i?‘lg electronics

Article

A Configurable RO-PUF for Securing Embedded Systems
Implemented on Programmable Devices

Macarena C. Martinez-Rodriguez *'*, Eros Camacho-Ruiz

check for

updates
Citation: Martinez-Rodriguez, M.C.;
Camacho-Ruiz, E.; Brox, P,;
Sanchez-Solano, S. A Configurable
RO-PUF for Securing Embedded
Systems Implemented on
Programmable Devices. Electronics
2021, 10, 1957. https://doi.org/
10.3390/ electronics10161957

Academic Editors: Fathi Amsaad,
Ahmed Abdelgawad and
Sean (Xiangdong) Che

Received: 30 June 2021
Accepted: 11 August 2021
Published: 14 August 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Piedad Brox ‘© and Santiago Sanchez-Solano

Instituto de Microelectrénica de Sevilla, IMSE-CNM, CSIC/Universidad de Sevilla, 41092 Sevilla, Spain;
camacho@imse-cnm.csic.es (E.C.-R.); brox@imse-cnm.csic.es (P.B.); santiago@imse-cnm.csic.es (S.S.-S.)
* Correspondence: macarena@imse-cnm.csic.es; Tel.: +34-954466666

Abstract: Improving the security of electronic devices that support innovative critical services
(digital administrative services, e-health, e-shopping, and on-line banking) is essential to lay the
foundations of a secure digital society. Security schemes based on Physical Unclonable Functions
(PUFs) take advantage of intrinsic characteristics of the hardware for the online generation of unique
digital identifiers and cryptographic keys that allow to ensure the protection of the devices against
counterfeiting and to preserve data privacy. This paper tackles the design of a configurable Ring
Oscillator (RO) PUF that encompasses several strategies to provide an efficient solution in terms of
area, timing response, and performance. RO-PUF implementation on programmable logic devices is
conceived to minimize the use of available resources, while operating speed can be optimized by
properly selecting the size of the elements used to obtain the PUF response. The work also describes
the interface added to the PUF to facilitate its incorporation as hardware Intellectual Property (IP)-
modules into embedded systems. The performance of the RO-PUF is proven with an extensive
battery of tests, which are executed to analyze the influence of different test strategies on the PUF
quality indexes. The configurability of the proposed RO-PUF allows establishing the most suitable
“cost/performance/security-level” trade-off for a certain application.

Keywords: hardware security; Physical Unclonable Functions; ring oscillators PUFs; programmable
devices; embedded systems

1. Introduction

Intense competition among companies to bring electronic devices in the first place
has demanded the development of strategies to reduce time to market. The re-usability
of IP cores and an automatic design methodology reduce significantly the duration of the
design cycle of embedded systems [1]. However, the need to deploy functional systems in a
short time has sometimes led to serious security problems by presenting information leaks
that could reveal confidential data. Two well-known examples are Spectre and Meltdown,
which are vulnerabilities that affect modern microprocessors. Spectre is a vulnerability that
uses side-channel timing attacks to extract private data based on speculative execution
resulting from a branch miss-prediction [2]. Meltdown is related to a micro-architectural
attack that exploits out-of-order execution to reveal the contents of kernel memory in many
Intel and some ARM processors [3].

The increase in the level of security of embedded systems is a promising challenge
that can be faced from different perspectives. Additionally, the wide variety of application
domains introduces an extra degree of complexity since there are multiple heterogeneous
configurations: from wearables and other Internet of Things (IoT) devices with severe
limitations in terms of memory size, power consumption and computational capacity,
to complex electronic devices that integrate a full suite of features. The traditional solution
for high-end electronic devices is based on the inclusion of a Trusted Platform Module
(TPM) [4]. The TPM chip is usually isolated from the rest of the system and includes extra

Electronics 2021, 10, 1957. https:/ /doi.org/10.3390/ electronics10161957

https:/ /www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-3025-5736
https://orcid.org/0000-0002-3177-2260
https://orcid.org/0000-0003-1059-5338
https://orcid.org/0000-0002-0700-0447
https://doi.org/10.3390/electronics10161957
https://doi.org/10.3390/electronics10161957
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10161957
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10161957?type=check_update&version=1

Electronics 2021, 10, 1957

20f 17

protection against attacks with anti-tampering mechanisms that increase the overall cost
of the device. TPM technology relies on the storage of cryptographic keys in a safe way,
using Non-Volatile Memories (NMV), and device authentication, using endorsement keys
burned into them. However, this approach is quite dependent on the endorsement key
that controls everything, and it is well-known that this technology does not respect user
privacy of sensitive data stored in personal devices where the TPM chip is incorporated.

The increase in cost to include TPM-based solutions can be affordable for high-
performance electronic devices, but it can be prohibitive for resource-constrained IoT
devices. As an alternative, PUFs [5] avoid the use of memory for key storage, solving the
two main drawbacks of the TPM technology: vulnerability to physical attacks and a high
manufacturing cost.

A PUF exploits the intrinsic features of IC technologies to provide a functional opera-
tion that maps an input (challenge) to an output (response) [6]. The PUF response should
fulfill the following requirements: uniqueness (i.e., different PUF instances should return
different responses when the same challenge is applied); reliability (i.e., a PUF instance
should return a response as unchanged as possible when the same challenge is applied);
and unpredictability (it should be hard to predict the PUF response—even the electronic
engineer that designed the PUF cannot anticipate it). These three properties enable the use
of the PUF response to reconstruct a cryptographic key on demand as many times as its
use is required. As an added value, invasive attacks against PUFs usually destroy them, so
there is no way to leak the PUF responses.

A silicon PUF takes advantage of the variability of technological parameters between
chips in the integrated circuit manufacturing process. According to the building blocks of
the PUF circuitry used to exploit intrinsic process variability, silicon PUFs can be classified
into two categories: memory-based and delay-based PUFs. Among the former, SRAM PUFs
use the unpredictable start-up values of memory cells to provide their response [7]. Many
efforts have been focused on selection techniques to classify cells as stable or unstable in
order to improve the reliability of the PUF response. SRAM PUFs can be implemented using
a dedicated memory or re-using the memory available on the chip for further purposes [8].
Despite ASIC implementations of SRAM, as PUFs have been quite popular in academic and
industrial [9] sectors during recent years, the implementation using Block RAMs (BRAMs)
embedded on Field-Programmable Gate Arrays (FPGAs) is unfeasible since the start-up
values are usually forced to a certain value.

Delay-based PUFs are based on the relative time delay differences between two
identical circuits. Two examples from this category are arbiter PUFs and RO-PUFs. In an
arbiter PUF, the delay difference between two paths with the same layout length is directly
measured. Its implementation includes a set of concatenated multiplexers and one arbiter.
The challenges (control bits of the multiplexers) select the two delay paths and the PUF
output depends on which path is faster [10]. RO-PUFs are based on identical delay loops,
formed by an odd number of inverters, whose oscillation frequencies are compared to
obtain the PUF output [11].

There are many ASIC and FPGA implementations of delay-based PUFs reported in the
literature. Arbiter PUFs operation requires paths of the same length. This is easy to achieve
when implemented via ASICs using full-custom design techniques, but it is difficult to
ensure in programmable devices, even using the manual routing and placement options
normally provided by FPGA design tools. This requirement is less critical in the case of
RO-PUFs and it can sometimes be compensated by the use of some configuration and /or
selection techniques of the RO pairs, which makes the number of RO-PUF implementations
on FPGAs much higher. In particular, a number of fully functional key generation and
retrieval schemes based on RO-PUFs implemented in modern programmable devices
from Xilinx Spartan-6 and 7-Series families have been proposed in recent years [12,13].
Comparing both delay-based PUFs, RO-PUFs usually offer a better performance in terms
of reliability and entropy than arbiter PUFs [14].

