78 96.29

[50,35,20] 2000 0 0 1.99 6.25 2.06 6.42 42.03 95.97

Weibull[0.3]

50 1000 1960 1 1682 1791 13,525 45,695 172,992 604,800

[35,20] 1000 0 0 3.73 10.74 3.95 11.32 43.08 97.03

20 1000 0 0 3.72 10.67 3.92 11.23 43.05 96.97

[50,35,20] 2000 0 0 3.76 10.69 4.04 11.46 43.17 97.11

Weibull[0.2]

50 1000 510 6006 62,318 288,351 161,592 438,771 560,465 604,800

35 1000 464 6063 8739 32305 100,859 281,669 551,542 604,800

20 1000 74 6040 3217 9354 42,429 141,007 514,255 604,800

50 2000 1137 3314 1463 4197 20,547 63,772 376,739 604,800

35 2000 0 13 9.30 25.39 22.29 34.69 1632 110.28

20 2000 0 0 9.11 24.73 12.40 33.53 50.27 108.27

JLIQ means the number of jobs left in queue without scheduling, and JTOS represents the number of jobs

that ended up in timed out due to scheduling poor performance



in terms of performance, represented by the times in queue

and makespan, and energy efficiency, represented by the

number of shut-down operations and energy saving, do not

present a clear pattern, as shown in Fig. 5. Hence, we can

state that the number of predictions has little impact on the

behaviour of the Bullfighter policy.

As for the impact of the threshold, the results presented

in Table 7 in rows #42, #46, #50, #54, #58 (threshold 0.1,

0.3, 0.5, 0.7 and 0.9, respectively), show that the threshold

has a low impact on the behaviour of the Bullfighter policy.

On one hand, between 0.1 and 0.9 (rows #42 and #58,

respectively), we can notice the following differences: (a)

the number of shut-downs performed by threshold 0.9 is

� 1650 lower than that provided by threshold 0.1

(� 10%); (b) the time jobs spend in queue until their first

task is scheduled is � 10% longer for threshold 0.1

compared to threshold 0.9 (0.44 vs 0.40 s); and (c) the time

jobs spend in queue until their last task is scheduled is

Table 4 Performance impact of

extreme values on Shared-state

centralised schedulers

Prefill (%) DC size Failed trans. qð0Þj qðnjÞj Cj

Avg. 90p. Avg. 90p. Avg. 90p.

Exponential

[50,35,20] 1000 559 0.0004 0.00 0.0012 0.00 40.46 92.80

[50,35,20] 2000 393 0.0005 0.00 0.0008 0.00 39.90 91.07

Weibull[0.8]

[50,35,20] 1000 772 0.0018 0.00 0.0028 0.00 40.40 92.36

[50,35,20] 2000 492 0.0020 0.00 0.0041 0.00 39.90 91.59

Weibull[0.7]

[50,35,20] 1000 993 0.0050 0.00 0.0108 0.00 39.94 91.73

[50,35,20] 2000 682 0.0041 0.00 0.0081 0.00 39.91 91.84

Weibull[0.6]

[50,35,20] 1000 1334 0.0114 0.00 0.0221 0.00 40.84 94.56

[50,35,20] 2000 857 0.0120 0.00 0.0194 0.00 39.83 92.80

Weibull[0.5]

[50,35,20] 1000 1749 0.0336 0.00 0.0645 0.00 40.51 93.24

[50,35,20] 2000 1170 0.0284 0.00 0.0498 0.00 40.16 92.71

Weibull[0.4]

[50,35,20] 1000 2225 0.0860 0.00 0.1629 0.00 40.80 93.18

[50,35,20] 2000 1534 0.0914 0.00 0.1437 0.00 40.25 92.91

Weibull[0.3]

[50,35,20] 1000 2909 0.3188 0.78 0.5896 1.81 40.92 94.35

[50,35,20] 2000 2017 0.2781 0.59 0.4423 1.37 40.03 92.33

Weibull[0.2]

[50,35] 1000 4092 1.6287 5.33 3.3886 10.19 43.35 99.84

20 1000 4071 1.6126 5.30 3.2521 9.95 43.20 99.65

50 2000 2869 1.4997 5.03 2.5863 8.02 41.71 95.69

35 2000 2848 1.4983 5.04 2.5794 7.98 41.71 95.70

20 2000 2808 1.4954 5.02 2.5607 7.95 41.67 95.71

Failed trans. the number of scheduling operations that ended up in a conflict due to more than one

scheduler trying to deploy tasks on the same machine

The behaviour of the Bullfighter energy policy com-

pared to that of the Always off policy depending on the 
number of predictions s, threshold D, and the future time 
window s; is depicted in Figs. 5, 6, and 7, respectively.

