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ABSTRACT Analogies between mechanical and electrical systems have been developed and applied for
almost a century, and they have proved their usefulness in the study of mechanical and electrical systems.
The development of new elements such as the inerter or the memristor is a clear example. However, new
applications and possibilities of using these analogues remain to be explored. In this work, the electrical
analogues of different vehicle models are presented. A new and not previously reported analogy between
inertial coupling and electrostatic capacitive coupling is found and described. Several examples are provided
to highlight the benefits of this analogy. Well-known mechanical systems like the half-car or three three-axle
vehiclemodels are discussed and some numerical results are presented. To the best of the author’s knowledge,
such systems were never dealt with by using a full electromechanical analogy. The mechanical equations are
also derived and compared with those of the electrical domain for harmonic steady-state analysis.

INDEX TERMS Electromechanical analogy, capacitive coupling, vertical dynamics, vehicle model.

I. INTRODUCTION
Analogies can be established between different physical
domains, such as mechanical, electrical, fluid, or thermal
systems since they are modeled with comparable differential
equations. Dynamical analogies are based on energy rela-
tions. In [1], Jeltsema & Scherpen provided an overview
of both the energy- and power-based modeling frameworks
in different physical domains and discuss their mutual
relationships.

The mechanical-electrical analogy was developed and
rather extensively used in 30-40’s of the 20th century for
the study of vibrations in linear mechanical systems [2]–[6],
where the use of mechanical to electrical analogy was
empowered by the existing solution methods for electrical
networks. One of the earlier works that solved a mechan-
ical system using electrical network theory was written by
Harrison [7] in a patent of an invention published in 1929.

The associate editor coordinating the review of this manuscript and
approving it for publication was Chaitanya U. Kshirsagar.

A detailed overview with interesting historical notes of the
conception and evolution of electromechanical analogy can
be found in the work of Gardonio and Brennan [8].

Two different analogues have been used to translate
mechanical systems into electrical ones. Historically, the first
proposed analogy related force to voltage. In this so-called
‘‘force-voltage’’ analogy [3] (also known as ‘‘direct anal-
ogy’’), the mechanical mass is related with an electrical
inductor and the mechanical spring with an electrical capac-
itor. Few years after this analogy had been adopted, some
difficulties or limitations were pointed out in [2] since the
physical interpretation of the electric network analogue was
not direct from the mechanical system. In the force-voltage
analogy, the relationship between mechanical and electrical
elements does not preserve the same topology, i.e. mechani-
cal elements arranged in series (parallel) are represented by
electrical elements arranged in parallel (series). Moreover,
the concept of through and across variables are inverted.
A through variable is measured on a single point of an ele-
ment, as performed with force and current measures, while
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the value of an across variable is obtained as the difference
between the measurements in two different points, such as the
case of velocity and voltage [6]. Then, in the force-voltage
analogy, a force being a through variable in the mechanical
system corresponds to a voltage, which is an across variable
in the electrical system.

To overcome these constraints, a new ‘‘force-current’’
analogy was formulated [2], [9], and the concept of
bar impedance (later on renamed as mobility) was intro-
duced [10]. This alternative analogy, also known as ‘‘inverse
analogy’’, preserves the same topology for both mechani-
cal and electrical systems, while keeping the equivalence
between through and across variables.

Despite the above, any of the described analogies are
mathematically valid and may be applied indistinctly. Fur-
thermore, depending on the specific mechanical problem,
one analogy may be more appropriate over the other and
easier to derive [4], [8]. In other cases, it could be even
necessary to use both analogies to draw different parts of a
mechanical system. The different electric diagrams derived
are then linked using appropriate couplers [11]. It should be
noted that the two possible electric analogues obtained for
a given mechanical system (force-voltage and force-current)
are dual to each other. Then, it is possible to transform one
into another following some basic relations [4]. As in the
electric network, the duality principle holds for mechanical
systems [12]. Some illustrative examples of dual mechanical
systems can be found in [13].