Electronics 2021, 10, 1957

30f17

The design and characterization of a configurable RO-PUF for programmable de-
vices that incorporate different strategies to minimize resource occupation and accelerate
time response are described in this paper. To exploit the configuration options, facilitate
its characterization, and simplify the integration on an embedded system, the RO-PUF
is implemented as a parameterized IP-module with a standard connection interface for
embedded processors. The behavior of the PUF in Xilinx Zynq-7000 devices is analyzed
using 15 Pyng-Z2 boards, in which an embedded system containing 10 PUF instances in
different locations of the device is implemented. The tasks of selecting PUF configuration
parameters, applying successive challenges following different strategies for the compari-
son of RO pairs, and capturing the corresponding responses for their subsequent statistical
treatment are carried out with a series of test programs developed, compiled and run using
the embedded operating system available on the development board.

The paper is organized as follows: Section 2 introduces an overview of RO-PUFs,
including a review of the strategies followed in the proposals in recent years to select the
output bits of the PUFs. The design of the proposed configurable RO-PUF is detailed in
Section 3: the PUF structure and its main characteristics are illustrated in subsection 3.1. The
realization of the RO-PUF as an IP-module is explained in Section 3.2. The implementation
of a test prototype, including several PUFs in the same System-on-Chip (SoC) is depicted
in Section 3.3. Section 4 presents the results of the battery of tests carried out to achieve a
complete characterization of the configurable RO-PUF. Finally, the conclusions of this work
are expounded in Section 5.

2. An Overview of RO-PUFs

An RO-PUF consists of an array of ring oscillators made up of an odd number of
inverters, forming a combinational loop. The frequency of oscillation of the RO is roughly
calculated by the following;:

1

fro 2. Nstages * TINV @
where 7stqges is the number of stages of the RO and 7y is the nominal time delay per
inverter. The total delay in an RO loop must also consider the delays due to the paths
connecting the active devices. According to this, two ROs with the same number of
stages and an identical layout should have the same characteristic frequency. However,
the variability inherent in the manufacturing processes of CMOS integrated circuits makes
it such that each RO has a unique operating frequency, thereby providing a mechanism that
allows the individual identification of different samples of the circuit. Usually, one inverter
in the chain is replaced by a NAND gate to enable or disable the oscillation, as illustrated
in Figure 1.

enable fro

___{>°___l_|IL

Figure 1. Structure of one RO in an RO-PUF.

The conventional implementation of an RO-PUF, proposed in [11], uses N identical
ring oscillators whose outputs are connected to two multiplexers following the scheme in
Figure 2a. The selection signals of both multiplexers (Challengel and Challenge2) determine
the RO pair to be compared, using their outputs as clock signals of two counters that
compute the number of oscillations of each of the selected ROs in a time interval defined
by a reference clock. The outputs of the two counters are then compared to produce a
single output bit, whose value is 0 or 1 depending on which of the two ROs is faster.
For a given pairwise comparison, the larger the frequency difference, the more reliable the
corresponding response bit. Since this PUF provides one bit per each RO pair comparison,

Electronics 2021, 10, 1957

40f17

the generation of certain length bitstreams will require the implementation of a large
number of ROs.

Certain physical phenomena (such as jitter, transistor-level noise sources, etc.) limit the
repeatability of the PUF response, making it not directly usable in a secret key generation
scheme as a consequence of not being perfectly reproducible, i.e., there are slight differences
from run to run when applying the same challenges. The reliability of the PUF can also be
affected by changes in its operating conditions (temperature, supply voltage, etc.). However,
some techniques to implement PUFs highly robust to environmental variations were
recently proposed in [15], which implies a significant decrease in the relative importance of
this type of effects. An additional problem is the lack of entropy due to the non-uniform
distribution of the PUF response bits. Entropy is generally not at its maximum due to
correlations between RO pair comparisons and bias in PUF output bits, i.e., the probability
that a PUF bit has a specific value (‘1" or ‘0") is not 50%. The main causes of the lack of
entropy are asymmetries in the PUF layout and systematic manufacturing variations [16].

Challenge 1

\l\ Label
[2[ro}+T
MUX 1 COUNTER 1

=
l_]

. | MUX 1 COUNTER 1
'

1 bit/ RO pair PPN .
Overflow | 2-3 bits / RO pair

Detection | pUF response

\ PUF response Challenge

3]
TS

' |MUX2 ——| COUNTER 2

. MUX 2 COUNTER 2
.
.

T Nl

Challenge 2

(@ (b)
Figure 2. Block diagrams of (a) conventional RO-PUF in [11], and (b) RO-PUF presented in [17].

To fix these issues, the use of Helper Data Algorithms (HDA) is required to meet the
key requirements [16]. HDA encompass three concatenated building blocks: (1) bit selection
to increase the reliability of the PUF response; (2) Error Correction Codes (ECC) to mitigate
the effects of noisy PUF outputs [18]; and (3) entropy increase to ensure that the distribution
of 1 sand 0 s in the key is nearly uniform, usually performed by means of compression for
the PUF output, using a hash function as first reported in [19]. Several approaches have
been proposed in the literature with the aim of improving the uniqueness and reliability of
the bit sequence provided by an RO-PUF. As an example, transform-coding approaches
based on different linear transformations were used in [13,15] to decorrelate data extracted
from the ROs before being used in both the enrollment and the reconstruction stages of
a fuzzy commitment scheme [20]. Much effort has also been devoted to the study of
ECCs (sometimes a combination of them) that can be efficient from the perspectives of
security and resource consumption, the latter especially for resource-limited embedded
system applications, such as IoT. Among the techniques that significantly reduce the size
of the helper data, those that deserve mention include the use of ECCs based on polar
coding described in [21] or nested polar and Wyner-Ziv coding analyzed in [22]. Other
proposals use additional circuits to self-calibrate for better uniqueness and randomness.
Among them, Ref. [23] proposed a block that calibrates the phase to measure the RO
frequency quickly and accurately. In addition to the pre- and post-processing techniques
used to improve the quality of a secret key generation scheme, the complexity of the
required ECCs can be reduced with a good selection of the bits that make up the PUF. Thus,
many efforts have been focused in the selection of PUF output bits. PUF characterization is
crucial to evaluate the reproducibility and entropy of its output, to the point that after PUF

Electronics 2021, 10, 1957

50f17

performance analysis, a partial or complete PUF redesign might be necessary to meet the
PUF requirements.

In the context of RO-PUFs, bit selection is directly related to the selection of the two
ROs that compose a pair. Several techniques have been presented in the literature to select
the most suitable pairs of ROs and optimize the relationship between the PUF size (number
of response bits) and the resources required to implement it.

Some commonly used methods to minimize the effect of correlated variations on RO-
based PUFs include placing ROs as close as possible in a 2D array and selecting adjacent RO
pairs in each comparison [24]. Configuring ROs to select pairs with the largest differences
of frequencies to increase the robustness of the PUF against environmental variations and
noise is the approach followed in [11], where only one of every eight possible RO pairs is
used to conform the PUF, and in [14,24], where a Configurable Ring Oscillator (CRO) PUF
that allows choosing the most suitable stages in each RO is described. Other proposals
to improve the reliability of PUFs are based on generating enable signals to activate only
the ROs to be compared at any given time [25], choosing the most appropriate challenge-
response set, as happens in the so-called ordering-based RO-PUFs [26,27], or selecting pairs
of ROs based on their performance in a temperature range assuming that a temperature
sensor is integrated on-chip [28].

The size of a PUF must be large enough to provide secure keys of adequate length. Re-
garding the first requirement, to avoid possible correlations in the output bits of a PUF with
N ROs, N/2 comparisons are frequently used in many of the proposed works [11,17,29].
However, other authors take into account that there is no correlation if (N — 1) pairs of
neighboring ROs are used so that each RO participates only in two comparisons. Taking
advantage of this circumstance, a comparison strategy is proposed in [25] that also en-
sures that the compared pairs are implemented in physically adjacent locations within the
FPGA fabric. On the other hand, the area-efficiency can be improved, resorting to the use
of dynamic reconfiguration techniques provided by modern families of programmable
devices [30].