In general, all the Bullfighter configurations perform a 
lower number of better-quality shut-down operations, 
therefore causing less hardware stress, and save a bit less 
energy compared to the Always power off policy. In terms 
of performance, the Bullfighter energy-efficiency policy 
always improve the results provided by the most aggressive 
policy. However, there are differences in terms of beha-

viour between various Bullfighter parameterisation.

Regarding the number of predictions s, the naive intu-

ition would suggest that the higher the number of predic-

tions, the lower the number of shut-downs, and the more 
homogeneous the behaviour. However, the results pre-

sented in Table 7 in rows #2, #22, and #42 (1, 3, and 5 
predictions, respectively), clearly show that the variations



� 17% longer for threshold 0.1 compared to threshold 0.9

(1.46 vs 1.25 s). On the other hand, both the makespan and

energy saving suffer almost not penalty.

As illustrated in Fig. 6, in general, the higher the

threshold value, the higher the number of machines kept on

in idle state to avoid fluctuations. Nevertheless, this pattern

is not always homogeneous, and, even if present, the dif-

ferences between them are low.

The results presented in rows #[30–33] of Table 7, show

the impact of the future time window s considered for

predictions in terms of performance and energy consump-

tion. On one hand, when a short future time window of 15 s

is used (row #30), Bullfighter is almost able to keep up with

the energy savings results achieved by the Always off

policy (57% vs 55%), but only performs approximately

55% of the shut-down operations. Hence, Bullfighter keeps

servers down for 6.89 h, and saves 2.72 kWh per shut-

Fig. 4 Time in average jobs spend in queue until their first task is

scheduled qð1Þj per workload-generation distribution. This perfor-

mance indicator is representative to the performance impact of

extreme values of inter-arrival workload times. A data-centre size of

1000 machines and 35% of initial utilisation are employed to plot this

figure (Color figure online)

Table 5 Sample of the most relevant results in terms of performance and energy-efficiency for various Bullfighter configurations

# s D s qð0Þj qðnjÞj Cj Sav. (%) #shut(103) KWh shut h per shut

Avg. 90p. Avg. 90p. Avg. 90p.

1 Always off 0.56 1.86 2.38 6.58 46.50 109.50 56.81 30.64 1.57 3.97

2 1 0.1 15 0.42 1.16 1.39 2.57 43.57 101.14 54.58 16.91 2.73 6.92

22 3 0.1 15 0.41 1.13 1.25 2.49 43.65 101.46 54.68 17.56 2.64 6.67

30 3 0.5 15 0.41 1.17 1.25 2.56 43.27 100.62 54.65 17.00 2.72 6.89

31 3 0.5 30 0.38 0.95 1.02 1.77 42.31 98.15 53.29 11.48 3.93 9.95

32 3 0.5 45 0.32 0.71 0.65 1.14 41.42 95.63 51.35 8.52 5.10 12.92

33 3 0.5 60 0.32 0.65 0.62 0.97 41.06 94.99 49.98 5.88 7.20 18.24

42 5 0.1 15 0.44 1.22 1.46 2.77 43.71 101.07 54.76 17.43 2.66 6.73

46 5 0.3 15 0.40 1.19 1.20 2.69 43.73 101.67 54.97 18.54 2.51 6.36

50 5 0.5 15 0.41 1.16 1.23 2.50 43.19 100.40 54.76 15.86 2.92 7.40

54 5 0.7 15 0.41 1.15 1.22 2.64 43.19 100.61 54.80 16.45 2.82 7.14

58 5 0.9 15 0.40 1.11 1.25 2.36 43.22 100.40 54.77 15.78 2.94 7.44

The results of the Always power off policy are presented for comparison purposes. All the results can be found in Appendix, Table 7. Sav (%).