Beyond purely mechanical systems, the utility of ana-
logues is especially remarkable whenmechanical systems are
linked to electrical systems. In this multidomain problem,
the mechanical system is replaced by its electrical equivalent
and joined to the electrical one. In this way, a unique electrical
system is studied [14], [15]. de Silva [16] proposed the use of
linear graphs for modeling multi-domain systems in a unified
way, thus allowing to exploit the existing analogies across
domains.More recently, de Silva [17] introduced a systematic
approach for modeling multi-domain systems in a ‘‘unique’’
(single) model having physically meaningful variables, and
many illustrative examples were described.

Mechanical systems can be directly drawn as mechanical
‘‘circuit’’ or diagrams using mechanical symbols, instead
of using an electrical representation, but where the electric
principles can be applied. This approach is known as the
‘‘mobility method’’ when the same topology of the mechan-
ical system is preserved (as in the force-current analogy),
or the ‘‘impedance method’’ when the topology is changed as
in the force-voltage analogy [10], [13]. Firestone [10] stated
the equivalent of Kirchhoff’s laws for the mobility method:
(i) Force Law: the sum of all forces acting on any junction
point is zero; (ii) Velocity Law: the sum of all the velocities
across the structures included in any closed mechanical cir-
cuit is zero. The solutions of these mechanical diagrams are
then obtained without any reference to electric systems [18].

Working with analogues facilitates the transfer of knowl-
edge and ideas between different branches of science and
engineering. It motivates scientists to become interested in
other fields, to create synergies and interdisciplinary working
groups. Also, in the educational field, the use of analogues
helps in approaching and understanding the different sub-
jects [19]. Analogues allow solving the problems of one
physical system by using resolution methods of another
physical system that may show some advantage. In this
sense, it has been more often preferred to work with elec-
trical analogues, while there are interesting works where the
mechanical analogue of electrical power systems was used,
see references [20], [21] and [22].

Analogies between different physical domains have helped
in finding new elements. This is the case of the memristor.
In the electrical domain, a memristor is a two-terminal circuit
element characterized by a relationship between the charge
and the flux linkage. The existence of that missing consti-
tutive relation was described by Chua in 1971 [23], though
it was not until 2008 when an electrical passive memristive
device was constructed [24]. One year after the work of Chua,
Oster & Auslander [25] proposed a tapered dashpot as a
mechanical memristor, showing a relation between displace-
ment and momentum, which are the mechanical analogues of
electric charge and flux linkage. Another remarkable contri-
bution attributable to the use of analogues is the invention
of the inerter [26]. The inerter was the result of searching
for a genuine two-terminal mechanical device equivalent
to the electrical capacitor. Unlike a conventional mass ele-
ment, the electrical equivalent of the inerter does not require
a grounded terminal. The inerter is the true dual of the
spring and it has been successfully applied to suspension
vehicles [27], [28].

Electro-mechanical analogies have been used in vehicle
suspension modeling and control [29]–[32], in vehicle drive
trains [33], in structural dynamics [34], in modeling and
control of flexible structures [35], in design and opti-
mization of inductive power transfer systems [36], and in
piezoelectric vibration energy harvesters [37], among others
mechanical or electromechanical systems with interest in
vibrations [14], [15], [38]–[42].

The present work is a contribution to the use of electrome-
chanical analogues in vehicle suspensions. To the authors’
knowledge, the use of electrical analogues in the scien-
tific literature regarding vehicle suspension is limited to the
quarter-car model. In this work, the full electromechanical
analogue of a half-car vehicle model, where the inertial cou-
pling appears due to the vehicle mainframe, is presented.
The relationship between mechanical inertial coupling and
electrostatic capacitor coupling is then described. This is a
novelty of this work in the quest of identifying new analogies.
Furthermore, the analogy is extended to a three-axle vehicle
model in which some numerical results are obtained and
discussed.
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II. ELECTRICAL ANALOGIES OF MECHANICAL SYSTEMS.
A BASIC EXAMPLE
The process followed to obtain an electric analogy of a
mechanical system is shown in this section with the help of
the 2 d.o.f translational model depicted in figure 1. Masses
m1 and m2 are linked by a spring and a damper arranged in
parallel, with k2 and d2 as stiffness and damping constants,
respectively. Mass m1 is connected to the ground by another
parallel spring-damper pair with stiffness and damping con-
stants k1 and d1, respectively. An external force f (t) is acting
on the mass m2. Using the mobility method [13], figure 1b
shows the mechanical network of the model, where masses
m1 and m2 are ‘‘connected’’ to the ground due to the inertial
frame of reference, i.e., the velocity and acceleration of these
masses are measured relative to ground.