A strategy that simultaneously allows increasing the area-efficiency and reducing the
response time of the PUF was proposed in [17,29]. Instead of using as the PUF output
the bit resulting from the comparison of the counters (referred to as the “sign bit” in this
work), this approach takes two or more bits from each RO pair whose values depend on
the difference between the two counters, i.e., the difference in the oscillation frequency
of the two ROs. The proposal, illustrated in Figure 2b, uses two arrays with the same
number of identical ROs. A unique challenge controls both multiplexers selecting ROs with
the same labels in each RO bank. The oscillations of the selected ROs are simultaneously
computed by the two counters. Unlike the conventional proposal in which the counting
interval is fixed by an external source, in this case, the overflow of one of the counters
marks the end of the evaluation period. Thus, the measurement is stopped as soon as one
of the counters reaches its maximum value and the value of the other counter is used for
further processing. The analysis of the PUF performance in a particular device determines
which bits of the counter are used to generate the PUF output. Usually two or three bits are
selected per comparison instead of the unique bit obtained with the conventional RO-PUF.
The total bit number that is required to the PUF response depends on the application.
For the sake of illustration, a key generation of 256-bits will require 128 runs if two bits are
extracted from one measurement. Thus, the proposal in [17] will halve the total resources
and time to retrieve a key versus the conventional approach that only provides one bit per
pair comparison.

3. Configurable RO-PUF for Embedded Systems

Combining some of the strategies and techniques proposed in the literature, this
article describes the implementation and experimental characterization of an RO-PUF in
embedded systems built on Xilinx 7-Series FPGA and Zyng-7000 SoC devices. The purpose
of our work is two-fold: first, to thoroughly explore the design space of the building blocks

Electronics 2021, 10, 1957

60of 17

of an RO-PUF in order to provide an efficient solution in terms of consumed resources and
operation speed; additionally, to encapsulate the PUF as an IP-module and provide it with
a standard connection interface to facilitate interaction with general-purpose processing
elements available in embedded systems, both in the preliminary characterization and the
normal operation phases of the PUF.

3.1. PUF Structure and Characteristics

The design consists of a bank of ROs that can be compared by pairs, where each
element of the pair can be selected independently. There are no a priori restrictions to
establish pairs fixed by an internal challenge generator. Instead, the challenge sequence
is determined by the processor included in the embedded system, which provides high
flexibility by allowing the test of different strategies for selecting RO pairs, as detailed in
Section 4.

Each element of the RO bank is a 5-stage RO described by four inverters and a NAND
gate with an enable signal that makes it selectable. To achieve a very compact and flexible
design, the structure of the Combinational Logic Blocks (CLBs) available in the Xilinx
7-Series devices is exploited to implement, inside each of its two Slices, two different ROs
that only share two of the five stages of the ring. This idea, illustrated in Figure 3a, allows
that once the pair of Slices has been selected, four different comparisons can be made
according to the four combinations that appear in Figure 3b. Depending on the application
for which the PUF will be used, this feature can facilitate the selection of the most suitable
ROs or allow to increase the size of the PUF.

sy
/L \i\ SLICEL

o | L
e 1
ss1 | ss2 | Configuration
o 0180 <0
o] D ol [0 [1 C1
) T_DO_DO_DO_ /f 1 0 2
s SLICEM 1 1 C3

(a) (b)
Figure 3. Implementation of two configurable 5-stage ROs inside one CLB: (a) schematic and (b) all
possible configurations.

As shown in the block diagram of Figure 4, similar to most of the state-of-the-art
proposals, the outputs of all ROs are connected to two multiplexers to select the two ROs
whose oscillation frequencies are compared, using their outputs as input signals of two
counters. However, unlike the approach in [17], in our proposal, the multiplexer selection
inputs can be defined independently, which allows exploring different selection strategies
and the challenge sequence, that is, the choice of the RO pairs to compare and the order in
which the comparisons are made.

The counting process continues until one of the counters reaches its maximum value.
In our design, this value is determined by the mask shown in Figure 5, which is OR-ed
with the actual values of both counters to fulfill two objectives. On the one hand, the three
least significant bits are set to ‘1” with the idea of providing a margin of seven clock cycles
so that the slowest counter does not overflow when the oscillation frequencies of the two
ROs are very similar, as a consequence of the delays in the generation and propagation
of control signals. On the other hand, the four most significant bits of the mask (called
count_st) can be configured externally to define the effective size of the counters, in order
to optimize the timing response of the PUF.

Electronics 2021, 10, 1957

7 of 17

’ Configuration Parameters

RO Stage Selection

Counter Stop Mask

Challenge 1 —
Qutput bit Selection
ROs Bank)

!
RO /R()ﬂ
« | MUX L —EOUNTHU
ROS / RO} !
7 0
ROS /RO [L — Overflow ’
. detection | 2-3 bits / RO pair
(= ",
: \ C & PUF response
‘omparator
Ll
) L
.

Challenge 2 é

Figure 4. Block diagram of the configurable RO-PUF.

Nbe-1 0
x|x|x[x]e[e] - oo[ofo[e[o[efefoe]«]]+]
count_st

Figure 5. Counter mask.

The proposed configurable RO-PUF also offers different options for selecting the
output bit (or bits) from each pair comparison. The overflow signal from one of the
counters can act as a sign bit when comparing the frequencies of the ROs, similar to that
used in conventional RO-PUFs (as in [11]). As an alternative (or complementary) way,
one or more bits of the counter that has lost the competition can also be used as output
from the PUF, according to the scheme proposed in [17]. In this way, depending on a
performance evaluation, the PUF output can be a bit concatenation using both options in
order to increase the number of bits per RO pair comparison.

Other design options can be fixed using the configuration parameters. For instance,
the ROs that are not involved in the selected pair can be enabled or not.

3.2. IP-Module Design

In order to facilitate the characterization and usage of the configurable RO-PUF,
this is designed as a parameterized IP-module and incorporated into a test prototype
implemented as a SoC, where several instances of the PUF are connected to a general
purpose processor that configures the modules, applies test sequences, and captures
output data. The IP-module is particularly conceived for Zyng-7000 devices, where the
Programmable Logic (PL) is derived from Xilinx 7-Series FPGAs and the Processing System
(PS) is based on a dual-core ARM Cortex-A9. The Xilinx Vivado environment is used to
develop the embedded system.

The core of the PUF is a rectangular array of ROs located on (N x Ny) adjacent CLBs
of the programmable device. CLB resources are identical and scalable across all the Xilinx 7-
Series families to facilitate IP implementation and design migration. Each CLB contains two
Slices with different functionalities: Slices called SLICEL provide logic-function generators,
storage elements, wide-function multiplexers, and carry logic, while those called SLICEM
can be also used to implement distributed RAM and shift registers. Both types of Slices
include four Look-Up Tables (LUTs) that can be used to implement an arbitrarily defined
six-input Boolean function, two five-input Boolean functions with common inputs, or two
independent Boolean functions of three inputs or less [31]. This versatility is exploited in

Electronics 2021, 10, 1957

8of 17

our design to increase the area-efficiency of the PUF by implementing in each Slice two
5-stage ROs sharing only one pair of LUTs as explained in Figure 3a.

The IP-module is described in VHDL language, including in the code a set of directives
to force Vivado software to implement the two alternative ROs within the same Slice and
to precisely define the location of the Basic ELements (BEL) used to implement them.
For this reason, the basic unit of the design is a single VHDL entity that describes the two
couples of configurable ROs (four different ROs) to be implemented in a CLB. As shown
in the schematic representation of Figure 6, a stage_selection input (ss;) allows to choose
independently and dynamically the configuration of the RO implemented in each Slice,
providing a total of four different options per CLB. The design of the configurable RO block
also includes two enable signals (for row and column selection) to activate only the CLBs
with ROs, which are compared together at a given time to obtain the PUF response.

bnky[0].bnkx([0].p

inv inv: inv inv inv inv ux
’—{m ol —Jw o}—Jo o}——n 4‘—{m of—(o o}—w o}— 10
Tt | w1

LT T

w22 inv32 mux02 mux12

2 iny
0w ofl—Jfw o}—Jwo o] 10 10
T 0T (] 1 o ﬂ inva2 invs2 inv62 —n
12 w of—Jw o}—{w o 2 ol
ss2

5] T T T

T0s_tros_xya_0_0_rop__1

Figure 6. Implementation of two pairs of two 5-stage ROs in the same CLB of the Zynq device.