represents the percentage of energy saved compared to that consumed by a system with no energy policies. #shut denotes the number of shut-

down operations, related to hardware stress. KWh shut means the KWh saved on each shut-down operation, that is, the goodness of the shut-

down operations. h per shut shows the hours machines keep off per shut-down operation. Long shut-down periods are related to higher energy

efficiency, since switching on-off consumes even more energy than keeping the machine in idle state. s, D, and s denote the number of

predictions, the decision threshold and the future time window, respectively

Fig. 5 Behaviour of Weibull energy policy depending on the number

of predictions s. S1, S3 and S5 meaning 1, 3, and 5 predictions to

make each shut-down decision, respectively. It is clearly shown that

all of them can forecast the incoming workload reasonably well,

preventing the system from the fluctuations present when the Always

off policy is employed. Notwithstanding, the number of predictions

has a minor impact and does not present a clear trend



for approximately three times longer (6.89 h. vs 18.24 h.),

and saves three times more energy per shut-down operation

than aggressive alternatives (2.72 kWh vs. 7.20 kWh).

Moreover, this configuration reduces, in average, the queue

times jobs wait for their first and last task to be scheduled

by approximately 20% (0.41 s. vs 0.32 s.), and 50% (1.25 s.

vs. 0.62 s.), respectively. Again, the impact in terms of

makespan is lower, shortening this time only � 6% (43.27

s. vs 41.06 s.). The results presented in rows #31, and #32,

show a clear linear progression of the results as the value of

this future time window s increases. This very same trend

is illustrated in Fig. 7.

It can be noticed in Fig. 7 between days 2 and 3, that

Bullfighter policies which perform the shut-down decisions

based on a fixed number of past jobs, present a limitation

that is maximised when extreme values are present: when

there is a sudden change of arrival rate, between high-

arrival periods (peaks consisting in dozens of jobs per

second) and low-arrival periods (no incoming jobs in

minutes, for instance), the prediction module takes some of

those last n jobs, which belong to the high-arrival period, as

part of the relevant past decision period. As a result, this

Bullfighter policy tends to keep more machines in idle state

than that based on a past time window instead of a fixed

number of past jobs.

As shown in Table 6, the Bullfighter policy which takes

into account a past time window jobs (Bullfighter T) per-

forms a higher number of shut-down operations, conse-

quently saving slightly more energy, and impacting more

severely in terms of performance than the Bullfighter that

takes into account a fixed number of jobs (Bullfighter J).

Regarding energy consumption, Bullfighter T performs

� 3400 shut-down operations compared to the � 3300

performed by Bullfighter J in Exponential scenarios, and

� 8800 vs. � 5000 in Weibull[0.2] environments. Fur-

thermore, Bullfighter T saves 57.67% of energy compared

to the 57.62% of Bullfighter J in Exponential environments,

and 55.46% vs. 53.06% in Weibull 0.2 scenarios.

Regarding performance, Bullfighter T makes jobs wait in

queue in average 560 ms. and 1.32 s until their first and last

tasks are scheduled, respectively, compared to the 590 ms

and 1.26 seconds of Bullfighter J in Exponential scenarios.

For Weibull 0.2 environments, Bullfighter T make jobs

wait 37.65 and 101.49 s whilst Bullfighter T 28.03 and

73.96 s (- 30%). As depicted in Fig. 8, the more extreme

the scenario, the more accentuated this trend becomes.

As a summary, in this section we have demonstrated the

following behaviour of the Bullfighter policy according to

its parameterisation:

(a) The impact of the number of predictions is almost

negligible;

Fig. 6 Behaviour of Weibull energy policy depending on the decision

threshold D. S01, S05, and S09 meaning 0.1, 0.5, and 0.9 threshold. In

general, the higher the threshold, the more conservative Bullfighter is,

as can be seen in the simulation start, between days 1 and 3, and in

day 5. Nonetheless, this behaviour may not be always homogeneous,

as seen in day 6

Fig. 7 Behaviour of Weibull energy policy depending on the future 
time window s used for predictions. S15, S30, and S60 meaning a 
value of s of 15, 30, and 60 s, respectively. In this case, it is clearly 
shown that, the longer the future time window under consideration, 
the more conservative Bullfighter is

down operation in average, compared to the 3.97 h and 
1.57 kWh achieved by the Always power off policy. 
Moreover, this most-aggressive Bullfighter configuration 
cuts almost by half the time jobs spend in queue until their

last task is scheduled qðnjÞj; and � 30% the time jobs wait 
in queue until their first task is scheduled qð1Þj: In terms of 
makespan Cj; Bullfighter only shorten this time approxi-

mately 7%.