The equations of motion of the system in figure 1a can be
obtained by using Lagrange equations [43] in terms of the
independent variables x1 and x2, which are the components of
the generalized co-ordinates vector x = [x1 x2]T as follows:

d
dt

(
∂L
∂ ẋ

)
−
∂L
∂x
+
∂FR
∂ ẋ
= Qa(t) (1)

where L = T −5 is the lagrangian function, T is the kinetic
energy,5 is the potential energy, FR is a Rayleigh dissipation
function, and Qa(t) is the generalized applied force vector.
The expressions of T , 5 and FR are read as follows:

T =
1
2
m1ẋ21 +

1
2
m2ẋ22 (2)

5 =
1
2
k1x21 +

1
2
k2 (x2 − x1)2 (3)

FR =
1
2
d1ẋ21 +

1
2
d2 (ẋ2 − ẋ1)2 (4)

Introducing T , 5, FR and Qa(t) = [0 − f (t)]T into
Eq. (1), the following ODE system is found:[
m1 0
0 m2

]
︸ ︷︷ ︸

m

[
ẍ1
ẍ2

]
︸ ︷︷ ︸

ẍ

+

[
d1 + d2 −d2
−d2 d2

]
︸ ︷︷ ︸

d

[
ẋ1
ẋ2

]
︸ ︷︷ ︸

ẋ

+

[
k1 + k2 −k2
−k2 k2

]
︸ ︷︷ ︸

k

[
x1
x2

]
︸ ︷︷ ︸
x

=

[
0
−f (t)

]
︸ ︷︷ ︸
Q(t)

(5)

which may be rewritten in matrix form as

mẍ+ dẋ+ kx = Q(t) (6)

Note that Q(t) = Qa(t) in (6), but this is not always
the case, as it will be shown for vehicle models subject to
excitations coming from the road profile.

This mechanical system can be studied through any of
the two well-known versions of electromechanical analogies.
Table 1 summarizes the relationship between the electrical
and mechanical elements and variables for the force-voltage
and force-current analogies. Both electrical analogues are
shown in figure 2, where some basic connection rules have
been followed [4]. Mainly, when the force-voltage analogy is

FIGURE 1. (a) 2 d.o.f. mechanical model and (b) its network
representation.

used, parallel (series) connections in the mechanical systems
must be drawn as series (parallel) connections in the electrical
network. Conversely, if the force-current analogy is preferred,
the topology of the diagrams is not altered [6]. The latter is
a very strong argument in favor of the force-current analogy.
Furthermore, it will also facilitate the resolution of the pro-
posed networks. Therefore, the force-current version will be
used in the rest of this work.

Figure 2b represents the force-current analogue of the
mechanical system of figure 1. It can be seen that the topology
of the electrical circuit is identical to the mechanical one. It is
worth mentioning that capacitors must always have a lead to
the common node or earth. As explained before, a mass that
moves with respect to the ground (the inertial frame), behaves
like a capacitor tied to the ground in the electrical network.

Note that once the topology of the electrical analogue is
found, it can be used for either time or frequency domain
analysis. Based on table 1 and the use of Kirchhoff’s current
law (KCL), the following equation can be obtained:

Cφ̈ + Gφ̇ + Bφ = I(t) (7)

which can be expanded to:[
C1 0
0 C2

] [
φ̈1
φ̈2

]
+

[
G1 + G2 −G2
−G2 G2

] [
φ̇1
φ̇2

]
+

[
B1 + B2 −B2
−B2 B2

] [
φ1
φ2

]
=

[
0
−i2(t)

]
(8)

where Gi = 1
Ri

is the conductance of resistor Ri and Bi =
1
Li

is the inverse of inductance Li. The variable φ is the
flux linkage. Note that φ̇j = uj is the voltage of node j
and the force f (t) has been replaced by its analogue i(t).
It can be readily observed that (7) and (8) are similar to (6)
and (5), respectively. For steady state harmonic analysis,
Eq. (8) can be transferred to the frequency domain by using
the Euler expression, where a sine or cosine can be put in
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TABLE 1. General analogy between mechanical and electrical systems.