Using VHDL generate statements, a parameterized RO bank is described at a higher
hierarchical level where both the array size and the relative location of each basic structure
can be configured by means of VHDL generic clauses. Finally, the RO-PUF top-level
description includes, in addition to the RO bank and the pair of multiplexers and counters,
a series of logic blocks to generate enable signals, control counters operation and provide
the output values.

Once the VHDL description is complete and verified, the design is encapsulated as
an IP-module with an AXI4-Lite communication interface. Before implementing it on
the programmable device, some PUF characteristics can be configured by the following
parameters: Ny and Ny are the number of columns and rows of CLBs, respectively; Xy and
Yy indicate the initial coordinates where the RO bank is physically located on the device;
Nj, determines the maximum number of bits of the counters; and ID is an identifier of the
RO-PUF useful for debugging purposes.

During the characterization and operation phases of the PUF, data are interchanged
between the ARM processor and the PUF through an AXI4-Lite bus, using the three 32-bit
registers shown in Figure 7. The CONTROL register, shown in Figure 7a, is an input
register that allows to define the stop_c mask in order to determine the effective size of the
counters, set the stage_selection bits to choose RO configurations, and decide whether or
not to use local enable signals to activate only the ROs that are being compared at a given
time. In addition, bits 0 and 1 of this register are used to send the reset and start signals
that control the operation of the PUF. Figure 7b shows the ROSELECT input register used
to set the sequence of challenges applied to the PUE. Up to 16 bits can be used to send
the selection input to each of the two multiplexers. The DATAOUT register provides the
outputs of the RO-PUF. The busy signal indicates when an RO pair comparison has finished.
Then, fulll and full2 indicate which counter has reached its maximum value (in order to get
the sign bit), and rdata provides the value of the non-winner counter (from which other bits
can be extracted to form the PUF). As shown in Figure 7c, the eight most significant bits of
this register also determine the identifier (ID) fixed during the IP-module instantiation.

Electronics 2021, 10, 1957

9of 17

31 23 15 7 0

weonmwor [[[[[[[LT TLLTTIITEIIT LTI]

[
stop_c ss

en_all reset

31 23 15 7 0

evvosewecr [[[[[[[[[[ITTTTLLILIIILLITTTTT]]

31 23 15 7 0

@pataout | | |||

l J
‘ ' /4N
ID rdata

full2 fulll busy

Figure 7. Registers used to configure the RO-PUF IP-module.

3.3. Test-System Implementation

In order to verify the PUF behavior and to take advantage of its configurability to
experimentally evaluate the best alternative for each of the possible options, a test prototype
is designed and implemented on a set of 15 (ideally) identical Pyng-Z2 development boards.
The test-system instantiates 10 copies of the PUF located in different areas of the FPGA
fabric available in the Zyng-7000 device, and connected to the ARM processor by means of
the AXI interconnect infrastructure provided by Xilinx IP Integrator tool. Each PUF has a
bank of 400 ROs arranged in a matrix of 8 x 25 CLBs and the number of bits for the two
counters (Np,) is fixed to 16.

Figure 8a shows the layout of the test-system with the 10 PUFs distributed across
the different clock regions of the device by defining Xilinx’s Pblocks and using physical
constraints to direct the routing and placement process. A detail of the utilization report
provided by Vivado is shown in Figure 8b, in which it can be seen that each instance of the
PUF uses about 2000 Slice LUTs (1600 of them corresponding to the RO bank), which is
only 4% of the resources available on the programmable device.

5 Nome Slice LUTS R:g'i'strs F7 Muxes | Slice
(53,200) (106,400) (26,600) (13,300
Vv N tros_wrapper 20,238 2,129 1,060 5,630
V [I] tros_i (tros) 20,238 2,129 1,060 5,630
oo > [1] processing_system7_0 0 0 0 0
» > [0 ps7_0_axi_periph (tros | 681 616 0 355
A | > [1] rst_ps7_0_100M (tros_t 17 33 0 10
v tros_xya_0 (tros_tros_x 1,954 148 106 536
Vv [1J U0 (tros_tros_xya 0 | 1,954 148 106 536
v [0 tros_xya_v1_0_S 1,954 148 106 536
a6 Vv [I] DUT (tros_tros 1,927 37 106 501
AL am [1] cnt1 (tros tr 130 17 53 46
o i TS [1] ent2 (tros_tr 150 17 53 53
i > [1] robk (tros_tr 1,600 0 0 400
ﬁ L [1] roen (tros_tr| 47 0 0 16
| > & tros_xya_1 (tros_tros x; 1,954 148 106 537
o [pblock trbs sy Of lobiodk 11> e block tros xya [pblock tros xya 3 |- | > tros_xya_2 (tros_tros_x 1,954 148 106 537
(a) (b)

Figure 8. Layout view (a) and resource consumption (b) in the test-system.

4. RO-PUF Characterization

Pyng-Z2 is a low-cost development board compatible with the Python Productivity
for the Zynq (PYNQ) environment [32]. It provides a Python framework on an embedded
Linux operating system, which simplifies the interaction between the hardware and soft-
ware components of an embedded system. Hardware elements are integrated into PYNQ
through “overlays” (the hardware equivalency to software libraries) to which a Python
interface is associated to facilitate their use. In order to accelerate the system operation,

Electronics 2021, 10, 1957

10 of 17

however, in this work, we use, as an alternative to coding in Python, the C-API provided
in [33], which provides a similar functionality through a set of C routines that can be
compiled to generate executable code.

Using these facilities, a complete test protocol is defined, coded as a set of C programs,
and run on 15 Pyng-Z2 boards—all with the objective of characterizing experimentally the
designed PUF and identifying those of the possible configuration options that should be
selected to optimize the PUF behavior, both in terms of reliability and efficiency. The use
of 15 boards and 10 PUFs implemented per board makes it possible to have a total of
150 samples to characterize the proposed RO-PUF, which ensures the generality of the
results obtained.

Among the characteristics that are analyzed, it is worth highlighting the use of different
strategies to select the pairs of ROs that are compared (which we refer to as the “test strategy”
in this paper), the behavior of ROs with different configurations, and the influence of other
configurable parameters (e.g., the number of counters’ bits, the size of the PUF, or the
generation of enable signals to limit the number of ROs oscillating simultaneously).

The practical use of an RO-PUF requires establishing a challenge-response mechanism,
which implies fixing a method to explore the elements of the RO bank and selecting the
ROs that are compared. Among all the possible alternatives to select the two components
of the pair to compare, we have chosen four different ways of matching the ROs based on
their proximity and the type of Slice in which they are implemented. The characteristics of
each of these “test strategies” are the following:

4

e TO1: The first test strategy consists of pairing the closest ROs with identical layouts.
To perform this, the RO bank is traversed by rows to compare the RO implemented
in a Slice with the one located in the Slice that occupies the same position in the next
CLB (thus ensuring that both ROs correspond to Slices of type M or L). To avoid
edge effects, the ROs in the last CLB of each row are not used as the first RO of
a pair, so the maximum number of comparisons obtained with this test strategy is
(2 x (Ny — 1)) x Ny x 4 = 1400 pairs for the test prototypes.

e T02: This test strategy pairs the furthest ROs within the same layout. To do this,
an offset equal to the number of CLBs (i.e., half the number of Slices) occupied by the
RO bank is added to the selection input of the second multiplexer. The number of
comparisons is in this case 2 X Ny x Ny X 4 = 1600 pairs.

e TO03: Two ROs in consecutive Slices are paired when using this strategy, which implies
that one of them is implemented in a M-type Slice and the other one in a L-type
Slice. Now, only the RO in the last Slice of the last CLB in each row is not used as
the first RO of a pair to avoid edge effects, being the number of possible comparisons
((2 x Ny) — 1) x Ny x 4 = 1500 pairs.

e TO04: The last test strategy compares the furthest ROs implemented in Slices of different
types by adding an offset equal to the number of CLBs plus one to the selection input of
the second multiplexer. The number of comparisons is 2 x Ny X Ny x 4 = 1600 pairs.