On the other hand, when the longest future time window 
(1 min) is considered (row #33), we find a more conser-

vative behaviour. In this case, Bullfighter consumes 7%

more energy than the Always power off policy, and 5%

more than the most-aggressive Bullfighter policy (row 
#30), by performing only � 20% and � 30% of the shut-

downs operations performed by Always power off and the 
most-aggressive Bullfighter, respectively. Therefore, this 
Bullfighter parameterisation is able to keep servers down



(b) The impact of the threshold is low, and is only

present when a high number of predictions is

considered; and

(c) The future time window used for predictions has a

notable impact, both in terms of energy efficiency

and performance, and presents a linear progression.

(d) Bullfighters considering a fixed number of past jobs

usually are usually more wary than those that take a

past time window to make their predictions.

6 Conclusions and future work

In this paper we first characterise how extreme workloads

impact on data-centres performance and energy consump-

tion. As a result of this characterisation we can state that

even though extreme workloads negatively impact in terms

of performance, the impact is minor in shared-state

resource managers and monolithic resource managers only

outperformed the two-level model in very congested

environments, which may be unable to handle this kind of

extreme workload.

In addition, we extended our previous works by

proposing a new energy-efficiency policy called Bull-

fighter. This policy employs queue-theory distributions to

foresee workload demands even in extreme scenarios,

while avoiding the fine-tuning required in previously

developed policies.

In general, Bullfighter policy achieves better results in

terms of balance between energy consumption and data-

centre performance, since it performs a lower number of

Table 6 Results in terms of performance and energy efficiency for the Bullfighter policy

Shut-down policy qð1Þj qðnjÞj Cj Sav (%) #shut (10^3) kWh shut h shut

Avg. 90p. Avg. 90p. Avg. 90p.

Exponential

Always off 1.20 3.00 8.83 14.20 52.81 119.15 59.15 7.20 14.16 35.86

Bullfighter J 0.59 1.26 3.15 2.23 44.45 100.75 57.62 3.29 29.65 75.12

Bullfighter T 0.56 1.32 3.00 2.44 44.41 101.05 57.67 3.38 28.97 73.40

Weibull[0.5]

Always off 4.55 13.62 24.17 68.62 79.06 157.50 58.94 16.62 6.03 15.27

Bullfighter J 2.01 5.69 5.86 8.33 47.63 103.72 56.24 5.24 18.35 46.50

Bullfighter T 2.20 5.96 6.87 10.22 46.29 106.32 56.63 6.26 15.45 39.13

Weibull[0.2]

Always off 55.60 147.72 196.88 516.24 191.94 398.52 58.82 17.01 5.91 14.96

Bullfighter J 28.03 73.96 61.28 173.88 65.52 156.48 53.06 5.02 18.10 45.85

BullFighter T 37.65 101.49 106.13 301.96 136.10 237.33 55.46 8.77 10.88 27.57

Bullfighter J denotes the Bullfighter policy which employs a fixed number of past jobs (in this scenario 25), whilst Bullfighter T represents the one

that considers the past jobs belonging to a past time window as relevant (5 min in this scenario). The number of predictions (5), the threshold

(0.5) and the future time window (1 min) are set equal for both policies

(a) Weibull[0.8]

(b) Weibull[0.2]

Fig. 8 Comparison in terms of shut-down operations between the

Bullfighter policy which employs a fixed number of past jobs,

Bullfighter J (S), and the one employing a past time window,

Bullfighter T (T). The Always power off policy (A) is presented as a

reference. In general, Bullfighter T tries to adapt more to the current

workload, which leads to a lower energy consumption and more

performance impact due to workload fluctuations. It must be noticed

that the more extreme the environment (Weibull[0.2]), the more

marked the differences between both models



power-off cycles saving a similar amount of energy while

maintaining QoS and SLA levels, even for data centres in

great demand.

In summary, we presented the following novelties in this

work:

– Characterisation of the impact in terms of performance

and energy consumption of extreme workloads in large-

scale realistic Cloud-Computing data centres, including

several industry resource-managing models.

– A new energy-efficiency policy called Bullfighter

which is able to automatically adapt to workload

fluctuations even in extreme scenarios without fine

tuning.

As future work, it would be interesting to explore:

– How a general computational intelligence-aided design

framework could be utilised in the smart design

process.