FIGURE 2. (a) Force-voltage and (b) force-current analogues of the 2 d.o.f.
mechanical model of figure 1.

complex form. For example,

e(t) =
√
2E cos(ωt + ϕ)

= Re{
√
2 cos(ωt + ϕ)+ j

√
2E sin(ωt + ϕ)}

= Re{
√
2Eejωt+ϕ} = Re{

√
2EEejωt } (9)

where EE = Eejϕ is known as a phasor. It indicates the
RMS (E) and phase (ϕ) value of the harmonic sinusoid,
respectively. This transformation allows a complete rewriting
of sinusoidal time domain equations in a complex linear
algebraic. Thus, Eq. (8) can be written in a compact way as
follows:[
0
EI2

]
=

[
G1 + EBL1 + EBC1 + G2 + EBL2 −G2 − EBL2

−G2 − EBL2 EBC2 + G2 + EBL2

]
︸ ︷︷ ︸

EY

×

[
EU1
EU2

]
︸ ︷︷ ︸
EU

(10)

where EBLi =
1

Liωj
is the susceptance (inverse of complex

reactance) associated to Li and EBCi = Ciωj is the susceptance
associated to Ci. The matrix system in (10) is composed
of complex numbers and can be easily solved by using
matrix linear algebra. The unknown voltages EU1 and EU2 are
obtained by inverting the admittance matrix [EY ]:

[ EU ] = [EY ]−1[EI ] (11)

Once the voltages are known, every current can be solved
by applying Ohm’s law to any element of the circuit. This is
equivalent to knowing the velocity and force in every element
of the original mechanical system. The real advantage of the
method resides in the application of the countless theorems
and laws developed over the years in network analysis. For
example, the dimensional reduction of the circuit can be
realized using Thevenin/Norton theorem.

III. ELECTROMECHANICAL ANALOGUE OF A HALF-CAR
MODEL BASED ON ELECTROSTATIC
CAPACITOR COUPLING
In this section, the analogy is applied to a more complex
mechanical system like the classical half car vehicle model
depicted in figure 3, showing elastic and inertial coupling.
The equations of motion of such a system could be written
without inertial coupling terms if the vertical displacement
of the center of mass and the pitch angle are taken as coor-
dinates. Nevertheless, to have only translational coordinates,
which facilitates the application of the electromechanical
analogy, the vertical displacements of the mainframe points
where the suspensions are attached, xa and xb, are used as
coordinates. In this way, neither the mass nor the stiffness
matrices are diagonal and, therefore, the system shows iner-
tial and elastic coupling.

The mechanical system in figure 3 has four degrees of
freedom. The coordinate vector is written as

x =
[
xa xb xd xt

]T (12)

where xd and xt are the vertical displacements of the unsprung
masses. The equations of motion will be obtained again
by using Lagrange Eq. (1) for which we need to calculate
the kinetic and potential energies as well as the Rayleigh
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FIGURE 3. Half-car vehicle model for vertical dynamics analysis.

dissipation function as follows:

T =
mssd ẋ2d

2
+
msst ẋ2t

2
+
IG(ẋa − ẋb)2

2(ld + lt)2
+
m(ld ẋb + lt ẋa)2

2(ld + lt)2

5 =
ksd (xa − xd )2

2
+
kst(xb − xt)2

2
+
krd (xd − yd )2

2

+
krt(xt − yt)2

2
+ gmssdxd + gmsstxt

+
gm (ldxb + ltxa)

ld + lt

FR =
dsd (ẋa − ẋd )2

2
+
dst(ẋb − ẋt)2

2
+
drd (ẋd − ẏd )2

2

+
drt (ẋt − ẏt)2

2

where m and IG are the mass and moment of inertia of the
vehicle frame, mssd and msst are the front and rear unsprung
masses, ksd , dsd , kst , dst are the stiffness and damping con-
stants of the front and rear suspension elements, krd , drd , krt ,
drt are the front and rear tyre stiffness and damping constants
and yd and yt are the front and rear displacements of the wheel
and ground contact points. Resorting to Eq. (6), the mass,
damping, and stiffness matrices read as follows:

m =



m lt2 + IG
(ld + lt)2

ld lt m− IG
(ld + lt)2

0 0

ld lt m− IG
(ld + lt)2

m ld 2 + IG
(ld + lt)2

0 0

0 0 mssd 0
0 0 0 msst

 , (13)

d =


dsd 0 −dsd 0
0 dst 0 −dst
−dsd 0 drd + dsd 0
0 −dst 0 drt + dst

 , (14)

k =


ksd 0 −ksd 0
0 kst 0 −kst
−ksd 0 krd + ksd 0
0 −kst 0 krt + kst

 , (15)

and the generalized force vector is written as follows

Q(t) =


−
g lt m
ld + lt
−
g ld m
ld + lt
−gmssd
−gmsst

+


0
0

drd ẏd (t)+ krd yd (t)
drt ẏt (t)+ krt yt (t)

 (16)

where Q(t) is the sum of a gravitational force vector and
a nonconstant vector dependent on the road profile. For
harmonic steady-state analysis, gravitational forces can be
omitted as they result in an offset that may be added if needed.

EY11 −CMωj −bsd − 1
Lsdωj

0
−CMωj EY22 0 −Gst − 1

Lstωj
−Gsd − 1

Lsdωj
0 EY33 0

0 −Gst − 1
Lstωj

0 EY44



×


EUa
EUb
EUd
EUt

 =

0
0
EId
EIt

 (17)

By inspecting Eq. (13), it can be noticed that nonzero terms
appear outside the diagonal. Based on circuit analysis tech-
niques, it follows that there is an electrical coupling between
variables φ̈1 and φ̈2, i.e., u̇1 and u̇2. Since we are using a
force-current analogy, the right electrical analogue is depicted
in figure 4. Note that the same naming convention has been
retained for nodes. It can be observed that this analogue is
very similar to that in figure 2b using the analogue twice but
introducing a newmechanism based on electrostatic coupling
between capacitors. Furthermore, note that the current source
(force f (t)) has been removed and both, a new voltage source
(to model the vertical velocity that causes the road profile)
and an electrostatic capacitor coupling (to model the inertial
coupling), have been included. The dots near the capacitors
CA and CB in figure 4 indicate the polarity of the capacitor
coupling. Interestingly enough, this analogue is widely used
in power electronics for different applications such as electric
vehicle charging [44]. Note that the use of the force-current
analogy leads to a dual of the classic magnetic coupling
widely used for transformers and transducers.

The circuit in figure 4 can be simplified. The coupling
capacitors can be replaced [45] by two different electrical
models: voltage-controlled current sources (VCCS) or capac-
itors arranged in 5 network. Figure 5 shows the layout for
both configurations and figure 6 shows the simplified cir-
cuit using the 5 network. The values of the inductors and
resistors follows the rules on table 1, while the values of the
coupling capacitors are CA =

mlt 2+IG
l2

and CB =
mld 2+IG

l2

and the coupling coefficient is CM =
IG−ld ltm

l2
as reflected

in (13). To facilitate the resolution by applying KCL for a
steady-state harmonic analysis, the real voltage sources have
been transformed into real current sources it and id . This
is one of the main benefits of using the electromechanical
analogy: a plethora of rules, theorems, and laws can be
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FIGURE 4. Electrical analogue of the half-car vehicle model in figure 3. The vertical velocity of each wheel is modeled through voltages sources. The
inertial coupling can be modeled through an electrostatic capacitor coupling.

FIGURE 5. Equivalent networks for capacitive coupling. Left, voltage controlled current sources model and right, 5-network model.