In order to characterize the suitability of the different IP-module outputs to generate
the PUF response, a set of tests based on the four previously described strategies is first
run for the 15 available boards. In each test, the same sequence of challenges is applied
1000 times and the two IP-module outputs (sign bit and counter value corresponding to
the slowest RO) are captured and stored in output files. The use of stage_selection bits to
analyze all possible RO configurations in each CLB, a stop_c mask to limit the effective size
of the counters to 15 bits, and the option to generate row and column enable signals for
CLBs are the alternatives configured to perform this test battery.

To reduce the processing time when analyzing the data, only one in five of the compar-
isons made in each test are considered in the calculations (280 for T01, 300 for T03, and 320
in the case of T02 and T04). In this way, it is ensured that a similar number of ROs of the
four possible configurations (C0-C3) participate in the PUF output.

In addition to the sign bit, which is the only alternative for PUFs whose response
depends on which is the fastest of the two ROs involved in each comparison, in those that

Electronics 2021, 10, 1957

11 0of 17

measure the value of the frequency difference between the two ROs, one or more bits of the
value resulting in each comparison can be used as PUF response according to the measures
of stability, probability and entropy that they provide [17].

The stability (s) of a bit at position 7 for a particular RO is defined as follows:

o P(Biti=1) ifP(Biti=1)>05
spit i(RO) = {1 —P(Biti=1) if P(Biti=1) <05)

where P(Bit i = 1) is the probability of occurrence of 1 at position i as follows:
P(Biti=1) k 2 Bit), 3)

being that k is the number of responses obtained (k = 1000 for each test) and Bit; ; the i-th
bit of the j-th response value. The average stability (S) is calculated, taking into account
the total number of RO pair comparisons in each test, noted as N:

1 N
Spiti = 3 Z%SBitj(ROj) 4
]:

To corroborate if the PUF output fulfills the uniqueness requirement, two metrics of
entropy are evaluated: the intra-entropy (Hintra) to evaluate the uniqueness of the PUF
output bits within each PUF implementation, and the inter-entropy (Hinter) to evaluate
the bit uniqueness for each of the RO pairs in different PUF implementations. The average
intra-entropy of bit position i is defined as follows:

m 1

Hintra(i) = =Y 3 py{a)loga(pi(0)) ®)

where m is the number of implementations, calculated as the product of the number of
devices (N;) and the number of different RO-PUFs implemented on each device (Npyr),
ie., m = Ny x Npyr = 15 x 10 = 150, and p, (k) is the probability of message g within the
j-th implementation with only two possible messages:

pi1) = Y maj(ROy, i) ©
=1
pi(0) =1—p;i(1) 7)

where RO represents the [-th RO pair on the j-th implementation, 7 is the number of RO
pairs, and maj(RO, i) is the majority value of the i-th position determined from k responses
evaluated for each pair of ROs.

The average inter-entropy of bit position i is computed as follows:

Hinter(i) = —— Z Z pi(@)log2(pi(q)) ®)
where p;(q) is the probability of message g of I-th RO pair:
m
Z maj(RO; i 9

pi1(0) =1—pi(1) (10)

Electronics 2021, 10, 1957

12 of 17

The ideal value for the stability is 1, which means the bit output is reproducible in
all the responses. However, this condition can be relaxed, and a value higher than 0.95 is
considered acceptable. Concerning probability, its ideal value should be equal to 0.5 to
avoid bias but small variations (+0.015) are accepted. A maximum entropy (Hintra and
Hinter) equal to 1 guarantees that there is no correlation between the different output bits
at each PUF and there is no correlation between bits on the same positions among different
implementations. Again, small fluctuations of entropy are tolerable if the average values of
intra- and inter-entropy surpass 0.95. Compression can correct the impact of correlations
and bias of the PUF to increase entropy [16]. As result, the key derived from PUF will be
nearly uniform.

Figure 9 shows the average values of stability, probability, Hintra and Hinter among
different RO pairs for the sign (bit 0) and bits 1-15 of the counter value (To facilitate
comparison when using counters of different sizes, bit 1 corresponds to the MSB and bit 15
to the LSB.) obtained as outputs of the 10 implemented PUFs when the tests are run for the
15 Pyng-Z2 boards. The results highlighted with green background satisfy the tolerable
values in the average stability, probability and entropy, i.e., values between 0.95 and 1 in
the case of Hintra, Hinter, and stability, and values between 0.485 and 0.515 in the case
of probability.

T01 T02 TO3 T04
Bit S P Hintra Hinter S P Hintra Hinter S P Hintra Hinter s P Hintra Hinter

0 0.9959 0.4964 0.9965 0.9508 0.9960 0.4918 0.9946 0.9458 1.0000 0.4880 0.9991 0.1288 1.0000 0.4972 0.9997 0.1494
1 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000
2 1.0000 0.9990 0.0091 0.0039 1.0000 0.9979 0.0175 0.0083 0.9993 0.7060 0.8695 0.3253 0.9994 0.7013 0.8768 0.3054
3 0.9999 0.9623 0.2259 0.1640 0.9999 0.9672 0.2038 0.1488 0.9986 0.6070 0.9599 0.6024 0.9988 0.6155 0.9543 0.5751
a4 0.9992 0.8837 0.5089 0.4299 0.9993 0.8729 0.5426 0.4741 0.9978 0.5510 0.9843 0.7870 0.9980 0.5466 0.9896 0.7759
5
6
7
8

0.9974 0.7828 0.7414 0.6957 0.9975 0.7649 0.7757 0.7397 0.9956 0.5039 0.9954 0.8916 0.9956 0.5107 0.9976 0.9099:
0.9935 0.7243 0.8416 0.8111 0.9935 0.7061 0.8684 0.8382 0.9911 0.5147 0.9960 0.9652 0.9914 0.5165 0.9955 0.9767
0.9830 0.5938 0.9706 0.9674 0.9829 0.5945 0.9687 0.9635 0.9820 0.5051 0.9981 0.9949 0.9829 0.5030 0.9977 0.9947
0.9623 0.5398 0.9922 0.9892 0.9618 0.5376 0.9924 0.9909 0.9646 0.5021 0.9974 0.9950 0.9651 0.5036 0.9969 0.9940

9 0.9192 0.5127 0.9970 0.9949 0.9201 0.5075 0.9960 0.9950 0.9299 0.5005 0.9977 0.9951 0.9294 0.4990 0.9976 0.9957
10 0.8346 0.5001 0.9976 0.9945 0.8361 0.5048 0.9964 0.9942 0.8603 0.5004 0.9974 0.9950 0.8608 0.5009 0.9978 0.9954
11 0.6819 0.4952 0.9975 0.9952 0.6842 0.4961 0.9966 0.9948 0.7249 0.5007 0.9977 0.9946 0.7247 0.4985 0.9979 0.9949
12 0.5491 0.5011 0.9936 0.9912 0.5491 0.5015 0.9942 0.9921 0.5666 0.4980 0.9961 0.9940 0.5641 0.5002 0.9950 0.9929
13 0.5404 0.5002 0.9918 0.9898 0.5401 0.5007 0.9922 0.9895 0.5416 0.4992 0.9936 0.9917 0.5398 0.5002 0.9933 0.9898
14 0.5401 0.5000 0.9914 0.9898 0.5399 0.5002 0.9929 0.9905 0.5408 0.5008 0.9919 0.9892 0.5398 0.4997 0.9940 0.9907
15 0.5402 0.4999 0.9936 0.9923 0.5398 0.5001 0.9930 0.9903 0.5406 0.5004 0.9936 0.9904 0.5399 0.5000 0.9933 0.9914

Figure 9. Average values of stability, probability, Hintra and Hinter for the sign (bit 0) and bits 1-15 of
the counter value obtained as PUF outputs when executing the tests based on the different strategies
(bit 1 = MSB, bit 15 = LSB).