– How a dynamic change of resource managers could

improve data-centre performance in extreme scenarios.
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Appendix: Bullfighter parameterisation raw
data

Table 7 Performance and energy-efficiency results of various Bullfighter configurations

# s D s qð0Þj qðnjÞj Cj Sav. (%) #shut ð103Þ KWh shut h per shut

Avg. 90p. Avg. 90p. Avg. 90p.

1 Always off 0.56 1.86 2.38 6.58 46.50 109.50 0.57 30.64 1.57 3.97

2 1 0.1 15 0.42 1.16 1.39 2.57 43.57 101.14 54.58 16.91 2.73 6.92

3 1 0.1 30 0.34 0.82 0.84 1.45 41.98 97.14 53.02 10.05 4.47 11.31

4 1 0.1 45 0.31 0.68 0.57 1.07 41.16 95.31 51.42 6.36 6.85 17.34

5 1 0.1 60 0.31 0.65 0.55 0.97 41.11 94.70 51.44 6.87 6.34 16.05

6 1 0.3 15 0.40 1.08 1.19 2.51 43.31 100.96 54.50 17.54 2.63 6.66

7 1 0.3 30 0.35 0.87 0.91 1.63 42.25 98.45 52.43 10.85 4.09 10.36

8 1 0.3 45 0.33 0.71 0.70 1.17 41.62 96.29 51.31 7.63 5.70 14.43

9 1 0.3 60 0.32 0.63 0.58 0.89 40.76 94.13 48.82 4.39 9.41 23.83

10 1 0.5 15 0.43 1.21 1.49 2.73 43.77 101.62 54.68 16.86 2.75 6.95

11 1 0.5 30 0.35 0.83 0.82 1.45 42.00 97.76 52.73 10.19 4.38 11.10

12 1 0.5 45 0.34 0.78 0.85 1.25 41.74 96.74 51.72 7.75 5.65 14.31

13 1 0.5 60 0.31 0.65 0.55 0.92 40.90 94.66 49.46 5.05 8.29 21.01

14 1 0.7 15 0.43 1.10 1.54 2.54 43.73 102.03 54.74 18.23 2.54 6.44

15 1 0.7 30 0.35 0.84 0.85 1.57 42.27 98.05 53.05 11.73 3.83 9.70

16 1 0.7 45 0.32 0.74 0.70 1.25 41.57 96.29 52.03 7.76 5.68 14.39

17 1 0.7 60 0.32 0.63 0.59 0.90 40.72 94.23 49.12 4.18 9.96 25.24

18 1 0.9 15 0.39 1.01 1.18 2.18 43.17 100.17 54.47 14.86 3.10 7.86

19 1 0.9 30 0.36 0.88 0.89 1.61 42.22 97.76 53.06 10.88 4.13 10.45

20 1 0.9 45 0.34 0.77 0.75 1.28 41.67 96.29 51.83 8.37 5.24 13.27

21 1 0.9 60 0.30 0.62 0.53 0.88 40.80 94.49 49.77 4.28 9.84 24.93

22 3 0.1 15 0.41 1.13 1.25 2.49 43.65 101.46 54.68 17.56 2.64 6.67

23 3 0.1 30 0.35 0.88 0.88 1.70 42.37 98.23 53.40 12.13 3.73 9.44

24 3 0.1 45 0.33 0.72 0.68 1.16 41.46 95.69 51.69 7.40 5.91 14.98

25 3 0.1 60 0.31 0.64 0.54 0.94 40.96 94.69 50.63 5.53 7.75 19.63

26 3 0.3 15 0.46 1.24 1.71 2.97 44.21 103.21 55.10 19.62 2.38 6.02

27 3 0.3 30 0.35 0.84 0.83 1.52 42.13 97.64 53.18 11.15 4.04 10.22

28 3 0.3 45 0.33 0.74 0.70 1.21 41.52 95.75 51.94 8.03 5.48 13.87

29 3 0.3 60 0.30 0.63 0.53 0.95 40.98 94.69 49.97 5.97 7.09 17.95

30 3 0.5 15 0.41 1.17 1.25 2.56 43.27 100.62 54.65 17.00 2.72 6.89

31 3 0.5 30 0.38 0.95 1.02 1.77 42.31 98.15 53.29 11.48 3.93 9.95

32 3 0.5 45 0.32 0.71 0.65 1.14 41.42 95.63 51.35 8.52 5.10 12.92
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