FIGURE 6. Equivalent circuit for half-car using 5-network model.

applied to simplify the proposed circuits. Note also that, from
a practice point of view, a large number of computational
methods and optimization algorithms developed for electri-
cal engineering problems can be used. The resulting matrix
equation is shown in (17). where

EY11 = Gsd + CAωj+
1

Lsdωj

EY22 = Gst + CBωj+
1

Lstωj

EY33 = Cssdωj+ Gsd + Grd +
1

Lsdωj
+

1
Lrdωj

EY44 = Csstωj+ Gst + Grt +
1

Lstωj
+

1
Lrtωj

EId = Grd EVd +
1

Lrdωj
EVd

EIt = Grt EVt +
1

Lrtωj
EVt

Note again, that gravitational forces (equivalent to DC
sources) have been omitted for harmonic analysis. The terms

EVd and EVt represent the voltage source analogue to the veloc-
ity of each unsprung mass caused by the road profile. Also
note that in frequency domain d

dt = jω and
∫
dt = 1

jω .
It can be observed that mechanical Eqs. (13)-(16) are the time
domain analogue version of the electrical frequency domain
equations in (17).

IV. APPLICATION TO A VEHICLE MODEL WITH A HIGHER
LEVEL OF COMPLEXITY
In this section, the system to be analysed is a three-axle
vehicle model, which has interest because the vertical dis-
placement of the attachment point of the middle axle, xc,
is dependent on xa and xb. In other words, xc is a dependent
coordinate which is written in terms of xa and xb as follows

xc = (lb xa − lb xb + ld xb + lt xb) /l (18)

where distances la, lb, ld and lt are defined in figure 7. To keep
the text of the manuscript to a reasonable size, the reader is
referred to figure 7 to find the meaning of the mass, damping,
and stiffness constants of this system.
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FIGURE 7. Three-axle vehicle model for vertical dynamics analysis.

This system is modeled in terms of the following coordi-
nate vector

x =
[
xa xb xd xt xm

]T (19)

It can be demonstrated with the help of Lagrange equations
that the mass, damping, and stiffness matrices, according to
Eq. (6), are written as follows

m =


m11 m12 0 0 0
m21 m22 0 0 0
0 0 mssd 0 0
0 0 0 msst 0
0 0 0 0 mssm

 (20)

where m11 =
(
mlt2 + IG

)
/l2, m22 =

(
m ld 2 + IG

)
/l2, and

m12 = m12 = (−IG + ld lt m) /l2.

d=


d11 d12 −dsd 0 d15
d21 d22 0 −dst d25
−dsd 0 drd + dsd 0 0
0 −dst 0 drt + dst 0
d51 d52 0 0 drm + dsm

 (21)

where d11 = dsd + dsm lb2/l2, d12 = d21 = dsm la lb/l2,
d15 = d51 = −dsm lb/l, d22 = dst + dsm la2/l2 and d25 =
d52 = −dsm la/l.

k =


k11 k12 −ksd 0 k15
k21 k22 0 −kst k25
−ksd 0 krd + ksd 0 0
0 −kst 0 krt + kst 0
k51 k52 0 0 krm + ksm

 (22)

where k11 = ksd + ksm lb2/l2, k12 = k21 = ksm la lb/l2, k15 =
k51 = −ksm lb/l, k22 = kst + ksm la2/l2 and k25 = k52 =
−ksm la/l.

The generalized force vector is written as follows:

Q(t) =



−
g lt m
l

−
g ld m
l

−gmssd
−gmsst
−gmssm


+


0
0

drd ẏd (t)+ krd yd (t)
drt ẏt (t)+ krt yt (t)
drm ẏm(t)+ krm ym(t)

 (23)

where yd , ym and yt are the front, middle and rear vertical dis-
placements of the wheel and ground contact points. It should
be noted that matrix (20) is very similar to (13) but with a
new element in the diagonal that accounts for the mass mssm.
However, matrix equations (21) and (22) differ to those of a
half-car. Now, new elements arise in positions 12 (and sym-
metrically in 21). In addition, elements 11 and 22 change their
value. The equivalent electrical model is shown in figure 8.
As a result, the half-car model is extended by adding a new
node, m, (due to the new axle) with new elements connecting
node a and b with m. Moreover, a new branch connecting
a and b is observed. Interestingly enough, this branch has
elements with negative values. Finally, the node m is linked
to ground through the expected elements in a similar fashion
as the other two wheels. The road profile of the third wheel
is modeled through a new voltage source vm.
The new matrix equation reads as follows:

EY11 EY12 EY13 0 EY15
EY21 EY22 0 EY24 EY25
EY31 0 EY33 0 0
0 EY42 0 EY44 0
EY51 EY52 0 0 EY55



EUa
EUb
EUd
EUt
EUm

 =

0
0
EId
EIt
EIm

 (24)

where

EY11 = Gsd + CAωj+
1

Lsdωj
+

(
Gsm +

1
Lsmωj

)
l2b
l2

EY22 = Gst + CBωj+
1

Lstωj
+

(
Gsm +

1
Lsmωj

)
l2a
l2

EY33 = Cssdωj+ Gsd + Grd +
1

Lsdωj
+

1
Lrdωj

EY44 = Csstωj+ Gst + Grt +
1

Lstωj
+

1
Lrtωj

EY55 = Cssmωj+ Gsm + Grm +
1

Lsmωj
+

1
Lrmωj

EY12 = EY21 = −CMωj+
(
Gsm +

1
Lsmωj

)
lalb
l2

EY13 = EY31 − bsd −
1

Lsdωj

EY15 = EY51 = −
(
Gsm +

1
Lsmωj

)
lb
l

EY24 = EY42 = −Gst −
1

Lstωj

EY25 = EY52 = −
(
Gsm +

1
Lsmωj

)
la
l
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TABLE 2. Constants of the lumped parameter three axle vehicle model.

FIGURE 8. Electrical analogue of the three-axle vehicle model (zoomed in

the coupling area of figure 6). Lsma =
l

ksmla
, Lsmb =

l
ksmlb

,

Rsma =
l

Rsmla
, Rsmb =

l
ksmlb

, Lsmab =
l

ksmlalb
and Rsmab =

l
Rsmlalb

.

EId = Grd EVd +
1

Lrdωj
EVd , EIt = Grt EVt +

1
Lrtωj

EVt

EIm = Grm EVm +
1

Lrmωj
EVm

V. NUMERICAL RESULTS. VALIDATION OF
ELECTROMECHANICAL ANALOGUES
To show the benefits of the presented analogy, a numeri-
cal example of an electrical analogue of a three-axle vehi-
cle model in steady-state harmonic vibration is solved. The
model is inspired by the real three-axle heavy truck modeled

by Wang et al. [46]. The constants of the lumped parameter
truck model are summarized in Table 2.

The vehicle model is assumed to travel at a constant for-
ward velocity, v = 60 km/h, on a road with a harmonic
unevenness characterized by amplitude, Y = 5 cm and a
wavelength, λ = 2 m. This way, the displacements of the
front, middle, and rear tyre-ground contact points can be
modeled as follows:

yd (t) = Y sin (2πvt/λ)
ym(t) = Y sin (2πvt/λ− φm)
yt (t) = Y sin (2πvt/λ− φt) (25)

where φm = 2π la/λ and φt = 2π l/λ are phase shifts.
To solve the electrical analogue in harmonic steady state

analysis, we must first perform the complex phasor repre-
sentation of the variables presented in table 2 and then insert
them into Eq. (24) to solve the linear matrix system. Table 3
shows the complex phasor values of elements in (24) for this
example. The vector current is also presented in complex
form. The unknowns EU = [ EUa, EUb, EUd , EUt , EUm]T are easily
obtained by performing the inverse of the admittance matrix
and then multiply the current vector EI . The result is
EUa
EUb
EUd
EUt
EUm

 =


0.0754+ 0.5293i
−0.0987+ 0.0033i
−0.8114− 2.1287i
1.7945− 1.4511i
−2.1784− 0.9272i

 =


0.5346× e81.90 i

0.0988× e178.11 i

2.2781× e−110.87 i

2.3078× e−38.96 i

2.3675× e−156.94 i


(26)
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FIGURE 9. Steady state vertical oscillation velocities of the characteristic points (a, b, c , d , m, and t) of the three-axle vehicle
model.

TABLE 3. Complex phasor data in (24) for 3-axle numerical example. All values are multiplied by 10−5.