Figure 9 shows two clearly different behaviors. When using test strategies T01 and
T02, the sign bit is a good candidate to be included as a PUF response since it presents a
stability very close to the ideal value of 1, Hintra and Hinter values that are sufficiently
large, and a probability also close to the ideal value (0.5 in this case). However, none of
the counter bits simultaneously satisfy the four required conditions, although bits 7 and
8 do satisfy three of them, failing at the probability requirement. On the contrary, data
corresponding to test strategies T03 and T04 show that the sign bit should not be chosen in
this case since the value of Hinter is extremely low. Nevertheless, there are three bits of the
counter value that fulfill all necessary requirements and, thus, should be considered and
subsequently analyzed to form part of the PUF response.

The choice of the bit or set of bits that forms the PUF response when each pair of ROs
is compared is determined by the uniqueness and reliability of the device. These properties
can be quantified by evaluating the Hamming distances between the codes resulting from
the repeated application of the challenges sequence to the same PUF (HDintra) and to other
replicas of it deployed in other locations on the same development board or in the same
location on different boards (HDinter), respectively.

The intra-Hamming distance is estimated as follows:

1 m k

HDintra = —— HD(R,,R; ; 100% 11
intra mxk;]; (Rr, R;j) x (11)

Electronics 2021, 10, 1957

13 0f 17

where m and k have already been defined, and R; is the reference response calculated as
the mode over all responses.
The uniqueness is calculated via the inter-Hamming distance, defined as follows:

1 m—1
HDinter = —— Y
(2) = 5

As for HDinter, 50% is the optimal value for this metric, although we accept as
tolerable values with an error of 2.5%. The desirable value of HDintra is 0, which means
that the response that produces a given PUF implementation is always the same. However,
if these values are not so low, the response of the PUF could be improved with the use of
ECCs, as explained in the introduction.

With the idea of reducing the time taken to complete the analysis, before proceeding
with an exhaustive processing of the captured data, a series of specific tests are carried out
to determine the influence of the different PUF configuration parameters.

The first of these tests aims to characterize the influence of the size of the counters
to determine the number of bits that allows to minimize the PUF response time without
degrading its quality indexes. Data are obtained by executing the four test strategies
varying the sizes of the counters from 13 to 16 bits, using for this purpose the stop_c mask
configurable through the control input register of the IP-module.

Figure 10 illustrates the total HDinter and mean HDintra values obtained after pro-
cessing different combinations of the outputs bits of the comparisons for 1000 responses of
50 PUFs implemented in five different programmable devices. To save space, only results
corresponding to test strategies TO1 and T03 are included in Figure 10. Those related to
the other two strategies show a very similar behavior. From the results, it can be seen that
both HDintra and HDinter remain almost constant for Nj, values above 13 bits. In the rest
of the analysis, N, = 15 is selected, as it is the smallest size that offers a good trade-off
between HDintra and HDinter for all test strategies.

3

HD(Ry,, Ry;) x 100% (12)
1

+

HDinter vs. size of the counters in bits HDintra vs. size of the countersin bits
52.00 2.50
50.00
— .
L e —— ————— el =0 b0
146,00 ~@—Bit0-6 ~&—Bit0-6
—4—Bit6 150 —=Bit6
44.00 —_— .
[. —=Bit0-6-7 —— s . —H—Bit0-6-7
42.00 —Bit0-7 100 ~o—Bit0-7
40.00 —o—Bit7 st
\ sito78 | | 00 Bit0-7-8
38.00
36.00 0.00
13 14 15 16 13 14 15 16
(a) TO1
HDinter vs. size of the counters in bits HDintra vs. size of the countersin bits
52.00
2.50
50.00 ————® o ———— -
—4—Bit5 2.00 - - e ——Bit5
48.00 — —8—Bit5-6 —8—Bit56
—A—Bit6 150 —&—Bit6
46.00 + =
[—Bit 5-6-7 ==Bit5-6-7
4400 —4-Bit6-7 1.00 4 Bit6-7
— —o—Bit7 _ —a —o—Bit7
42.00 Bite7-8 | | 50 Bit6-7-8
40.00 0.00
13 14 15 16 13 14 15 16

Figure 10. Impact of the size of the counters on the quality of PUF response, according to the
combination of bits used to compose its output.

Two other parameters are analyzed to guarantee the generalization of the conclusions
obtained in our study: the number of samples (PUF implementations at different locations
inside a programmable device and/or on different boards) that should be used, and the
size of the PUF (i.e., the number of pairs of ROs compared when applying the challenge

Electronics 2021, 10, 1957

14 of 17

sequence) from which the extracted statistic faithfully represents the behavior of this type
of RO-PUE. As far as the number of samples is reduced, the evaluation time decreases.

To perform this study, data collected from the 15 development boards are used, first
processing the data from a single board, then from 5, later from 10, and finally from
all the available boards. The impact of the number of samples on the measures that
characterize the quality of the PUF is illustrated in the graphs of Figure 11 (once again,
only results corresponding to the run of T03 are shown, although the trend is similar for
the other considered test strategies). Analyzing the graphs, the values of HDinter and
HDintra obtained with a single board (10 RO-PUFs) are worse than in the rest of the cases,
but the differences are much smaller when 5 boards (or more) are used, especially for the
combinations of bits that enhance each of these figures of merit (bits 6 and 7 for HDinter
and bits 5 and 6 for HDintra). Therefore, the statistical results corroborate that processing
5 boards, that is, 50 RO-PUFs, is adequate to represent a generic implementation of the PUE.

HDinter vs. number of boards HDintra vs. number of boards

52.00 3.50

[p . 0 fb— —
50.00 1 : ——BitS ——Bit5
—m— it 5+ 2.50 —m— it 5+
28,00 Bit5-6 it5-6
—a—Bit6 . N —Bit6
2.00 ————
46.00 — = Bit5-7 = Bit5-7
- Bit6-7 150 / 4= Bit6-7
—
44.00 — —
— Bit7 1.00 — et
Bit6-8 — n Bit6-8
42.00 _ s
git7-8 | | 0-50 pE—————, Bit7-8
40.00 0.00

1 5 10 15 1 5 10 15

Figure 11. Impact of the number of analyzed samples on the quality of PUF response for different
combinations of bits when using test strategy T03.

Finally, it is convenient to evaluate whether the results obtained from a partial sam-
pling of the RO pairs available in the PUF can be extrapolated when the sample size is
progressively increased until all possible pairs. Figure 12 shows the evolution of HDinter
and HDintra values for different bit combinations as a function of the number of RO pairs
that contribute to the PUF response, i.e., the effective size of the PUF. Test strategy T04 is
the option selected for this study. As can be seen, the two quality indexes are almost inde-
pendent of the PUF size, but for the smaller sampled data, the worst results are obtained.
However, from 400 RO pairs onward, the values obtained can be acceptably extrapolated
to any PUF size.

HDinter vs. PUF effective size HDintra vs. PUF effective size

51.00 2.50
I e e— ——— — — N
200 Oy —————— e —
19,00 . — ——Bit5 —e—Bits
B git56 —B—Bit56
1
48.00 P %0 =~ —bite
47.00 e Bits7 oo = Bit5-7
PR - Bit67 —#-Bit67
™ —— ™ a a
46.00 —o—Bit7 —e—Bit7
—— 050
45.00 ~>~— Bit68 Bit68
44.00 0.00

200 400 600 800 1,000 1,200 1,400 1,600 200 400 600 800 1,000 1,200 1,400 1,600

Figure 12. Impact of the PUF effective size on the quality indexes for different combinations of bits
using T04.

Once the necessary conditions to obtain generalizable results through specific tests are
determined, the calculation of HDinter and HDintra values associated with the different
test strategies and the possible RO configurations can be completed. This analysis is carried
out using 200,000 PUF responses, collected from 5 Pynq-Z2 boards when executing the four
test strategies, with 15-bit counters, and the option to generate enable signals. The data of
each PUF are grouped in five blocks of 400 samples, four corresponding to the possible
configurations of the ROs in a CLB (C0-C3), plus a fifth one (CX) that homogeneously
combines elements of the 4 configurations. Test strategy T02 is the option selected in this
occasion to carry out the study. Figure 13 shows that the influence of the type of ROs that

Electronics 2021, 10, 1957

150f 17

is selected is not decisive. The values of HDintra are worse when selecting bits 6 and 7 in
the C2 configuration; however, if we take PUF responses that combine pairs of ROs with
different combinations, the results of HDintra are good enough, with acceptable low values
of HDinter. So we can conclude that the results that combine different pairs follow the
representative trend among all, so we do not need to discard any of the configurations a
priori. Therefore, the number of possible answers for the same PUF design can be increased.

HDinter vs. selected bits HDintra vs. selected bits
2.00

1.80

1.60

1.40

o mco

120

[mc1
Q

3

1.00

(]

a3 0.80 1

0.60 |

=X =X

0.40
0.20
0.00

\
\
\
\
\
\
\
\
\
8

Bit0 Bit0,6 Bit6 Bit0,6-7 Bit0-7 Bit7 Bit0,7-

Bit0 Bit0,6 Bit6 Bit0,6-

Figure 13. Influence of different configurations of RO pairs using T02.

After analyzing the previous results, the settings for a final exhaustive study of
HDintra and HDinter include 15-bit counters, 5 boards, 400 samples, enabling only the
selected ROs, and a CX configuration. We evaluate all the strategies tested for all the
interesting bits for each test in order to determine which of them provides better results in
terms of HDinter and HDintra as shown in Figure 14. The candidate bits for T01 and T02
are the sign bit (bit 0) and bits from 5 to 8, as indicated the preliminary results in Figure 9.
In the case of tests TO3 and T04, bits from 6 to 8 offer the best performance. Finally, we
also calculated the HDintra and HDinter among different RO-PUFs compounded by a
combination of these bits in all the possible tests. Figure 14 shows the RO-PUFs that offer
the best trade-offs between HDintra and HDinter (cells with background in green), that is,
the lowest values of HDintra with a tolerable value of HDintra (47.5% < HDintra < 52.5%).
The PUF generated by selecting bit 0 and 7 offers the best performance using tests T01 and
T02, while the PUF generated by selecting bit 6 and 7 offers the best performance using
tests TO3 and T04.

HDIntra HDIntra
T1 T2 T3 T4 T1 T2 T3 T4
Bit0 0.42 0.39 0.01 0.01 Bit 0 0.42 0.39 0.01 0.01
Bit5 0.27 0.23 0.28 0.58 Bit5 0.27 0.23 0.28 0.58
Bit 5-6 0.47 0.42 0.86 0.72 Bit 5-6 0.47 0.42 0.86 0.72
Bit 6 0.66 0.62 1.44 0.85 Bit 6 0.66 0.62 1.44 0.85
Bit 5-7 0.86 0.83 1.10 1.05 Bit 5-7 0.86 0.83 1.10 1.05
Bit 6-7 1.16 113 151 1.29 Bit 6-7 1.16 113 151 1.29
Bit 0,7 1.04 1.02 0.80 0.86 Bit 0,7 1.04 1.02 0.80 0.86
Bit7 1.66 1.64 1.58 172 Bit7 1.66 1.64 1.58 1.72
Bit 6-8 1.98 2.02 201 2.03 Bit 6-8 1.98 2.02 2,01 2.03
Bit 7-8 2.63 2.72 2.29 2.63 Bit 7-8 2.63 2.72 2.29 2.63
Bit 8 3.60 3.81 3.01 3.53 Bit 8 3.60 3.81 3.01 3.53

Figure 14. HDintra and HDinter values obtained by the RO-PUF generated by selecting different
combinations of bits and different test strategies.

5. Conclusions

Properly combining some of the techniques previously reported in the literature,
and taking full advantage of the resources available in the CLBs of Xilinx 7-Series pro-
grammable devices, this paper describes the design and characterization of a configurable
RO-PUEF efficient both in terms of occupied resources and operation speed.

The core of the PUF is an array of CLBs. Each CLB implements two configurable
5-stage ROs, in which two possible options that share two logical elements of the eight
available at each CLB Slice can be dynamically selected. In this way;, it is possible to
consider four different alternatives when comparing a pair of ROs located in different
CLBs, which allows multiplying by four the effective size of the PUE.

The length of the PUF response can also be increased if more than one bit is selected
from each RO pair comparison. Two non-exclusive approaches are included in the design

Electronics 2021, 10, 1957 16 of 17

for this purpose. One of them consists of using the “sign bit” given by the overflow signal of
one of the counters used to compare the oscillation frequencies of the two ROs. The second
one is based on selecting one or more bits of the counter that does not overflow after
the comparison.

The proposed RO-PUF is conceived as a parametrizable IP-module that incorporates
a standard AXI4-Lite interface to facilitate its integration into embedded systems. The size
of the RO bank and its location on the programmable device can be chosen prior to the
synthesis and implementation process. Other aspects of the PUF functionality (such as
the size of the counters, the generation of enable signals, or the strategy of applying the
challenge sequence) can be dynamically chosen during the characterization and operation
phases, using the 1/O registers mapped into the memory space of the embedded processor.

Using these facilities, an exhaustive battery of tests was carried out in order to analyze
the influence on the PUF quality indexes of different parameters and options. The tests
were executed on 15 Pyng-Z2 development boards implementing a design that incorpo-
rates 10 PUFs with a 25 x 9-CLB RO bank (400 configurable ROs). The results included
in the paper illustrate the procedure for the bit selection of the PUF response (sign bit
and/or counter bits) that allows establishing adequate trade-offs between reliability and
uniqueness metrics.

Among the future lines of continuity of this work, it is worth mentioning the realization
of a deep statistical study with the idea of having a theoretical basis for the selection of bits
that corroborates the experimental results obtained in this paper, as well as the use of PUF
responses in the development of a secret key generation and recovery scheme efficient in
terms of security and resource consumption.

Author Contributions: All authors have actively participated in technical meetings where this work
was planned. They also collaborated in extensive tests for the characterization of PUFs and in the
writing of the paper. M.C.M.-R. programmed the scripts to automate the processing data from
PUF responses, and E.C.-R. prepared the visual support of the published work. P.B. introduced
conceptualization and coordinated the funding acquisition to support the activities leading to this
publication, and S.S.-S. supervised the work, provided the design methodology for the configurable
RO implementation and developed the test battery for its characterization. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported in part by LINKA20216 funded by CSIC, TEC2017-83557-R
and PID2020-116664RB-100 projects from Spanish Government with support from the PO FEDER
of European Union, and P20_00740 project from the Andalusia Government with support from PO
FEDER of European Union. M.C.M.-R. holds a Post-doc fellowship from the Andalusia Government
with support form PO FSE of European Union.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Keating, M.; Bricaud, P. Reuse Methodology Manual For System-on-a-Chip Designs, 2nd ed.; Kluwer Academic Publishers; Springer:
Boston, MA, USA, 2002; ISBN 0-7923-8558-6.