The result in (26) are complex values representing the
voltage (velocities) in the electrical (mechanical) circuit.
The norm of the complex phasor gives the RMS amplitude
for each harmonic sinusoidal waveform. The time-domain
expressions are

ua(t) =
√
2 0.5346 sin(ωt + 81.90)

ub(t) =
√
2 0.0988 sin(ωt + 178.11)

ud (t) =
√
2 2.2781 sin(ωt − 110.87)

ut (t) =
√
2 2.3078 sin(ωt − 38.96)

um(t) =
√
2 2.3675 sin(ωt − 156.94) (27)

in Volt (meter/second) for the electrical (mechanical) circuit.
The phase angle is expressed in degrees.

To validate the previous results, the steady-state harmonic
vibration of the three-axle vehicle model is studied with the
help of the inverse Fourier transform. As it is well known,
the steady-state oscillation velocity vector can be obtained as
follows:

ẋ(t) =
∫
∞

−∞

jωH(ω)Qh(ω)ejωtdω (28)

where H(ω) =
(
−ω2m+ jωd + k

)−1
is the frequency

response matrix function and Qh(ω) is the Fourier transform
of the harmonic part of the excitation, which is obtained as
follows

Qh(ω) =
1
2π

∫
∞

−∞


0
0

drd ẏd (t)+ krd yd (t)
drt ẏt (t)+ krt yt (t)
drm ẏm(t)+ krm ym(t)

 e−jωtdt (29)

Note that the constant part of the excitation vector appear-
ing in Eq. (23) has been ignored for this analysis since it
does not affect the velocity in steady-state. The velocities in
Eq. (28) have been solved with the help of the ifft sub-
routine, while Qh(ω) is computed with the fft subroutine,
both from Matlab. For the solution, a total of ten oscillations
with 1024 time points have been simulated. This gave a
sampling frequency of 833.33 Hz, for an excitation frequency
of 8.33 Hz. Finally, the velocity ẋc(t) is obtained from the
velocities of points a and b as follows:

ẋc = (lb ẋa − lb ẋb + ld ẋb + lt ẋb) /l (30)
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The velocities obtained for the characteristic points (a, b,
c, d , m, and t) of the three-axle vehicle model are shown
in Figure 9 together with the RMS values of the velocity
signals for comparison against the results of Eq. (27). As it
can be seen, the RMS values exactly coincide with those of
the electrical analogue circuit.

VI. SUMMARY AND CONCLUSION
The use of electrical analogues of vehicle models is a topic
of interest and has been studied previously in the litera-
ture. In particular, the quarter car model has been studied
in several publications. Such electrical analogues have been
successfully used for tuning controllers of active suspen-
sion elements. Nevertheless, more complex models, such as
the half-car vehicle model, lack a comprehensive electrical
analogue. This work attempts to shed some light on this
subject by providing the electrical analogue of the half-car
model as well as its closely related, but more complicated
model, three-axle vehicle. Therefore, new and non-previously
disclosed electrical analogues for two moderately complex
vehicle models have been described.

The inertial coupling present in such mechanical systems
due to the vehicle mainframe has been identified andmodeled
for the first time by an electrostatic capacitor coupling in its
force-current analogue. Only pure displacement coordinates
have been used instead of mixing angle and displacement
variables. The capacitance values of the coupled capacitors
depend on the mass and moment of inertia of the vehicle
mainframe, and the distance of each wheel to the center of
gravity of the mainframe. To deal with the coupling capaci-
tors, its equivalent 5 network has been used to simplify the
resulting equations. The transformation between real voltage
and current sources has been also used to facilitate the appli-
cation of KCL’s.

Finally, numerical results have been obtained for a
three-axle vehicle model in steady-state harmonic vibration
conditions both by using the electrical equivalent circuit and
the mechanical model as an example of the utility of this
method. As expected, both approaches led to the same results
by sharing the same time and frequency domain equations.

The presentedmethodologywould be of interest for further
studies where coupled electrical and mechanical systems are
available. The design of control strategies of active suspen-
sion systems is a classic example. Furthermore, the proposed
analogy opens up new possibilities for the application of some
well-known tools in Circuit Theory analysis.
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