2. Kocher, P; Horn, J.; Fogh, A.; Genkin, D.; Gruss, D.; Haas, W.; Hamburg, M.; Lipp, M.; Mangard, S.; Prescher, T.; et al.
Spectre Attacks: Exploiting Speculative Execution. In Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP),
San Francisco, CA, USA, 19-23 May 2019; pp. 1-19. [CrossRef]

3. Lipp, M,; Schwarz, M.; Gruss, D.; Prescher, T.; Haas, W.; Fogh, A.; Mangard, S.; Kocher, P.; Genkin, D.; Yarom, Y.; et al. Meltdown:
Reading Kernel Memory from User Space. Commun. ACM 2020, 63, 45-56. [CrossRef]

4. Trusted Computing Group. Available online: https://trustedcomputinggroup.org (accessed on 11 August 2021).

5. Herder, C.; Yu, M.D.; Koushanfar, F; Devadas, S. Physical Unclonable Functions and Applications: A Tutorial. Proc. IEEE
2014, 102, 1126-1141. [CrossRef]

6. Pappu, R; Recht, B,; Taylor, J.; Gershenfeld, N. Physical One-Way Functions. Science 2002, 297, 2026-2030. [CrossRef] [PubMed]

7. Holcomb, D.E.; Burleson, W.P; Fu, K. Initial SRAM state as a fingerprint and source of true random numbers for RFID tags. In
Proceedings of the Conference on RFID Security, Valencia, Spain, 14-20 October 2007.

8. Martinez-Rodriguez, M.C.; Prada-Delgado, M.A.; Brox, P.; Baturone, I. VLSI Design of Trusted Virtual Sensors. Sensors 2018,

18, 347. [CrossRef] [PubMed]

http://doi.org/10.1109/SP.2019.00002, 2019
http://dx.doi.org/10.1145/3357033
https://trustedcomputinggroup.org
http://dx.doi.org/10.1109/JPROC.2014.2320516
http://dx.doi.org/10.1126/science.1074376
http://www.ncbi.nlm.nih.gov/pubmed/12242435
http://dx.doi.org/10.3390/s18020347
http://www.ncbi.nlm.nih.gov/pubmed/29370141

Electronics 2021, 10, 1957 17 of 17

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

SRAM PUF: The Secure Silicon Fingerprint. Available online: https:/ /www.intrinsic-id.com /resources/white-papers/ (accessed
on 11 August 2021).

Lee, JW,; Lim, D.; Gassend, B.; Suh, G.E.; Van Dijk, M.; Devadas, S. A technique to build a secret key in integrated circuits for
identification and authentication applications. In Proceedings of the Symposium on VLSI Circuits, Digest of Technical Papers,
Honolulu, HI, USA, 17-19 June 2004.

Suh, G.E; Devadas, S. Physical unclonable functions for device authentication and secret key generation. In Proceedings of the
Design Automation Conference, San Diego, CA, USA, 4-8 June 2007; pp. 9-14.

Maes, R.; Van Herrewege, A.; Verbauwhede, I. PUFKY: A Fully Functional PUF-Based Cryptographic Key Generator. In
Cryptographic Hardware and Embedded Systems (CHES 2012), Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2012; Volume 7428.

Gunli, O.; Kernetzky, T.; i§can, O.; Sidorenko, V.; Kramer, G.; Schaefer, R.F. Secure and Reliable Key Agreement with Physical
Unclonable Functions. Entropy 2018, 20, 340. [CrossRef] [PubMed]

Maiti, A.; Schaumont, P. Improved ring oscillator PUF: An FPGA-friendly secure primitive. J. Cryptol. 2001, 24, 375-397.
[CrossRef]

Giinlg, O,; i§can, O.; Kramer, G. Reliable Secret Key Generation from Physical Unclonable Functions Under Varying Environmental
Conditions. In Proceedings of the IEEE International Workshop on Information Forensics and Security (WIFS), Rome, Italy,
16-19 November 2015; pp. 1-6.

Delvaux, J.; Gu, D.; Schellekens, D.; Verbauwhede, I. Helper Data Algorithms for PUF-Based Key Generation: Overview and
Analysis. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 2015, 34, 889-902. [CrossRef]

Kodytek, F; Lorencz, R. A design of ring oscillator based PUF on FPGA. In Proceedings of the IEEE 18th International Symposium
on Design and Diagnostics of Electronics Circuits and Systems, Belgrade, Serbia, 2224 April 2015; pp. 37-42.

Hiller, M.; Kurzinger, L.; Sigl, G. Review of error correction for PUFs and evaluation on state-of-the-art FPGAs. . Cryptogr. Eng.
2020, 10, 229-247. [CrossRef]

Gassend, B.; Clarke, D.; Van Dijk, M.; Devadas, S. Silicon physical random functions. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), Washington, DC, USA, 18-22 November 2002; pp. 148-160.

Juels, A.; Wattenberg, M.A. A fuzzy commitment scheme. In Proceedings of the 6th ACM Conference on Computer and
Communications Security (CCS), Singapore, 1-4 November 1999; pp. 26-36.

Chen, B.; Ignatenko, T.; Willems, EM.; Maes, R.; van der Sluis, E.; Selimis, G. A Robust SRAM-PUF Key Generation Scheme Based
on Polar Codes. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Singapore, 4-8 December 2017;
pp.- 1-6.

Gunlii, O,; i§can, O.; Sidorenko, V.; Kramer, G. Code Constructions for Physical Unclonable Functions and Biometric Secrecy
Systems. EEE Trans. Inform. Forensics Sec. 2019, 14, 2848-2858. [CrossRef]

Yan, W.; Chandy, J. Phase Calibrated Ring Oscillator PUF Design and Application. Computers 2018, 7, 40. [CrossRef]

Maiti, A.; Schaumont, P. Improving the Quality of a Physical Unclonable Function Using Configurable Ring Oscillators. In
Proceedings of the Field Programmable Logic and Applications (FPL), Prague, Czech Republic, 31 August—2 September 2009;
pp. 703-707.

Merli, D.; Stumpf, E,; Eckert, C. Improving the quality of ring oscillator PUFs on FPGAs. In Proceedings of the 5th Workshop on
Embedded Systems Security, Scottsdale, AZ, USA, 24 October 2010; pp. 1-9.

Yin, C.E.D.; Qu, G.Maximizing RO PUF’s Secret Extraction. In Proceedings of the Hardware Oriented Security and Trust (HOST),
Anaheim, CA, USA, 13-14 June 2010; pp. 100-105.

Komurcu, G.; Pusane, A.E.; Dundar, G. Enhanced challenge-response set and secure usage scenarios for ordering based RO-PUFs.
Devices Syst. IET-CDS 2014, 9, 87-95. [CrossRef]

Yin, C.E.; Qu, G. Temperature-aware cooperative ring oscillator PUF. In Proceedings of the Hardware Oriented Security and
Trust (HOST), San Francisco, CA, USA, 27 July 2009; pp. 36—42.

Kodytek, E; Lorencz, R.; Bucek, J. Improved ring oscillator PUF on FPGA and its properties. Microprocess. Microsyst. 2016,
47,55-63. [CrossRef]

Gehrer, S.; Sigl, G. Using the reconfigurability of modern FPGAs for highly efficient PUF-based key generation. In Proceedings of
the 10th International Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), Bremen, Germany,
29 June-1 July 2015; pp. 1-6.

7 Series FPGAs Configurable Logic Block: User Guide, UG474 (v1.8); Xilinx: San Jose, CA, USA, 27 September 2016.
PYNQ—Python Productivity for Zyng. Available online: http:/ /www.pynq.io/ (accessed on 11 August 2021).

C API Drivers for PYNQ FPGA Board. Available online: https://github.com/mesham/pynq_api (accessed on 11 August 2021).

https://www.intrinsic-id.com/resources/white-papers/
http://dx.doi.org/10.3390/e20050340
http://www.ncbi.nlm.nih.gov/pubmed/33265430
http://dx.doi.org/10.1007/s00145-010-9088-4
http://dx.doi.org/10.1109/TCAD.2014.2370531
http://dx.doi.org/10.1007/s13389-020-00223-w
http://dx.doi.org/10.1109/TIFS.2019.2911155
http://dx.doi.org/10.3390/computers7030040
http://dx.doi.org/10.1049/iet-cds.2014.0089
http://dx.doi.org/10.1016/j.micpro.2016.02.005
http://www.pynq.io/
https://github.com/mesham/pynq_api

	Introduction
	An Overview of RO-PUFs
	Configurable RO-PUF for Embedded Systems
	PUF Structure and Characteristics
	IP-Module Design
	Test-System Implementation

	RO-PUF Characterization
	Conclusions
	References

